1
|
Dong Q, Li X, Zhang Q, Ju Y, Liao M, Zhu J, Li R, Yao Z, Zhang Y, Hu B, Zheng W. Aberrant functional gradient of thalamo-cortical circuitry in major depressive disorder and generalized anxiety disorder. J Affect Disord 2025; 376:473-486. [PMID: 39965676 DOI: 10.1016/j.jad.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Functional gradient analysis provides insights into the brain's macroscale organization; however, the differences in thalamo-cortical gradients between major depressive disorder (MDD) and generalized anxiety disorder (GAD) remain unclear. Investigating these heterogeneities may uncover disorder-specific neural mechanisms and enhance diagnostic precision, addressing the distinct yet overlapping features of these affective disorders. METHODS Resting-state functional MRI data were acquired from 88 healthy controls, 53 patients with MDD, and 28 patients with GAD. Functional gradient analysis was conducted to investigate differences in the spatial organization of the Thalamo-Cortical circuitry among three groups. The eccentricity index was computed to quantify the segregation of thalamic voxels in a two-dimensional gradient space. RESULTS Abnormal functional gradients in MDD and GAD were prrdominantly related to connectivity between the thalamus and the dorsal attention (DorsAttn) and somatomotor (SomMot) networks. Compared to HCs, both MDD and GAD patients showed decreased global eccentricity, with significant reductions observed only in the MDD group. Moreover, abnormal gradient organization significantly correlated with clinical symptoms and gene expressions in patient cohorts. In addition, using the eccentricity of Thalamo-Cortical circuitry as features, patients with MDD and GAD could be distinguished with over 72 % accuracy. CONCLUSION Our findings indicate significant alterations in the gradient organization of the Thalamo-DorsAttn and Thalamo-SomMot connectivity in these two patient populations, suggesting potential contributions to the etiology and diagnosis of MDD and GAD.
Collapse
Affiliation(s)
- Qiangli Dong
- Department of Psychiatry, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, PR China
| | - Xiaotong Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yumeng Ju
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Mei Liao
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Jing Zhu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Rui Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yan Zhang
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
2
|
Zhou Z, Ke C, Shi W, Cao Y, Xie Z, Zhao X, Hu Z, Zhou Y, Zhang W. Acupuncture therapies for post-stroke depression: the evidence mapping of clinical studies. Front Psychiatry 2025; 16:1523050. [PMID: 40104327 PMCID: PMC11914146 DOI: 10.3389/fpsyt.2025.1523050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Background Acupuncture-related therapies have been widely used in previous studies, of which the ones for post-stroke depression (PSD) is on the rise. This study aims to map the current clinical research landscape and identifies gaps to provide direction and information for future research. Methods Eight databases were searched on acupuncture-related therapies for PSD from inception until April 2024. The publication profile, study objects, intervention categories, outcome indexes were graphically displayed. The Cochrane Collaboration's bias risk assessment tool was used to independently assess randomized controlled trials (RCTs) quality, and the methodological quality of the systematic reviews were assessed using the AMSTAR 2 checklist. Results A total of 666 clinical studies and 34 systematic reviews/Meta-analyses (SRs/MAs) were included in the evidence map, and the earliest report was found in 1996. The studies were mostly from China, and 89% of the evidence of the studies were of the RCTs. Body acupuncture and electroacupuncture were the most commonly used interventions. Most of the intervention durations were 2-4 weeks, and few patients were followed up. The main outcome was measured by effective rate and the Hamilton Rating Scale for Depression (HAMD). Evidences from clinical studies and SRs/MAs suggest that acupuncture has significant advantages in improving PSD, but the overall quality of studies could be improved. Conclusions Acupuncture-related therapies have great prospect in relieving the clinical symptoms of PSD, although there are some design and methodological defects in the current studies. In the future, the quality of research needs to be improved for the robustness of clinical evidence.
Collapse
Affiliation(s)
- Zhuo Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chao Ke
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wenying Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhengrong Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xi Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zeli Hu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Moon J, Kim HJ, Song CR, Pae C, Lee SH. Comparison of cortical gyrification patterns in patients with panic disorder with and without comorbid generalized anxiety disorder. J Affect Disord 2025; 372:216-224. [PMID: 39643214 DOI: 10.1016/j.jad.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/06/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Lower functioning and higher symptom severity are observed when panic disorder (PD) co-occurs with generalized anxiety disorder (PD + GAD). No research on cortical gyrification patterns in the PD + GAD group has been conducted to date, which could show the alterations in brain connectivity in the extended fear network (EFN). This study aimed to investigate the characteristics of cortical gyrification in the PD + GAD group, compared to that in the PD without comorbid GAD (PD-GAD) group. METHODS This study included 90 patients with PD, with propensity score matching between the PD + GAD (n = 30) and PD-GAD groups (n = 60), and 65 healthy controls (HC). For clinical evaluation, we assessed the anxiety symptomatology, suicidality, and harm avoidance. The local gyrification index (LGI) was obtained from T1-weighted brain MRI data using FreeSurfer. RESULTS In the PD group compared to the HC, the hypergyrification involved the EFN. In the PD + GAD group compared to the PD-GAD group, hypergyrification was shown in the pathological worry-related brain regions. Within the PD + GAD group, significant positive correlations were observed between the superior frontal gyrus LGI values and suicidality scores, as well as between the superior parietal gyrus LGI values and harm avoidance levels. LIMITATIONS Given the variability in cortical gyrification patterns, longitudinal studies are needed to assess the occurrence of hypergyrification in specific brain regions. CONCLUSIONS This study is the first to demonstrate cortical gyrification patterns in the PD + GAD group compared to those in the PD-GAD group. Notably, the EFN and pathological worry-related brain regions have been implicated in the pathology of PD + GAD.
Collapse
Affiliation(s)
- Jiwan Moon
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chae Rim Song
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
4
|
Shen Y, Wu B, Yu J, Mou L, Wang Z, Shen X. Functional near-infrared spectroscopy (fNIRS) in patients with major depressive disorder, generalized anxiety disorder and their comorbidity: Comparison with healthy controls. Asian J Psychiatr 2025; 105:104382. [PMID: 39933260 DOI: 10.1016/j.ajp.2025.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND This study aimed to investigate prefrontal function in patients with generalized anxiety disorder (GAD), major depressive disorder (MDD), and the comorbidity of MDD and GAD (CMG), using the fNIRS-VFT task. And to assess the reliability of functional near-infrared spectroscopy (fNIRS) devices as a clinical aid for diagnostic tools when performing cognitive tasks by building a deep neural network. METHODS Including 75 patients with GAD, 75 patients with MDD, 71 patients with CMG, and 75 healthy controls (HC). In the verbal fluency test, hemodynamic responses in the prefrontal cortex were monitored with fNIRS, and differences in oxyhemoglobin levels between the four groups were compared using the Kruskal-Wallis rank sum test. A deep learning model combining the Full Connectivity Layer and the Dropout Layer was trained on the training set (60 %), and data from different brain regions were classified for the type of illness on the test set (40 %). The Receiver Operating Characteristic (ROC) graph was generated for each area of interest. RESULTS Activation in the prefrontal cortex was significantly lower in all patient groups than healthy controls. Activation in the prefrontal cortex was significantly lower in MDD patients compared with GAD patients and in the left ventrolateral prefrontal cortex in the CMG group compared with GAD patients. There was no significant difference in activation in the prefrontal cortex between MDD and CMG groups. In the right orbitofrontal cortex, the four-classification had the highest accuracy with 60.47 %, and the three-classification had the highest accuracy with 77.19 %. The GAD group had the most significant area under the ROC curve in the left ventrolateral prefrontal cortex (AUC = 0.78). The MDD group had the most significant area under the ROC curve in the left frontopolar prefrontal cortex (AUC = 0.86). The CMG group had the most significant area under the ROC curve in the right orbitofrontal cortex (AUC = 0.73). CONCLUSION Activation differences in the prefrontal cortex help to identify GAD patients from MDD patients. Differences in activation in the left ventrolateral prefrontal cortex help to discriminate GAD patients from patients with CMG. fNIRS-VFT task can be used clinically as an adjunctive diagnostic tool for mental disorders.
Collapse
Affiliation(s)
- Yuqi Shen
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, Huzhou 313002, China
| | - Boyuan Wu
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Jikai Yu
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Lan Mou
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, Huzhou 313002, China
| | - Zefeng Wang
- School of Information Engineering, Huzhou University, Huzhou 313000, China.
| | - Xinhua Shen
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, Huzhou 313002, China.
| |
Collapse
|
5
|
Deng X, Cui J, Zhao J, Bai J, Li J, Li K. The research progress on effective connectivity in adolescent depression based on resting-state fMRI. Front Neurol 2025; 16:1498049. [PMID: 39995788 PMCID: PMC11847690 DOI: 10.3389/fneur.2025.1498049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction The brain's spontaneous neural activity can be recorded during rest using resting state functional magnetic resonance imaging (rs-fMRI), and intricate brain functional networks and interaction patterns can be discovered through correlation analysis. As a crucial component of rs-fMRI analysis, effective connectivity analysis (EC) may provide a detailed description of the causal relationship and information flow between different brain areas. It has been very helpful in identifying anomalies in the brain activity of depressed teenagers. Methods This study explored connectivity abnormalities in brain networks and their impact on clinical symptoms in patients with depression through resting state functional magnetic resonance imaging (rs-fMRI) and effective connectivity (EC) analysis. We first introduce some common EC analysis methods, discuss their application background and specific characteristics. Results EC analysis reveals information flow problems between different brain regions, such as the default mode network, the central executive network, and the salience network, which are closely related to symptoms of depression, such as low mood and cognitive impairment. This review discusses the limitations of existing studies while summarizing the current applications of EC analysis methods. Most of the early studies focused on the static connection mode, ignoring the causal relationship between brain regions. However, effective connection can reflect the upper and lower relationship of brain region interaction, and provide help for us to explore the mechanism of neurological diseases. Existing studies focus on the analysis of a single brain network, but rarely explore the interaction between multiple key networks. Discussion To do so, we can address these issues by integrating multiple technologies. The discussion of these issues is reflected in the text. Through reviewing various methods and applications of EC analysis, this paper aims to explore the abnormal connectivity patterns of brain networks in patients with depression, and further analyze the relationship between these abnormalities and clinical symptoms, so as to provide more accurate theoretical support for early diagnosis and personalized treatment of depression.
Collapse
Affiliation(s)
- Xuan Deng
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jiajing Cui
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jinyuan Zhao
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jinji Bai
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Junfeng Li
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Kefeng Li
- Artificial Intelligence Drug Discovery Center, Faculty of Applied Sciences, Macau Polytechnic University, Macau, China
| |
Collapse
|
6
|
Johns S, Lea-Carnall C, Shryane N, Maharani A. Depression, brain structure and socioeconomic status: A UK Biobank study. J Affect Disord 2025; 368:295-303. [PMID: 39299580 DOI: 10.1016/j.jad.2024.09.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Depression results from interactions between biological, social, and psychological factors. Literature shows that depression is associated with abnormal brain structure, and that socioeconomic status (SES) is associated with depression and brain structure. However, limited research considers the interaction between each of these factors. METHODS Multivariate regression analysis was conducted using UK Biobank data on 39,995 participants to examine the relationship between depression and brain volume in 23 cortical regions for the whole sample and then separated by sex. It then examined whether SES affected this relationship. RESULTS Eight out of 23 brain areas had significant negative associations with depression in the whole population. However, these relationships were abolished in seven areas when SES was included in the analysis. For females, three regions had significant negative associations with depression when SES was not included, but only one when it was. For males, lower volume in six regions was significantly associated with higher depression without SES, but this relationship was abolished in four regions when SES was included. The precentral gyrus was robustly associated with depression across all analyses. LIMITATIONS Participants with conditions that could affect the brain were not excluded. UK Biobank is not representative of the general population which may limit generalisability. SES was made up of education and income which were not considered separately. CONCLUSIONS SES affects the relationship between depression and cortical brain volume. Health practitioners and researchers should consider this when working with imaging data in these populations.
Collapse
Affiliation(s)
- Sasha Johns
- School of Social Statistics, The University of Manchester, Manchester, UK.
| | - Caroline Lea-Carnall
- Division of Psychology, Communication and Human Neuroscience, The University of Manchester, Manchester, UK
| | - Nick Shryane
- School of Social Statistics, The University of Manchester, Manchester, UK
| | - Asri Maharani
- Division of Nursing, Midwifery & Social Work, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Bao W, Gao Y, Feng R, Cao L, Zhou Z, Zhuo L, Li H, Ouyang X, Hu X, Li H, Huang G, Huang X. Negative family and interpersonal relationship are associated with centromedial amygdala functional connectivity alterations in adolescent depression. Eur Child Adolesc Psychiatry 2024; 33:4195-4204. [PMID: 38743107 DOI: 10.1007/s00787-024-02456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The amygdala, known for its functional heterogeneity, plays a critical role in the neural mechanism of adolescent major depressive disorder (aMDD). However, changes in its subregional functional networks in relation to stressful factors remain unclear. We recruited 78 comorbidity-free, medication-naive aMDD patients and 40 matched healthy controls (HC) to explore changes in resting-state functional connectivity (FC) across four amygdala subregions: the centromedial nucleus (CM), the basolateral nucleus (LB), the superficial nucleus (SF), and the amygdalostriatal transition area (Astr). Then, we performed partial correlation analysis to investigate the relationship between amygdala subregional FC and stressful factors as measured by the Chinese Version of Family Environment Scale (FES-CV) and the Adolescent Self-Rated Life Events Scale (ASLEC). Compared to HC, aMDD patients demonstrated significantly decreased functional connectivity between the left CM and left precentral gyrus, as well as between left SF and left precentral gyrus, and between left LB and posterior cingulate gyrus (PCC)/precuneus. In aMDD group, left CM-precentral gyrus FC exhibited negative correlation with interpersonal relationship and punishment, and positive correlation with family cohesion and expressiveness. This study reveals distinct patterns of abnormal functional connectivity among amygdala subregions in aMDD. Our findings suggest that the CM network, in particular, may be involved in stress-related factors in aMDD, which provide a potential target for the prevention and treatment of adolescent depression.
Collapse
Affiliation(s)
- Weijie Bao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Ruohan Feng
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Zilin Zhou
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Lihua Zhuo
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Hongwei Li
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xinqin Ouyang
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guoping Huang
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
8
|
Zheng H, Fan S, Pang X, Wei Q, Wu Y, Tian Y, Wang K. Altered Blood Oxygen Level-Dependent Signal Stability in the Brain of Patients with Major Depressive Disorder Undergoing Resting-State Functional Magnetic Resonance Imaging. Neuropsychobiology 2024; 83:193-204. [PMID: 39591950 DOI: 10.1159/000541720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/27/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a common, relapse-prone psychiatric disorder with unknown pathogenesis. Previous studies on resting-state functional magnetic resonance imaging of MDD have mostly focused on the spontaneous activity of blood oxygen level-dependent (BOLD) signals; however, a few studies have investigated BOLD signal stability. METHODS We conducted a resting-state functional study in 42 patients with MDD and 42 healthy controls (HC) matched for age and sex. This included the BOLD signal stability, resting-state functional connectivity (RSFC) analysis, correlation analysis, and support vector machine (SVM) analysis. RESULTS The BOLD signal stability of the left fusiform gyrus, right inferior temporal gyrus, right temporal pole superior temporal gyrus, and left thalamus was significantly lower in the MDD group compared to the HC group. Further RSFC analysis revealed that the connectivity between right inferior temporal gyrus and both left inferior temporal gyrus and left supramarginal gyrus was significantly reduced in the MDD group. Additionally, the RSFC levels of left thalamus and right thalamus were decreased. Combining BOLD signal stability and RSFC, the SVM-based classification model achieved an accuracy of 80.95% (sensitivity: 78.57%; specificity: 83.33%; receiver-operating characteristic area under the curve: 0.8793). CONCLUSION The integration of the BOLD signal stability index and RSFC index demonstrates a robust capability to differentiate between individuals with MDD and HC subjects. We tentatively believe that a combination of the BOLD signal stability index and RSFC can be used to diagnose MDD.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Fan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaonan Pang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| |
Collapse
|
9
|
Pawlak M, Kemp J, Bray S, Chenji S, Noel M, Birnie KA, MacMaster FP, Miller JV, Kopala-Sibley DC. Macrostructural Brain Morphology as Moderator of the Relationship Between Pandemic-Related Stress and Internalizing Symptomology During COVID-19 in High-Risk Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1141-1177. [PMID: 39019399 DOI: 10.1016/j.bpsc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND According to person-by-environment models, individual differences in traits may moderate the association between stressors and the development of psychopathology; however, findings in the literature have been inconsistent and little literature has examined adolescent brain structure as a moderator of the effects of stress on adolescent internalizing symptoms. The COVID-19 pandemic presented a unique opportunity to examine the associations between stress, brain structure, and psychopathology. Given links of cortical morphology with adolescent depression and anxiety, the current study investigated whether cortical morphology moderated the relationship between stress from the COVID-19 pandemic and the development of internalizing symptoms in familial high-risk adolescents. METHODS Prior to the COVID-19 pandemic, 72 adolescents (27 male) completed a measure of depressive and anxiety symptoms and underwent magnetic resonance imaging. T1-weighted images were acquired to assess cortical thickness and surface area. Approximately 6 to 8 months after COVID-19 was declared a global pandemic, adolescents reported their depressive and anxiety symptoms and pandemic-related stress. RESULTS Adjusting for pre-pandemic depressive and anxiety symptoms and stress, increased pandemic-related stress was associated with increased depressive but not anxiety symptoms. This relationship was moderated by cortical thickness and surface area in the anterior cingulate and cortical thickness in the medial orbitofrontal cortex such that increased stress was only associated with increased depressive and anxiety symptoms among adolescents with lower cortical surface area and higher cortical thickness in these regions. CONCLUSIONS Results further our understanding of neural vulnerabilities to the associations between stress and internalizing symptoms in general and during the COVID-19 pandemic in particular.
Collapse
Affiliation(s)
- McKinley Pawlak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.
| | - Jennifer Kemp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Sneha Chenji
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn A Birnie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health, Halifax, Nova Scotia, Canada
| | - Jillian Vinall Miller
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel C Kopala-Sibley
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Zhou JH, Huang BK, Wang D, Ning BL, Liang XS, Li CH, Wang ZJ, Deng Y, Huang XC, Zhang DL, Fu WB. Subregions of the fusiform gyrus are differentially involved in the attentional mechanism supporting visual mental imagery in depression. Brain Imaging Behav 2024; 18:961-978. [PMID: 38717573 DOI: 10.1007/s11682-024-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Impaired visual mental imagery is an important symptom of depression and has gradually become an intervention target for cognitive behavioral therapy. METHODS Our study involved a total of 25 healthy controls (HC) and 23 individuals with moderate depressive symptoms (MD). This study explored the attentional mechanism supporting visual mental imagery impairments in depression using the Vividness of Visual Imagery Questionnaire (VVIQ), attentional network test (ANT), and resting-state functional magnetic resonance imaging (rs-fMRI). The intrinsic activity of attention-related regions relative to those supporting visual mental imagery was identified in depression patients. In addition, a meta-analysis was used to describe the cognitive function related to this intrinsic activity. RESULTS The global correlation (GCOR) of the right anterior fusiform gyrus (FG) was decreased in depression patients. Attention-related areas were concentrated in the right posterior FG; the anterior and posterior functional connectivity (FC) of the FG was decreased in depression patients. Graph theoretic analysis showed that the degree of the right anterior FG was decreased, the degree of the anterior insula was increased, and the negative connection between these two regions was strengthened in depression patients. In addition, the degree of the right anterior FG, the FC between the subregions of the right FG, and the FC between the right anterior FG and insula were correlated with VVIQ scores; however, this correlation was not significant in depression patients. The meta-analysis suggested that the changes in the anterior FG in depressed patients may stem from difficulties of semantic memory retrieval. CONCLUSION The changed intrinsic activity of subregions of the FG relative to the semantic memory retrieval may be associated with visual mental imagery impairments in depression.
Collapse
Affiliation(s)
- Jun-He Zhou
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Bin-Kun Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Di Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Bai-Le Ning
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Xue-Song Liang
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Chang-Hong Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Zeng-Jian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Ying Deng
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Xi-Chang Huang
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China.
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China.
| | - Wen-Bin Fu
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China.
- Innovative research team of acupuncture for depression and related disorders, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
11
|
Zheng EZ, Wong NML, Yang ASY, Lee TMC. Evaluating the effects of tDCS on depressive and anxiety symptoms from a transdiagnostic perspective: a systematic review and meta-analysis of randomized controlled trials. Transl Psychiatry 2024; 14:295. [PMID: 39025832 PMCID: PMC11258305 DOI: 10.1038/s41398-024-03003-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Depressive and anxiety symptoms are prevalent among patients with various clinical conditions, resulting in diminished emotional well-being and impaired daily functioning. The neural mechanisms underlying these symptoms, particularly across different disorders, remain unclear, limiting the effectiveness of conventional treatments. Therefore, it is crucial to elucidate the neural underpinnings of depressive and anxiety symptoms and investigate novel, effective treatments across clinical conditions. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that can help understand the neural underpinnings of symptoms and facilitate the development of interventions, addressing the two research gaps at both neural and clinical levels. Thus, this systematic review and meta-analysis aims to evaluate the existing evidence regarding the therapeutic efficacy of tDCS in reducing depressive and anxiety symptoms among individuals with diverse clinical diagnoses. This review evaluated evidence from fifty-six randomized, sham-controlled trials that administered repeated tDCS sessions with a parallel design, applying a three-level meta-analytic model. tDCS targeting the left dorsolateral prefrontal cortex (DLPFC) at 2-mA intensity demonstrates moderate efficacy in alleviating depressive symptoms, identifying the left DLPFC as a transdiagnostic neural mechanism of depressive symptoms across clinical conditions. In comparison, the findings on anxiety symptoms demonstrate greater heterogeneity. tDCS over the left DLPFC is effective in reducing depressive symptoms and shows promising effects in alleviating anxiety symptoms among individuals with diverse diagnoses. These findings enhance our understanding of the neuropsychological basis of depressive and anxiety symptoms, laying the groundwork for the development of more effective tDCS interventions applicable across clinical conditions.
Collapse
Affiliation(s)
- Esther Zhiwei Zheng
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong.
| | - Angela S Y Yang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
12
|
Li D, Li X, Li J, Liu J, Luo R, Li Y, Wang D, Zhou D, Zhang XY. Neurophysiological markers of disease severity and cognitive dysfunction in major depressive disorder: A TMS-EEG study. Int J Clin Health Psychol 2024; 24:100495. [PMID: 39282218 PMCID: PMC11402404 DOI: 10.1016/j.ijchp.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Transcranial magnetic stimulation-electroencephalography (TMS-EEG) is a powerful technique to study the neuropathology and biomarkers of major depressive disorder (MDD). This study investigated cortical activity and its relationship with clinical symptoms and cognitive dysfunction in MDD patients by indexing TMS-EEG biomarkers in the dorsolateral prefrontal cortex (DLPFC). Methods 133 patients with MDD and 76 healthy individuals participated in this study. Single-pulse TMS was performed on the left DLPFC to obtain TMS-evoked potential (TEP) indices. TMS-EEG waveforms and components were determined by global mean field amplitude. We used the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to measure participants' cognitive function. Results Patients with MDD had a lower excitatory P180 index compared to healthy controls, and P180 amplitude was negatively correlated with the severity of depressive and anxiety symptoms in patients with MDD. In the MDD group, P30 amplitude was negatively associated with RBANS Visuospatial/ Constructional index and total score. Conclusions TMS-EEG findings suggest that abnormal cortical excitation and inhibition induced by TMS on the DLPFC are associated with the severity of clinical symptoms and cognitive dysfunction in patients with MDD. P180 and P30 have the potential to serve as neurophysiological biomarkers of clinical symptoms and cognitive dysfunction in MDD patients, respectively.
Collapse
Affiliation(s)
- Deyang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingxing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruichenxi Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Zhou
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Liu H, Hao Z, Qiu S, Wang Q, Zhan L, Huang L, Shao Y, Wang Q, Su C, Cao Y, Sun J, Wang C, Lv Y, Li M, Shen W, Li H, Jia X. Grey matter structural alterations in anxiety disorders: a voxel-based meta-analysis. Brain Imaging Behav 2024; 18:456-474. [PMID: 38150133 DOI: 10.1007/s11682-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.
Collapse
Affiliation(s)
- Han Liu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Shasha Qiu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- School of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Youbin Shao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Chang Su
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chunjie Wang
- Institute of Brain Science, Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Wenbin Shen
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
14
|
Luo S, Liu F, Liao Q, Chen H, Zhang T, Mao R. Nomogram model for predicting the risk of post-stroke depression based on clinical characteristics and DNA methylation. PeerJ 2023; 11:e16240. [PMID: 37846310 PMCID: PMC10576964 DOI: 10.7717/peerj.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Objective To construct a comprehensive nomogram model for predicting the risk of post-stroke depression (PSD) by using clinical data that are easily collected in the early stages, and the level of DNA methylation, so as to help doctors and patients prevent the occurrence of PSD as soon as possible. Methods We continuously recruited 226 patients with a history of acute ischemic stroke and followed up for three months. Socio-demographic indicators, vascular-risk factors, and clinical data were collected at admission, and the outcome of depression was evaluated at the third month after stroke. At the same time, a DNA-methylation-related sequencing test was performed on the fasting peripheral blood of the hospitalized patients which was taken the morning after admission. Results A total of 206 samples were randomly divided into training dataset and validation set according to the ratio of 7:3. We screened 24 potentially-predictive factors by Univariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression analysis, and 10 of the factors were found to have predictive ability in the training set. The PSD nomogram model was established based on seven significant variables in multivariate logistic regression. The consistency statistic (C-index) was as high as 0.937, and the area under curve (AUC) in the ROC analysis was 0.933. Replication analysis results in the validation set suggest the C-index was 0.953 and AUC was 0.926. This shows that the model has excellent calibration and differentiating abilities. Conclusion Gender, Rankin score, history of hyperlipidemia, time from onset to hospitalization, location of stroke, National Institutes of Health Stroke scale (NIHSS) score, and the methylation level of the cg02550950 site are all related to the occurrence of PSD. Using this information, we developed a prediction model based on methylation characteristics.
Collapse
Affiliation(s)
- Shihang Luo
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Liu
- Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qiao Liao
- Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hengshu Chen
- Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Rui Mao
- Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Yoo C, Kim MJ. Topographical similarity of cortical thickness represents generalized anxiety symptoms in adolescence. Brain Res Bull 2023; 202:110728. [PMID: 37558098 DOI: 10.1016/j.brainresbull.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Generalized anxiety disorder (GAD) is a common condition characterized by excessive and uncontrollable worry, along with its high comorbidity rates. Despite increasing efforts to identify the neural underpinnings of GAD, neuroimaging research using cortical thickness have yielded largely inconsistent results. To address this, we adopted an inter-subject representational similarity analysis framework to explore a potential nonlinear relationship between vertex-wise cortical thickness and generalized anxiety symptom severity. We utilized a sample of 120 adolescents (13-18 years of age) from the Healthy Brain Network dataset. Here, we found greater topographical resemblance among participants with heightened generalized anxiety symptoms in the left caudal anterior cingulate and pericalcarine cortex. These results were not driven by the effects of age, sex, ADHD diagnosis, and GAD diagnosis. Such associations were not observed when including a group of younger participants (11-12 years of age) for analyses, highlighting the importance of age range selection when considering the link between cortical thickness and anxiety. Our findings reveal a novel cortical thickness topography that represents generalized anxiety in adolescents, which is embedded within the shared geometries between generalized anxiety symptoms and cortical thickness.
Collapse
Affiliation(s)
- Chaebin Yoo
- Department of Psychology, Sungkyunkwan University, Seoul 03063, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, South Korea
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul 03063, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, South Korea.
| |
Collapse
|
16
|
Sambuco N, Bradley MM, Lang PJ. Dimensional distress and orbitofrontal thickness in anxiety patients. Psychiatry Res Neuroimaging 2023; 335:111708. [PMID: 37717542 DOI: 10.1016/j.pscychresns.2023.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
Thickness of the medial orbitofrontal cortex (mOFC) was assessed as it varied with reported symptoms of anxiety and depression in a large sample of anxiety patients. A principal component analysis identified a primary factor of transdiagnostic dimensional distress that predicted 24% of the mOFC variance. Severity of distress symptomology was associated with thinning of the mOFC in both hemispheres for both men and women, regardless of the primary DSM diagnosis. Taken together, the data indicate that mOFC thickness might be useful as an objective measure of disorder severity as well as to assess pharmacological or psychological treatment outcome.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America.
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
17
|
Wang M, Gu Y, Meng S, Kang L, Yang J, Sun D, Liu Y, Wan Z, Shan Y, Xue D, Su C, Li S, Yan R, Liu Y, Zhao Y, Pan Y. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population. Front Genet 2023; 14:1158028. [PMID: 37303955 PMCID: PMC10250607 DOI: 10.3389/fgene.2023.1158028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Genetic and environmental factors contribute to migraine and the comorbidities of anxiety and depression. However, the association between genetic polymorphisms in the transient receptor potential (TRP) channels and glutamatergic synapse genes with the risk of migraine and the comorbidities of anxiety and depression remain unclear. Methods: 251 migraine patients containing 49 comorbidities with anxiety and 112 with depression and 600 controls were recruited. A customized 48-plex SNPscan kit was used for genotyping 13 SNPs of nine target genes. Logistic regression was conducted to analyze these SNPs' association with the susceptibility of migraine and comorbidities. The generalized multifactor dimension reduction (GMDR) was applied to analyze the SNP-SNP and gene-environment interactions. The GTEx database was used to examine the effects of the significant SNPs on gene expressions. Results: The TRPV1 rs8065080 and TRPV3 rs7217270 were associated with an increased risk of migraine in the dominant model [ORadj (95% CI): 1.75 (1.09-2.90), p = 0.025; 1.63 (1.02-2.58), p = 0.039, respectively]. GRIK2 rs2227283 was associated with migraine in the edge of significance [ORadj (95% CI) = 1.36 (0.99-1.89), p = 0.062]. In migraine patients, TRPV1 rs222741 was associated with both anxiety risk and depression risk in the recessive model [ORadj (95% CI): 2.64 (1.24-5.73), p = 0.012; 1.97 (1.02-3.85), p = 0.046, respectively]. TRPM8 rs7577262 was associated with anxiety (ORadj = 0.27, 95% CI = 0.10-0.76, p = 0.011). TRPV4 rs3742037, TRPM8 rs17862920 and SLC17A8 rs11110359 were associated with depression in dominant model [ORadj (95% CI): 2.03 (1.06-3.96), p = 0.035; 0.48 (0.23-0.96), p = 0.042; 0.42 (0.20-0.84), p = 0.016, respectively]. Significant eQTL and sQTL signals were observed for SNP rs8065080. Individuals with GRS (Genetic risk scores) of Q4 (14-17) had a higher risk of migraine and a lower risk of comorbidity anxiety than those with Genetic risk scores scores of Q1 (0-9) groups [ORadj (95% CI): 2.31 (1.39-3.86), p = 0.001; 0.28 (0.08-0.88), p = 0.034, respectively]. Conclusion: This study suggests that TRPV1 rs8065080, TRPV3 rs7217270, and GRIK2 rs2227283 polymorphism may associate with migraine risk. TRPV1 rs222741 and TRPM8 rs7577262 may associate with migraine comorbidity anxiety risk. rs222741, rs3742037, rs17862920, and rs11110359 may associate with migraine comorbidity depression risk. Higher GRS scores may increase migraine risk and decrease comorbidity anxiety risk.
Collapse
Affiliation(s)
- Mingxue Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yujia Gu
- Chronic Disease Prevention and Treatment Clinic, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Shuhan Meng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Lixin Kang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jing Yang
- Department of Neurology, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Degang Sun
- Department of Neurology, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Yuxing Liu
- Catheterization Room, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Ze Wan
- Science and Education Section, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Yi Shan
- Physical Examination Section, Beidahuang Group Baoquanling Hospital, Hegang, China
| | - Dongjie Xue
- Department of Neurology, Hegang He Mine Hospital, Hegang, China
| | - Chang Su
- Department of Internal Medicine, Baoquanling Farm Hospital, Hegang, China
| | - Shufen Li
- Vaccination Clinic, Baoquanling Farm Hospital, Hegang, China
| | - Ran Yan
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yu Liu
- Chronic Disease Prevention and Treatment Clinic, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yonghui Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Luo S, Zhang W, Mao R, Huang X, Liu F, Liao Q, Sun D, Chen H, Zhang J, Tian F. Establishment and verification of a nomogram model for predicting the risk of post-stroke depression. PeerJ 2023; 11:e14822. [PMID: 36751635 PMCID: PMC9899426 DOI: 10.7717/peerj.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The purpose of this study was to establish a nomogram predictive model of clinical risk factors for post-stroke depression (PSD). Patients and Methods We used the data of 202 stroke patients collected from Xuanwu Hospital from October 2018 to September 2020 as training data to develop a predictive model. Nineteen clinical factors were selected to evaluate their risk. Minimum absolute contraction and selection operator (LASSO, least absolute shrinkage and selection operator) regression were used to select the best patient attributes, and seven predictive factors with predictive ability were selected, and then multi-factor logistic regression analysis was carried out to determine six predictive factors and establish a nomogram prediction model. The C-index, calibration chart, and decision curve analyses were used to evaluate the predictive ability, accuracy, and clinical practicability of the prediction model. We then used the data of 156 stroke patients collected by Xiangya Hospital from June 2019 to September 2020 for external verification. Results The selected predictors including work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and the National Institutes of Health Stroke Scale (NIHSS) score. The model showed good prediction ability and a C index of 0.773 (95% confidence interval: [0.696-0.850]). It reached a high C-index value of 0.71 in bootstrap verification, and its C index was observed to be as high as 0.702 (95% confidence interval: [0.616-0.788]) in external verification. Decision curve analyses further showed that the nomogram of post-stroke depression has high clinical usefulness when the threshold probability was 6%. Conclusion This novel nomogram, which combines patients' work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and NIHSS score, can help clinicians to assess the risk of depression in patients with acute stroke much earlier in the timeline of the disease, and to implement early intervention treatment so as to reduce the incidence of PSD.
Collapse
Affiliation(s)
- Shihang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenrui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rui Mao
- Xiangya Hospital, Central South University, Changsha, China
| | - Xia Huang
- The First People’s Hospital of Huaihua, Hunan, Huaihua, China
| | - Fan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hengshu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Resting state functional connectivity as a marker of internalizing disorder onset in high-risk youth. Sci Rep 2022; 12:21337. [PMID: 36494495 PMCID: PMC9734132 DOI: 10.1038/s41598-022-25805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
While research has linked alterations in functional connectivity of the default mode (DMN), cognitive control (CCN), and salience networks (SN) to depression and anxiety, little research has examined whether these alterations may be premorbid vulnerabilities. This study examined resting state functional connectivity (RSFC) of the CCN, DMN, and SN as markers of risk for developing an onset of a depressive or anxiety disorder in adolescents at high familial risk for these disorders. At baseline, 135 participants aged 11-17 completed resting-state functional magnetic resonance imaging, measures of internalizing symptoms, and diagnostic interviews to assess history of depressive and anxiety disorders. Diagnostic assessments were completed again at 9- or 18-month follow-up for 112 participants. At baseline, increased CCN connectivity to areas of the visual network, and decreased connectivity between the left SN and the precentral gyrus, predicted an increased likelihood of a new onset at follow-up. Increased connectivity between the right SN and postcentral gyrus at baseline predicted first episode onsets at follow-up. Altered connectivity between these regions may represent a risk factor for developing a clinically significant onset of an internalizing disorder. Results may have implications for understanding the neural bases of internalizing disorders for early identification and prevention efforts.
Collapse
|
20
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
21
|
Ding H, Zhong Y, Liu N, Wu H, Xu H, Wu Y, Liu G, Yuan S, Zhou Q, Wang C. Panic disorder aging characteristics: The role of telomerase reverse transcriptase gene and brain function. Front Aging Neurosci 2022; 14:835963. [PMID: 35992589 PMCID: PMC9389410 DOI: 10.3389/fnagi.2022.835963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Panic disorder (PD) causes serious functional damage and disability and accelerates the process of individual aging. The pathological basis of PD is the same as that of age-related diseases, which is proposed as a new viewpoint in recent years. Memory decline and social functional impairment are common manifestations of accelerated aging in PD. The function of telomerase reverse transcriptase (TERT) and telomere length (TL) is abnormal in patients with aging and PD. However, the molecular mechanism behind remains unclear. The purpose of this study was to explore the relationship between TERT gene expression (including DNA methylation) and the changes in PD aging characteristics (memory and social function). By TERT gene knockout mice, we found that loss of TERT attenuated the acquisition of recent fear memory during contextual fear conditioning. This study reported that a significantly lower methylation level of human TERT (hTERT) gene was detected in PD patients compared with healthy control and particularly decreased CpG methylation in the promoter region of hTERT was associated with the clinical characteristics in PD. Regional homogeneity (ReHo) analysis showed that the methylation of hTERT (cg1295648) influenced social function of PD patients through moderating the function of the left postcentral gyrus (PCG). This indicates that the hTERT gene may play an important role in the pathological basis of PD aging and may become a biological marker for evaluating PD aging. These findings provide multidimensional evidence for the underlying genetic and pathological mechanisms of PD.
Collapse
Affiliation(s)
- Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Huiqin Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Psychology, Nanjing Normal University, Nanjing, China
- Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
- Qigang Zhou,
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Psychology, Nanjing Normal University, Nanjing, China
- Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
- *Correspondence: Chun Wang,
| |
Collapse
|
22
|
Istiqlal T, Mumang AA, Liaury K, Uchida Y, Kihara M, Tanra AJ, Ishida T, Shimizu-Furusawa H, Yusuf I, Furusawa T. Self-construal and behavioral motivation systems among patients with depression in Indonesia: A hospital-based study. Heliyon 2022; 8:e09839. [PMID: 35815150 PMCID: PMC9260621 DOI: 10.1016/j.heliyon.2022.e09839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Objective To validate Indonesian versions of two social/cultural psychological scales: the Self-Construal Scale (SCS) that measures independent and interdependent cultural values, and the Behavioral Inhibition (Avoidance) System and Behavioral Approach System (BIS/BAS) that measures motivation focus. We also explored the cultural background for the rising prevalence of depression in Indonesia. Design Case (hospital)–control (population) study. Setting Hasanuddin University Hospital (cases) and Makassar city region (controls), Indonesia. Participants Participants (N = 369) were 165 patients with depression recruited from a university hospital, and 204 healthy controls without a history of mental disorders recruited from locations within a 30-minute walk from the hospital. Outcome measures Depression was diagnosed by psychiatrists with reference to Indonesian mental disorder guidelines (Pedoman Penggolongan dan Diagnosa Gangguan Jiwa edisi 3). Participants’ independent and interdependent cultural values, and neural motivational systems were measured with the SCS and BIS/BAS. Results Exploratory and confirmatory factor analyses showed that our revised 12-item SCS and the 13-item, three-factor BIS/BAS had a good model fit for the Indonesian population. MANCOVA showed that the SCS Independent subscale and the BAS subscales were significantly associated with depression after adjustment for age, sex, religion, education, and occupation. Conclusion These findings may guide provision of appropriate treatment for patients based on their social and cultural environment. In addition, this study contributes to understanding underlying reasons for the increasing prevalence of depression in Indonesia, where society is changing from traditional collectivism to global individualism. This was the first study to validate and revised the SCS and BIS/BAS in an Indonesian population. This study was the first to explore the link between self-construal, neural motivational systems and depression in Indonesia. This study did not draw causal relations between predictors and the outcome because of its cross-sectional nature. We used occupation to measure socioeconomic status rather than income to see its linkage with depression and self-construal. We did not measure effects of ethnicity, although Indonesia has various ethnic groups with different societies and cultures.
Collapse
Affiliation(s)
- Triana Istiqlal
- Department of Ecology and Environment, Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
- Corresponding author.
| | - Andi Agus Mumang
- Research, Community Service and International Journal Unit, Public Health Faculty, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Kristian Liaury
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Yukiko Uchida
- KOKORO Research Center, Kyoto University, Kyoto, Japan
| | - Masahiro Kihara
- Interdisciplinary Unit for Global Health, Centre for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Andi Jayalangkara Tanra
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
- Research Unit of Neurobehavior and Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Takafumi Ishida
- Department of Ecology and Environment, Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Irawan Yusuf
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Takuro Furusawa
- Department of Ecology and Environment, Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
- Interdisciplinary Unit for Global Health, Centre for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
23
|
Piani MC, Maggioni E, Delvecchio G, Ferro A, Gritti D, Pozzoli SM, Fontana E, Enrico P, Cinnante CM, Triulzi FM, Stanley JA, Battaglioli E, Brambilla P. Sexual Dimorphism in the Brain Correlates of Adult-Onset Depression: A Pilot Structural and Functional 3T MRI Study. Front Psychiatry 2022; 12:683912. [PMID: 35069272 PMCID: PMC8766797 DOI: 10.3389/fpsyt.2021.683912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of the elderly population. Higher female prevalence and sex-specific symptomatology have been observed, suggesting that biologically-determined dimensions might affect the disease onset and outcome. Rumination and executive dysfunction characterize adult-onset MDD, but sex differences in these domains and in the related brain mechanisms are still largely unexplored. The present pilot study aimed to explore any interactions between adult-onset MDD and sex on brain morphology and brain function during a Go/No-Go paradigm. We hypothesized to detect diagnosis by sex effects on brain regions involved in self-referential processes and cognitive control. Twenty-four subjects, 12 healthy (HC) (mean age 68.7 y, 7 females and 5 males) and 12 affected by adult-onset MDD (mean age 66.5 y, 5 females and 7 males), underwent clinical evaluations and a 3T magnetic resonance imaging (MRI) session. Diagnosis and diagnosis by sex effects were assessed on regional gray matter (GM) volumes and task-related functional MRI (fMRI) activations. The GM volume analyses showed diagnosis effects in left mid frontal cortex (p < 0.01), and diagnosis by sex effects in orbitofrontal, olfactory, and calcarine regions (p < 0.05). The Go/No-Go fMRI analyses showed MDD effects on fMRI activations in left precuneus and right lingual gyrus, and diagnosis by sex effects on fMRI activations in right parahippocampal gyrus and right calcarine cortex (p < 0.001, ≥ 40 voxels). Our exploratory results suggest the presence of sex-specific brain correlates of adult-onset MDD-especially in regions involved in attention processing and in the brain default mode-potentially supporting cognitive and symptom differences between sexes.
Collapse
Affiliation(s)
- Maria Chiara Piani
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Gritti
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara M. Pozzoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Fontana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia M. Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio M. Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
24
|
Sobral M, Morgado S, Moreira H, Guiomar R, Ganho-Ávila A. Association between cortical thickness and anxiety measures: A scoping review. Psychiatry Res Neuroimaging 2022; 319:111423. [PMID: 34896960 DOI: 10.1016/j.pscychresns.2021.111423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Cortical thickness has been increasingly studied in the context of structural-brain-behavior associations, such as anxiety; however, the literature is scattered across methods and research fields. This scoping review aims to summarize the available data concerning the association between cortical thickness and anxiety-related measures and identify the current research gaps. Searches were conducted in PubMed, PsycINFO/PsycARTICLES, Web of Science, OpenGrey and Networked Digital Library of Theses and Dissertations, and reference lists of key studies. Two researchers independently screened the abstracts and full-text reports according to the eligibility criteria, as well as extracted and charted the data. Quantitative and descriptive syntheses were conducted. The included publications (n = 18) reported cross-sectional studies, and 17 used surface-based approaches to estimate cortical thickness. Differences in regional cortical thickness were found to be associated with different anxiety-related measures/processes. Brain regions of interest include the medial orbitofrontal cortex, the ventromedial prefrontal cortex, the insula, the temporo-parietal areas, and the anterior cingulate cortex. However, caution should be warranted when interpreting the available results, as there is high variability in the field across anxiety-related measures, distinctive anxiety disorders, and data processing conditions and analysis. More research into this association is needed, to replicate and clarify existing findings.
Collapse
Affiliation(s)
- Mónica Sobral
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - Sara Morgado
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Helena Moreira
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Raquel Guiomar
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Sobral M, Guiomar R, Martins V, Ganho-Ávila A. Home-based transcranial direct current stimulation in dual active treatments for symptoms of depression and anxiety: A case series. Front Psychiatry 2022; 13:947435. [PMID: 36276322 PMCID: PMC9583668 DOI: 10.3389/fpsyt.2022.947435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a potential treatment strategy across some psychiatric conditions. However, there is high heterogeneity in tDCS efficacy as a stand-alone treatment. To increase its therapeutic potential, researchers have begun to explore the efficacy of combining tDCS with psychological and pharmacological interventions. The current case series details the effect of 6-10 weeks of self-administered tDCS paired with a behavioral therapy smartphone app (Flow™), on depressive and anxiety symptoms, in seven patients (26-51 years old; four female) presenting distinctive psychiatric disorders (major depression, dysthymia, illness anxiety disorder, obsessive-compulsive disorder, and anxiety disorders). tDCS protocol consisted of an acute phase of daily 30 min sessions, across 10 workdays (2 weeks Monday-to-Friday; Protocol 1) or 15 workdays (3 weeks Monday-to-Friday; Protocol 2). A maintenance phase followed, with twice-weekly sessions for 4 or 3 weeks, corresponding to 18 or 21 sessions in total (Protocol 1 or 2, respectively). The Flow tDCS device uses a 2 mA current intensity, targeting the bilateral dorsolateral prefrontal cortex. The Flow app offers virtually guided behavioral therapy courses to be completed during stimulation. We assessed depressive symptoms using MADRS-S and BDI-II, anxious symptoms using STAI-Trait, acceptability using ACCEPT-tDCS, and side effects using the Adverse Effects Questionnaire, at baseline and week 6 of treatment. Six patients underwent simultaneous cognitive-behavioral psychotherapy and two were on antidepressants and benzodiazepines. According to the Reliable Change Index (RCI), for depressive symptoms, we found clinically reliable improvement in five patients using MADRS-S (out of seven; RCI: -1.45, 80% CI; RCI: -2.17 to -4.82, 95% CI; percentage change: 37.9-66.7%) and in four patients using BDI-II (out of five; RCI: -3.61 to -6.70, 95% CI; percentage change: 57.1-100%). For anxiety symptoms, clinically reliable improvement was observed in five patients (out of six; RCI: -1.79, 90% CI; RCI: -2.55 to -8.64, 95% CI; percentage change: 12.3-46.4%). Stimulation was well-tolerated and accepted, with mild tingling sensation and scalp discomfort being the most common side effects. This case series highlights the applicability, acceptability, and promising results when combining home-based tDCS with psychotherapy and pharmacotherapy to manage depression and anxiety symptoms in clinical practice.
Collapse
Affiliation(s)
- Mónica Sobral
- Faculty of Psychology and Educational Sciences, Center for Research in Neuropsychology and Cognitive Behavioral Intervention, University of Coimbra, Coimbra, Portugal.,Neuroncircuit-e.Stim Clínica de Saúde Mental, Coimbra, Portugal
| | - Raquel Guiomar
- Faculty of Psychology and Educational Sciences, Center for Research in Neuropsychology and Cognitive Behavioral Intervention, University of Coimbra, Coimbra, Portugal
| | - Vera Martins
- Neuroncircuit-e.Stim Clínica de Saúde Mental, Coimbra, Portugal.,Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Ana Ganho-Ávila
- Faculty of Psychology and Educational Sciences, Center for Research in Neuropsychology and Cognitive Behavioral Intervention, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, et alBas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu H, Zhong Y, Xu H, Ding H, Yuan S, Wu Y, Liu G, Liu N, Wang C. Glutamic Acid Decarboxylase 1 Gene Methylation and Panic Disorder Severity: Making the Connection by Brain Gray Matter Volume. Front Psychiatry 2022; 13:853613. [PMID: 35686186 PMCID: PMC9170964 DOI: 10.3389/fpsyt.2022.853613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This study aimed to test the hypothesis that the relationship between glutamic acid decarboxylase (GAD) 1 gene methylation and severity of clinical symptoms of panic disorder (PD) is mediated by the effect of GAD1 gene methylation on gray matter volume (GMV) and the effect of GMV on PD. METHODS Panic disorder (n = 24) patients were recruited consecutively from the Affiliated Brain Hospital of Nanjing Medical University through outpatient and public advertising, eligible healthy controls (HCs) (n = 22) were recruited from public advertising. We compared GMV and GAD1 gene methylation in PD and HCs to estimate the differences, and on the basis of the relationship between gray matter volumes and GAD1 gene methylation in PD patients was evaluated, the role of GMV as a mediator of GAD1 gene methylation and PD clinical symptoms was analyzed. RESULTS Panic disorder patients had significantly lower methylation in the GAD1 promoter region on Cytosine-phosphate-guanine (CPG) 7 than HCs (t = 2.380, p = 0.021). Pearson correlation analysis found a significant negative association between cg171674146 (cg12) site and clinical severity (n = 24, r = -0.456, p = 0.025). Compared to HCs, patients with PD had decreased gray matter volumes in several brain regions, which were also associated with PD severity. Left postcentral gyrus (PoCG) GMV mediated the association between cg12 methylation and PD severity, and there was a significant mediation effect of right angular gyrus (ANG) gray matter volumes on the relationship between cg12 methylation and PD severity. LIMITATION No direct results can be derived for methylation patterns in different brain regions; the study is cross-sectional; relatively small size.
Collapse
Affiliation(s)
- Huiqin Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Hu S, Li XJ, Law S, Shen CY, Yao GQ, Zhang XQ, Li J, Chen GF, Xu B, Liu XM, Ma XY, Feng K, Liu PZ. Prefrontal cortex alterations in major depressive disorder, generalized anxiety disorder and their comorbidity during a verbal fluency task assessed by multi-channel near-infrared spectroscopy. Psychiatry Res 2021; 306:114229. [PMID: 34749225 DOI: 10.1016/j.psychres.2021.114229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are frequently comorbid with each other, and both associated with substantial cognitive impairments; however, it is still unclear whether their impairments are neurobiologically similar or distinct. This study aims to investigate the cognitive functions of the prefrontal cortex (PFC) in patients with MDD and GAD during the verbal fluency task (VFT) using functional near-infrared spectroscopy (fNIRS). Fifty-two patients with MDD, fifty-one patients with GAD, fifty-two patients with the comorbidity of MDD and GAD (CMG), and forty-seven healthy controls (HC) participated in the study. Significant hypoactivation in the left ventrolateral and the left dorsolateral PFC was common in all patient groups when compared to HCs, suggesting a shared etiology. Furthermore, MDD patients showed significant hypoactivation at the right frontal pole cortex (FPoC) when compared to HCs and significant hypoactivation at the middle FPoC when compared to the CMG patients. Our work is the first fNIRS study to reveal the shared and unique neurobiological profiles of MDD, GAD and their comorbidity under the same standard experimentation condition, suggesting fNIRS holds promise as an adjutant to assist clinical diagnosis.
Collapse
Affiliation(s)
- Shuang Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao-Jun Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Samuel Law
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada
| | - Chen-Yu Shen
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Guan-Qun Yao
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao-Qian Zhang
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Juan Li
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Gui-Fang Chen
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Bo Xu
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Xiao-Min Liu
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang-Yun Ma
- Beijing Sixth Hospital, Peking University, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Kun Feng
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China.
| | - Po-Zi Liu
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Chen C, Liu Z, Zuo J, Xi C, Long Y, Li MD, Ouyang X, Yang J. Decreased Cortical Folding of the Fusiform Gyrus and Its Hypoconnectivity with Sensorimotor Areas in Major Depressive Disorder. J Affect Disord 2021; 295:657-664. [PMID: 34509781 DOI: 10.1016/j.jad.2021.08.148] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neuroimaging studies have revealed abnormal cortical folding pattern and disruptive functional connectivity in major depressive disorder (MDD). Combining structure and function in the same population may further our understanding of the neuropathological mechanisms of MDD. METHOD Sixty-two patients with MDD and 61 healthy controls (HCs) underwent structural and resting-state functional magnetic resonance imaging (MRI). Group differences in the cortical folding (measured by local gyrification index (LGI)) were analyzed in FreeSurfer. Taking the brain regions with significant group differences in LGI as seed regions, the resting-state functional connectivity analysis was further conducted to explore the corresponding functional connectivity alterations. RESULTS Comparing with HCs, patients with MDD showed significantly decreased LGI in the right fusiform gyrus (cohen's d = 0.70). In the seed-based functional connectivity analysis, we found that compared with HCs, patients with MDD showed decreased functional connections between the right fusiform gyrus with sensorimotor areas (precentral and postcentral gyrus) (cohen's d = 1.32) and right superior temporal gyrus (cohen's d = 0.94). LIMITATIONS Main limitations are the relatively small sample size and the cross-sectional study design. CONCLUSION Decreased LGI in the right fusiform gyrus, as well as decreased functional connectivity between the right fusiform gyrus and the sensorimotor area and right superior temporal gyrus, appears to play a role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Chujun Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Zuo
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine; Hunan Provincial Brain Hospital, Changsha 410007, Hunan, China
| | - Chang Xi
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Xuan Ouyang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
30
|
Vergallito A, Gallucci A, Pisoni A, Punzi M, Caselli G, Ruggiero GM, Sassaroli S, Romero Lauro LJ. Effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders: a meta-analysis of sham or behaviour-controlled studies. J Psychiatry Neurosci 2021; 46:E592-E614. [PMID: 34753789 PMCID: PMC8580831 DOI: 10.1503/jpn.210050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The possibility of using noninvasive brain stimulation to treat mental disorders has received considerable attention recently. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are considered to be effective treatments for depressive symptoms. However, no treatment recommendation is currently available for anxiety disorders, suggesting that evidence is still limited. We conducted a systematic review of the literature and a quantitative analysis of the effectiveness of rTMS and tDCS in the treatment of anxiety disorders. METHODS Following PRISMA guidelines, we screened 3 electronic databases up to the end of February 2020 for English-language, peer-reviewed articles that included the following: a clinical sample of patients with an anxiety disorder, the use of a noninvasive brain stimulation technique, the inclusion of a control condition, and pre/post scores on a validated questionnaire that measured symptoms of anxiety. RESULTS Eleven papers met the inclusion criteria, comprising 154 participants assigned to a stimulation condition and 164 to a sham or control group. We calculated Hedge's g for scores on disorder-specific and general anxiety questionnaires before and after treatment to determine effect size, and we conducted 2 independent random-effects meta-analyses. Considering the well-known comorbidity between anxiety and depression, we ran a third meta-analysis analyzing outcomes for depression scores. Results showed a significant effect of noninvasive brain stimulation in reducing scores on disorder-specific and general anxiety questionnaires, as well as depressive symptoms, in the real stimulation compared to the control condition. LIMITATIONS Few studies met the inclusion criteria; more evidence is needed to strengthen conclusions about the effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders. CONCLUSION Our findings showed that noninvasive brain stimulation reduced anxiety and depression scores compared to control conditions, suggesting that it can alleviate clinical symptoms in patients with anxiety disorders.
Collapse
Affiliation(s)
| | | | - Alberto Pisoni
- From the Department of Psychology, University of Milano Bicocca, Milan, Italy (Vergallito, Pisoni, Punzi, Romero Lauro); the Neuromi, Milan, Italy (Vergallito, Gallucci, Pisoni, Romero Lauro); the Department of Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (Gallucci); the Studi Cognitivi, Milan, Italy (Caselli, Ruggiero, Sassaroli); and the Faculty of Psychology, Sigmund Freud University, Milan, Italy (Caseli, Ruggiero, Sassaroli)
| | | | | | | | | | | |
Collapse
|
31
|
Martino PL, Pulopulos MM, Canto CD, Dupanlou ML, Rubio SM, Bonet JL. High levels of TNF-α are associated with symptoms of depression in health professionals at a hospital. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021. [DOI: 10.1016/j.rpsm.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Sindermann L, Redlich R, Opel N, Böhnlein J, Dannlowski U, Leehr EJ. Systematic transdiagnostic review of magnetic-resonance imaging results: Depression, anxiety disorders and their co-occurrence. J Psychiatr Res 2021; 142:226-239. [PMID: 34388482 DOI: 10.1016/j.jpsychires.2021.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) and anxiety disorders (ANX) share core symptoms such as negative affect and often co-exist. Magnetic-resonance imaging (MRI) research suggests shared neuroanatomical/neurofunctional underpinnings. So far, studies considering transdiagnostic and disorder-specific neural alterations in MDD and ANX as well as the comorbid condition (COM) have not been reviewed systematically. METHODS Following PRISMA guidelines, the literature was screened and N = 247 articles were checked according to the PICOS criteria: MRI studies investigating transdiagnostic (across MDD, ANX, COM compared to healthy controls) and/or disorder-specific (between MDD, ANX, COM) neural alterations. N = 35, thereof n = 13 structural MRI and diffusion-tensor imaging studies and n = 22 functional MRI studies investigating emotional, cognitive deficits and resting state were included and quality coded. RESULTS Results indicated transdiagnostic structural/functional alterations in the orbitofrontal cortex/middle frontal cortex and in limbic regions (amygdala, cingulum, hippocampus). Few and inconsistent disorder-specific alterations were reported. However, depression-specific functional alterations were reported for the inferior frontal gyrus and dorsolateral prefrontal cortex during emotional tasks, and limbic regions at rest. Preliminary results for anxiety-specific functional alterations were found in the insula and frontal regions during emotional tasks, in the inferior parietal lobule, superior frontal gyrus and superior temporal gyrus during cognitive tasks, and (para)limbic alterations at rest. CONCLUSIONS This review provides evidence to support existing transdiagnostic fronto-limbic neural models in MDD and ANX. On top, it expands existing knowledge taking into account comorbidity and comparing MDD with ANX. Heterogeneous evidence exists for disorder-specific alterations. Research focusing on ANX sub-types, and the consideration of COM would contribute to a better understanding of basic neural underpinnings.
Collapse
Affiliation(s)
- Lisa Sindermann
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany; Department of Psychiatry, University of Halle, Emil-Abderhalden-Str. 26-27, 06108, Halle, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Elisabeth Johanna Leehr
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| |
Collapse
|
33
|
Takahashi T, Sasabayashi D, Takayanagi Y, Higuchi Y, Mizukami Y, Nishiyama S, Furuichi A, Kido M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Heschl's Gyrus Duplication Pattern in Individuals at Risk of Developing Psychosis and Patients With Schizophrenia. Front Behav Neurosci 2021; 15:647069. [PMID: 33958991 PMCID: PMC8093503 DOI: 10.3389/fnbeh.2021.647069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
An increased prevalence of duplicated Heschl’s gyrus (HG), which may reflect an early neurodevelopmental pathology, has been reported in schizophrenia (Sz). However, it currently remains unclear whether individuals at risk of psychosis exhibit similar brain morphological characteristics. This magnetic resonance imaging study investigated the distribution of HG gyrification patterns [i.e., single HG, common stem duplication (CSD), and complete posterior duplication (CPD)] and their relationship with clinical characteristics in 57 individuals with an at-risk mental state (ARMS) [of whom 5 (8.8%) later developed Sz], 63 patients with Sz, and 61 healthy comparisons. The prevalence of duplicated HG patterns (i.e., CSD or CPD) bilaterally was significantly higher in the ARMS and Sz groups than in the controls, whereas no significant differences were observed in HG patterns between these groups. The left CSD pattern, particularly in the Sz group, was associated with a verbal fluency deficit. In the ARMS group, left CSD pattern was related to a more severe general psychopathology. The present results suggest that an altered gyrification pattern on the superior temporal plane reflects vulnerability factors associated with Sz, which may also contribute to the clinical features of high-risk individuals, even without the onset of psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Health Administration Center, Faculty of Education and Research Promotion, Academic Assembly, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tien Viet Pham
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
34
|
Feurer C, Suor J, Jimmy J, Klumpp H, Monk CS, Phan KL, Burkhouse KL. Differences in cortical thinning across development among individuals with and without anxiety disorders. Depress Anxiety 2021; 38:372-381. [PMID: 33001526 PMCID: PMC7920900 DOI: 10.1002/da.23096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anxiety is associated with aberrant patterns of cortical thickness in regions implicated in emotion regulation. However, few studies have examined cortical thickness differences between individuals with anxiety and healthy controls (HCs) across development, particularly during childhood when cortical thinning begins and anxiety risk increases. A better understanding of age-related changes in cortical thickness patterns among anxious individuals is essential to develop plausible targets for early identification. METHODS The current study examined how age impacted differences in cortical thickness patterns between HCs and anxious individuals. Participants included 233 individuals (ages 7-35) with a current anxiety disorder (n = 149) or no lifetime history of psychopathology (n = 84). Cortical thickness of regions that are implicated in emotion regulation (ventromedial prefrontal cortex [vmPFC], rostral anterior cingulate [rACC], and insula) were assessed. RESULTS All regions showed significant thinning with age, except left rACC and right insula. However, rates of thinning differed among anxious and HC participants, with anxious participants demonstrating slower rates of right vmPFC thinning. Regions of significance analyses indicated that anxious, relative to HC, participants exhibited thinner right vmPFC before age 11, but thicker right vmPFC after age 24. CONCLUSIONS Current findings suggest that anxious individuals do not demonstrate normative right vmPFC cortical thinning, which may lead them to exhibit both thinner vmPFC in middle childhood and thicker vmPFC in adulthood compared with HCs. These findings may provide plausible targets for identification of anxiety risk that differ based on developmental stage.
Collapse
Affiliation(s)
- Cope Feurer
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Jennifer Suor
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Jagan Jimmy
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Heide Klumpp
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | | | - K. Luan Phan
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA,Ohio State University, Department of Psychiatry and Behavioral Medicine, Columbus, OH, USA
| | - Katie L. Burkhouse
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| |
Collapse
|
35
|
Wang X, Cheng B, Wang S, Lu F, Luo Y, Long X, Kong D. Distinct grey matter volume alterations in adult patients with panic disorder and social anxiety disorder: A systematic review and voxel-based morphometry meta-analysis. J Affect Disord 2021; 281:805-823. [PMID: 33243552 DOI: 10.1016/j.jad.2020.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/18/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The paradox of similar diagnostic criteria but potentially different neuropathologies in panic disorder (PD) and social anxiety disorder (SAD) needs to be clarified. METHODS We performed a qualitative systematic review and a quantitative whole-brain voxel-based morphometry (VBM) meta-analysis with an anisotropic effect-size version of seed-based D mapping (AES-SDM) to explore whether the alterations of grey matter volume (GMV) in PD are similar to or different from those in SAD, together with potential confounding factors. RESULTS A total of thirty-one studies were eligible for inclusion, eighteen of which were included in the meta-analysis. Compared to the respective healthy controls (HC), qualitative and quantitative analyses revealed smaller cortical-subcortical GMVs in PD patients in brain areas including the prefrontal and temporal-parietal cortices, striatum, thalamus and brainstem, predominantly right-lateralized regions, and larger GMVs in the prefrontal and temporal-parietal-occipital cortices, and smaller striatum and thalamus in SAD patients. Quantitatively, the right inferior frontal gyrus (IFG) deficit was specifically implicated in PD patients, whereas left striatum-thalamus deficits were specific to SAD patients, without shared GMV alterations in both disorders. Sex, the severity of clinical symptoms, psychiatric comorbidity, and concomitant medication use were negatively correlated with smaller regional GMV alterations in PD patients. CONCLUSION PD and SAD may represent different anxiety sub-entities at the neuroanatomical phenotypes level, with different specific neurostructural deficits in the right IFG of PD patients, and the left striatum and thalamus of SAD patients. This combination of differences and specificities can potentially be used to guide the development of diagnostic biomarkers for these disorders.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China.
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fengmei Lu
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Di Kong
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| |
Collapse
|
36
|
Na KS, Cho SE, Cho SJ. Machine learning-based discrimination of panic disorder from other anxiety disorders. J Affect Disord 2021; 278:1-4. [PMID: 32942220 DOI: 10.1016/j.jad.2020.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUNDS Panic disorder is a highly prevalent psychiatric disorder that substantially impairs quality of life and psychosocial function. Panic disorder arises from neurobiological substrates and developmental factors that distinguish it from other anxiety disorders. Differential diagnosis between panic disorder and other anxiety disorders has only been conducted in terms of a phenomenological spectrum. METHODS Through a machine learning-based approach with heart rate variability (HRV) as input, we aimed to build algorithms that can differentiate panic disorder from other anxiety disorders. Five algorithms were used: random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural network (ANN), and regularized logistic regression (LR). 10-fold cross-validation with five repeats was used to build the final models. RESULTS A total of 60 patients with panic disorder and 61 patients with other anxiety disorders (aged between 20 and 65 years) were recruited. The L1-regularized LR showed the best accuracy (0.784), followed by ANN (0.730), SVM (0.730), GBM (0.676), and finally RF (0.649). LR also had good performance in other measures, such as F1-score (0.790), specificity (0.737), sensitivity (0.833), and Matthews correlation coefficient (0.572). LIMITATIONS Cross-sectional design and limited sample size is limitations. CONCLUSION This study demonstrated that HRV can be used to differentiate panic disorder from other anxiety disorders. Future studies with larger sample sizes and longitudinal design are required to replicate the diagnostic utility of HRV in a machine learning approach.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Incheon, Republic of Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
37
|
Fu X, Li H, Yan M, Chen J, Liu F, Zhao J, Guo W. Shared and Distinct Fractional Amplitude of Low-Frequency Fluctuation Patterns in Major Depressive Disorders With and Without Gastrointestinal Symptoms. Front Psychiatry 2021; 12:744898. [PMID: 34925089 PMCID: PMC8674438 DOI: 10.3389/fpsyt.2021.744898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Gastrointestinal (GI) symptoms are fairly common somatic symptoms in depressed patients. The purpose of this study was to explore the influence of concomitant GI symptoms on the fractional amplitude of low-frequency fluctuation (fALFF) patterns in patients with major depressive disorder (MDD) and investigate the connection between aberrant fALFF and clinical characteristics. Methods: This study included 35 MDD patients with GI symptoms (GI-MDD patients), 17 MDD patients without GI symptoms (nGI-MDD patients), and 28 healthy controls (HCs). The fALFF method was used to analyze the resting-state functional magnetic resonance imaging data. Correlation analysis and pattern classification were employed to investigate the relationship of the fALFF patterns with the clinical characteristics of patients. Results: GI-MDD patients exhibited higher scores in the HRSD-17 and suffered more severe insomnia, anxiety/somatization, and weight loss than nGI-MDD patients. GI-MDD patients showed higher fALFF in the right superior frontal gyrus (SFG)/middle frontal gyrus (MFG) and lower fALFF in the left superior medial prefrontal cortex (MPFC) compared with nGI-MDD patients. A combination of the fALFF values of these two clusters could be applied to discriminate GI-MDD patients from nGI-MDD patients, with accuracy, sensitivity, and specificity of 86.54, 94.29, and 70.59%, respectively. Conclusion: GI-MDD patients showed more severe depressive symptoms. Increased fALFF in the right SFG/MFG and decreased fALFF in the left superior MPFC might be distinctive neurobiological features of MDD patients with GI symptoms.
Collapse
Affiliation(s)
- Xiaoya Fu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Meiqi Yan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
38
|
Ma M, Zhang X, Zhang Y, Su Y, Yan H, Tan H, Zhang D, Yue W. Childhood Maltreatment Was Correlated With the Decreased Cortical Function in Depressed Patients Under Social Stress in a Working Memory Task: A Pilot Study. Front Psychiatry 2021; 12:671574. [PMID: 34305677 PMCID: PMC8295536 DOI: 10.3389/fpsyt.2021.671574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Major depressive disorder (MDD) is a common psychiatric disorder associated with working memory (WM) impairment. Neuroimaging studies showed divergent results of the WM process in MDD patients. Stress could affect the occurrence and development of depression, in which childhood maltreatment played an important role. Methods: Thirty-seven MDD patients and 54 healthy control subjects were enrolled and completed a WM functional magnetic resonance imaging task with maintenance and manipulation conditions under stress and non-stress settings. We collected demographical and clinical data, using 17-item Hamilton Depression Scale (HAMD-17) and Childhood Trauma Questionnaire (CTQ) in MDD patients. In the WM task, we analyzed the main diagnosis effect and explored the correlation of impaired brain regions in MDD patients with CTQ and HAMD-17. Results: No group differences were found in the accuracy rate and reaction time between the two groups. MDD patients had lower brain activation in following regions (P FWE < 0.05). The left fusiform gyrus showed less activation in all conditions. The right supplementary motor area (SMA) exhibited decreased activation under non-stress. The anterior prefrontal cortex showed reduced activation during manipulation under stress, with the β estimations of the peak voxel showing significant group difference negatively correlated with childhood sex abuse (P Bonferroni < 0.05). Conclusions: In our pilot study, MDD patients had reduced brain activation, affecting emotional stimuli processing function, executive function, and cognitive control function. Childhood maltreatment might affect brain function in MDD. This work might provide some information for future studies on MDD.
Collapse
Affiliation(s)
- Mengying Ma
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yuyanan Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yi Su
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,Lieber Institute for Brain Development, Baltimore, MD, United States
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
39
|
Italia M, Forastieri C, Longaretti A, Battaglioli E, Rusconi F. Rationale, Relevance, and Limits of Stress-Induced Psychopathology in Rodents as Models for Psychiatry Research: An Introductory Overview. Int J Mol Sci 2020; 21:E7455. [PMID: 33050350 PMCID: PMC7589795 DOI: 10.3390/ijms21207455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emotional and cognitive information processing represent higher-order brain functions. They require coordinated interaction of specialized brain areas via a complex spatial and temporal equilibrium among neuronal cell-autonomous, circuitry, and network mechanisms. The delicate balance can be corrupted by stressful experiences, increasing the risk of developing psychopathologies in vulnerable individuals. Neuropsychiatric disorders affect twenty percent of the western world population, but therapies are still not effective for some patients. Elusive knowledge of molecular pathomechanisms and scarcity of objective biomarkers in humans present complex challenges, while the adoption of rodent models helps to improve our understanding of disease correlate and aids the search for novel pharmacological targets. Stress administration represents a strategy to induce, trace, and modify molecular and behavioral endophenotypes of mood disorders in animals. However, a mouse or rat model will only display one or a few endophenotypes of a specific human psychopathology, which cannot be in any case recapitulated as a whole. To override this issue, shared criteria have been adopted to deconstruct neuropsychiatric disorders, i.e., depression, into specific behavioral aspects, and inherent neurobiological substrates, also recognizable in lower mammals. In this work, we provide a rationale for rodent models of stress administration. In particular, comparing each rodent model with a real-life human traumatic experience, we intend to suggest an introductive guide to better comprehend and interpret these paradigms.
Collapse
|
40
|
Depression and anxiety with exposure to ozone and particulate matter: An epidemiological claims data analysis. Int J Hyg Environ Health 2020; 228:113562. [DOI: 10.1016/j.ijheh.2020.113562] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
|