1
|
Alves Senabio J, Correia da Silva R, Guariz Pinheiro D, Gomes de Vasconcelos L, Soares MA. The pesticides carbofuran and picloram alter the diversity and abundance of soil microbial communities. PLoS One 2024; 19:e0314492. [PMID: 39591478 PMCID: PMC11594414 DOI: 10.1371/journal.pone.0314492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Many countries widely use pesticides to increase crop productivity in agriculture. However, their excessive and indiscriminate use contaminates soil and other environments and affects edaphic microbial communities. We aimed to examine how the pesticides carbofuran and picloram affect the structure and functionality of soil microbiota using cultivation-independent methods. Total DNA was extracted from microcosms (treated or not with pesticides) for amplification and metabarcoding sequencing for bacteria (16S gene) and fungi (28S gene) using Illumina-MiSeq platform. Data analysis resulted in 6,772,547 valid reads from the sequencing, including 3,450,815 amplicon sequences from the V3-V4 regions of the 16S gene and 3,321,732 sequences from the 28S gene. A total of 118 archaea, 6,931 bacteria, and 1,673 fungi taxonomic operating units were annotated with 97% identity in 24 soil samples. The most abundant phyla were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Chloroflexi, Euryarchaeaota, and Ascomycota. The pesticides reduced the diversity and richness and altered the composition of soil microbial communities and the ecological interactions among them. Picloram exerted the strongest influence. Metabarcoding data analysis from soil microorganisms identified metabolic functions involved in resistance and degradation of contaminants, such as glutathione S-transferase. The results provided evidence that carbofuran and picloram shaped the soil microbial community. Future investigations are required to unravel the mechanisms by which soil microorganisms degrade pesticides.
Collapse
Affiliation(s)
- Jaqueline Alves Senabio
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Rafael Correia da Silva
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Daniel Guariz Pinheiro
- Faculty of Agricultural and Veterinary Sciences, Paulista State University, Jaboticabal, SP, Brazil
| | | | - Marcos Antônio Soares
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
2
|
Oviedo-Matamoros F, Pérez-Villanueva ME, Masís-Mora M, Aguilar-Álvarez R, Ramírez-Morales D, Méndez-Rivera M, Rodríguez-Rodríguez CE. Biological treatment of pesticide-containing wastewater from coffee crops: selection and optimization of a biomixture and biobed design. Front Microbiol 2024; 15:1357839. [PMID: 38384273 PMCID: PMC10881177 DOI: 10.3389/fmicb.2024.1357839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
The biopurification systems (BPS) or biobeds are employed for the treatment of pesticide-containing wastewater of agricultural origin. The use of these devices for pesticide removal requires the proper optimization of the composition of biomixtures (BPS active matrix) according to the target pesticides applied on a specific crop and the available materials used in their elaboration. This work aims to design a biomixture for the simultaneous treatment of several pesticides applied in coffee crops, according to local practices in Costa Rica. Three biomixtures containing either coffee husk, coconut fiber or rice husk (as the lignocellulosic substrate) were applied for the removal of 12 pesticides. The profiles of pesticide elimination and the mineralization of radiolabeled chlorpyrifos (14C-chlorpyrifos) revealed that the best performance was achieved with the coconut fiber biomixture, even though similar detoxification patterns were determined in every biomixture (according to immobilization in Daphnia magna and germination tests in Lactuca sativa). The optimization of this biomixture's composition by means of a central composite design permitted the definition of two optimal compositions (compost:soil:coconut fiber, % v/v) that maximized pesticide removal: i. 29:7.3:63.7 and ii. 11:7.3:81.7. The validation of these optimized compositions also included the use of an alternative soil from another coffee farm and resulted in overall DT50 values of 7.8-9.0 d for the pesticide mixture. Considering the removal kinetics in the optimized biomixture, a 1 m3 BPS prototype was dimensioned to be eventually used in local coffee farms. This work provides relevant information for the design and implementation of BPS at on-farm conditions for the treatment of pesticide-containing wastewater of a major crop.
Collapse
Affiliation(s)
- Fernando Oviedo-Matamoros
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Marta E. Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
3
|
Lee-Ann Ataikiru T, Ajuzieogu CA. Enhanced bioremediation of pesticides contaminated soil using organic (compost) and inorganic (NPK) fertilizers. Heliyon 2023; 9:e23133. [PMID: 38144266 PMCID: PMC10746455 DOI: 10.1016/j.heliyon.2023.e23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
This research examined the bioremediation of pesticides (Carbofuran and Paraquat) contaminated farmyard soil using compost and Nitrogen, Phosphorus, and Potassium (NPK) fertilizer. Microcosms representing each treatment were set-up in triplicates. Biostimulation was done using two concentrations (0.5 % and 1.0 % w/w) of NPK fertilizer and compost, following pesticides application at recommended rates [Carbofuran (1 g/kg) and Paraquat (5 ml/kg)] and four times the recommended rates. Two control soils were set-up; Abiotic control (sterile farmyard soil + pesticide) and Control (farmyard soil without treatment). Monitoring of the dynamics in microbial community abundance, and pesticide residues during the biostimulation period was done weekly for 28 days, using standard enumeration method, and High Performance Liquid Chromatography (HPLC), respectively. At the end of the monitoring period, considerable reduction in pesticide residues across the treatment set-ups was recorded. In Carbofuran-treated soils, there were no complete, but considerable losses in residual pesticide, however, in most of the Paraquat-treated soils, there were complete losses within 21 days. Lower pesticide residues were recorded in set-ups amended with compost than NPK, across both Carbofuran and Paraquat-treated soils. After pesticides application, decreases in microbial counts were recorded at Day 7 across all the treatments, followed by increases from Day 14-21, then decreases at Day 28. Microbial counts were lower in Carbofuran than in Paraquat-treated soils irrespective of nutrient (compost and NPK) amendments. Bacterial and fungal counts were in the magnitude of 106 and 105 CFU/g soil, respectively. Also, increased counts were recorded for Actinomycetes, Nitrifiers, Phosphate solubilizers across all treatments, and were in magnitude of 103-104 CFU/g soil. Soil microorganisms could breakdown and eliminate large concentrations of Carbofuran and Paraquat in compost-amended soils than in NPK-amended soils. This study suggests that bioremediation of pesticides contaminated soils can be achieved and enhanced by stimulating the indigenous microbial community with requisite nutrients (compost).
Collapse
Affiliation(s)
- Tega Lee-Ann Ataikiru
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
| | | |
Collapse
|
4
|
Pérez-Villanueva ME, Masís-Mora M, Araya-Valverde E, Rodríguez-Rodríguez CE. Fast removal and detoxification of oxytetracycline, triazine and organophosphate pesticides in a biopurification system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of carbamates. CHEMOSPHERE 2021; 279:130500. [PMID: 33892453 DOI: 10.1016/j.chemosphere.2021.130500] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S. Carbofuran toxicity and its microbial degradation in contaminated environments. CHEMOSPHERE 2020; 259:127419. [PMID: 32593003 DOI: 10.1016/j.chemosphere.2020.127419] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 05/12/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum and systemic N-methyl carbamate pesticide, which is extensively applied as insecticide, nematicide and acaricide for agricultural, domestic and industrial purposes. It is extremely lethal to mammals, birds, fish and wildlife due to its anticholinesterase activity, which inhibits acetyl-cholinesterase and butyrylcholinesterse activity. In humans, carbofuran is associated with endocrine disrupting activity, reproductive disorders, cytotoxic and genotoxic abnormalities. Therefore, cleanup of carbofuran-contaminated environments is of utmost concern and urgently needs an adequate, advanced and effective remedial technology. Microbial technology (bacterial, fugal and algal species) is a very potent, pragmatic and ecofriendly approach for the removal of carbofuran. Microbial enzymes and their catabolic genes exhibit an exceptional potential for bioremediation strategies. To understand the specific mechanism of carbofuran degradation and involvement of carbofuran hydrolase enzymes and genes, highly efficient genomic approaches are required to provide reliable information and unfold metabolic pathways. This review briefly discusses the carbofuran toxicity and its toxicological impact into the environment, in-depth understanding of carbofuran degradation mechanism with microbial strains, metabolic pathways, molecular mechanisms and genetic basis involved in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N. Global trends in pesticides: A looming threat and viable alternatives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110812. [PMID: 32512419 DOI: 10.1016/j.ecoenv.2020.110812] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; UIPS, Panjab University, Chandigarh, 160014, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kriti Attri
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Biological Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh, 160014, India
| | | | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Acosta-Sánchez A, Soto-Garita C, Masís-Mora M, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Impaired pesticide removal and detoxification by biomixtures during the simulated pesticide application cycle of a tropical agricultural system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110460. [PMID: 32199216 DOI: 10.1016/j.ecoenv.2020.110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.
Collapse
Affiliation(s)
- Alejandra Acosta-Sánchez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Claudio Soto-Garita
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
9
|
Dias LDA, Gebler L, Niemeyer JC, Itako AT. Destination of pesticide residues on biobeds: State of the art and future perspectives in Latin America. CHEMOSPHERE 2020; 248:126038. [PMID: 32041065 DOI: 10.1016/j.chemosphere.2020.126038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Land-use intensification with a high demand for pesticides is a consequence of human population increase. Feasible alternatives for correct concentrated residues discharge are necessary to avoid soil and water resources contamination. Biobeds are in situ bioreactors for treating pesticide residues, used by several European and American countries due to its low cost and simple construction, whose efficiency has been scientifically proved for over 20 years. This review presents the state of the art of biobeds in Latin America (LA), identifying advances and future research needs. Factors affecting the efficiency of biobeds are discussed, like ideal temperature, moisture, and microbial communities, followed by methods for evaluating the bioreactor's efficiency. It was necessary to adapt this technology to the climatic and economic conditions of Latin-American countries, due to its European origins. Guatemala is the LA country that uses biobeds as official technology. Brazil, Argentina, Costa Rica and Chile are examples of countries that are actively investigating new substrates and pursuing legal aspects for the establishment of the biobeds. Robust scientific evidences may enable farmers start using this technology, which is an environmentally safe system to protect water resources.
Collapse
Affiliation(s)
- Leticia de A Dias
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil.
| | - Luciano Gebler
- Estação Experimental de Fruticultura de Clima Temperado (EFCT), EMBRAPA Uva e Vinho, Vacaria, Rio Grande do Sul, Brasil
| | - Júlia C Niemeyer
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil
| | - Adriana T Itako
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil
| |
Collapse
|
10
|
Chan-Cheng M, Cambronero-Heinrichs JC, Masís-Mora M, Rodríguez-Rodríguez CE. Ecotoxicological test based on inhibition of fungal laccase activity: Application to agrochemicals and the monitoring of pesticide degradation processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110419. [PMID: 32182526 DOI: 10.1016/j.ecoenv.2020.110419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Ecotoxicological evaluations require the use of assays with several bioindicators from different trophic levels. Only a few ecotoxicological tests using fungi have been developed, reason why, detection of adverse effects from compounds that exert fungicide action may be overlooked. This work developed a toxicity test based on the inhibition of laccase enzymatic activity in the fungus Trametes versicolor. The test was applied to several fungicides and succeeded to determine inhibition values (half maximum effective concentration, EC50) for most of them (flusilazole, imazalil, pyrimethanil, tetraconazole), though a clear dose-response was not evident for others (thiabendazole, metalaxyl). The application on atrazine (herbicide), imidacloprid (insecticide) and oxytetracycline (antibiotic), proved the proposed test is suitable towards other agrochemicals. The test was also used to estimate the detoxification resulting from two different approaches employed in the removal of agrochemicals. (a) First, in the liquid-phase elimination by fungal biomass simultaneously removing atrazine, imazalil, tebuconazole and triadimenol, the test showed a significant decrease in toxicity by biodegradation (adsorption contribution to detoxification was negligible). (b) Second, a solid-phase biomixture (used for pesticide degradation from agricultural wastewater) partially removed atrazine, imazalil, metalaxyl and pyrimethanil after 33 d; nonetheless, this system could not reduce the toxicity of the matrix, and higher laccase inhibition was detected after the treatment. The design test increases the battery of available bioassays to determine the toxicity of agrochemicals, and provides an interesting tool to monitor biodegradation processes.
Collapse
Affiliation(s)
- Melissa Chan-Cheng
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
11
|
Ma Y, Zhan L, Yang H, Qin M, Chai S, Cao Z, Mou R, Chen M. Dissipation of two field-incurred pesticides and three degradation products in rice (Oryza sativa L.) from harvest to dining table. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4602-4608. [PMID: 30891755 DOI: 10.1002/jsfa.9699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND High levels of harmful pesticide residues in rice can cause undesirable side effects and are a source of great concern to consumers. Reduction of pesticide residues to provide rice security has thus became an urgent problem. RESULTS In this study, the effects of commercial and home processing on removal of chlorpyrifos and carbosulfan residues from rice, and the formation of metabolites during processing, were studied. The results showed that 3,5,6-trichloro-2-pyridinol (0.87 mg kg-1 ) and carbofuran (0.43 mg kg-1 ) were the predominant components detected in paddy rice. All detected residues were primarily deposited on the rice hull and bran. Washing twice followed by high-pressure cooking was able to further decrease residues in polished rice with the processing factor value <0.25. Following application of pesticides at the recommended rate and twice the recommended rate, with a preharvest interval of 28 days, changes in residues from harvest to dining table based on efficient processing techniques were investigated. The final residues dropped to below maximum residue levels after washing twice followed by high-pressure cooking. CONCLUSION This simple cooking process thus reduces the risk of dietary exposure, and it is recommended that it is adopted by all consumers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Youning Ma
- China National Rice Research Institute, Hangzhou, China
| | - Liwei Zhan
- Zhe Jiang Wu Wang Nong Seeds Co., Ltd, Hangzhou, China
| | - Huan Yang
- China National Rice Research Institute, Hangzhou, China
| | - Meiling Qin
- China National Rice Research Institute, Hangzhou, China
| | | | - Zhaoyun Cao
- China National Rice Research Institute, Hangzhou, China
| | - Renxiang Mou
- China National Rice Research Institute, Hangzhou, China
| | - Mingxue Chen
- China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
12
|
Kupski L, Salcedo GM, Caldas SS, de Souza TD, Furlong EB, Primel EG. Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5131-5139. [PMID: 30607853 DOI: 10.1007/s11356-018-4010-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This study proposed the optimization of a laccase-mediator system to reduce pesticide levels (bentazone, carbofuran, diuron, clomazone, tebuconazole, and pyraclostrobin) on aqueous medium. Firstly, the mediator concentration of 1 mM was established (average removal of 36%). After that, seven redox-mediating compounds, namely, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, caffeic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, protocatechuic acid, and vanillin, were compared regarding their removal efficiency. The highest removal (77%) was achieved with the laccase-vanillin system. After this screening, the optimization was carried out by a 22 full factorial design. Variables under study were the enzyme (laccase) activity and vanillin concentration. Maximum removal (53-85%) was achieved with 0.95 U/mL laccase and 1.8 mM vanillin. Pesticide removal in reaction media was fitted to the first-order kinetics equation with an average half-time life of 2.2 h. This is the first study of the use of this natural compound as a mediator in the degradation of the pesticides under investigation. The results of this study contribute, with alternative methods, to decrease pesticide levels since they are highly persistent in aqueous samples and, as a result, mitigate the environmental impact.
Collapse
Affiliation(s)
- Larine Kupski
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil
| | - Gabriela M Salcedo
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil
| | - Sergiane S Caldas
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil
| | - Taiana D de Souza
- Post-graduation Program in Food Engineering and Science, Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciências Alimentos (LAMCA), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil
| | - Eliana B Furlong
- Post-graduation Program in Food Engineering and Science, Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciências Alimentos (LAMCA), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil
| | - Ednei G Primel
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul, 96201-900, Brazil.
| |
Collapse
|
13
|
Briceño G, Vergara K, Schalchli H, Palma G, Tortella G, Fuentes MS, Diez MC. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21296-21307. [PMID: 28748436 DOI: 10.1007/s11356-017-9790-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The current study aimed to evaluate the removal of a pesticide mixture composed of the insecticides chlorpyrifos (CP) and diazinon (DZ) from liquid medium, soil and a biobed biomixture by a Streptomyces mixed culture. Liquid medium contaminated with 100 mg L-1 CP plus DZ was inoculated with the Streptomyces mixed culture. Results indicated that microorganisms increased their biomass and that the inoculum was viable. The inoculum was able to remove the pesticide mixture with a removal rate of 0.036 and 0.015 h-1 and a half-life of 19 and 46 h-1 for CP and DZ, respectively. The sterilized soil and biobed biomixture inoculated with the mixed culture showed that Streptomyces was able to colonize the substrates, exhibiting an increase in population determined by quantitative polymerase chain reaction (q-PCR), enzymatic activity dehydrogenase (DHA) and acid phosphatase (APP). In both the soil and biomixture, limited CP removal was observed (6-14%), while DZ exhibited a removal rate of 0.024 and 0.060 day-1 and a half-life of 29 and 11 days, respectively. Removal of the organophosphorus pesticide (OP) mixture composed of CP and DZ from different environmental matrices by Streptomyces spp. is reported here for the first time. The decontamination strategy using a Streptomyces mixed culture could represent a promising alternative to eliminate CP and DZ residues from liquids as well as to eliminate DZ from soil and biobed biomixtures.
Collapse
Affiliation(s)
- Gabriela Briceño
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
- Scientific and Technological Bioresource Nucleous (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| | - Karen Vergara
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
| | - Heidi Schalchli
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Departmento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - Graciela Palma
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Scientific and Technological Bioresource Nucleous (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - María Soledad Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y PasajeCaseros, 4000, Tucumán, Argentina
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Departmento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Góngora-Echeverría VR, Quintal-Franco C, Arena-Ortiz ML, Giácoman-Vallejos G, Ponce-Caballero C. Identification of microbial species present in a pesticide dissipation process in biobed systems using typical substrates from southeastern Mexico as a biomixture at a laboratory scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:528-538. [PMID: 29453182 DOI: 10.1016/j.scitotenv.2018.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.
Collapse
Affiliation(s)
- Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico.
| | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - María Leticia Arena-Ortiz
- Laboratorio de Estudios Ecogenómicos, Unidad de Ciencias y Tecnología de la UNAM en Yucatán, Parque Científico y Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto Km 5.1, 97302 Mérida, Yucatán, Mexico
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| |
Collapse
|
15
|
Rodríguez-Castillo G, Molina-Rodríguez M, Pérez-Villanueva M, Masís-Mora M, Rodríguez-Rodríguez CE. Removal of Two Neonicotinoid Insecticides and Mineralization of 14C-Imidacloprid in Biomixtures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:137-143. [PMID: 29858622 DOI: 10.1007/s00128-018-2370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Environmental contamination with neonicotinoid insecticides represents an issue of wide concern due to their negative effects on pollinators. The goal of this work was to evaluate the potential use of biomixtures employed in biopurification systems (BPS) to remove two neonicotinoid pesticides, imidacloprid and thiamethoxam, from wastewater of agricultural origin. The removal was assayed by quantification of the parent compounds and the detection of putative transformation products of imidacloprid by means of LC-MS/MS, and mineralization of radiolabeled imidacloprid. Two biomixtures (B1, B2) were prepared using coconut fiber, compost and two soils pre-exposed to imidacloprid (volumetric composition 50:25:25). After spiking of neonicotinoids and 228 days of treatment, the removal ranged from 22.3%-30.3% and 38.6%-43.7% for imidacloprid and thiamethoxam, respectively. Transformation products imidacloprid-urea, desnitro-imidacloprid and desnitro-olefin-imidacloprid were detected in both biomixtures. The mineralization of 14C-imidacloprid revealed DT50 (mineralization half-lives) values of 3466 and 7702 days in the biomixtures B1 and B2, respectively, markedly lower than those in the soil used in their preparation (8667 and 9902 days, respectively). As demonstrated by these findings, the high persistence of these compounds in the BPS suggests that additional biological (or physicochemical) approaches should be explored in order to decrease the impact of neonicotinoid-containing wastewater of agricultural origin.
Collapse
Affiliation(s)
- Gabriel Rodríguez-Castillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marvin Molina-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
16
|
Cambronero-Heinrichs JC, Masís-Mora M, Quirós-Fournier JP, Lizano-Fallas V, Mata-Araya I, Rodríguez-Rodríguez CE. Removal of herbicides in a biopurification system is not negatively affected by oxytetracycline or fungally pretreated oxytetracycline. CHEMOSPHERE 2018; 198:198-203. [PMID: 29421730 DOI: 10.1016/j.chemosphere.2018.01.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The disposal of agricultural antibiotic-containing wastewater in biopurification systems (BPS) employed in the treatment of pesticides, may negatively affect the removal capacity of these devices. This work aimed to employ a fungal pretreatment of oxytetracycline (OTC)-rich wastewater, before its disposal in a BPS used for the treatment of two pesticides. The fungal treatment at reactor scale (stirred tank reactor, 3L) with biomass of Trametes versicolor efficiently removed 100 mg L-1 OTC in only 60 h. However, ecotoxicity tests on seed germination with Lactuca sativa revealed that antibiotic elimination did not correlate with a decrease in toxicity. After the pretreatment, treated OTC was discarded in biomixtures used for the elimination of the herbicides ametryn and terbutryn. The co-application of treated or untreated OTC did not inhibit the removal of the herbicides; moreover, in both cases their removal seemed to be slightly enhanced in the presence of OTC or its residues, with respect to antibiotic-free biomixtures. Estimated half-lives ranged from 28.4 to 34.8 d for ametryn, and 34.0-51.0 d for terbutryn. In addition, the biomixture was also able to remove OTC in the presence of the herbicides, with an estimated half-life of 38 d. Remarkably, the toxicity of the wastewater containing OTC or treated OTC was mostly eliminated after its disposal in the biomixture. Overall results suggest that, given the high efficiency of the biomixture, the fungal pretreatment of OTC-containing wastewater is not mandatory before its disposal in the BPS.
Collapse
Affiliation(s)
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José Pablo Quirós-Fournier
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Iray Mata-Araya
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
17
|
Castro-Gutiérrez V, Masís-Mora M, Carazo-Rojas E, Mora-López M, Rodríguez-Rodríguez CE. Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11787-11799. [PMID: 29442313 DOI: 10.1007/s11356-018-1436-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
An experimental study evaluating the effect of bioaugmentation and antibiotic (oxytetracycline) application on pesticide degradation and microbial community structure of a biomixture used in a biopurification system (BPR) was conducted. The bioaugmentation employed a carbofuran-degrading bacterial consortium. The non-bioaugmented biomixture showed excellent performance for removal of atrazine (t1/2: 9.9 days), carbendazim (t1/2: 3.0 days), carbofuran (t1/2: 2.8 days), and metalaxyl (t1/2: 2.7 days). Neither the addition of oxytetracycline nor bioaugmentation affected the efficiency of pesticide removal or microbial community (bacterial and fungal) structure, as determined by DGGE analysis. Instead, biomixture aging was mainly responsible for microbial population shifts. Even though the bioaugmentation did not enhance the biomixtures' performance, this matrix showed a high capability to sustain initial stresses related to antibiotic addition; therefore, simultaneous elimination of this particular mixture of pesticides together with oxytetracycline residues is not discouraged.
Collapse
Affiliation(s)
- Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marielos Mora-López
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
18
|
Jiménez-Gamboa D, Castro-Gutiérrez V, Fernández-Fernández E, Briceño-Guevara S, Masís-Mora M, Chin-Pampillo JS, Mora-López M, Carazo-Rojas E, Rodríguez-Rodríguez CE. Expanding the application scope of on-farm biopurification systems: Effect and removal of oxytetracycline in a biomixture. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:553-560. [PMID: 28886567 DOI: 10.1016/j.jhazmat.2017.08.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic-containing wastewaters produced in agricultural activities may depress the pesticide-degrading capacity of biomixtures contained in biopurification systems. This work aimed to assay the effect of oxytetracycline (OTC) on the removal of carbofuran (CFN) in an optimized biomixture, and to determine the capacity of the system to dissipate OTC. During co-application of CFN+OTC, CFN removal and its accelerated degradation were not negatively affected. Similarly, different doses of OTC (10-500mgkg-1) did not significantly affect CFN mineralization, and the process even exhibited a hormetic-like effect. Moreover, the biomixture was able to remove OTC with a half-life of 34.0 d. DGGE-cluster analyses indicated that fungal and bacterial communities remained relatively stable during OTC application and CFN+OTC co-application, with similarities of over 70% (bacteria) and 80% (fungi). Overall, these findings support the potential use of this matrix to discard OTC-containing wastewater in this system originally intended for CFN removal.
Collapse
Affiliation(s)
- David Jiménez-Gamboa
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica; Centro de Investigación en Biología Celular y Molecular (CIBCM), UCR, 2060 San José, Costa Rica
| | - Ericka Fernández-Fernández
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Marielos Mora-López
- Centro de Investigación en Biología Celular y Molecular (CIBCM), UCR, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica.
| |
Collapse
|
19
|
Alternative Approaches to Determine the Efficiency of Biomixtures Used for Pesticide Degradation in Biopurification Systems. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7425-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
20
|
Murillo-Zamora S, Castro-Gutiérrez V, Masís-Mora M, Lizano-Fallas V, Rodríguez-Rodríguez CE. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure. CHEMOSPHERE 2017; 186:625-634. [PMID: 28818589 DOI: 10.1016/j.chemosphere.2017.07.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles.
Collapse
Affiliation(s)
- Sergio Murillo-Zamora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
21
|
Lizano-Fallas V, Masís-Mora M, Espinoza-Villalobos D, Lizano-Brenes M, Rodríguez-Rodríguez CE. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. CHEMOSPHERE 2017; 182:106-113. [PMID: 28494353 DOI: 10.1016/j.chemosphere.2017.04.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to <1 TU in 20 d) towards Daphnia magna in the biomixture and soil, and slower in the bioaugmented biomixture, coinciding with pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix.
Collapse
Affiliation(s)
- Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - David Espinoza-Villalobos
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michelle Lizano-Brenes
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
22
|
Castillo-González H, Pérez-Villanueva M, Masís-Mora M, Castro-Gutiérrez V, Rodríguez-Rodríguez CE. Antibiotics do not affect the degradation of fungicides and enhance the mineralization of chlorpyrifos in biomixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:481-487. [PMID: 28214645 DOI: 10.1016/j.ecoenv.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The use of antibiotics in agriculture produces residues in wastewaters. The disposal of such wastewaters in biopurification systems (BPS) employed for the treatment of pesticides could result in the inhibition of the degrading capacity of the biomixtures used in the BPS. We assayed the effect of two commercial formulations of antibiotics used in agriculture, one containing kasugamycin (KSG) and the other oxytetracycline plus gentamicin (OTC+GTM), on the biomixture performance. Doses from 0.1mgkg-1 to 1000mgkg-1 of KSG increased the respiration of the biomixture, and low doses enhanced the mineralization rate of the insecticide 14C-chlorpyrifos. On the contrary, OTC+GTM depressed the respiration of the biomixture and the initial mineralization rate of 14C-chlorpyrifos; nonetheless, the antibiotics did not decrease overall mineralization values. The application of both formulations in the biomixture at a relevant concentration did not harm the removal of the fungicides carbendazim and metalaxyl, or their enhanced degradation; on the other hand, the biomixture was unable to dissipate tebuconazol or triadimenol, a result that was unchanged during the addition of the antibiotic formulations. These findings reveal that wastewater containing these antibiotics do not affect the performance of BPS. However, such a response may vary depending on the type of pesticide and microbial consortium in the biomixture.
Collapse
Affiliation(s)
- Humberto Castillo-González
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
23
|
Góngora-Echeverría VR, Martin-Laurent F, Quintal-Franco C, Giácoman-Vallejos G, Ponce-Caballero C. Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9741-9753. [PMID: 28251537 DOI: 10.1007/s11356-017-8643-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Misuse of pesticides in farming activities leads to contamination of drinking water sources and is responsible for animal and human health problems. The biobeds are practicable option to minimize contamination by pesticides during preparation, use and washing of equipment for pesticide treatments. This research aimed at testing substrate mixtures to optimize biobed efficiency to remove pesticides under the climate of the Yucatan (México). Agricultural soil and 11 mixtures adding vegetable compost, sisal pulp, corn stover and seaweed were tested under controlled conditions. Each biomixture was exposed to a mixture of five pesticides (2,4-diclorophenoxyacetic acid "2,4-D" [1.08 mg cm-3], atrazine [2.50 mg cm-3], carbofuran [0.23 mg cm-3], diazinon [0.34 mg cm-3], and glyphosate [0.36 mg cm-3]) in a period of 41 days. Monitoring of the dissipation of pesticide residues showed that pesticides were quickly dissipated in soil at microcosm level experiment, while at two critical times of 20 and 41 days, all mixtures of substrates (biomixtures) were efficient in dissipation of high concentrations of pesticide in a short time (>99%). Time, biomixture and type of pesticide were shown to be the main parameters influencing pesticide dissipation (P < 0.05). Several other physicochemical parameters of the biomixtures, such as organic matter (OM), lignin, water holding capacity (WHC), and pH, were also significant on pesticide dissipation (P < 0.05), being pH the most significant.
Collapse
Affiliation(s)
- Virgilio René Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico.
| | | | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| | - German Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico.
| |
Collapse
|
24
|
Huete-Soto A, Masís-Mora M, Lizano-Fallas V, Chin-Pampillo JS, Carazo-Rojas E, Rodríguez-Rodríguez CE. Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline. CHEMOSPHERE 2017; 169:558-567. [PMID: 27898329 DOI: 10.1016/j.chemosphere.2016.11.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
The biopurification systems (BPS) used for the treatment of pesticide-containing wastewater must present a versatile degrading ability, in order to remove different active ingredients according to the crop protection programs. This work aimed to assay the simultaneous removal of several pesticides (combinations of herbicides/insecticides/fungicides, or insecticides/fungicides) in a biomixture used in a BPS over a period of 115 d, and in the presence of oxytetracycline (OTC), an antibiotic of agricultural use that could be present in wastewater from agricultural pesticide application practices. The biomixture was able to mostly remove the herbicides during the treatment (removal rates: atrazine ≈ linuron > ametryn), and suffered no inhibition by OTC (only slightly for ametryn). Two fungicides (carbendazim and metalaxyl) were removed, nonetheless, in the systems containing only fungicides and insecticides, a clear increase in their half-lives was obtained in the treatments containing OTC. The neonicotinoid insecticides (imidacloprid and thiamethoxam) and the triazole fungicides (tebuconazole and triadimenol) were not significantly eliminated in the biomixture. Globally, the total removal of active ingredients ranged from 40.9% to 61.2% depending on the system, following the pattern: herbicides > fungicides > insecticides. The ecotoxicological analysis of the process revealed no detoxification towards the microcrustacean Daphnia magna, but a significant decay in the phytotoxicity towards Lactuca sativa in some cases, according to seed germination tests; in this case, OTC proved to be partially responsible for the phytotoxicity. The patterns of pesticide removal and detoxification provide inputs for the improvement of BPS use and their relevance as devices for wastewater treatment according to specific pesticide application programs.
Collapse
Affiliation(s)
- Alejandra Huete-Soto
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
25
|
Campos M, Perruchon C, Karas PA, Karavasilis D, Diez MC, Karpouzas DG. Bioaugmentation and rhizosphere-assisted biodegradation as strategies for optimization of the dissipation capacity of biobeds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:103-110. [PMID: 27886583 DOI: 10.1016/j.jenvman.2016.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Biobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide. Its dissipation and metabolism was determined in a biobed packing material inoculated with an iprodione-degrading Arthrobacter strain C1 (bioaugmentation, treatments B+C1) and/or seeded with ryegrass (rhizosphere-assisted biodegradation, treatments B+P). The impact of those strategies on the activity and composition of the microbial community was determined. Bioaugmentation accelerated the dissipation of iprodione which was further enhanced in the bioaugmented, rhizosphere-assisted treatment (treatment B+P+C1, Half-life (DT50) = 3.4 d), compared to the non-bioaugmented, non rhizosphere-assisted control (DT50 = 9.5 d, treatment B). Bioaugmentation resulted in the earlier formation of intermediate formation of metabolites I (3,5-dichlorophenyl-carboxamide), II (3,5-dichlorophenylurea acetate) and 3,5-dichloroaniline (3,5-DCA). The latter was further dissipated by the indigenous microbial community. Acid phosphatase (AP) and β-glucosidase (GLU) were temporarily stimulated in rhizosphere-assisted treatments, whereas a stimulation of the fluorescein diacetate (FDA) hydrolytic activity in the bioaugmented treatments coincided with the hydrolysis of iprodione. q-PCR showed that changes in the abundance of alpha-proteobacteria and firmicutes was driven by the presence of rhizosphere while bioaugmentation had no significant effect.
Collapse
Affiliation(s)
- M Campos
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - C Perruchon
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis 41500, Greece
| | - P A Karas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis 41500, Greece
| | - D Karavasilis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis 41500, Greece
| | - M C Diez
- Chemical Engineering Department, Universidad de La Frontera, Chile
| | - D G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis 41500, Greece.
| |
Collapse
|
26
|
Castro-Gutiérrez V, Masís-Mora M, Diez MC, Tortella GR, Rodríguez-Rodríguez CE. Aging of biomixtures: Effects on carbofuran removal and microbial community structure. CHEMOSPHERE 2017; 168:418-425. [PMID: 27810542 DOI: 10.1016/j.chemosphere.2016.10.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to determine the efficiency of a straw/compost/soil biomixture for pesticide depuration during its aging and continuous use, for a period of over a year, based on its capacity to remove carbofuran (CFN), while simultaneously monitoring the variations in microbial community structure. Successive CFN spikings were applied in the biomixture at 6-week intervals, and the removal efficiency was determined 48 h post-application. Initially, only a discrete degradation performance was observed (9.9%), but one CFN application was sufficient to induce efficient elimination (>88.5%) of the pesticide at subsequent influxes for a period of over 6 months. A statistically significant reduction on CFN removal efficiency after this time was detected, reaching levels similar to the fresh-prepared biomixture (14.8%) at the end of the experiment. Simultaneous DGGE analyses showed only modest changes on microbial community patterns through time for both, bacteria and fungi. The clustering of genetic fingerprints in chronological groups corresponding to significantly different CFN degradation efficiencies indicates that biomixture aging changes not only the composition of microbial communities, but also their suitability to engage in pesticide degradation. Periodic substitution of straw/compost/soil biomixture in biopurification systems or regular provision of easily-degradable organic substrates should be considered to maintain an adequate depuration capacity on this system.
Collapse
Affiliation(s)
- Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica; Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - María Cristina Diez
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Gonzalo R Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
27
|
Huete-Soto A, Castillo-González H, Masís-Mora M, Chin-Pampillo JS, Rodríguez-Rodríguez CE. Effects of oxytetracycline on the performance and activity of biomixtures: Removal of herbicides and mineralization of chlorpyrifos. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:1-8. [PMID: 27607927 DOI: 10.1016/j.jhazmat.2016.08.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Biopurification systems (BPS) are design to remove pesticides from agricultural wastewater. This work assays for the first time the potential effect of an antibiotic of agricultural use (oxytetracycline, OTC) on the performance of a biomixture (biologically active core of BPS), considering that antibiotic-containing wastewaters are also produced in agricultural labors. The respiration of the biomixture was stimulated in the presence of increasing doses of OTC (≥100mgkg-1), and only slightly increased with lower doses (≤10mgkg-1). When co-applied during the removal of chlorpyrifos, OTC increased chlorpyrifos mineralization rates at low doses, resembling a hormetic effect. The biomixture was also able to remove three herbicides (atrazine, ametryn and linuron) with half-lives of 24.3 d, 43.9 d and 30.7 d; during co-application of OTC at a biomixture-relevant concentration, only the removal of ametryn was significantly inhibited, increasing its half-life to 92.4 d. Ecotoxicological assays revealed that detoxification takes place in the biomixture during the removal of herbicides in the presence of OTC. Overall results suggest that co-application of OTC in a biomixture does not negatively affect the performance of the matrix in every case; moreover, the co-application of this antibiotic could improve the mineralization of some pesticides.
Collapse
Affiliation(s)
- Alejandra Huete-Soto
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Humberto Castillo-González
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
28
|
Rodríguez-Rodríguez CE, Madrigal-León K, Masís-Mora M, Pérez-Villanueva M, Chin-Pampillo JS. Removal of carbamates and detoxification potential in a biomixture: Fungal bioaugmentation versus traditional use. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:252-258. [PMID: 27750092 DOI: 10.1016/j.ecoenv.2016.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
The use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d. Then the fungus was employed in the bioaugmentation of an optimized biomixture to remove the aforementioned carbamates plus carbofuran (CFN). Bioaugmented and non-bioaugmented systems removed over 99% ALD and MTM after 8d of treatment, nonetheless a slight initial delay in the removal was observed in the bioaugmented biomixtures (removal after 3d: ALD 87%/97%; MTM 86%/99%, in bioaugmented/non-bioaugmented systems). The elimination of the other carbamates was slower, but independent of the presence of the fungus: >98% for MTM after 35d and >99.5% for CFN after 22d. Though the bioaugmentation did not improve the removal capacity of the biomixture, it favored a lower production of transformation products at the first stages of the treatment, and in both cases, a marked decrease in the toxicity of the matrix was swiftly achieved along the process (from 435 to 448 TU to values <1TU in 16d).
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| | - Karina Madrigal-León
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| |
Collapse
|
29
|
Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine. AMB Express 2016; 6:104. [PMID: 27815917 PMCID: PMC5097060 DOI: 10.1186/s13568-016-0275-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.
Collapse
|
30
|
Castro-Gutiérrez V, Masís-Mora M, Caminal G, Vicent T, Carazo-Rojas E, Mora-López M, Rodríguez-Rodríguez CE. A microbial consortium from a biomixture swiftly degrades high concentrations of carbofuran in fluidized-bed reactors. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Chin-Pampillo JS, Masís-Mora M, Ruiz-Hidalgo K, Carazo-Rojas E, Rodríguez-Rodríguez CE. Removal of carbofuran is not affected by co-application of chlorpyrifos in a coconut fiber/compost based biomixture after aging or pre-exposure. J Environ Sci (China) 2016; 46:182-189. [PMID: 27521950 DOI: 10.1016/j.jes.2015.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 06/06/2023]
Abstract
Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed.
Collapse
Affiliation(s)
| | - Mario Masís-Mora
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Karla Ruiz-Hidalgo
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | | |
Collapse
|
32
|
Ruíz-Hidalgo K, Masís-Mora M, Barbieri E, Carazo-Rojas E, Rodríguez-Rodríguez CE. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. CHEMOSPHERE 2016; 144:864-871. [PMID: 26421626 DOI: 10.1016/j.chemosphere.2015.09.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Biomixtures are used for the removal of pesticides from agricultural wastewater. As biomixtures employ high content of lignocellulosic substrates, their bioaugmentation with ligninolytic fungi represents a novel approach for their enhancement. Nonetheless, the decrease in the concentration of the pesticide may result in sublethal concentrations that still affect ecosystems. Two matrices, a microcosm of rice husk (lignocellulosic substrate) bioaugmented with the fungus Trametes versicolor and a biomixture that contained fungally colonized rice husk were used in the degradation of the insecticide/nematicide carbofuran (CFN). Elutriates simulating lixiviates from these matrices were used to assay the ecotoxicological effects at sublethal level over Daphnia magna (Straus) and the fish Oreochromis aureus (Steindachner) and Oncorhynchus mykiss (Walbaum). Elutriates obtained after 30 d of treatment in the rice husk microcosms at dilutions over 2.5% increased the offspring of D. magna as a trade-off stress response, and produced mortality of neonates at dilutions over 5%. Elutriates (dilution 1:200) obtained during a 30 d period did not produce alterations on the oxygen consumption and ammonium excretion of O. mykiss, however these physiological parameters were affected in O. aureus at every time point of treatment, irrespective of the decrease in CFN concentration. When the fungally colonized rice husk was used to prepare a biomixture, where more accelerated degradation is expected, similar alterations on the responses by O. aureus were achieved. Results suggest that despite the good removal of the pesticide, it is necessary to optimize biomixtures to minimize their residual toxicity and potential chronic effects on aquatic life.
Collapse
Affiliation(s)
- Karla Ruíz-Hidalgo
- Research Center of Environmental Pollution (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Research Center of Environmental Pollution (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Edison Barbieri
- Instituto de Pesca-APTA-SAA/SP, Caixa Postal 157, Cananéia 11990-000, São Paulo, Brazil
| | - Elizabeth Carazo-Rojas
- Research Center of Environmental Pollution (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | |
Collapse
|
33
|
Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo-Rojas E, Rodríguez-Rodríguez CE. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19184-19193. [PMID: 26250812 DOI: 10.1007/s11356-015-5093-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.
Collapse
Affiliation(s)
- Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Karla Ruiz-Hidalgo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|