1
|
Zhou Q, Abushammala H, Gao D, Xu P, Niu D, Yang W, Ma P. Human soft tissues-like PVA/cellulose hydrogels with multifunctional properties towards flexible electronics applications. Carbohydr Polym 2025; 357:123425. [PMID: 40158965 DOI: 10.1016/j.carbpol.2025.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Conductive hydrogels have attracted significant attention due to their exceptional flexibility, biocompatibility, and promising applications in flexible electronics. Inspired by human soft tissues, robust ionic conductive hydrogels were developed via constructing cellulose-reinforced polyvinyl alcohol networks and precise modulation of zinc ions. The hydrogel exhibits impressive mechanical behaviors (σ = 4.55 MPa, ε = 1293 %) and ionic conductivity as high as 1.17 S/m, ascribed from the multiscale interaction mechanism. These mechanisms include the formation of dense nanofiber networks and nanocrystalline domains, the effects of multiple metal coordination and hydrogen bonds, and the reinforcement of nanocellulose. Moreover, the hydrogel demonstrates a low strain detection limit of 1 % and shows great potential for applications in human health monitoring. Interestingly, based on the principle of Morse code, the hydrogel can be used for information transmission in hazardous environments for emergency signaling. More importantly, when used as an electrolyte in flexible zinc-ion battery, it significantly inhibits zinc dendrite growth and supports stable charge-discharge cycles, making it ideal for small flexible electronic devices. This work presents a biomimetic and sustainable strategy for the rapid fabrication of robust ionic conductive hydrogels, offering advanced applications in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hatem Abushammala
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Daqian Gao
- Department of Surgery, School of Medicine, Yale University, New Haven 06510, USA
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025; 125:4974-5002. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Lu W, He Q, Mao Z, Fu S, Wang Y, Jiang Z, Wang Y, Cao Y, Li S, Liu C, Dong Q. A bioinspired helical hydrogel scaffold with real-time sensing for enhanced precision in gynecological digital vaginal examination. NANOSCALE HORIZONS 2025; 10:1131-1139. [PMID: 40163645 DOI: 10.1039/d4nh00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Precise diagnostic and therapeutic modalities are of utmost significance in driving forward patient care within the sphere of gynecological medicine. Bionics, involving the application of nature-inspired designs in medical apparatus, has emerged as a highly promising approach in this field. Specifically, helical architectures observed in natural organisms like vines display remarkable adaptability and mechanical strength, presenting novel perspectives for the development of ergonomic and effective gynecological examination and surgical instruments. Harnessing these insights, this study presents a helical polydimethylsiloxane (PDMS) scaffold inspired by the deformability of vines. This scaffold not only integrates Janus wettability hydrogel properties to enhance tissue interaction, ensuring increased comfort and adaptability during clinical procedures, but also incorporates sensors for real-time monitoring and feedback, thereby overcoming the limitations of conventional gynecological devices that often lack such capabilities. We meticulously detail the fabrication of this helical finger scaffold, using a sandwich thermoplastic method to produce hydrogel fibers possessing shape memory, thermal responsiveness, and deformation sensing via relative resistance changes. Additionally, the study explores finger motion monitoring through surface electromyography (sEMG) signals, which advances the precision and safety of cervical palpation and related surgeries. Overall, our findings highlight the potential of these responsive and adaptable hydrogels to transform gynecological medical devices, providing a solid theoretical foundation and practical applications for future innovations in gynecological diagnostics and surgical support.
Collapse
Affiliation(s)
- Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Qing He
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Zheng Mao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Songchao Fu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Wang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Zhiwei Jiang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Wang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Qian Dong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Cai H, Tepermeister M, Yuan C, Silberstein MN. Regulating hydrogel mechanical properties with an electric field. MATERIALS HORIZONS 2025. [PMID: 40353712 DOI: 10.1039/d5mh00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Stimuli-responsive polymeric materials have attracted significant attention due to their ability to change properties in response to various external stimuli. Using an electric field as the stimulus is of particular interest as it possesses the potential for seamless integration of materials with electronic systems. While many materials with electric field responsive actuation have an associated mechanical property change, it is beneficial to develop materials that exhibit mechanical property changes without accompanying significant shape deformation. To address this challenge, here we designed a semi-interpenetrating polymer network (semi-IPN) hydrogel system containing both polyelectrolytes and salt ions, which enables electric field induced changes in mechanical properties while minimizing actuation. We first successfully verified the viability of our design by removing salt ions through a diffusion-only method where we witnessed the stiffness increased to 4.5 times the initial value while still being highly deformable. After this, we applied an electric field to transport the salt ions out of the hydrogel, as shown by both Raman spectroscopy and scanning electron microscopy. We were able to show a time-dependent stiffness increase, the maximum of which was 5 times the original stiffness. We quantified ion transport and water-splitting in the hydrogel by both experiments and simulations. Following this, we showed functional system reversibility by reversing the direction of the current to reinject salt ions into the semi-IPN hydrogel and reducing its stiffness to below the initial value. It's worth noting that our simulations enable us to understand the governing mechanisms behind ion generation and salt transport that leads to mechanical property changes. Finally, we were able to fabricate a spatially variable stiffness haptic interface with our hydrogel, with demonstrated reversibility and cyclability. This research can possibly find applications in soft robotics and haptics and also inspire the development of bio-compatible electronics related devices.
Collapse
Affiliation(s)
- Hongyi Cai
- Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Max Tepermeister
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Chenyun Yuan
- Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
- Engineered Living Materials Institute, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Wang R, Cheng Y, Zhang Q, Li H, Wang Y, Liu J, Xing R, Ma J, Jiao T. Near Infrared Light-Based Non-Contact Sensing System for Robotics Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414481. [PMID: 40304110 DOI: 10.1002/adma.202414481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/10/2025] [Indexed: 05/02/2025]
Abstract
With the development of artificial intelligence and the Internet of Things, non-contact sensors are expected to realize complex human-computer interaction. However, current non-contact sensors are mainly limited by accuracy and stability. Herein, an intelligent infrared photothermal non-contact sensing system is developed that provides long-distance and high-accuracy non-contact sensing. A black phosphorus (BP)-based composite organogel is designed, which exhibits excellent photothermal properties and environmental stability, as the active material. This material can detect patterns created by near-infrared (NIR) light through various patterned masks monitored by an infrared thermal imager. The constructed non-contact sensing system is capable of accurately recognizing 26 letters with an impressive accuracy rate of 99.4%. Furthermore, even small size non-contact sensors can maintain high sensitivity and stability across a wide temperature range, at long working distances, and under different current intensities and dark conditions, demonstrating exceptional robustness. Combined with machine learning method, it is demonstrated that the non-contact sensing system excels in pattern recognition and human-computer interaction. These features highlight its potential applications in intelligent robotics and remote control systems.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Yu Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Academy Avenue, Shenzhen, Guangdong, 518055, China
| | - Qiran Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Haoran Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Yangyang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Jiaqi Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, No. 1088 Academy Avenue, Shenzhen, Guangdong, 518055, China
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North Second Street, Zhongguancun, Beijing, 100190, China
| | - Jinming Ma
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| |
Collapse
|
6
|
Liu L, Gao M, Fan X, Lu Z, Li Y. Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability. J Colloid Interface Sci 2025; 684:469-480. [PMID: 39799629 DOI: 10.1016/j.jcis.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/T3C2Tx MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties. The rapid thermoresponsive behavior of the PNIPAM/CMC/MXene layer bestows its corresponding bilayer actuator with an extraordinary actuation speed of 9.36°/s in hot water. Owing to the high photothermal conversion of MXenes, this PNIPAM/CMC/MXene hydrogel displays a range of remote-controlled actuations upon NIR light irradiation, including bending, rolling, displacement, and simulations of the sea eel's hunting behaviors in a water environment. More importantly, based on the excellent electrical properties of MXene, the PNIPAM/CMC/MXene-based hydrogel actuators have accomplished a self-sensing function by integrating the surface temperature-bending angle-the relative resistance changes during the NIR light-driven actuation process. The photothermal actuator's integrated actuation and sensing capabilities have facilitated the feedback of the contact and movement dynamics of the bioinspired artificial tongue. The straightforward preparation and multifunctional design of MXene-based hydrogel may facilitate the development of soft smart actuators.
Collapse
Affiliation(s)
- Lingke Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Minjuan Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Xingyu Fan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Zichun Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Yueqin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China.
| |
Collapse
|
7
|
Yang X, Du M, Chu Z, Li C. Synchronizing Multicolor Changes and Shape Deformation Into Structurally Homogeneous Hydrogels via a Single Photochromophore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500857. [PMID: 40059611 DOI: 10.1002/adma.202500857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 04/24/2025]
Abstract
The design of synthetic hydrogels that can mimic their biological counterparts in the simultaneous production of multicolor change and shape transformation in response to environmental stimuli is of great importance toward intelligent camouflage, encryption, and actuation. Previous efforts have focused primarily on developing heterogeneous hydrogels that highly rely on respective mechanisms to achieve color and shape changes separately, and synergistically synchronizing such two variations into structurally homogenous hydrogels via a single chromophore has been challenging. Here, the molecular design of a structurally homogenous hydrogel simultaneously exhibiting synchronized multicolor change and shape deformation triggered by a single stimulus of light is reported. The synchronization mechanism originates from a coupled alteration upon irradiation in the fluorescence emission and charge states of a spiropyran photochromophore covalently incorporated into the hydrogel network, thus leading to macroscale color change and shape variation in the hydrogel, respectively. Following this principle, both positive and negative phototropic deformation are obtained concomitantly with synchronized but flexibly tunable multicolor changes upon light illumination and demonstrated the ingenious application of biomimetic actuation, encryption, and camouflage by the rational combination of these two systems. This work represents an innovative molecular design strategy for developing bioinspired materials with synchronized functions via a single compound.
Collapse
Affiliation(s)
- Xuehan Yang
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengqi Du
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaomiao Chu
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Zhou Y, Zhao Y, Zhao D, Guan X, Zhang K, Pi Y, Zhong J. Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics. MICROSYSTEMS & NANOENGINEERING 2025; 11:40. [PMID: 40032815 DOI: 10.1038/s41378-025-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics. Herein, we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances. The actuating layer, made of p(NIPAm-HEMA), features an open pore structure, enabling it to achieve 58% volume shrinkage in just 8 s. The customizable heater allows for efficient programmable deformation of the actuating layer. A strain-responsive hydrogel layer, with a linear response of up to 50% strain, is designed to sense the deformation process. Leveraging these actuating and sensing capabilities, we develop an integrated hydrogel muscle that can recognize lifted objects with various weights or grasped objects of different sizes. Furthermore, we demonstrate a self-crawling robot to showcase the application potential of the hydrogel muscle for soft robots working in aquatic environments. This robot, featuring a modular distributed sensing and actuating layer, can autonomously move forward under closed-loop control based on self-detected resistance signals. The strategy of modular distributed stimuli-responsive sensing and actuating materials offers unprecedented capabilities for creating smart and multifunctional soft robotics.
Collapse
Affiliation(s)
- Yexi Zhou
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yu Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Xiao Guan
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yucong Pi
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China.
| |
Collapse
|
9
|
Guo J, Sun L, Zhang H, Zhao Y. Frog tongue-inspired wettable microfibers for particles capture. Sci Bull (Beijing) 2025; 70:383-389. [PMID: 39645469 DOI: 10.1016/j.scib.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Fibers have been of great significance in our daily lives, especially in the industrial production of masks. Research in this area has been focused on developing microfibers with superior functions to enhance the filtration performances of the masks. Herein, inspired by the frog's predation mechanism using its tongues to swiftly grab flying insects, we propose novel porous wettable microfibers from microfluidics to efficiently capture particles in the air for filtration. Upon pre-dispersing LP emulsions into polyurethane (PU), porous microfibers dispersed with oil droplets could be continuously spun from a co-flow microfluidic device based on the quick phase inversion of PU. To design an optimal system with frog-tongue-like interfacial adhesion properties, the wettability performances of the porous microfibers are investigated under full, partial, and no oil coverage conditions. When implemented in a mask, the 3D patterned networks based on the frog-tongue-inspired microfibers have been proven with remarkable particle capture performances while maintaining good air permeability. Based on these features, we believe that frog-tongue-inspired microfibers and their derived masks are of practical significance in multiple applications.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518071, China; Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Zhao J, Zhai X, Li P, Wang X, Wen Y, Xia W, Luo T, Wu L. From Sea Cucumbers to Soft Robots: A Photothermal-Responsive Hydrogel Actuator with Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6979-6986. [PMID: 39829137 DOI: 10.1021/acsami.4c21626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Soft robotics has undergone considerable progress driven by materials that can effectively transduce external stimuli into mechanical actuation. Here, we report the development of a photothermal-responsive hydrogel actuator with shape memory capabilities inspired by the adaptive locomotion of sea cucumbers. This actuator is based on sea cucumber peptides (SCP) and a liquid metal (LM) hydrogel network that is responsive to near-infrared (NIR) light. Upon NIR irradiation, the hydrogel undergoes a phase transition from a swollen to a collapsed state, resulting in a controlled volumetric and shape change. Incorporating a shape memory polymer (SMP) into the hydrogel matrix facilitates the actuator's retention of its deformed configuration following stimulus removal, thereby enabling intricate, multiphase shape transformations. This SCP/LM hydrogel overcomes the limitations of traditional hydrogels and achieves good stretchability (3,000%) and enough adhesion (21 kPa), exhibiting no toxicity to human cells. Furthermore, the actuator exhibited significant bending and complex deformation within 100 s of NIR exposure. This photothermal-responsive hydrogel actuator offers new opportunities for soft robotics and biomedical applications, showcasing a potential pathway for incorporating shape memory and photothermal-responsive materials into the next generation of smart soft devices.
Collapse
Affiliation(s)
- Jinxue Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xuejing Zhai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Peiyi Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xinghai Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yahui Wen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Wei Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100020, China
| | - Tuyan Luo
- Institute of Agricultural Quality Standards and Testing Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Lidong Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
11
|
Zhang Y, Wang T, Wang F, Li X, Ma H, Sun Y. Sunlight-Drivable Composite Film Using Carbon Nanopowder-doped PVDF and Liquid Crystal Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5352-5359. [PMID: 39723939 DOI: 10.1021/acsami.4c17962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials. In this paper, we present a composite film fabricated using poly(vinylidene fluoride) doped with carbon nanopowders (PC) as a photothermal conversion material combined with a hybrid-alignment liquid crystal polymer network film. Under the midday sun during summer, the composite film is heated from room temperature to 74.5 °C quickly, resulting in a substantial angle change of 235°. Additionally, the actuators fabricated by this composite film can demonstrate phototactic and light-avoiding rolling behaviors. This sunlight-drivable composite film shows considerable promise for the research and development of bionic devices powered by natural light.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Tianxiong Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Feifei Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
12
|
Protsak IS, Morozov YM. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025; 11:30. [PMID: 39852001 PMCID: PMC11765116 DOI: 10.3390/gels11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability. We then explore hydrogel design, synthesis, and structural engineering, followed by an overview of applications that are relatively well established from a scientific perspective, including biomedical uses (biosensing, drug delivery, wound healing, and tissue engineering), environmental applications (heavy metal and phosphate removal from the environment and polluted water), and soft robotics and actuation. Additionally, we highlight emerging and unconventional applications such as local micro-thermometers and cell mechanotransduction. This review concludes with a discussion of current challenges and future prospects in the field, aiming to inspire further innovations and advancements in stimuli-responsive hydrogel research and applications to bring them closer to the societal needs.
Collapse
Affiliation(s)
- Iryna S. Protsak
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria;
| | | |
Collapse
|
13
|
Dong S, Lu G, Wang G, Wang K, Tang R, Nie J, Zhu X. Preparation of Gradient HEA-DAC/HPA Hydrogels by Limited Domain Swelling Method. Macromol Rapid Commun 2025; 46:e2400586. [PMID: 39348169 DOI: 10.1002/marc.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 10/01/2024]
Abstract
Hydrogels are widely used in biological dressing, tissue scaffolding, drug delivery, sensors, and other promising applications owing to their water-rich soft structures, biocompatibility, and adjustable mechanical properties. However, most of the conventional hydrogels are isotropic. The anisotropic structures existed widely in the organizational structure of plants and animals, which played a crucial role in biological systems. In this work, a method of limited domain swelling to prepare anisotropic hydrogels is proposed. Through spatially controlled swelling, the extension direction of hydrogels can be limited by a tailored mold, further achieving anisotropic hydrogels with concentration gradients. The external solution serves as a swelling solution to promote swelling and extension of the hydrogel matrix in a mold which can control the extension direction. Due to the diversity of external solutions, the method can be applied to prepare a variety of stimulus-responsive polymers. The limited domain swelling method is promising for the construction of anisotropic hydrogels with different structures and properties.
Collapse
Affiliation(s)
- Shiyu Dong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guohua Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Keqiang Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Zhao T, Tan Y, Li Y, Wang X. Ionic fuel-powered hydrogel actuators for soft robotics. J Colloid Interface Sci 2025; 677:739-749. [PMID: 39121658 DOI: 10.1016/j.jcis.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
HYPOTHESIS Hydrogel actuators powered by chemical fuels are pivotal in autonomous soft robotics. Nevertheless, chemical waste accumulation caused by chemical fuels hampers the development of programmable and reusable hydrogel actuating systems. We propose the concept of ionic fuel-powered soft robotics which are constructed by programmable salt-responsive actuators and use waste-free ionic fuels. EXPERIMENTS Herein, soft hydrogel actuators were developed by orchestrating the Janus bilayer hydrogels' capacity for swelling and shrinking. Decomposable and easily removable ionic fuels were applied to power the actuators. Swelling tests were used to evaluate the deformability of the hydrogels. Tensile tests were performed to investigate the modulus of the hydrogels. The bonded interface composed of the interpenetrating polymer chains from both hydrogel layers bilayer was evidenced by the optical microscopy and scanning electron microscopy. The ionic conductivities of solutions were determined by a conductivity meter. Furthermore, a range of biomimetic soft robots with various shapes and asymmetrical structures have been designed and fabricated to execute complex functions. FINDINGS The programmable actuators powered by ionic fuel exhibit adjustable bending orientations, amplitudes, and durations, along with consistent cyclic actuations enabled by replenishment of the fuel without noticeable loss in performance. Many life-like programmable soft robotic systems were designed, indicating spatiotemporally controllable functions.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China.
| |
Collapse
|
15
|
Parhi R, Garg A. Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems. Curr Pharm Des 2025; 31:1180-1204. [PMID: 39702931 DOI: 10.2174/0113816128341715241216060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
16
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Zhou Q, Lu S, Huang C, Puglia D, Xu P, Niu D, Yang W, Ma P. Polyvinyl alcohol/sodium alginate hydrogels with tunable mechanical and conductive properties for flexible sensing applications. Int J Biol Macromol 2024; 283:137822. [PMID: 39566789 DOI: 10.1016/j.ijbiomac.2024.137822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Despite the significant advantages of conductive hydrogels in flexible sensing, their further development is often hindered by limitations in strength and conductivity. In this work, the ionic conductive hydrogels with tunable mechanical and conductive properties were designed by utilizing sodium alginate (SA) to reinforce the polyvinyl alcohol (PVA) networks, followed by the respective introduction of Li2SO4, ZnSO4, and Fe2(SO4)3, leveraging the Hofmeister effect and metal coordination. Consequently, the mechanical properties (σ = 0.40-2.70 MPa) and conductivity (IC = 0.18-1.02 S/m) can be extensively tuned by adjusting the metal salts with varying oxidation states. Notably, Fe3+ ions can significantly enhance the mechanical properties, while Li+ ions more effectively improve conductivity. Interestingly, the PVA/SA/Zn2+ hydrogel achieves a balance between mechanical properties (σ = 1.86 MPa, ε = 1110 %) and conductivity (0.92 S/m), ascribing it to the multiple interactions including densification of polymer networks, formation of nanocrystalline domains, and ionic coordination effects. Furthermore, the conductive hydrogel also exhibits low strain detection limit (2.0 %), and demonstrated enormous potential in personal health monitoring and information transmission applications. This work presents a highly efficient and eco-friendly strategy for constructing hydrogels with tunable properties, while elucidating the mechanisms behind the enhanced mechanical and conductive performance.
Collapse
Affiliation(s)
- Qi Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Shengxu Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chenjing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, Terni 05100, Italy
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Li W, Zhou R, Ouyang Y, Guan Q, Shen Y, Saiz E, Li M, Hou X. Harnessing Biomimicry for Controlled Adhesion on Material Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401859. [PMID: 39031996 DOI: 10.1002/smll.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Nature serves as an abundant wellspring of inspiration for crafting innovative adhesive materials. Extensive research is conducted on various complex forms of biological attachment, such as geckos, tree frogs, octopuses, and mussels. However, significant obstacles still exist in developing adhesive materials that truly replicate the behaviors and functionalities observed in living organisms. Here, an overview of biological organs, structures, and adhesive secretions endowed with adhesion capabilities, delving into the intricate relationship between their morphology and function, and potential for biomimicry are provided. First, the design principles and mechanisms of adhesion behavior and individual organ morphology in nature are summarized from the perspective of structural and size constraints. Subsequently, the value of engineered and bioinspired adhesive materials through selective application cases in practical fields is emphasized. Then, a forward-looking gaze on the conceivable challenges and associated opportunities in harnessing biomimetic strategies and biological materials for advancing adhesive material innovation is highlighted and cast.
Collapse
Affiliation(s)
- Weijun Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruini Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yirui Ouyang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yigang Shen
- College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Lang T, Yang L, Yang S, Sheng N, Zhang Y, Song X, Guo Y, Fang S, Mu J, Baughman RH. Emerging innovations in electrically powered artificial muscle fibers. Natl Sci Rev 2024; 11:nwae232. [PMID: 39301076 PMCID: PMC11409873 DOI: 10.1093/nsr/nwae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 09/22/2024] Open
Abstract
This review systematically explores the inherent structural advantages of fiber over conventional film or bulk forms for artificial muscles, emphasizing their enhanced mechanical properties and actuation, scalability, and design flexibility. Distinctive merits of electrically powered artificial muscle fiber actuation mechanisms, including electrothermal, electrochemical and dielectric actuation, are highlighted, particularly for their operational efficiency, precise control capabilities, miniaturizability and seamless integration with electronic components. A comprehensive overview of significant research driving performance enhancements in artificial muscle fibers through materials and structural innovations is provided, alongside a discussion of the diverse design methodologies that have emerged in this field. A detailed comparative assessment evaluates the performance metrics, advantages and manufacturing complexities of each actuation mechanism, underscoring their suitability for various applications. Concluding with a strategic outlook, the review identifies key challenges and proposes targeted research directions to advance and refine artificial muscle fiber technologies.
Collapse
Affiliation(s)
- Tianhong Lang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Lixue Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Shiju Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Sheng
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yiyao Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaofei Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiuke Mu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
20
|
Ji T, Shi H, Yang X, Li H, Kaplan DL, Yeo J, Huang W. Bioinspired Genetic and Chemical Engineering of Protein Hydrogels for Programable Multi-Responsive Actuation. Adv Healthc Mater 2024; 13:e2401562. [PMID: 38852041 DOI: 10.1002/adhm.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Protein hydrogels with tailored stimuli-responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programmable complex spatial deformation is reported. Genetically engineered silk-elastin-like proteins (SELPs) are encoded with stimuli-responsive motifs and enzymatic crosslinking sites via simulation-guided genetic engineering strategies. Chemical modifications of the recombinant proteins are also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof-of-concept example, diazonium coupling chemistry is exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and biorobotics needs.
Collapse
Affiliation(s)
- Ting Ji
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xinyi Yang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hu Li
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Verma SK, Tyagi V, Sonika, Dutta T, Mishra SK. Flexible and wearable electronic systems based on 2D hydrogel composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6300-6322. [PMID: 39219494 DOI: 10.1039/d4ay01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.
Collapse
Affiliation(s)
- Sushil Kumar Verma
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Varee Tyagi
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonika
- Department of Physics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. 711103, India
| | - Satyendra Kumar Mishra
- Space and Resilient Communications and Systems (SRCOM), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
| |
Collapse
|
23
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Yang XC, Wang XX, Wang CY, Zheng HL, Yin M, Chen KZ, Qiao SL. Silk-based intelligent fibers and textiles: structures, properties, and applications. Chem Commun (Camb) 2024; 60:7801-7823. [PMID: 38966911 DOI: 10.1039/d4cc02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Multifunctional fibers represent a cornerstone of human civilization, playing a pivotal role in numerous aspects of societal development. Natural biomaterials, in contrast to synthetic alternatives, offer environmental sustainability, biocompatibility, and biodegradability. Among these biomaterials, natural silk is favored in biomedical applications and smart fiber technology due to its accessibility, superior mechanical properties, diverse functional groups, controllable structure, and exceptional biocompatibility. This review delves into the intricate structure and properties of natural silk fibers and their extensive applications in biomedicine and smart fiber technology. It highlights the critical significance of silk fibers in the development of multifunctional materials, emphasizing their mechanical strength, biocompatibility, and biodegradability. A detailed analysis of the hierarchical structure of silk fibers elucidates how these structural features contribute to their unique properties. The review also encompasses the biomedical applications of silk fibers, including surgical sutures, tissue engineering, and drug delivery systems, along with recent advancements in smart fiber applications such as sensing, optical technologies, and energy storage. The enhancement of functional properties of silk fibers through chemical or physical modifications is discussed, suggesting broader high-end applications. Additionally, the review addresses current challenges and future directions in the application of silk fibers in biomedicine and smart fiber technologies, underscoring silk's potential in driving contemporary technological innovations. The versatility and sustainability of silk fibers position them as pivotal elements in contemporary materials science and technology, fostering the development of next-generation smart materials.
Collapse
Affiliation(s)
- Xiao-Chun Yang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Hong-Long Zheng
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| |
Collapse
|
25
|
Qiu C, He M, Xu SF, Ali AM, Shen L, Wang JS. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor. Int J Biol Macromol 2024; 269:131825. [PMID: 38679271 DOI: 10.1016/j.ijbiomac.2024.131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
Collapse
Affiliation(s)
- Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shi-Feng Xu
- College of Science, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
| | - Aasi Mohammad Ali
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lin Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Jia-Shi Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
26
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
27
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Wang Y, Ba X, Zhang B, Wang Y, Wu Y, Zhang H. Halloysite nanotubes as nano-support matrix for programming the photo/H 2O dual triggered reversible gel actuator. J Colloid Interface Sci 2024; 657:344-351. [PMID: 38043236 DOI: 10.1016/j.jcis.2023.11.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Gel actuators are a kind of soft intelligent material that can convert external stimuli into deformations to generate mechanical responses. The development of gel actuators with advanced structures to integrate multiple responsiveness, programmability, and fast deformation ability is urgently needed. Here, we explored a poly(7-(2-methacryloyloxyethoxy)-4-methylcoumarin-co-acrylic acid-co-glycol) ternary gel network as an actuator with reprogrammable photo/H2O dual responsibilities. In such a design, [2 + 2] photodimerization and photocleavage reactions of coumarin moieties can be realized under 365 and 254 nm light irradiation, respectively, affording reversible photodriven behaviour of the gels. The abundant carboxylic acid in the backbone has the capacity to form additional crosslinks to assist and accelerate the photodriven behaviour. The incorporation and orientation of halloysite nanotubes (HNTs) in gel matrices support an axial direction force and result in a more controllable and programmable actuating behaviour. The synergistic response enables fast grasping-releasing of 5-times the weight of the object in water within 10 min by fabricating HNT-incorporated gels as a four-arm gripper.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Xinwu Ba
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China; Engineering Research Center for Nanomaterials, Henan University, Zhengzhou 450000, China.
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Yu Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China
| | - Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, Baoding 071002, China; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Gent 9000, Belgium.
| |
Collapse
|
29
|
Feng H, Zhou P, Peng Q, Weng M. Soft multi-layer actuators integrated with the functions of electrical energy harvest and storage. Chemistry 2024; 30:e202303378. [PMID: 38009845 DOI: 10.1002/chem.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Soft multi-layer actuators are smart, lightweight, and flexible, which can be used in a wide range of fields such as artificial muscles, advanced medical devices, and wearable devices. The research on the actuation property of the soft actuators has made significant progress, paving the way for the controllable motions of the actuators. However, compared with the intelligence and adaptability of life in nature, these actuators still have the problem of insufficient intelligence. The phenomenon is reflected in a lack of continuous supply of energy. Therefore, it has become a development trend to combine functions such as energy harvesting, storage, and conversion with actuators to build intelligent actuators. This concept presents a synopsis of the advancements made in soft actuators that have been coupled with the capabilities of electrical energy harvesting and storage. The design concepts and typical applications of this soft smart actuators are introduced in detail. Finally, the future research directions and applications of smart actuators are prospected from our perspective.
Collapse
Affiliation(s)
- Haihang Feng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian Provincial Key Laboratory of Marine Smart Equipment, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Qinglu Peng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
30
|
Guo K, Yang X, Zhou C, Li C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat Commun 2024; 15:1694. [PMID: 38402204 PMCID: PMC10894256 DOI: 10.1038/s41467-024-46100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Environmentally adaptive hydrogels that are capable of reconfiguration in response to external stimuli have shown great potential toward bioinspired actuation and soft robotics. Previous efforts have focused mainly on either the sophisticated design of heterogeneously structured hydrogels or the complex manipulation of external stimuli, and achieving self-regulated reversal shape deformation in homogenous hydrogels under a constant stimulus has been challenging. Here, we report the molecular design of structurally homogenous hydrogels containing simultaneously two spiropyrans that exhibit self-regulated transient deformation reversal when subjected to constant illumination. The deformation reversal mechanism originates from the molecular sequential descending-ascending charge variation of two coexisting spiropyrans upon irradiation, resulting in a macroscale volumetric contraction-expansion of the hydrogels. Hydrogel film actuators were developed to display complex temporary bidirectional shape transformations and self-regulated reversal rolling under constant illumination. Our work represents an innovative strategy for programming complex shape transformations of homogeneous hydrogels using a single constant stimulus.
Collapse
Affiliation(s)
- Kexin Guo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuehan Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Chuang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
31
|
Zhang J, Guan Y, Zhang Q, Wang T, Wang M, Zhang Z, Gao Y, Gao G. Durable hydrogel-based lubricated composite coating with remarkable underwater performances. J Colloid Interface Sci 2024; 654:568-580. [PMID: 37862806 DOI: 10.1016/j.jcis.2023.09.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
HYPOTHESIS Hydrogel coatings have received great attention in the field of such as medical devices, water treatment membranes, flexible electronics, and marine antifouling. However, when it comes to lubrication of hydrogel materials, though it has great potential applications in the field of industrial and medical drag reduction, some restrained properties are urgently needed to overcome for releasing the practical potential. EXPERIMENTS Durability of high lubrication was revealed from the sliding test during the long-term storage, as well as the long-distance sliding. Some variables which possibly affect the lubrication performance were examined to demonstrate that excellent lubricity of the coating would not be easily influenced by load, frequency, friction pair and temperature. The microstructure and mechanical characterization of the lubricative coating indicate that the resistance to harsh running conditions is premised on enough hydration extent and robustness. The formulae of Possion ratio and ball-on-disk contact stress which apply to soft matter were used for calculating contact stress values in tribology tests. Anti-swelling and bio-compatibility are also verified. FINDINGS This work found a route of achieving superior lubrication and coexisting with stability in lubrication, which can be used for drag reduction in medical devices and shipbuilding industry.
Collapse
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yingxin Guan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Tianyu Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ming Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
32
|
Candia Carnevali MD, Sugni M, Bonasoro F, Wilkie IC. Mutable Collagenous Tissue: A Concept Generator for Biomimetic Materials and Devices. Mar Drugs 2024; 22:37. [PMID: 38248662 PMCID: PMC10817530 DOI: 10.3390/md22010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics. In this review, after an up-to-date account of present knowledge of the structural, physiological and molecular adaptations of MCT and the mechanisms responsible for its variable tensile properties, we focus on MCT as a concept generator surveying biomimetic systems inspired by MCT biology, showing that these include both bio-derived developments (same function, analogous operating principles) and technology-derived developments (same function, different operating principles), and suggest a strategy for the further exploitation of this promising biological resource.
Collapse
Affiliation(s)
- M. Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Iain C. Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
33
|
Garshasbi HR, Soleymani S, Naghib SM, Mozafari MR. Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs. Curr Pharm Des 2024; 30:2027-2046. [PMID: 38877860 DOI: 10.2174/0113816128304924240527113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
34
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
35
|
Yang K, Lin J, Fu C, Guo J, Zhou J, Jiao F, Guo Q, Zhou P, Weng M. Multifunctional actuators integrated with the function of self-powered temperature sensing made with Ti 3C 2T x-bamboo nanofiber composites. NANOSCALE 2023; 15:18842-18857. [PMID: 37966128 DOI: 10.1039/d3nr03885h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In recent years, multifunctional actuators have received increasing attention and development. In particular, researchers have conducted extensive research on intelligent actuators with integrated sensing functions. Temperature is an important parameter for the deformation of bilayer thermal actuators. By obtaining the temperature information of a bilayer thermal actuator, the deformation amplitude and its state can be judged. Thus, there is an urgent need to develop a type of intelligent actuator with a self-powered temperature sensing function. Herein, Ti3C2Tx-based composites modified with bamboo nanofibers have been proposed and applied to intelligent actuators integrated with a self-powered temperature sensing function. By utilizing the coefficients of thermal expansion between Ti3C2Tx-bamboo nanofiber composites and a polyimide film, a bilayer photo/electro-driven thermal actuator is designed which shows a bending curvature as large as 1.9 cm-1. In addition, Ti3C2Tx-bamboo nanofiber composites have a Seebeck coefficient of -9.15 μV K-1, and are N-type thermoelectric materials and can be used as the component of self-powered temperature sensors. Finally, a series of practical applications were designed, including a light-driven floating actuator (with a moving speed of 5 mm s-1), biomimetic sunflowers, bionic tentacles, and a multifunctional gripper integrated with a self-powered temperature sensing function. In particular, the multifunctional grippers can output voltage signals carrying their temperature information without external complex power sources, demonstrating their potential for remote monitoring. The above results demonstrate that Ti3C2Tx-bamboo nanofiber composites have extensive practical applications in fields such as self-powered sensors, flexible thermoelectric generators, and soft actuators.
Collapse
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Junjie Lin
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Congchun Fu
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Jing Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Jiahao Zhou
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Fengliang Jiao
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian University of Technology, Fuzhou, Fujian, 350118, China.
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
36
|
Pruksawan S, Lin Z, Lee YL, Chee HL, Wang F. 4D-Printed Hydrogel Actuators through Diffusion-Path Architecture Design. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46388-46399. [PMID: 37738306 DOI: 10.1021/acsami.3c10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Recently, smart hydrogels have garnered considerable attention as biomedical devices, and several approaches have been introduced for their fabrication, including the incorporation of stimulus-responsive additives, utilization of molecular imprinting techniques, and application of multilayered hydrogels. However, the nonuniform properties resulting from these approaches limit the practical applications of hydrogels by causing inconsistent performance and behavior. In this study, we propose a novel approach to manipulating the swelling kinetics of hydrogels by engineering their diffusion-path architecture. By simply adjusting the diffusion path length within the hydrogel, we achieved a significant change in swelling kinetics. This approach enables precise control over the diffusion and transport processes within the hydrogel, resulting in enhanced swelling kinetics when reducing the diffusion path length. Furthermore, by strategically designing the diffusion-path architecture of a 3D-printed hydrogel specimen, we can fabricate smart hydrogel actuators that exhibit reversible shape transformations during swelling and deswelling through a nonequilibrium differential swelling. The proposed approach eliminates the need to modify the spatial properties of hydrogel structures such as cross-linking density, polymer, or additive compositions, thereby achieving uniform properties throughout the hydrogel and creating new possibilities for the development of advanced 4D-printed biomedical devices.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zehuang Lin
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Yock Leng Lee
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
37
|
Song C, Chen M, Tan J, Xu J, Zhang Y, Zhang G, Hu X, Liu S. Self-Amplified Cascade Degradation and Oxidative Stress Via Rational pH Regulation of Oxidation-Responsive Poly(ferrocene) Aggregates. J Am Chem Soc 2023; 145:17755-17766. [PMID: 37527404 DOI: 10.1021/jacs.3c04454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units. Upon triggering by hydrogen peroxide inside the tumor cells, the phenylboronic acid ester bonds are broken and poly(ferrocene) units are degraded to afford free ferrocene and noticeable hydroxide ions. The released hydroxide ions can immediately improve the pH value within the poly(ferrocene) aggregates, and the degradation rate of the phenylboronic acid ester backbone is further promoted by the upregulated pH; thereupon, the accelerated degradation can release much more additional hydroxide ions to improve the pH, thus achieving a positive self-amplified cascade degradation of poly(ferrocene) aggregates accompanied by oxidative stress boosting and efficient cargo release. Specifically, the poly(ferrocene) aggregates can be degraded up to ∼90% within 12 h when triggered by H2O2, while ferrocene-free control nanoparticles are degraded by only 30% within 12 days. In addition, the maleimide moieties tethered in the hydrophilic corona can capture blood albumin to form an albumin-rich protein corona and significantly improve favorable tumor accumulation. The current oxidation-responsive poly(ferrocene) amphiphiles can efficiently inhibit tumors in vitro and in vivo. This work provides a proof-of-concept paradigm for self-amplified polymer degradation and concurrent oxidative stress, which is promising in actively regulated precision medicine.
Collapse
Affiliation(s)
- Chengzhou Song
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Minglong Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jie Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xianglong Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
38
|
Ariyanta HA, Sari FP, Sohail A, Restu WK, Septiyanti M, Aryana N, Fatriasari W, Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int J Biol Macromol 2023; 240:124523. [PMID: 37080401 DOI: 10.1016/j.ijbiomac.2023.124523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Lignin has the potential to be used as an additive, coating agent, fertilizer, plant growth stimulator, and packaging material in the agroindustry due to its functional aromatic structure. The quantitative measurement of functional groups is a significant element of the research for lignin structure since they directly impact their optical, dispersion, and chemical properties. These physical and chemical properties of lignin strongly depend on its type and source and its isolation procedure. Thus, lignin provides numerous opportunities for the circular economy in the agroindustry; however, studying and resolving the challenges associated with its separation, purification, and modification is required. This review discusses the most recent findings on lignin use in agroindustry and historical facts about lignin. The properties of lignin and its roles as coating agents, pesticide carriers, plant growth stimulators, and soil-improving agents have been summarized. The emerging challenges in the field of lignin-based agroindustry are considered, and potential future steps to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Harits Atika Ariyanta
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Department of Pharmacy, Universitas Gunadarma, Depok, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Fahriya Puspita Sari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Asma Sohail
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Witta Kartika Restu
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Melati Septiyanti
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Nurhani Aryana
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Widya Fatriasari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Adarsh Kumar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|