1
|
Li B, Li S, Li Y, Liu H, Huang S, Yang Q, Liu Y. Pilot test study on a new physical treatment method for the electric desalting wastewater. J Environ Sci (China) 2025; 156:806-820. [PMID: 40412978 DOI: 10.1016/j.jes.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 05/27/2025]
Abstract
Electric desalting wastewater (EDW) is one of the petrochemical wastewater generated in the production process of petrochemical industry, due to the instability of its water quality, the traditional wastewater treatment technology is complex, high energy consumption, and will produce waste causing secondary pollution, posing challenges in terms of environmental protection, technology, and economy. This study utilized an on-site test to investigate the possibility of a new short-process physical method to replace traditional electro-chemical, oil-separation, and two-stage air floating physical chemistry processes, in response to optimizing the treatment effect, thus reducing the cost of treatment and carbon emissions. Following this test, this new short-flow physical method process could improve the efficiency of oil and suspend solid (SS) removal by 15.48 % and 58.72 %, and providing 78.37 % and 75.55 % the operating costs and carbon emissions savings, respectively. This system also reduced the production of waste solids, volatile organic compounds, and other three-waste compared with the traditional process. These benefits offer environmental and economic advantages, and this process serves as an efficient strategy to treat wastewater for electric desalination, and can be served as a completely new technological and process option for the treatment of EDW.
Collapse
Affiliation(s)
- Binghe Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoxuan Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Haonan Liu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Shuo Huang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Qiang Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqian Liu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Steiger BGK, Solgi M, Wilson LD. Biopolymers to composite adsorbents for sulfate removal: From conventional to sustainable systems. Adv Colloid Interface Sci 2025; 340:103440. [PMID: 40020548 DOI: 10.1016/j.cis.2025.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
Addressing elevated water salinity is a global water security issue listed among the UN's Sustainable Development Goals (UN-SDGs). Sulfate is a contributor to water salinity due to its high solubility and is a pollutant of increasing global concern. While various water treatment technologies are currently available, the high capital infrastructure and operational costs of such advanced methods have sustainability limits for their widespread adoption. By contrast, adsorption science and technology offers facile treatment and a sustainable mitigation strategy for the removal of oxyanions such as sulfate. A key challenge in adsorption science and technology relates to the molecular selective uptake of sulfate. This has catalysed significant effort towards achieving improved adsorption properties and the development of sustainable adsorbent technology. This review provides coverage of recent literature on synthetic adsorbents to current research on biosorbents that contain chitosan due to its multifunctional colloid and interface properties. The shift from conventional synthesis to green synthetic strategies are highlighted by the preparation of advanced biocomposite materials with unique sulfate adsorption properties. Diverse types of materials from inorganic minerals to polymer-based adsorbents (e.g., polycaprolactones, waste-based materials from fly ash, etc.) is described to highlight their sulfate adsorption properties. Specifically, chitosan and agricultural biomass waste in the form of lignocellulose materials are abundant and promising renewable platforms for the preparation of sulfate adsorbents. In particular, the adsorption properties of chitosan biocomposites are highlighted by its efficacy for adsorption-based remediation of sulfate oxyanions that reveal its promising utility as sulfate adsorbents with unique colloidal and interface properties.
Collapse
Affiliation(s)
- Bernd G K Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Mostafa Solgi
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
3
|
Ahmad B, Özgör E, Kavaz D, Shehu A. Synthesis of carob honey loaded chitosan nanoparticles and determination of its antimicrobial potential and cytotoxic effect on breast cancer cell line. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-21. [PMID: 40411780 DOI: 10.1080/09205063.2025.2505702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
Embedding natural products into chitosan nanoparticles (CNP) is an effective way to produce a novel combination with better antimicrobial and anticancer activities. Therefore, this study aims to incorporate carob honey (CH) into CNP, determine its potential antimicrobial along with antiproliferative activities, by well diffusion and MTT cell viability assays, respectively. Successful loading of CH in CNP was confirmed after due characterization. The nanoparticles, synthesized by ionic gelation method, produced a small (101.3 ± 4.13 nm), stable (+27.27 ± 0.95 mV), and monodispersed (0.2265 ± 0.0027) CH-loaded CNP (CHCNP). The best antibacterial activity occurred in Klebsiella pneumoniae (K. pneumoniae) (23 ± 0 mm to 16 ± 1.7 mm) followed by Escherichia coli (E. coli) (18 ± 2.0 mm to 10 ± 1 mm). Meanwhile, Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus) were evenly inhibited with inhibition zones in the range of 15 ± 3 mm to 7 ± 0.8 mm and 15 ± 5 mm to 9 ± 1.4 mm, respectively. CHCNP showed a remarkable cytotoxic effect on MDA-MB-231 according to concentration and time, with IC50 of 25 ± 5 to 18 ± 2.6 μg/mL within 24-72 h. These findings demonstrated the feasibility of loading CH in CNP to form a nanoformulation that could potentially serve as a target-specific therapeutic agent in the treatments of microbial infections and breast cancer. However, there is a need for further research on the safety, dosage optimization, in vivo studies and mechanisms of action of the nanoparticles.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, Turkey
- Department of Biochemistry, Federal University Dutse, Jigawa State, Nigeria
| | - Erkay Özgör
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, Turkey
| | - Doga Kavaz
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
| | - Ahmad Shehu
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
4
|
Cheng Z, Wang C, Tang F, Zhou Y, Zhu C, Ding Y. The cell wall functions in plant heavy metal response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118326. [PMID: 40403694 DOI: 10.1016/j.ecoenv.2025.118326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/23/2025] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
Nonessential metals (e.g., cadmium (II), etc) and essential heavy metals (e.g., copper (II), etc) are both toxic for plants at high concentrations. The plant cell wall, which consists of pectin, cellulose, hemicellulose, lignin and proteins, acts as the first barrier for heavy metal ions to enter the cytoplasm. The binding of heavy metal ions within cell wall components is largely determined by the negative charges of functional groups. The cell wall interacts with heavy metal ions through three main mechanisms: ion exchange, chelation models and cell wall remodeling. Various signaling molecules such as nitric oxide and salicylic acid have been implicated in the regulation of cell wall components. An increasing number of reports indicate that microRNAs can target genes related with cell wall synthesis and modification, thereby mediating heavy metal fixation within the cell wall. In this review, we summarize recent advances in understanding the biosynthesis, modifications, and functions of cell wall components under heavy metal stress. We also discuss the interaction mechanisms and the signaling pathways involved in the cell wall-mediated fixation of heavy metals, offering valuable insights into plant heavy metal stress tolerance mechanisms and providing strategic avenues for mitigating heavy metal pollution.
Collapse
Affiliation(s)
- Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenyu Wang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Fan Tang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yifeng Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Li X, Fu L, Chen F, Lv Y, Zhang R, Zhao S, Karimi-Maleh H. Cyclodextrin-based architectures for electrochemical sensing: from molecular recognition to functional hybrids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40392560 DOI: 10.1039/d5ay00612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This review surveys recent advances in the integration of cyclodextrins (CDs) with diverse materials for electrochemical detection of a wide range of analytes in environmental, pharmaceutical, and clinical contexts. CDs, featuring a hydrophobic cavity and a hydrophilic exterior, enable selective host-guest binding of small organic and inorganic molecules. By anchoring CDs onto electrode surfaces via strategies such as self-assembled monolayers, layer-by-layer deposition, or polymer entrapment, researchers have achieved improved selectivity and lower detection limits for target compounds. These CD-functionalized interfaces are further enhanced by combination with carbon nanotubes, graphene, metal nanoparticles, and redox mediators, providing synergistic effects that boost conductivity, catalysis, and signal amplification. Moreover, CD-based sensors exhibit reversible recognition, making them amenable to repeated use and continuous monitoring. Notably, derivatization of the CD ring expands its applicability, introducing functionalities such as chirality recognition, metal coordination, or improved solubility. Different detection modes, including voltammetry, impedance, and competitive displacement assays, have been reported for a variety of analytes, ranging from heavy metals and pesticides to pharmaceuticals and chiral compounds. The incorporation of CDs into advanced hybrid architectures also offers solutions to common issues like electrode fouling and limited selectivity, thus expanding their utility in harsh or complex sample environments. While challenges remain in ensuring reproducibility, large-scale manufacture, and robust performance in real-world applications, ongoing innovations in materials science and synthetic chemistry promise to make CD-based electrodes increasingly valuable for sensitive, portable, and cost-effective chemical analysis. Furthermore, novel integration with biological receptors, such as enzymes and aptamers, holds promise for multiplexed biosensing.
Collapse
Affiliation(s)
- Xingxing Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yanfei Lv
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Rui Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
6
|
Gębczyńska S, Gdowska J, Mikos A, Gawrońska I, Janas T, Czogalla A, Janas T. Toluidine Blue for the Determination of Binding of Anionic Polysaccharides to Lipid Raft Domains by Absorption Spectroscopy. MEMBRANES 2025; 15:139. [PMID: 40422749 DOI: 10.3390/membranes15050139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025]
Abstract
The complexes of negatively charged polysaccharides with lipid vesicles have been shown to have applications in medicine, bioremediation, water purification, and construction of nano-biosensors. This article presents research on the formation of these complexes based on the interactions between three types of liposomes, DOPC liposomes (which contain a lipid bilayer in the liquid-disordered (Ld) state), RAFT liposomes (which contain liquid-ordered (Lo) lipid raft domains surrounded by lipids in the Ld state) and SPH-CHL liposomes (which contain a lipid bilayer in the Lo state), and two selected anionic polysaccharides, polysialic acid (PSA) and polygalacturonic acid (PGA). The analysis was conducted using a toluidine blue (TB) probe and the absorption spectroscopy technique. In contrast to DOPC and SPH-CHL liposomes, binding of negatively charged PSA or PGA chains to RAFT liposomes induced a TB absorption maximum shift from 630 nm to 560 nm. The obtained results indicate that toluidine blue can be applied for monitoring the formation of these nano-complexes, and that the boundaries between Ld/Lo domains within membranes in RAFT liposomes can significantly enhance the binding affinity of negatively charged polysaccharides to the lipid bilayer surface. The observed metachromatic shift in TB absorption suggests that negatively charged PSA and PGA chains interact with the Ld/Lo boundaries within RAFT liposome membranes.
Collapse
Affiliation(s)
- Sandra Gębczyńska
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Julia Gdowska
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Agata Mikos
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Iga Gawrońska
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| |
Collapse
|
7
|
Alhemadan AH, Akhtar K, Bakhsh EM, Homdi TA, Khan SB. Design of switchable adsorbent based on chitosan and date palm endocarp film for adsorption of cationic and anionic dyes from aqueous solution. Int J Biol Macromol 2025; 306:141362. [PMID: 39986502 DOI: 10.1016/j.ijbiomac.2025.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Discharging of industrial dyes to the water stream has led to significant toxicological and environmental issues that pose health risks. Therefore, there is a requirement for efficient and economical dyes removal technologies. This study examined the adsorption of crystal violet (CV) and eosin yellow (EY) using low-cost adsorbents made from date palm endocarp film (DPEF) and chitosan-coated date palm endocarp film (CS@DPEF). Adsorption efficiency was evaluated by varying different parameters in batch experiments. Results showed that pH 6 is optimal for CV adsorption, while for EY it was pH 8. The most effective adsorbent dosage for DPEF was 20 mg, resulting in a high CV removal of 90.05 % within 2 h and the EY removal percentage by 14.5 mg CS@DPEF was 91.34 % within 2 h. The equilibrium times for CV and EY removal were 90 and 120 min, respectively. Adsorption decreased with rising temperature and kinetic data indicated a pseudo-second-order model for both dyes. Isotherm analysis suggested that CV adsorption follows the Freundlich model, while EY follows the Langmuir model. Thermodynamic parameters indicated a spontaneous and exothermic process, with increased randomness for CV and decreased randomness for EY. The films could be recycled up to four times. Real sample tests confirmed the effectiveness of DPEF and CS@DPEF in adsorbing CV and EY. Thus, DPEF and CS@DPEF proved to be efficient low-cost adsorbents for treating industrial effluents.
Collapse
Affiliation(s)
- Abeer H Alhemadan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Tahani A Homdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Sha M, Zhang S, Ju B. Starch-based flocculants prepared by a reactive deep eutectic solvent based on solid-phase method. Int J Biol Macromol 2025; 307:142201. [PMID: 40107563 DOI: 10.1016/j.ijbiomac.2025.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Flocculation is one of the most widely used and economical pretreatment methods in water treatment. In this study, we developed a reactive deep eutectic solvent (DES) formed by 2, 3-epoxypropyl trimethyl ammoniumchloride (GTA) and urea, which was used as a reaction reagent and diffusion agent. DES has a strong hydrogen bond breaking effect and can penetrate into the starch granules, while mechanical force was introduced to fragment and refine the starch granules, destroying their internal structure and further promoting the penetration of DES, which was realised under the dual action of DES and mechanical force to achieve the starch-based flocculant (St-GTA) preparation. Gel permeation chromatography, Fourier transform infrared spectroscopy (FTIR) and 1H NMR nuclear magnetic resonance spectroscopy (NMR) were used to characterise the prepared St-GTA, and its flocculation performance and flocculation mechanism were investigated by zeta potential and UV-Vis absorption tests. The flocculation efficiency of St-GTA on the simulated kaolin wastewater was systematically investigated, and its flocculation effect on other colloidal contaminants and real wastewater was also studied. The results showed that the dosage of St-GTA only needed to be 0.4 mg/L to achieve a removal rate of 98.5 % for the simulated kaolin wastewater, and its removal rate for the rest of the colloidal pollutants and the real wastewater could all reach 98 %. Therefore, the starch-based flocculant can be used as a new type of flocculant for wastewater treatment and has shown excellent properties, demonstrating its potential as a sustainable alternative to traditional flocculants.
Collapse
Affiliation(s)
- Miao Sha
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Belasri A, Blilid S, El Assimi T, Lahcini M, El Kadib A, Beniazza R. Soft phosphorylation of cellulose and starch for effective remediation of methylene blue dye and heavy metal-contaminated water. Int J Biol Macromol 2025; 309:143107. [PMID: 40222513 DOI: 10.1016/j.ijbiomac.2025.143107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
A soft strategy for the phosphorylation of cellulose and starch has been developed to produce functionalized bio-absorbents (P-Cellulose / P-Starch) for the decontamination of polluted water. The proposed synthesis pathway utilizes only phosphorus pentachloride (PCl5), without the need for urea or acids. The biopolymers were successfully phosphorylated, as confirmed by structural characterization techniques, including solid-state (NMR), x-ray diffraction (XRD), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Furthermore, detailed insights into the morphological and structural changes as well as the adsorption capabilities of the prepared materials, were thoroughly discussed using results from scanning electron microscopy (SEM), potential zeta measurement, and inductively coupled plasma spectrometer (ICP). Remarkably, the prepared bio-absorbents exhibited enhanced sorption properties for Methylene Blue (MB) through a wide pH range compared to their native forms. These findings shed light on how the molecular structure, reactivity, networking, and functional groups of P-Cellulose and P-Starch contribute to adsorptions efficiency. In addition to demonstrating the bio-absorbents regeneration and reuse, the prepared materials achieved heavy metal removal efficiencies of u to 70 %, significantly outperforming their native forms, which removed only 30 %. This highlights the critical role of phosphate groups and flexible networks in the uptake of contaminants from water.
Collapse
Affiliation(s)
- Abdelkarim Belasri
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco
| | - Sara Blilid
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco
| | - Taha El Assimi
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco; IMED-Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University (UCA), Avenue Abdelkrim Elkhattabi, B. P 549, 40000 Marrakech, Morocco
| | - Mohammed Lahcini
- IMED-Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University (UCA), Avenue Abdelkrim Elkhattabi, B. P 549, 40000 Marrakech, Morocco
| | | | - Redouane Beniazza
- Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), 43150, Morocco.
| |
Collapse
|
10
|
Nath J, Dewan M, Ghosh A, Ray SS, Orasugh JT, Lahiri B, Chattopadhyay D, Adhikari A. Chitosan-based adsorbents for remediation of toxic dyes from wastewater: A review on adsorption mechanism, reusability, machine learning based modeling and future perspectives. Int J Biol Macromol 2025; 311:143388. [PMID: 40280518 DOI: 10.1016/j.ijbiomac.2025.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The disposal of recalcitrant dyes in aquatic environments from various industrial sectors is a threat to both the plant and animal kingdom. The presence of dyes in various water bodies undermines the availability of uncontaminated drinking water and may result in serious health-related issues and diseases. Therefore, it is of utmost importance to get rid of these harmful dyes from the aquatic environment. Hence various treatment techniques came to the fore, but they have their corresponding advantages and disadvantages. Several researchers have reported the adsorption of dyes with carbon-based composites, polymeric materials, and metal-based nanoparticles. However, the one with biocompatible materials or biopolymers deserves special attention as they are benign from an environmental viewpoint. We have chosen chitosan as our material of interest and elaborated on the positive aspects of chitosan as an excellent candidate for dye adsorption. Although a plethora of review articles has been disseminated in the past to underscore the utilization of chitosan-based adsorbents in the extraction of dyes, this manuscript endeavors to furnish a thorough examination of the complete adsorption process, encompassing its parameters and kinetics, thus facilitating a reader lacking foundational knowledge in this field to attain a more comprehensible understanding of the subject matter. This review also integrates a comprehensive overview of optimization methodologies for dye adsorption and examines relevant patents-an area that, to the best of our knowledge, has not been thoroughly addressed in previous review articles. Conclusively, it can be stated that chitosan can efficiently adsorb dye from wastewater showing good performance even after five cycles of adsorption/desorption. Moreover, several software programs can be used for optimizing maximum dye adsorption capacity of chitosan which shows well alignment with experimental results, thus making it suitable for real-life applications.
Collapse
Affiliation(s)
- Jyotishka Nath
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Mitali Dewan
- Department of Chemistry, Shahid Matangini Hazra Government General Degree College for Women, Chakshrikrishnapur, Kulberia, P.O: Kulberia, Dist: Purba Medinipur, 721649, West Bengal, India
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Basudev Lahiri
- Indian Institute of Technology Kharagpur, Department of Electronics & Electrical Communication Engineering at Indian Institute of Technology, Kharagpur, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Arpita Adhikari
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
11
|
Eleraky MI, Razek TMA, Hasani IW, Fahim YA. Adsorptive removal of lead, copper, and nickel using natural and activated Egyptian calcium bentonite clay. Sci Rep 2025; 15:13050. [PMID: 40240407 PMCID: PMC12003794 DOI: 10.1038/s41598-025-95184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluates the efficiency of alkali-activated Egyptian calcium bentonite, obtained from the El Alamein region in northern Egypt, for the removal of copper (Cu2⁺), lead (Pb2⁺), and nickel (Ni2⁺) from synthetic wastewater. The bentonite samples underwent a series of preparation steps, including crushing, ball milling, magnetic separation, acid treatment with 0.1N acetic acid, and alkali activation using 5% sodium carbonate (Na2CO3). Various analytical techniques, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), cation exchange capacity (CEC) measurements, scanning electron microscopy (SEM), and free swelling analysis, were employed to characterize the materials. Absorption experiments were performed to examine the effects of pH, temperature, starting metal concentration, bentonite dose, and contact duration on heavy metal removal. The characterization results confirmed that montmorillonite was the predominant mineral in both the natural and activated bentonite samples. Adsorption studies indicated a significant improvement in heavy metal removal efficiency after activation. Under optimal conditions (pH 7, 1 g/L adsorbent dose, 120 min contact time, 20 mg/L initial metal concentration, and 20 °C), the maximum adsorption capacities of the activated bentonite were determined as 14 ± 0.03 mg/g for Cu2+, 13 ± 0.04 mg/g for Pb2+, and 12.2 ± 0.05 mg/g for Ni2+, exceeding those of the natural bentonite, which recorded capacities of 9.2 ± 0.04 mg/g, 9 ± 0.03 mg/g, and 8 ± 0.02 mg/g, respectively. Adsorption equilibrium data according to the Langmuir isotherm model, exhibiting high correlation values (R2 = 0.9979 for Cu2+, 0.9972 for Pb2+, and 0.9973 for Ni2+). Moreover, kinetic modeling demonstrated that the adsorption followed a pseudo-second-order mechanism, suggesting an intense chemisorption process. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic, demonstrating enhanced adsorption at higher temperatures.
Collapse
Affiliation(s)
- Mahmoud I Eleraky
- Central Laboratories of the Egyptian Mineral Resources Authority, Cairo, Egypt
| | - Taha M A Razek
- Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo, Egypt
| | - Ibrahim W Hasani
- Department of Pharmaceutics, Faculty of Pharmacy, S.P.U., M.P.U and Idlib University, Idlib, Syria
| | - Yosri A Fahim
- Health Sector, Faculty of Science, Galala University, Galala City, Suez, 43511, Egypt.
| |
Collapse
|
12
|
Aravind A, Seliverstova K, Kammerlander KKK, Henle T, Brunner E. Processing α-Chitin into Stable Composite Materials for Heavy Metal Adsorption. Int J Mol Sci 2025; 26:3149. [PMID: 40243900 PMCID: PMC11988694 DOI: 10.3390/ijms26073149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Water contamination by heavy metals, including radionuclides, is a major threat to human health and the environment. New methods for their removal are therefore needed. Adsorption is currently a common method for wastewater treatment. It depends on the physical and chemical interactions between heavy metal ions and adsorbents. The main characteristics of suitable adsorption methods are (i) a high adsorption efficiency and ability to remove different types of ions, (ii) a high retention time and cycle stability of adsorbents, and (iii) availability. Chitin is a commercially available biopolymer from marine waste that has several favourable properties: availability, low cost, high biocompatibility, biodegradability, and effective adsorption properties for metal ions. However, the processing of chitin into stable structures, such as chitin-based composites, is difficult due to its high chemical stability and extremely low solubility in most solvents. The central working hypothesis of the present work is that powdered α-chitin can be dissolved in the ionic liquid 1-butyl-3-methylimidazolium acetate and cross-linked with its monomer, N-acetyl-D-glucosamine, in a Maillard-like or caramelisation reaction to produce chitin-based composites. It is further hypothesised that such composites can be used as biosorbents for heavy metal ions. Eu(III) is chosen here as a non-radioactive representative and analogue for other f-elements.
Collapse
Affiliation(s)
- Anjana Aravind
- Bioanalytische Chemie, Fakultät für Chemie und Lebensmittelchemie, TU Dresden, 01062 Dresden, Germany; (A.A.)
| | - Kristina Seliverstova
- Lebensmittelchemie, Fakultät für Chemie und Lebensmittelchemie, TU Dresden, 01062 Dresden, Germany; (K.S.); (T.H.)
| | - Kaitlin K. K. Kammerlander
- Bioanalytische Chemie, Fakultät für Chemie und Lebensmittelchemie, TU Dresden, 01062 Dresden, Germany; (A.A.)
| | - Thomas Henle
- Lebensmittelchemie, Fakultät für Chemie und Lebensmittelchemie, TU Dresden, 01062 Dresden, Germany; (K.S.); (T.H.)
| | - Eike Brunner
- Bioanalytische Chemie, Fakultät für Chemie und Lebensmittelchemie, TU Dresden, 01062 Dresden, Germany; (A.A.)
| |
Collapse
|
13
|
Jang T, Yoon S, Choi JH, Kim N, Park JA. Simultaneous Removal of Heavy Metals and Dyes on Sodium Alginate/Polyvinyl Alcohol/κ-Carrageenan Aerogel Beads. Gels 2025; 11:211. [PMID: 40136916 PMCID: PMC11942351 DOI: 10.3390/gels11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Industrial textile wastewater containing both heavy metals and dyes has been massively produced. In this study, semi-interpenetrating polymer network structures of sodium alginate (SA)/polyvinyl alcohol (PVA)/κ-carrageenan (CG) aerogel beads were synthesized for their simultaneous reduction. The SA/PVA/CG aerogel beads were synthesized through a cost-effective and environmentally friendly method using naturally abundant biopolymers without toxic cross-linkers. The SA/PVA/CG aerogel beads were spheres with a size of 3.8 ± 0.1 mm, exhibiting total pore areas of 15.2 m2/g and porous structures (pore size distribution: 0.04-242.7 μm; porosity: 93.97%) with abundant hydrogen bonding, high water absorption capacity, and chemical resistance. The adsorption capacity and mechanisms of the SA/PVA/CG aerogel beads were investigated through kinetic and isotherm experiments for heavy metals (Cu(II), Pb(II)), cationic dye (methylene blue, MB), and anionic dye (acid blue 25, AB)) in both single and binary systems. The maximum adsorption capacities of the SA/PVA/CG aerogel beads based on the Langmuir model of Cu(II), Pb(II), and MB were 85.17, 265.98, and 1324.30 mg/g, respectively. Pb(II) showed higher adsorption affinity than Cu(II) based on ionic properties, such as electronegativity and hydration radius. The adsorption of Cu(II), Pb(II), and MB on the SA/PVA/CG aerogel beads was spontaneous, with heavy metals and MB exhibiting endothermic and exothermic natures, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; (T.J.); (S.Y.); (J.-H.C.); (N.K.)
| |
Collapse
|
14
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
15
|
Lahgui F, Delgado Cano B, Avalos Ramirez A, Heitz M, Hadjar H, Kaddour S. Development of New Biosorbent Based on Crosslinked Chitosan Beads with High Brilliant Blue FCF Removal Efficiency. Molecules 2025; 30:292. [PMID: 39860161 PMCID: PMC11767252 DOI: 10.3390/molecules30020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye. The biosorbent was characterized by determining the functional groups on its surface, as well as its elemental composition, crystallinity, and surface morphology. Crosslinking with epichlorohydrin significantly improved the biosorption capacity of chitosan beads. A maximum biosorption capacity of 600 mg/g corresponding to 99% removal efficiency was observed at pH 3.0, a biosorbent dose of 0.5 g/L, an initial dye concentration of 300 mg/L, a contact time of 10 h, and a temperature of 323 K. The biosorption of Brilliant Blue FCF dye in chitosan beads crosslinked with epichlorohydrin was well described by the Langmuir isotherm and followed an adsorption kinetic of pseudo second order. The thermodynamic parameters indicate a spontaneous biosorption process. The presence of anions such as NO3- and SO42- could interfere with the biosorption of Brilliant Blue FCF on the chitosan crosslinked beads, but Cl- did not interfere in biosorption process. Over three biosorption/desorption cycles, the biosorbent showed a removal efficiency of 97% and a desorption rate of over 98%. Chitosan is available worldwide and is a low-cost biomaterial, presenting high potential to be used as a biosorbent to treat industrial effluents containing anionic compounds, such as dyes.
Collapse
Affiliation(s)
- Fatiha Lahgui
- LSMTM, Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, Algiers 16111, Algeria; (F.L.); (S.K.)
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- CNETE, Centre National en Électrochimie et en Technologies Environnementales, Shawinigan, QC G9N 6V8, Canada;
| | - Beatriz Delgado Cano
- CNETE, Centre National en Électrochimie et en Technologies Environnementales, Shawinigan, QC G9N 6V8, Canada;
| | - Antonio Avalos Ramirez
- CNETE, Centre National en Électrochimie et en Technologies Environnementales, Shawinigan, QC G9N 6V8, Canada;
| | - Michèle Heitz
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Hafida Hadjar
- CRAPC, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Tipaza 42004, Algeria;
- LPCMAE, Laboratoire d’Etude Physico-Chimique des Matériaux et Application à l’Environnement, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, Algiers 16111, Algeria
| | - Samia Kaddour
- LSMTM, Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, Algiers 16111, Algeria; (F.L.); (S.K.)
| |
Collapse
|
16
|
Slek Y, Amarray A, Salmi M, Rharib ME, Zaroual Z, Ghachtouli SE. Amino-functionalized manganese oxide for effective hexavalent chromium adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1480-1497. [PMID: 39733388 DOI: 10.1007/s11356-024-35747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024]
Abstract
This study explores the use of functionalized manganese oxide (K-MnO2-NH2) for the removal of hexavalent chromium (Cr(VI)) ions, a highly toxic heavy metal contaminant, from wastewater. The synthesis of K-MnO2-NH2 was achieved through a two-step process, followed by comprehensive characterization using various analytical techniques, which confirmed the material's formation as a pure phase. The K-MnO2-NH2 exhibited exceptional chromium removal efficiency, achieving up to 90% (4.53 mg/g) of Cr(VI) removal at pH 2. This high efficiency is attributed to the incorporation of amine groups via functionalization with 3-aminopropyltriethoxysilane (APTES), which introduces active sites with a strong affinity for Cr(VI) ions. Kinetics studies indicated that a chemical reaction governs the adsorption process, while thermodynamic data suggested it to be exothermic, and thermodynamic data reveal the process to be exothermic. The Freundlich isotherm best described the adsorption behavior. The Cr(VI) adsorption capacity of K-MnO2-NH2 was determined to be 45.17 mg/g. K-MnO2-NH2 effectively removed Cr(VI) from industrial wastewater, achieving a removal efficiency of around 41% (25.5 mg/g) and visible discoloration showing excellent reusability, maintaining over 80% removal efficiency after five cycles without requiring regeneration. This innovative approach highlights the potential of K-MnO2-NH2 as a sustainable and effective solution for Cr(VI) removal in environmental remediation and water purification.
Collapse
Affiliation(s)
- Yassine Slek
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Amina Amarray
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Materials Science, Energy and Nano-Engineering Department, VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mehdi Salmi
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Meryem El Rharib
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Zaina Zaroual
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Sanae El Ghachtouli
- Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco.
| |
Collapse
|
17
|
Yang K, Nikolaev KG, Li X, Erofeev I, Mirsaidov UM, Kravets VG, Grigorenko AN, Qiu X, Zhang S, Novoselov KS, Andreeva DV. 2D Electrodes From Functionalized Graphene for Rapid Electrochemical Gold Extraction and Reduction From Electronic Waste. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408533. [PMID: 39504250 PMCID: PMC11714188 DOI: 10.1002/advs.202408533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Electronic waste (e-waste) contains substantial quantities of valuable precious metals, particularly gold (Au). However, inefficient metal recovery leads to these precious metals being discarded in landfills, causing significant water and environmental contamination. This study introduces a two-dimensional (2D) electrode with a layered graphene oxide membrane functionalized by chitosan (GO/CS). The GO/CS membrane acts as an ion-selective layer and demonstrates capabilities in the electrochemical extraction and reduction of Au ions. The multiple functional groups of GO and CS offer high cooperativity in ion extraction and reduction, achieving 95 wt.% extraction efficiency within 10 min. The simultaneous extraction and electrocatalytic reduction of Au ions within the membrane leads to the formation of ready-to-use metallic Au forms such as chips and sensors. Such an approach eliminates the processing steps required to convert extracted gold into functional products, reducing time, cost, and energy. This direct formation of usable Au components enhances the efficiency of the recovery process, making it economically viable and environmentally sustainable. The gold mining market is projected to be valued at $270 billion by 2032, with the recycling segment reaching $10.8 billion, highlighting the substantial benefits and economic potential of efficient e-waste recycling technologies.
Collapse
Affiliation(s)
- Kou Yang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Konstantin G. Nikolaev
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Xiaolai Li
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Ivan Erofeev
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | - Utkur M. Mirsaidov
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
| | - Vasyl G. Kravets
- Department of Physics and AstronomyManchester UniversityManchesterM13 9PLUK
| | | | - Xueqing Qiu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Shanqing Zhang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Daria V. Andreeva
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
18
|
Ghimici L, Nafureanu MM, Constantin M, Suflet DM, Lopez-Maldonado EA. Application of some cationic pullulan and curdlan derivatives as flocculants in fungicides-containing wastewater purification. Int J Biol Macromol 2024; 283:137408. [PMID: 39532157 DOI: 10.1016/j.ijbiomac.2024.137408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The ability of some cationic pullulan (TMAPx-P) and curdlan (TMAP0.4-C) derivative to remove different fungicide particles from synthetic wastewater has been studied. Commercial fungicides formulations of different type, Bordeaux mixture (BM), Dithan M45 (Dt) and Melody Compact49 WG (MC) have been used. The influence of some parameters related to the dispersion characteristics (suspension pH and salinity) and the polysaccharide derivatives (polymer dose, the ionic groups content, flexibility) on the separation process have been assessed. All the polysaccharide samples revealed a good removal efficiency (RE%) for the fungicide formulations prepared in saltless aqueous solutions, namely between 94 and 98 % for BM, 81.5-85 % for Dt, 88-91 % for MC. Slightly higher residual fungicides absorbance percent values for the suspensions prepared in the presence of salts (up to 7 %) than those prepared in water have been noticed. Less amount of BM and MC particles were removed in acidic pH than in water and basic pH, while contrary results were recorded in case of Dt ones, irrespective of the flocculant used. However, the RE% values were located between 79 % and 98 % over the entirely suspension pH investigated. Both zeta potential and floc size measurements indicated the charge patch flocculation mechanism for the fungicide particles separation.
Collapse
Affiliation(s)
- Luminita Ghimici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Maria Magdalena Nafureanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22424 Tijuana, Baja California, Mexico
| |
Collapse
|
19
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
20
|
Dolui D, Das A, Hasanuzzaman M, Adak MK. Physiological and biomolecular interventions in the bio-decolorization of Methylene blue dye by Salvinia molesta D. Mitch. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-18. [PMID: 39392243 DOI: 10.1080/15226514.2024.2412242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Methylene blue, a cationic dye as a pollutant is discharged from industrial effluent into aquatic bodies. The dye is biomagnified through the food chain and is detrimental to the sustainability of aquatic flora. Despite of number of physico-chemical techniques of dye removal, the use of aquatic flora for bio-adsorption is encouraged. Thus, we used Salvinia molesta D. Mitch in bio-reduction of methylene blue on concentrations of 0, 10, 20, and 30 mg L-1 through 5 days with biosorption kinetics. The dye removal was concentration-dependent, maximized at 2 days with 30 mg L-1 which altered the relative growth rate (44%) of plants. Biosorption recorded 71% capacity at optimum pH (8.0), 24 h reducing major bond energies of amide, hydroxyl groups, etc. Bioaccumulation of dye changed potassium content (446%) under maximum dye concentration modifying tissues for dye sequestration. Reactive oxygen species were altered on dye reduction by oxidase (33%) with redox homeostasis by enzymes. Plants altered the metabolism with over accumulation of polyamines (51%), abscisic acids (448%), and phosphoenolpyruvate carboxylase (83%) on dye reduction. Thus, this study is rationalized with a sustainable approach where aquatic ecosystems can be decontaminated from dye toxicity with the exercise of bioresources like Salvinia molesta D. Mitch as herein.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Abir Das
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Malay Kumar Adak
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
21
|
Khanzada AK, Al-Hazmi HE, Kurniawan TA, Majtacz J, Piechota G, Kumar G, Ezzati P, Saeb MR, Rabiee N, Karimi-Maleh H, Lima EC, Mąkinia J. Hydrochar as a bio-based adsorbent for heavy metals removal: A review of production processes, adsorption mechanisms, kinetic models, regeneration and reusability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173972. [PMID: 38897477 DOI: 10.1016/j.scitotenv.2024.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removal of heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions, and ion exchange mechanisms. This review focuses on removing heavy metals by hydrochar adsorbents from water bodies. The article discusses factors affecting the adsorption capacity of hydrochars, such as contact time, pH, initial metal concentration, temperature, and competing ions. Literature on optimization approaches such as surface modification, composite development, and hybrid systems are reviewed to enlighten mechanisms undertaking the efficiency of hydrochars in heavy metals removal from wastewater. The review also addresses challenges such as hydrochar regeneration and reusability, alongside potential issues related to its disposal and metal leaching. Integration with current water purification methods and the significance of ongoing research and initiatives promoting hydrochar-based technologies were also outlined. The article concludes that combining hydrochar with modern technologies such as nanotechnology and advanced oxidation techniques holds promise for improving heavy metal remediation. Overall, this comprehensive analysis provides valuable insights to guide future studies and foster the development of effective, affordable, and environmentally friendly heavy metal removal technologies to ensure the attainment of safer drinking water for communities worldwide.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland.
| | | | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republicof Korea
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
22
|
Khan P, Ali S, Jan R, Kim KM. Lignin Nanoparticles: Transforming Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1541. [PMID: 39330697 PMCID: PMC11435067 DOI: 10.3390/nano14181541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
In the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial. Lignin nanoparticles have emerged as a promising avenue of exploration in this context. Once considered a mere byproduct, lignin's unique properties and versatile functional groups have propelled it to the forefront of environmental remediation research. This review paper delves into the resurgence of lignin from an environmental perspective, examining its pivotal role in carbon cycling and its potential to address various environmental challenges. The paper extensively discusses the synthesis, properties, and applications of lignin nanoparticles in diverse fields such as water purification and soil remediation. Moreover, it highlights the challenges associated with nanoparticle deployment, ranging from Eco toxicological assessments to scalability issues. Multidisciplinary collaboration and integration of research findings with real-world applications are emphasized as critical factors for unlocking the transformative potential of lignin nanoparticles. Ultimately, this review underscores lignin nanoparticles as beacons of hope in the pursuit of cleaner, healthier, and more harmonious coexistence between humanity and nature through innovative environmental remediation strategies.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Vafakish B, Wilson LD. A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye. Int J Mol Sci 2024; 25:9327. [PMID: 39273279 PMCID: PMC11395516 DOI: 10.3390/ijms25179327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1-100 μM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications.
Collapse
Affiliation(s)
- Bahareh Vafakish
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
24
|
Gamal A, Soliman M, Al-Anany MS, Eissa F. Optimization and validation of high throughput methods for the determination of 132 organic contaminants in green and roasted coffee using GC-QqQ-MS/MS and LC-QqQ-MS/MS. Food Chem 2024; 449:139223. [PMID: 38604032 DOI: 10.1016/j.foodchem.2024.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Recently some major safety concerns have been raised on organic contaminants in widely consumed plants such as coffee. Hence, this study aimed to develop specifically optimized methods for determining organic contaminants, such as pesticides and polychlorinated biphenyls (PCBs), in coffee using GC-MS/MS and LC-MS/MS. QuEChERS method was used as a base extraction method, and 27 experiments were studied using design of experiments with categorical variables (extraction buffers, cleanup sorbents, and coffee roasting degree) to find the optimum method for each matrix type. The optimum method for green coffee was acetate buffer and chitosan for clean-up, while no-buffer extraction and the PSA + C18 method were ideal for light and dark-roasted coffee. The optimized methods were validated in accordance with SANTE/11312/2021. Furthermore, ten real samples (4 green, and 6 roasted) from the markets were analysed; ortho-phenylphenol was found in all the roasted coffee samples, and carbendazim was found in one green coffee sample.
Collapse
Affiliation(s)
- Abdulrhman Gamal
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt
| | - Mostafa Soliman
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt.
| | - Mohamed S Al-Anany
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| | - Fawzy Eissa
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| |
Collapse
|
25
|
Rondon B, Ungolan P, Wu L, Niu J. Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones. J Am Chem Soc 2024; 146:21868-21876. [PMID: 39051936 DOI: 10.1021/jacs.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (Tg) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.
Collapse
Affiliation(s)
- Brayan Rondon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Poom Ungolan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
26
|
Mosavi SS, Zare EN, Behniafar H, Nezhad SM, Salehi MM. Magnetic carboxymethyl gond katira-grafted-poly(3-aminobenzoic acid) as an antibacterial biosorbent for purification of acetamiprid-contaminated water. Int J Biol Macromol 2024; 273:133189. [PMID: 38885856 DOI: 10.1016/j.ijbiomac.2024.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The elimination of pesticides from polluted water is critical due to their harmful environmental and biological impacts. Recently, there has been interest in utilizing natural polymer-based adsorbents as an eco-friendly approach to eliminate or reduce the levels of water pollutants. In this work, we synthesized an antimicrobial and magnetic bionanocomposite consisting of carboxymethyl gond katira-grafted- poly(3-aminobenzoic acid) with iron oxide and zinc oxide NPs (CMT-g-P3ABA/ZnO/Fe3O4) through an in situ polymerization reaction and examined for its ability to adsorb the pesticide acetamiprid (AP). The bionanocomposite was characterized using several analytical techniques, including spectroscopy; XRD presented the crystalline structure of ZnO/Fe3O4 in the CMT-g-P3ABA amorphous matrix. The ZnO/Fe3O4 partially aggregated formation and exhibited polyhedral crystal shapes was depicted by electron microscopy images, vibrating sample magnetometer (45.06 emu/g), porosimetry (5.52 m2/g), and thermal (Chair yield of approximately 43.83 %) and elemental analyses. Under various conditions, including solution pH (4-9), adsorbent dosage (0.005-0.025 g), time of contact (10-30 min), and pesticide preliminary concentration (200-400 mg/L) in 10 mL of the solution. Based on this research, Adsorption data were perfectly fitted by the Freundlich isotherm model with RAP2= 0.99038, while the pseudo-second-order (PSO) model well-explained adsorption kinetics with RAP2= 0.99847. AP adsorption to the CMT-g-P3ABA/ZnO/Fe3O4 bionanocomposite was successful due to hydrophobic interactions, hydrogen bonding, and π-π stacking. Furthermore, adsorption-desorption experiments demonstrated that the bionanocomposite could be regenerated after three reuse cycles without considerable loss of pesticide removal performance. The bionanocomposite also exhibited promising antimicrobial activity in contradiction to test bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research, Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
27
|
Xie Y, Wang X, Men J, Zhu M, Liang C, Ding H, Du Z, Bao P, Hu Z. Selective Adsorption of Sr(II) from Aqueous Solution by Na 3FePO 4CO 3: Experimental and DFT Studies. Molecules 2024; 29:2908. [PMID: 38930973 PMCID: PMC11206743 DOI: 10.3390/molecules29122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g-1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g-1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization.
Collapse
Affiliation(s)
| | | | - Jinfeng Men
- College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China; (Y.X.); (X.W.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Kuzin S, Stolba D, Wu X, Syryamina VN, Boulos S, Jeschke G, Nyström L, Yulikov M. Quantification of Distributions of Local Proton Concentrations in Heterogeneous Soft Matter and Non-Anfinsen Biomacromolecules. J Phys Chem Lett 2024; 15:5625-5632. [PMID: 38758534 PMCID: PMC11145652 DOI: 10.1021/acs.jpclett.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
A new method to quantitatively analyze heterogeneous distributions of local proton densities around paramagnetic centers in unstructured and weakly structured biomacromolecules and soft matter is introduced, and its feasibility is demonstrated on aqueous solutions of stochastically spin-labeled polysaccharides. This method is based on the pulse EPR experiment ih-RIDME (intermolecular hyperfine relaxation-induced dipolar modulation enhancement). Global analysis of a series of RIDME traces allows for a mathematically stable transformation of the time-domain data to the distribution of local proton concentrations. Two pulse sequences are proposed and tested, which combine the ih-RIDME block and the double-electron-electron resonance (DEER) experiment. Such experiments can be potentially used to correlate the local proton concentration with the macromolecular chain conformation. We anticipate an application of this approach in studies of intrinsically disordered proteins, biomolecular aggregates, and biomolecular condensates.
Collapse
Affiliation(s)
- Sergei Kuzin
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Dario Stolba
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Xiaowen Wu
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Victoria N. Syryamina
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Voevodsky
Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia
| | - Samy Boulos
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Gunnar Jeschke
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Laura Nyström
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Maxim Yulikov
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Raj V, Lee S. State-of-the-art progress on tamarind seed polysaccharide (Tamarindus indica) and its diverse potential applications, a review with insight. Carbohydr Polym 2024; 331:121847. [PMID: 38388032 DOI: 10.1016/j.carbpol.2024.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Tamarind seed polysaccharide (TSP) is a biocompatible, non-ionic polymer with antioxidant properties. Its uses include drug delivery, food industry, and wastewater treatment. TSP has various hydroxy functional groups, one of the most favorable sites for graft copolymerization of different monomers. Hence, various chemical methods for TSP modification were developed to satisfy increasing industrial demand. Of particular interest in scientific community are the methods of graft copolymerization because of their ability to alter the physicochemical properties of TSP, including pH sensitivity and the swelling index, leading to improvements in the adsorption efficiency of hazardous heavy metals and dyes from wastewater effluents. Moreover, in recent years, TSP has been used for controlled drug delivery applications due to its unique advantages of high viscosity, broad pH tolerance, non-carcinogenicity, mucoadhesive properties, biocompatibility, and high drug entrapment capacity. In light of the plethora of literature on the topic, a comprehensive review of TSP-based graft copolymers and unmodified and modified TSP important applications is necessary. Therefore, this review comprehensively highlights several synthetic strategies for TSP-grafted copolymers and discusses unmodified and modified TSP potential applications, including cutting-edge pharmaceutical, environmental applications, etc. In brief, its many advantages make TSP-based polysaccharide a promising material for applications in various industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Aranda-Figueroa MG, Rodríguez-Torres A, Rodríguez A, Bolio-López GI, Salinas-Sánchez DO, Arias-Atayde DM, Romero RJ, Valladares-Cisneros MG. Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent. Molecules 2024; 29:1954. [PMID: 38731445 PMCID: PMC11085403 DOI: 10.3390/molecules29091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.
Collapse
Affiliation(s)
- Ma. Guadalupe Aranda-Figueroa
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico;
| | - Adriana Rodríguez-Torres
- Departamento de Ingeniería en Aeronáutica, Universidad Politécnica Metropolitana de Hidalgo, Tolcayuca 1009 Ex Hacienda San Javier, Tolcayuca 43860, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico;
| | - Gloria Ivette Bolio-López
- Dirección de Ciencias Básicas e Ingeniería, Universidad Popular de la Chontalpa, Carretera Cardenas-Huimanguillo Km 2.0, Cardenas 86500, Mexico;
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico;
| | - Dulce Ma. Arias-Atayde
- Centro de Investigación y Educación Ambiental Sierra de Huautla (CEAMISH), Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico;
| | - Rosenberg J. Romero
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico
| | - Maria Guadalupe Valladares-Cisneros
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Mexico;
| |
Collapse
|
31
|
Cui C, Li D, Wang LJ, Wang Y. Curdlan/sodium carboxymethylcellulose composite adsorbents: A biodegradable solution for organic dye removal from water. Carbohydr Polym 2024; 328:121737. [PMID: 38220329 DOI: 10.1016/j.carbpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Composite adsorbent comprised of curdlan (CURD) and sodium carboxymethylcellulose (CMC) were fabricated through a single-step heating process, targeting the removal of methylene blue (MB) from wastewater. The CURD/CMC composite adsorbents had a honeycomb porous structure. The integration of CMC not only increased the storage modulus of the CURD/CMC composite hydrogels but also affected the thermal stability and swelling behavior of the composite adsorbents in different pH solutions. Specifically, the addition of 1.2 % CMC increased the peak temperature (184.73 °C) of CURD/CMC composite adsorbent melting by 5.99 °C compared to CURD adsorbent. The addition of CMC improved the swelling ratio of the composite adsorbent at pH 3,7, and 12 with swelling ratio up to 918.07 %. The synergistic interaction between CURD and CMC led to an enhanced adsorption capacity of the aerogel for MB, achieving a maximum adsorption capability of 385.85 mg/g. Adsorption isotherm assessments further demonstrated that the Langmuir isotherm model well fitted the adsorption data of the composite adsorbent on MB. Collectively, these findings underscore the potential of the developed biodegradable adsorbents as promising adsorbents for efficiently eliminating organic dyes from water.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Khodakarami M, Honaker R. Photothermal self-floating aerogels based on chitosan functionalized with polydopamine and carbon nanotubes for removal of arsenic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169519. [PMID: 38141991 DOI: 10.1016/j.scitotenv.2023.169519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Although wastewater disposal in evaporation ponds may be a cost-effective strategy for wastewater management, it overlooks water recycling and can possibly pose significant threats to the surrounding environment. The development of photothermal materials with functional groups capable of adsorbing toxic contaminants offers a promising opportunity for detoxification and potentially solar-driven recycling of wastewater disposed in evaporation ponds. In this study, ultralight aerogels based on chitosan (Ch), a natural biodegradable polymer, functionalized with mussel-inspired polydopamine (PDA) and carbon nanotubes (CNT) were fabricated through a facile approach and examined for the removal of arsenic from water. Three aerogels, namely chitosan, CNT/Ch, and PDA@CNT/Ch were fabricated and characterized using SEM, FTIR, TGA, XPS, and BET surface area analysis. Adsorption isotherms, thermodynamics, and kinetics were systematically investigated, revealing the feasibility of the fabricated aerogels for arsenic removal from aqueous solutions. The UV-Vis and photothermal analysis indicated excellent light-absorption and light-to-heat conversion performance of the functionalized aerogels. Arsenic adsorption by aerogels occurred rapidly and reached equilibrium within 30 to 60 min and was well-fitted by pseudo second-order kinetics model. The Langmuir model well described the adsorption isotherm, and the maximum adsorption capacities were found to be 31.5, 36.6, and 38.7 mg/g at neutral pH for chitosan, CNT/Ch, and PDA@CNT/Ch, respectively. The adsorption mechanism was studied by FTIR and XPS analysis and the adsorption pathway was evaluated using intraparticle diffusion model. This study broadens the scope of utilizing aerogels for the detoxification and potential recycling of wastewater from diverse sources and effluents disposed in evaporation ponds.
Collapse
Affiliation(s)
- Mostafa Khodakarami
- Department of Mining Engineering, University of Kentucky, Lexington, KY 40506, USA; Strategic Materials and Recovery Technologies (SMaRT) Center, University of Kentucky, Lexington, KY 40506, USA.
| | - Rick Honaker
- Department of Mining Engineering, University of Kentucky, Lexington, KY 40506, USA; Strategic Materials and Recovery Technologies (SMaRT) Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
33
|
Tamer TM, Abbas R, Sadik WA, Omer AM, Abd-Ellatif MM, Mohy-Eldin MS. Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model. Sci Rep 2024; 14:1284. [PMID: 38218926 PMCID: PMC10787832 DOI: 10.1038/s41598-024-51538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
The present study introduces a new and straightforward method for the amination of Chitosan. This method involves coupling Chitosan (CS) with 2-chloroethylamine (ENH2) in a single step to produce an amino-ethyl Chitosan derivatives with increased amine group content (CS-ENH2) using click chemistry. The resulting derivatives were then crosslinked using Glutaraldehyde to form amino-ethyl Chitosan Schiff bases. The novel amino-ethyl Chitosan Schiff bases were subsequently utilized as adsorbents for the removal of Methyl Orange (MO) dye from aqueous solutions using a batch technique, and the performance of the produced Schiff bases was compared with that of the native Chitosan Schiff base. The CS-ENH2 adsorbents show improved adsorption capacity up to 300% of the native Chitosan Schiff base with almost double removal rate. The adsorption temperature has a positive impact in general while almost 100% of MO removed at 60 °C using CS-ENH2 adsorbents compared with 66% of the native Chitosan Schiff base adsorbent. The adsorption pH shows a negative impact on the MO removal percent. That effect reduced sharply using the CS-ENH2 adsorbents with higher amination degree while the MO removal percent almost being constant over a wide range of pH; 2.0-7.0. The agitation speed has the same positive effect over all the adsorbents. However, the rate of MO removal percent decreased with increase the agitation speed up to 250 rpm. The experimental findings demonstrated that the highest percentage of MO dye removal was achieved under the conditions of pH 2.0, a temperature of 60 °C, agitation speed of 250 rpm, and adsorption duration of 90 min. These Schiff bases were subsequently characterized using advanced analytical techniques including Fourier Transform Infrared spectroscopy, Thermal analysis (TGA and DSC), and Scanning Electron Microscopy.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Rafik Abbas
- Institute of Graduate Studies and Research, Alexandria University, P.O:832, Qesm Bab Sharqi, 21526, Alexandria, Egypt
| | - Wagih A Sadik
- Institute of Graduate Studies and Research, Alexandria University, P.O:832, Qesm Bab Sharqi, 21526, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Mai M Abd-Ellatif
- Institute of Graduate Studies and Research, Alexandria University, P.O:832, Qesm Bab Sharqi, 21526, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
34
|
Quiroga D, Coy-Barrera C. Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions. Mini Rev Med Chem 2024; 24:1651-1684. [PMID: 38500287 DOI: 10.2174/0113895575275799240306105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
Collapse
Affiliation(s)
- Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Carlos Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| |
Collapse
|
35
|
Helim R, Zazoua A, Jaffrezic-Renault N, Korri-Youssoufi H. Label free electrochemical sensors for Pb(II) detection based on hemicellulose extracted from Opuntia Ficus Indica cactus. Talanta 2023; 265:124784. [PMID: 37356191 DOI: 10.1016/j.talanta.2023.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
We aim to develop an electrochemical sensor for a divalent metal ion (lead II), a highly toxic water contaminant. We explore a sensor formed with a hemicellulose polysaccharide extracted from the Opuntia Ficus Indica cactus associated with agarose as a sensitive layer deposited on a gold electrode. This sensor combines the functional groups of hemicellulose that could form a complex with metal ions and agarose with gelling properties to form a stable membrane. The sensor demonstrated a loading ability of Pb2+, with higher affinity compared to other metal ions such as Hg2+, Ni2+, and Cu2+, thanks to the chemical structure of hemicellulose. The detection was measured by square wave voltammetry based on a well-defined redox peak of the metal ions. The sensor shows high sensitivity towards Pb2+ with a detection limit of 1.3 fM. The application in river and sea water using the standard addition method for lead detection was studied.
Collapse
Affiliation(s)
- Rabiaa Helim
- University of Jijel, Laboratory of Applied Energetics and Materials, Jijel, 18000, Ouled Aissa, Algeria; Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, 17 avenue des sciences, 91400, Orsay, France.
| | - Ali Zazoua
- University of Jijel, Laboratory of Applied Energetics and Materials, Jijel, 18000, Ouled Aissa, Algeria; ENP of Constantine, Laboratoire de Génie des Procédés pour le Développement Durable et les Produits de Santé, Constantine, 25000, Algeria.
| | | | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, 17 avenue des sciences, 91400, Orsay, France.
| |
Collapse
|
36
|
Hussain S, Maktedar SS. Structural, functional and mechanical performance of advanced Graphene-based composite hydrogels. RESULTS IN CHEMISTRY 2023; 6:101029. [DOI: 10.1016/j.rechem.2023.101029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
37
|
Levy-Ontman O, Yanay C, Alfi Y, Paz-Tal O, Wolfson A. Selective Sorption of Heavy Metals by Renewable Polysaccharides. Polymers (Basel) 2023; 15:4457. [PMID: 38006181 PMCID: PMC10674856 DOI: 10.3390/polym15224457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Renewable and biodegradable polysaccharides have attracted interest for their wide applicability, among them their use as sorbents for heavy metal ions. Their high sorption capacity is due mainly to the acidic groups that populate the polysaccharide backbone, for example, carboxylic groups in alginate and sulfate ester groups in the iota and lambda carrageenans. In this study, these three polysaccharides were employed, alone or in different mixtures, to recover different heavy metal ions from aqueous solutions. All three polysaccharides were capable of adsorbing Eu3+, Sm3+, Er3+, or UO22+ and their mixtures, findings that were also confirmed using XPS, TGA, and FTIR analyses. In addition, the highest sorption yields of all the metal ions were obtained using alginate, alone or in mixtures. While the alginate with carboxylic and hydroxyl groups adsorbed different ions with the same selectivity, carrageenans with sulfate ester and hydroxyl groups exhibited higher adsorption selectivity for lanthanides than for uranyl, indicating that the activity of the sulfate ester groups toward trivalent and smaller ions was higher.
Collapse
Affiliation(s)
- Oshrat Levy-Ontman
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| | - Chanan Yanay
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| | - Yaron Alfi
- Nuclear Research Center, Negev, Beer-Sheva 8419001, Israel; (Y.A.); (O.P.-T.)
| | - Ofra Paz-Tal
- Nuclear Research Center, Negev, Beer-Sheva 8419001, Israel; (Y.A.); (O.P.-T.)
| | - Adi Wolfson
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| |
Collapse
|
38
|
Hamid AA, Alam J, Shukla AK, Ali FAA, Alhoshan M. Sustainable removal of phenol from wastewater using a biopolymer hydrogel adsorbent comprising crosslinked chitosan and κ-carrageenan. Int J Biol Macromol 2023; 251:126340. [PMID: 37591437 DOI: 10.1016/j.ijbiomac.2023.126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
A biopolymer-based adsorbent comprising chitosan (CS) and κ-carrageenan (κ-Carr) was synthesised and evaluated to treat phenolic-contaminated water. The developed CS/κ-Carr hydrogel demonstrated excellent performance with a phenol adsorption uptake of 80 %. The morphologies of CS/κ-Carr hydrogels with different ratios of CS to κ-Carr ranging from 1:2 to 7:3 were characterised using scanning electron microscopy and atomic force microscopy; their chemical structures were investigated by spectral analyses using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry; their adsorption characteristics were determined using tests for swelling, chemical stability, hygroscopic moisture content, and hydrophilicity. Finally, a batch-type evaluation method demonstrated adsorption performance at 25 °C and pH 6.9. Adsorption isotherms and kinetic data were successfully obtained using the Freundlich and pseudo-second-order models, respectively. The results indicate that one-pot synthesis of an insoluble CS/κ-Carr hydrogel adsorbent exhibits considerable potential for the removal of phenol from aqueous solutions, providing an environmentally friendly technology enhancing the phenol adsorption performance of CS.
Collapse
Affiliation(s)
- Ali A Hamid
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fekri Abdulraqeb Ahmed Ali
- Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia; K.A.CARE Energy Research and Innovation Centre, Riyadh 11454, Saudi Arabia.
| |
Collapse
|
39
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
40
|
Mehmood Y, Shahid H, Abbas M, Farooq U, Ali S, Kazi M. Microsponge-derived mini tablets loaded with immunosuppressive agents: Pharmacokinetic investigation in human volunteers, cell viability and IVIVC correlation. Saudi Pharm J 2023; 31:101799. [PMID: 37868642 PMCID: PMC10585343 DOI: 10.1016/j.jsps.2023.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Sirolimus, a potent immunosuppressant, has been demonstrated to have remarkable activity in inhibiting allograft rejection in transplantation. The objective of the study was to fabricate microsponge mini tablets with enhanced solubility and bioavailability. β-Cyclodextrin and NEOCEL C91 were selected to prepare the microsponges (SLM-M) to improve the stability and solubility of sirolimus. The current study involved the quasi emulsion-solvent diffusion technique to design sirolimus-loaded microsponges that were further compressed into mini tablets 4 mm in diameter. Solid-state characterization, dissolution at different pH values, stability, and pharmacokinetic profiles with IVIVC data were analyzed in humans. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to characterize the formulations, and high-performance liquid chromatography (HPLC) was used to assess the drug stability of the compressed microsponge minitablets. The API changed from the crystalline state to an amorphous state, as shown by XRD and DSC. The compressed mini tablets showed a 4-fold enhancement in the drug dissolution profile. A toxicology investigation suggested that mini tablets were safe. In humans, the bioavailability of sirolimus compressed mini tablets from SLM-M was significantly improved. The results suggest that mini tablets prepared with β-cyclodextrin and NEOCEL C91 by a quasi emulsion-solvent diffusion process might be an alternative way to improve the bioavailability of sirolimus. In addition, the manufacturing process is easily scalable for the commercialization of drugs to market.
Collapse
Affiliation(s)
- Yasir Mehmood
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Faisalabad, P. O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, P.O. Box 38000, Pakistan
| | - Muhammad Abbas
- Imran Idress College of Pharmacy, Sialkot P.O. Box 51310, Pakistan
| | - Umar Farooq
- Faculty of Pharmacy, Grand Asian University, Sialkot, Punjab P.O. Box 51310, Pakistan
| | - Shaukat Ali
- Ascendia Pharma, Inc. North Brunswick, NJ 08902 USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Amamou O, Denis JP, Heinen É, Boubaker T, Cardinal S. A New and Rapid HPLC Method to Determine the Degree of Deacetylation of Glutaraldehyde-Cross-Linked Chitosan. Molecules 2023; 28:7294. [PMID: 37959714 PMCID: PMC10647662 DOI: 10.3390/molecules28217294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chitosan is a linear biopolymer composed of D-glucosamine and N-acetylglucosamine units. The percentage of D-glucosamine in the polymeric chain can vary from one sample to another and is expressed as the degree of deacetylation (DDA). Since this parameter has an impact on many properties, its determination is often critical, and potentiometric titration is a common analytical technique to measure the DDA. Cross-linking with glutaraldehyde is one of the most explored modifications of chitosan; however, the determination of the DDA for the resulting reticulated chitosan resins can be challenging. In this paper, we report a new, rapid, and efficient method to determine the DDA of glutaraldehyde-cross-linked chitosan resins via HPLC. This method relies on the use of 2,4-dinitrophenylhydrazine (DNPH) as a derivatizing agent to measure the level of reticulation of the polymer (LR) after the reticulation step. In this study, we prepare three calibration curves (with an R2 value over 0.92) for three series of reticulated polymers covering a large range of reticulation levels to demonstrate that a correlation can be established between the LR established via HPLC and the DDA obtained via titration. The polymers are derived from three different chitosan starting materials. These standard calibration curves are now used on a routine basis in our lab, and the HPLC method has allowed us to change our DDA analysis time from 20 h to 5 min.
Collapse
Affiliation(s)
- Ons Amamou
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Jean-Philippe Denis
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Élise Heinen
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Taoufik Boubaker
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Sébastien Cardinal
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
42
|
Shankar S, Joshi S, Srivastava RK. A review on heavy metal biosorption utilizing modified chitosan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1350. [PMID: 37861930 DOI: 10.1007/s10661-023-11963-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Heavy metal pollution in water bodies is a global concern. The prominent source of metal contamination in aqueous streams and groundwater is wastewater containing heavy metal ions. Elevated concentrations of heavy metals in water bodies can have a negative impact on water quality and public health. The most effective way to remove metal contaminants from drinking water is thought to be adsorption. A deacetylated derivative of chitin, chitosan, has a wide range of commercial uses since it is biocompatible, nontoxic, and biodegradable. Due to its exceptional adsorption behavior toward numerous hazardous heavy metals from aqueous solutions, chitosan and its modifications have drawn a lot of interest in recent years. Due to its remarkable adsorption behavior toward a range of dangerous heavy metals, chitosan is a possible agent for eliminating metals from aqueous solutions. The review has focused on the ideas of biosorption, its kinds, architectures, and characteristics, as well as using modified (physically and chemically modified) chitosan, blends, and composites to remove heavy metals from water. The main objective of the review is to describe the most important aspects of chitosan-based adsorbents that might be beneficial for enhancing the adsorption capabilities of modified chitosan and promoting the usage of this material in the removal of heavy metal pollutants.
Collapse
Affiliation(s)
- Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Science, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Sarita Joshi
- Department of Environmental Science, School of Vocational Studies and Applied Science, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| | - Rajeev Kumar Srivastava
- Department of Environmental Science, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
43
|
Al Shammari MS, Ahmed HM, Abdel-Haleem FM, Almutlq NJ, El-Khateeb MA. Adsorption of Chromium, Copper, Lead, Selenium, and Zinc ions into ecofriendly synthesized magnetic iron nanoparticles. PLoS One 2023; 18:e0289709. [PMID: 37851668 PMCID: PMC10584173 DOI: 10.1371/journal.pone.0289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/25/2023] [Indexed: 10/20/2023] Open
Abstract
The iron nanoparticles (Fe-NPs) have been synthesized using an environmentally friendly and simple green synthesis method. This study aims to obtain an aqueous extract from natural material wastes for synthesizing Fe-NPs. The produced Fe-NPs were evaluated as adsorbents for removing Pb, Se, Cu, Zn, and Cr from aqueous solutions. The formation of Fe-NPs was observed on exposure of the aqueous extract to the ferrous chloride and ferric chloride solutions. The characterization of the synthesized Fe-NPs was carried out using different instrumental techniques. As a function of the initial metal ion concentration, contact time, and various doses, the removal of the heavy metal ions was investigated. The UV-Vis spectrum of Fe-NPs showed a peak at 386 nm, 386 nm, 400 nm, 420 nm, 210 nm, 215 nm, and 272 nm of banana, pomegranate, opuntia, orange, potato, and onion, respectively. The FT-IR spectra confirmed the attachment of bioactive molecules from plants on the Fe-NPs surface. The effective reduction of metal ions was greatly aided by the -OH functional groups. The functional groups were examined and responsible for adsorption process by nanoparticle powder sample, these peaks are 3400 cm-1, 2900 cm-1, 1600 cm-1,1000 cm-1, and 1550 cm-1. The magnetization measurements revealed superparamagnetic behavior in the produced iron oxide nanoparticles. Heavy metal ions uptake followed a time, dose, and initial concentration-dependent profile, with maximum removal efficiency at 45 min, 0.4 g, and 3.0 mg/L of metal concentration, respectively.
Collapse
Affiliation(s)
| | - Hussein M. Ahmed
- Housing and Building Research Center (HBRC), Sanitary and Environmental Institute, Dokki, Giza, Egypt
| | - Fatehy M. Abdel-Haleem
- Cairo University Centre for Hazard Mitigation and Environmental Studies and Research, CHMESR, Cairo University, Giza, Egypt
| | - Nowarah J. Almutlq
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
44
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
45
|
A V M, K A, I BM. An integrated approach to remove endocrine-disrupting chemicals bisphenol and its analogues from the aqueous environment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1518-1546. [PMID: 37768753 PMCID: wst_2023_280 DOI: 10.2166/wst.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) used as a plastic enhancer in producing polycarbonate resins to manufacture hard plastics. Due to strict limitations on the manufacturing and utilization of BPA, several bisphenol substitutes, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF), have been developed to replace it in various applications. Because of their widespread use in food containers, infant bottles, and reusable water bottles, bisphenols (BPs) have been identified in different environmental circumstances, including drinking water, seawater, industrial effluent, and endocrine systems such as human blood, urine, and breast milk. However, locating and analyzing them in different conditions has proven to be challenging. Therefore, there is a need to reduce the prevalence of BPs in the environment. The significance of advanced treatment options for treating and eliminating BPA and its alternatives from water bodies are reviewed. Also, the research gaps and future scopes are discussed in this review article. According to the literature survey, adsorption and photocatalytic degradation provide synergistic benefits for environmental challenges because of their substantial adsorption Q5 capacity, high oxidation capability, and low cost compared to alternative individual treatment options.
Collapse
Affiliation(s)
- Monica A V
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India E-mail:
| | - Anbalagan K
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Becky Miriyam I
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
46
|
Liao J, Wang Y, Hou B, Zhang J, Huang H. Nano-chitin reinforced agarose hydrogels: Effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydr Polym 2023; 313:120902. [PMID: 37182930 DOI: 10.1016/j.carbpol.2023.120902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
Hydrogels based on natural polymers such as agarose usually show low applicability due to their weak mechanical properties. In this work, we developed a dual cross-linked agarose hydrogel by adding different amounts of TEMPO-oxidized nano-chitin (0-0.2 %) to agarose hydrogel matrices and then physically cross-linked under acidic gas-phase coagulation. The prepared hydrogels were characterized by FTIR, XRD, TGA, and SEM. The effects of nano-chitin addition and acidic gas-phase coagulation on the properties of agarose hydrogels, such as gel strength, swelling degree, rheological properties, and methylene blue (MB) adsorption capacity, were also studied. Structural characterizations confirmed that nano-chitin was successfully introduced into agarose hydrogels. The gel strength, storage modulus, and MB adsorption capacity of agarose hydrogels gradually increased with the increasing nano-chitin addition, whereas the swelling degree decreased. After acidic gas-phase coagulation, agarose/nano-chitin nanocomposite hydrogels exhibited improved gel strength and storage modulus, while the swelling degree and MB adsorption capacity were slightly reduced. The combination of oxidized nano-chitin and acidic gas-phase coagulation is expected to be an effective way to improve the properties of natural polymer hydrogels.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China.
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bo Hou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
47
|
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Nosach LV, Voronin EF. Chitosan-Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes. Int J Mol Sci 2023; 24:11818. [PMID: 37511577 PMCID: PMC10380244 DOI: 10.3390/ijms241411818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
A series of new types of composites (biopolymer-silica materials) are proposed as selective and effective adsorbents. A new procedure for the synthesis of chitosan-nanosilica composites (ChNS) and chitosan-silica gel composites (ChSG) using geometrical modification of silica and mechanosorption of chitosan is applied. The highest adsorption efficiency was achieved at pH = 2, hence the desirability of modifications aimed at stabilizing chitosan in such conditions. The amount of chitosan in the synthesis grew to 1.8 times the adsorption capacity for the nanosilica-supported materials and 1.6 times for the silica gel-based composites. The adsorption kinetics of anionic dyes (acid red AR88) was faster for ChNS than for ChSG, which results from a silica-type effect. The various structural, textural, and physicochemical aspects of the chitosan-silica adsorbents were analyzed via small-angle X-ray scattering, scanning electron microscopy, low-temperature gas (nitrogen) adsorption, and potentiometric titration, as well as their adsorption effectiveness towards selected dyes. This indicates the synergistic effect of the presence of dye-binding groups of the chitosan component, and the developed interfacial surface of the silica component in composites.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Liudmyla V Nosach
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| | - Eugeny F Voronin
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| |
Collapse
|
48
|
Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, Ab Hamid NH, Rani MSA, Abral H, Norrrahim MNF, Knight VF, Lee CL, Rafiqah SA. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers (Basel) 2023; 15:3114. [PMID: 37514503 PMCID: PMC10385024 DOI: 10.3390/polym15143114] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - M N A Uda
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A H Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - N H Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - M S A Rani
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - M N F Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - V F Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Chuan Li Lee
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - S Ayu Rafiqah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
49
|
Ullah R, Tuzen M, Hazer B. Novel silver-morphine-functionalized polypropylene (AgPP-mrp) nanocomposite for the degradation of dye removal by multivariate optimization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79904-79915. [PMID: 37286840 DOI: 10.1007/s11356-023-27959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
As a novel adsorbent, an opioid silver-morphine-functionalized polypropylene was synthesized through a one-pot reaction at room temperature and successfully used for the simple one-pot photocatalytic degradation catalyst of methyl orange removal from wastewater. UV spectral analysis reveals a special reference to the excitation of surface plasmon resonance as the main characteristic of the polymer-Ag nanocomposite in toluene solution peak at 420 nm in AgPP-mrp catalyst. The 1H NMR spectrum showed no sign of Ag NP peaks revealing small size distribution in the channels of morphine-functionalized polypropylene polymer. The morphology of silver nanoparticle-doped polymer through scanning electron microscopy (SEM-EDX) reveals PP-mrp with continuous matrix and Ag NPs (0.87 wt%). Furthermore, photocatalytic degradation of methyl orange was investigated on AgPP-mrp catalyst spectrophotometrically under solar irradiation in waste effluent, demonstrating high degradation efficiency. According to experimental findings, silver nanoparticles (AgPP-mrp) achieved high degradation capacities of 139 mg/g equivalent to 97.4% of photodegradation in a little period of time (35 min), as associated with previously stated materials and follow pseudo-second-order kinetic degradation tail of a high regression coefficient (R2 = 0.992). The suggested techniques offer a linear reaction for MO over the pH range of 1.5 to 5 and a degradation temperature of 25 to 60 °C. Central composite design and response surface methodology statistics recommend pH of the reaction medium and time as important variables for methyl orange degradation on AgPP-mrp photocatalytic. AgPP-mrp on the photocatalytic phenomenon based on heterojunction catalytic design producing electron holes (e-), as well as superoxides for the successful degradation of methyl orange.
Collapse
Affiliation(s)
- Rooh Ullah
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
50
|
Ibrahim MA, Alhalafi MH, Emam EAM, Ibrahim H, Mosaad RM. A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications. Polymers (Basel) 2023; 15:2820. [PMID: 37447465 DOI: 10.3390/polym15132820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is produced by deacetylating the abundant natural chitin polymer. It has been employed in a variety of applications due to its unique solubility as well as its chemical and biological properties. In addition to being biodegradable and biocompatible, it also possesses a lot of reactive amino side groups that allow for chemical modification and the creation of a wide range of useful derivatives. The physical and chemical characteristics of chitosan, as well as how it is used in the food, environmental, and medical industries, have all been covered in a number of academic publications. Chitosan offers a wide range of possibilities in environmentally friendly textile processes because of its superior absorption and biological characteristics. Chitosan has the ability to give textile fibers and fabrics antibacterial, antiviral, anti-odor, and other biological functions. One of the most well-known and frequently used methods to create nanofibers is electrospinning. This technique is adaptable and effective for creating continuous nanofibers. In the field of biomaterials, new materials include nanofibers made of chitosan. Numerous medications, including antibiotics, chemotherapeutic agents, proteins, and analgesics for inflammatory pain, have been successfully loaded onto electro-spun nanofibers, according to recent investigations. Chitosan nanofibers have several exceptional qualities that make them ideal for use in important pharmaceutical applications, such as tissue engineering, drug delivery systems, wound dressing, and enzyme immobilization. The preparation of chitosan nanofibers, followed by a discussion of the biocompatibility and degradation of chitosan nanofibers, followed by a description of how to load the drug into the nanofibers, are the first issues highlighted by this review of chitosan nanofibers in drug delivery applications. The main uses of chitosan nanofibers in drug delivery systems will be discussed last.
Collapse
Affiliation(s)
- Marwan A Ibrahim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Mona H Alhalafi
- Department of Chemistry, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, Cairo 11795, Egypt
| | - Hassan Ibrahim
- Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab M Mosaad
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|