1
|
Wuitchik DM, Fifer JE, Huzar AK, Pechenik JA, Uricchio LH, Davies SW. Outside your shell: exploring genetic variation in two congeneric marine snails across a latitude and temperature gradient. BMC Genomics 2025; 26:486. [PMID: 40375137 PMCID: PMC12079915 DOI: 10.1186/s12864-025-11603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Intertidal organisms withstand extreme temperature fluctuations, and theirability to cope with this variation may affect their distributions across the seascape. Genetic variation and local environments likely interact to determine variation in thermal performances across intertidal species' ranges, so characterizing the relationship between temperature variation and population structure is key to understanding the biology of marine invertebrates. Here, we use 2bRAD-sequencing to examine population genetic structure in two congeneric intertidal marine gastropods (Crepidula fornicata, C. plana), sampled from locations along a natural temperature gradient on the Northeast shores of the United States. These two species share similar life histories, yet C. plana exhibits a narrower distribution than C. fornicata. Our results demonstrate that both species show patterns of genetic divergence consistent with isolation by distance, though this pattern was only significant in C. fornicata. Both putatively selected and neutral loci displayed significant spatial structuring in C. fornicata; however, only putatively selected loci showed significant clustering in C. plana. When exploring whether temperature differences explained genetic differentiation, we found that 9-12% of genetic differentiation was explained by temperature variation in each species even when controlling for latitude and neutral population structure. Our results suggest that temperature shapes adaptive variation across the seascape in both Crepidula species and encourages further research to differentiate our results from models of neutral evolutionary drift.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Tufts University, Medford, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | - J E Fifer
- Department of Biology, Boston University, Boston, MA, USA
- Department of Biology, University of California San Diego, San Diego, CA, USA
| | - A K Huzar
- Department of Biology, Boston University, Boston, MA, USA
| | - J A Pechenik
- Department of Biology, Tufts University, Medford, MA, USA
| | - L H Uricchio
- Department of Biology, Tufts University, Medford, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Foxi C, Pintus D, Zinellu S, Macciocu S, Angioi PP, Sechi AM, Fiori MS, Ladu A, Puggioni G, Denti S, Sanna ML, Madrau MP, Satta G, Oggiano A, Ligios C, Dei Giudici S. Assessing Schmallenberg Virus Disease in Sardinia (Italy) After the First Epidemic Episode in 2012. Pathogens 2025; 14:349. [PMID: 40333126 PMCID: PMC12030605 DOI: 10.3390/pathogens14040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
Schmallenberg virus (SBV), an Orthobunyavirus transmitted by Culicoides, causes congenital malformations and mild symptoms, such as fever, reduced appetite, decreased milk production, and occasional diarrhea, in ruminants. First detected in Central Europe in 2011, SBV spread across the continent, reaching Sardinia (Italy) in late 2012. This study evaluates the occurrence of SBV infections in Sardinian sheep from 2013 to 2024 by anatomo-pathological, virological, serological, and entomological data. The results suggest the presence of SBV infections in a continuous enzootic status over the years, without the cyclic waves observed in other countries, likely due to the unique sheep breeding management in Sardinia. Seroprevalence rates in the years 2022 and 2024 varied between 16.40% (C.I. = 12.28-20.52) and 21.53% (C.I. = 17.15-25.91) without significant differences between the two years analyzed. SBV was predominantly detected in C. imicola and C. newsteadi populations, while C. cataneii and C. sahariensis were identified as potential new vectors. Additionally, S- and M-segment sequences were obtained from two SBV isolates, S-sequences from a sample detected in 2020, and 21 archived cDNA samples from 2012. The S-segments showed high similarity among themselves and the reference strains, while the M sequences were significantly different, although potential artifacts from fetal samples must be considered. Overall, the results suggest widespread enzootic SBV circulation in Sardinia over the past decade, with a very low frequency of malformations in newly born sheep offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (C.F.); (D.P.); (S.Z.); (S.M.); (P.P.A.); (A.M.S.); (M.S.F.); (A.L.); (G.P.); (S.D.); (M.L.S.); (M.P.M.); (G.S.); (A.O.); (C.L.)
| |
Collapse
|
3
|
Lyberger K, Farner JE, Couper L, Mordecai EA. Plasticity in mosquito size and thermal tolerance across a latitudinal climate gradient. J Anim Ecol 2025; 94:330-339. [PMID: 39030760 PMCID: PMC11747927 DOI: 10.1111/1365-2656.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.
Collapse
Affiliation(s)
| | | | - Lisa Couper
- Department of Environmental Health Sciences, University of California Berkeley
| | | |
Collapse
|
4
|
Farner JE, Lyberger KP, Couper LI, Cruz-Loya M, Mordecai EA. Nonlinear effects of temperature on mosquito parasite infection across a large geographic climate gradient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631804. [PMID: 39829816 PMCID: PMC11741412 DOI: 10.1101/2025.01.07.631804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Temperature drives ectothermic host - parasite interactions, making them particularly sensitive to climatic variation and change. To isolate the role of temperature, lab-based studies are increasingly used to assess and forecast disease risk under current and future climate conditions. However, in the field, the effects of temperature on parasitism may be mediated by other sources of variation, including local adaptation. To address the key knowledge gaps of how temperature influences host - parasite interactions and whether thermal responses measured in controlled experiments capture infection across temperature gradients in nature, we paired an extensive field survey of parasitism-by the ciliate Lambornella clarki on its tree hole mosquito host, Aedes sierrensis -with laboratory experiments describing parasitism thermal performance curves (TPCs) for six host populations from varying climates. We also investigated the mechanisms underlying the thermal biology of the host - parasite interaction by separately measuring TPCs for infection, host immunity, and parasite growth rates. Along the west coast of North America, across an 1100 km climate gradient spanning 12°C mean rainy season temperature variation, we found that parasitism peaked at intermediately cold temperatures, and was consistent both between field seasons and with the lab experiment results. The experiments produced no evidence of host intraspecific variation in temperature sensitivity to parasitism. Importantly, parasitism peaked at temperatures below the thermal optimum for free-living L. clarki due to the balance of temperature effects on parasite growth and reproduction against the strength of the host melanization immune response. The results suggest that nonlinear responses to temperature drive parasitism in nature, and that simple lab and field studies can accurately capture the thermal biology of multilayered host - parasite interactions. Data and code for this submission are provided on Dryad: http://datadryad.org/stash/share/CfZkk4LsJzljetJJnFZMDMrjuciTXMxrkrc95I2J3tA .
Collapse
|
5
|
Gao R, Liu L, Fan S, Zheng W, Liu R, Zhang Z, Huang R, Zhao L, Shi J. Occurrence and potential diffusion of pine wilt disease mediated by insect vectors in China under climate change. PEST MANAGEMENT SCIENCE 2024; 80:6068-6081. [PMID: 39087738 DOI: 10.1002/ps.8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Pine wilt disease (PWD), a major international quarantined forest pest, causes serious ecological and economic damage to Pinus species in Asia and Europe. In China, PWD has spread northeasterly and northwesterly beyond its original northern limits. Consequently, an evaluation of the insect vector-mediated occurrence and potential diffusion of PWD is needed to identify important transmission routes and control the spread of disease. RESULTS An optimized MaxEnt model was used to assess the current and future geographical distribution of Bursaphelenchus xylophilus and its insect vectors in China. The predicted suitable area for B. xylophilus colonization is currently 212.32 × 104 km2 and mainly concentrated in Central, East, Southwest and South China, although is anticipated to include the northwestern regions of China in the future. As for the insect vectors, Monochamus alternatus and M. saltuarius are expected to spread toward the northwest and southwest, respectively. The maximum predicted dispersion area of PWD mediated by M. alternatus, M. saltuarius and both species was 91.85 × 104, 218.76 × 104 and 29.99 × 104 km2, respectively, with potential diffusion areas being anticipated to increase in the future. Both the suitable probabilities and areas of B. xylophilus and its insect vectors were found to vary substantially along the latitudinal gradient, with the latitudinal range of these species being predicted to expand in the future. CONCLUSION This is the first study to investigate the potential diffusion areas of PWD mediated by insect vectors in China, and our finding will provide a vital theoretical reference and empirical basis for developing more effective management strategies for the control of PWD in China. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruihe Gao
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Lei Liu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Shiming Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Wenfang Zheng
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Ruyuan Liu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Zhiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Ruifen Huang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Lijuan Zhao
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- Shanxi Dangerous Forest Pest Inspection and Identification Center, Jinzhong, China
| | - Juan Shi
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Boerlijst SP, Boelee E, van Bodegom PM, Schrama M. In the heat of the moment: Including realistic thermal fluctuations results in dramatically altered key population parameters. Ecol Evol 2024; 14:e70124. [PMID: 39206455 PMCID: PMC11349485 DOI: 10.1002/ece3.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Temperature is commonly acknowledged as one of the primary forces driving ectotherm vector populations, most notably by influencing metabolic rates and survival. Although numerous experiments have shown this for a wide variety of organisms, the vast majority has been conducted at constant temperatures and changes therein, while temperature is far from constant in nature, and includes seasonal and diurnal cycles. As fluctuating temperatures have been described to affect metabolic processes at (sub)cellular level, this calls for studies evaluating the relative importance of temperature fluctuations and the changes therein. To gain insight in the effects of temperature fluctuations on ectotherm development, survival, and sex ratio, we developed an inexpensive, easily reproducible, and open-source, Arduino-based temperature control system, which emulates natural sinusoidal fluctuations around the average temperature. We used this novel setup to compare the effects of constant (mean) temperatures, most commonly used in experiments, block schemes, and natural sinusoidal fluctuations as well as an extreme variant with twice its amplitude using the cosmopolitan mosquito species Culex pipiens s.l. as a study organism. Our system accurately replicated the preprogrammed temperature treatments under outdoor conditions, even more accurately than traditional methods. While no effects were detected on survival and sex ratio within the ranges of variation evaluated, development was sped up considerably by including temperature fluctuations, especially during pupation, where development under constant temperatures took almost a week (30%) longer than under natural fluctuations. Doubling the amplitude further decreased development time by 1.5 days. These results highlight the importance of including (natural) oscillations in experiments on ectotherm organisms - both aquatic and terrestrial - that use temperature as a variable. Ultimately, these results have major repercussions for downstream effects at larger scales that may be studied with applications such as ecological niche models, disease risk models, and assessing ecosystem services that rely on ectotherm organisms.
Collapse
Affiliation(s)
- Sam P. Boerlijst
- Department of Environmental Biology, Center for Environmental Research LeidenUniversity of LeidenLeidenthe Netherlands
- Division of Inland Water SystemsDeltaresDelftthe Netherlands
| | - Eline Boelee
- Division of Inland Water SystemsDeltaresDelftthe Netherlands
| | - Peter M. van Bodegom
- Department of Environmental Biology, Center for Environmental Research LeidenUniversity of LeidenLeidenthe Netherlands
| | - Maarten Schrama
- Department of Environmental Biology, Center for Environmental Research LeidenUniversity of LeidenLeidenthe Netherlands
| |
Collapse
|
7
|
Lyberger K, Farner J, Couper L, Mordecai EA. A Mosquito Parasite Is Locally Adapted to Its Host but Not Temperature. Am Nat 2024; 204:121-132. [PMID: 39008840 DOI: 10.1086/730522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AbstractClimate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation to hosts and temperature in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. Lambornella clarki parasites were locally adapted to their hosts, with 2.6 times higher infection rates on sympatric populations compared with allopatric populations, but they were not locally adapted to temperature. Infection peaked at the intermediate temperature of 12.5°C, notably lower than the optimum temperature for free-living L. clarki growth, suggesting that the host's immune response can play a significant role in mediating the outcome of infection. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.
Collapse
|
8
|
Kronen J, Leuchner M, Küpper T. Zika and Chikungunya in Europe 2100 - A GIS based model for risk estimation. Travel Med Infect Dis 2024; 60:102737. [PMID: 38996856 DOI: 10.1016/j.tmaid.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/27/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The spread of vector-borne infectious diseases is determined, among other things, by temperature. Thus, climate change will have an influence on their global distribution. In the future, Europe will approach the temperature optimum for the transmission of ZIKV and CHIKV. Climate scenarios and climate models can be used to depict future climatic changes and to draw conclusions about future risk areas for vector-borne infectious diseases. METHODS Based on the RCP 4.5 and RCP 8.5 climate scenarios, a geospatial analysis was carried out for the future temperature suitability of ZIKV and CHIKV in Europe. The results were presented in maps and the percentage of the affected areas calculated. RESULTS Due to rising temperatures, the risk areas for transmission of ZIKV and CHIKV spread in both RCP scenarios. For CHIKV transmission, Spain, Portugal, the Mediterranean coast and areas near the Black Sea are mainly affected. Due to high temperatures, large areas throughout Europe are at risk for ZIKV and CHIKV transmission. CONCLUSION Temperature is only one of many factors influencing the spread of vector-borne infectious diseases. Nevertheless, the representation of risk areas on the basis of climate scenarios allows an assessment of future risk development. Monitoring and adaptation strategies are indispensable for coping with and containing possible future autochthonous transmissions and epidemics in Europe.
Collapse
Affiliation(s)
- J Kronen
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany.
| | - M Leuchner
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
| | - T Küpper
- Inst. of Occupational, Social & Environmental Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. Malar J 2024; 23:161. [PMID: 38783348 PMCID: PMC11112813 DOI: 10.1186/s12936-024-04982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Derek Charlwood
- Global Health and Tropical Medicine, Instituto de Hygiene e Medicina Tropical, Lisbon, Portugal
| | | |
Collapse
|
10
|
Suh E, Stopard IJ, Lambert B, Waite JL, Dennington NL, Churcher TS, Thomas MB. Estimating the effects of temperature on transmission of the human malaria parasite, Plasmodium falciparum. Nat Commun 2024; 15:3230. [PMID: 38649361 PMCID: PMC11035611 DOI: 10.1038/s41467-024-47265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.
Collapse
Affiliation(s)
- Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Ben Lambert
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Research Development, University of Vermont, Burlington, VT, USA
| | - Nina L Dennington
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, University of York, York, UK
- Invasion Science Research Institute and Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Chakraborty S, Zigmond E, Shah S, Sylla M, Akorli J, Otoo S, Rose NH, McBride CS, Armbruster PA, Benoit JB. Thermal tolerance of mosquito eggs is associated with urban adaptation and human interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586322. [PMID: 38585904 PMCID: PMC10996485 DOI: 10.1101/2024.03.22.586322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Climate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature, Aedes mosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, for Aedes aegypti and Ae. albopictus lineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.
Collapse
Affiliation(s)
- Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Emily Zigmond
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Sher Shah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS (SSUEIN) Kaffrine Campus
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Carolyn S McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
12
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. Oecologia 2024; 204:389-399. [PMID: 38006450 DOI: 10.1007/s00442-023-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5 °C and 13 °C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
Affiliation(s)
- Sherine Ismail
- Department of Biology, Stanford University, Stanford, USA
| | | | - Lisa Couper
- Department of Biology, Stanford University, Stanford, USA
| | - Erin Mordecai
- Department of Biology, Stanford University, Stanford, USA
| | | |
Collapse
|
13
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Dennington NL, Grossman MK, Ware-Gilmore F, Teeple JL, Johnson LR, Shocket MS, McGraw EA, Thomas MB. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. GLOBAL CHANGE BIOLOGY 2024; 30:e17041. [PMID: 38273521 DOI: 10.1111/gcb.17041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 01/27/2024]
Abstract
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
Collapse
Affiliation(s)
- Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marissa K Grossman
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janet L Teeple
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, Florida, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Elizabeth A McGraw
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew B Thomas
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Invasion Science Research Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of York, York, UK
| |
Collapse
|
15
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530886. [PMID: 37961581 PMCID: PMC10634975 DOI: 10.1101/2023.03.02.530886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Johannah E. Farner
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Alexandra S. Lee
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Erin A. Mordecai
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| |
Collapse
|
16
|
Aleuy OA, Peacock SJ, Molnár PK, Ruckstuhl KE, Kutz SJ. Local thermal adaptation and local temperature regimes drive the performance of a parasitic helminth under climate change: The case of Marshallagia marshalli from wild ungulates. GLOBAL CHANGE BIOLOGY 2023; 29:6217-6233. [PMID: 37615247 DOI: 10.1111/gcb.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Across a species' range, populations are exposed to their local thermal environments, which on an evolutionary scale, may cause adaptative differences among populations. Helminths often have broad geographic ranges and temperature-sensitive life stages but little is known about whether and how local thermal adaptation can influence their response to climate change. We studied the thermal responses of the free-living stages of Marshallagia marshalli, a parasitic nematode of wild ungulates, along a latitudinal gradient. We first determine its distribution in wild sheep species in North America. Then we cultured M. marshalli eggs from different locations at temperatures from 5 to 38°C. We fit performance curves based on the metabolic theory of ecology to determine whether development and mortality showed evidence of local thermal adaptation. We used parameter estimates in life-cycle-based host-parasite models to understand how local thermal responses may influence parasite performance under general and location-specific climate-change projections. We found that M. marshalli has a wide latitudinal and host range, infecting wild sheep species from New Mexico to Yukon. Increases in mortality and development time at higher temperatures were most evident for isolates from northern locations. Accounting for location-specific parasite parameters primarily influenced the magnitude of climate change parasite performance, while accounting for location-specific climates primarily influenced the phenology of parasite performance. Despite differences in development and mortality among M. marshalli populations, when using site-specific climate change projections, there was a similar magnitude of impact on the relative performance of M. marshalli among populations. Climate change is predicted to decrease the expected lifetime reproductive output of M. marshalli in all populations while delaying its seasonal peak by approximately 1 month. Our research suggests that accurate projections of the impacts of climate change on broadly distributed species need to consider local adaptations of organisms together with local temperature profiles and climate projections.
Collapse
Affiliation(s)
- O Alejandro Aleuy
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Stephanie J Peacock
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Péter K Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Toronto, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, Toronto, Canada
| | - Kathreen E Ruckstuhl
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| |
Collapse
|
17
|
Hug DOH, Stegmayer RI, Blanckenhorn WU, Verhulst NO. Thermal preference of adult mosquitoes (Culicidae) and biting midges (Ceratopogonidae) at different altitudes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:562-573. [PMID: 37052330 DOI: 10.1111/mve.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Mosquitoes (Diptera: Culicidae) and biting midges (Diptera: Ceratopogonidae) are among the most important vectors of human and veterinary pathogens. For modelling the distribution of these pathogens, entomological aspects are essential, which in turn are highly dependent on environmental factors, such as temperature. In this study, mosquitoes and biting midges were sampled in multiple microclimates at two low (360, 480 meters above sea level, m.a.s.l.) and two high (1250, 1530 m.a.s.l.) altitude locations in Switzerland. Sets of various traps (CO2 -baited CDC, LED-UV, resting boxes, oviposition cups) equipped with dataloggers were placed in transects at five sites with similar vegetation at each location. Only the CDC and the LED-UV traps collected enough insects for analyses. Taxonomic diversity was greater for mosquitoes but lower for biting midges at lower altitudes. Both mosquitoes and biting midges had a thermal preference. Culicoides preferred the traps with warmer microclimate, especially at lower altitudes, whereas mosquito preferences depended on the species, but not on altitude. Relative humidity had a significant positive impact on catches of biting midges but not mosquitoes. To obtain better data on thermal preferences of resting and ovipositing vectors in addition to host seeking individuals, new and improved collecting methods are needed.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Raffael I Stegmayer
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554680. [PMID: 37662401 PMCID: PMC10473705 DOI: 10.1101/2023.08.24.554680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
|
19
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
20
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
21
|
Ziegler R, Blanckenhorn WU, Mathis A, Verhulst NO. Temperature preference of sugar- or blood-fed Aedes japonicus mosquitoes under semi-natural conditions. J Therm Biol 2023; 114:103592. [PMID: 37210983 DOI: 10.1016/j.jtherbio.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Mosquito-borne diseases pose a major burden on humans and animals. Temperature strongly influences the physiology and life cycle of mosquitoes and also the pathogens they transmit. Thermoregulatory behaviour of mosquitoes has been addressed in a few laboratory studies. Here, we expand such studies by investigating the thermal preference when resting of Aedes japonicus, an invasive and putative vector species of many pathogens, in a semi-field setup during summers in a temperate climate. Blood-fed or sugar-fed Ae. japonicus females were released in the late afternoon in a large outdoor cage containing three resting boxes. The next morning, temperature treatments were applied to the boxes, creating a "cool" (over all experiments around 18 °C), and a "warm" (around 35 °C) microhabitat in addition to an untreated "ambient" (around 26 °C) one. The mosquitoes resting within the three boxes were counted five times, every 2 h between 9h and 17h. The highest proportions of mosquitoes (e.g. up to 21% of blood-fed ones) were found in the cool box while both blood-fed and sugar-fed mosquitoes avoided the warm box. The mean resting temperatures of Ae. japonicus were below the ambient temperatures measured by a nearby meteorological station, and this was more pronounced at higher outdoor temperatures and in blood-fed as compared to sugar-fed mosquitoes. Thus, over all experiments with blood-fed mosquitoes, the calculated average resting temperature was 4 °C below the outdoor temperature. As mosquitoes prefer cooler resting places than temperatures measured by weather stations in summer, models to predict mosquito-borne disease outbreaks need to account for the thermoregulatory behaviour of mosquitoes, especially in the wake of climate change.
Collapse
Affiliation(s)
- Raphaela Ziegler
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, Faculty of Science, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Alexander Mathis
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.
| |
Collapse
|
22
|
Lyberger K, Farner J, Couper L, Mordecai EA. A mosquito parasite is locally adapted to its host but not temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537840. [PMID: 37131754 PMCID: PMC10153241 DOI: 10.1101/2023.04.21.537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Climate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. L. clarki parasites were locally adapted to their hosts, with 2.6x higher infection rates on sympatric compared to allopatric populations, but were not locally adapted to temperature. Infection peaked at the intermediate temperature of 13°C. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.
Collapse
|
23
|
Ware-Gilmore F, Novelo M, Sgrò CM, Hall MD, McGraw EA. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220011. [PMID: 36744557 PMCID: PMC9900713 DOI: 10.1098/rstb.2022.0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
The geographical range of the mosquito vector for many human disease-causing viruses, Aedes aegypti, is expanding, in part owing to changing climate. The capacity of this species to adapt to thermal stress will affect its future distributions. It is unclear how much heritable genetic variation may affect the upper thermal limits of mosquito populations over the long term. Nor are the genetic pathways that confer thermal tolerance fully understood. In the short term, cells induce a plastic, protective response known as 'heat shock'. Using a physiological 'knockdown' assay, we investigated mosquito thermal tolerance to characterize the genetic architecture of the trait. While families representing the extreme ends of the distribution for knockdown time differed from one another, the trait exhibited low but non-zero broad-sense heritability. We then explored whether families representing thermal performance extremes differed in their heat shock response by measuring gene expression of heat shock protein-encoding genes Hsp26, Hsp83 and Hsp70. Contrary to prediction, the families with higher thermal tolerance demonstrated less Hsp expression. This pattern may indicate that other mechanisms of heat tolerance, rather than heat shock, may underpin the stress response, and the costly production of HSPs may instead signal poor adaptation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth A. McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Differential expression of Phlebotomus tobbi Adler, Theodor & Lourie, 1930 (Diptera: Psychodidae) genes under different environmental conditions. Acta Trop 2023; 239:106808. [PMID: 36577475 DOI: 10.1016/j.actatropica.2022.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/26/2022]
Abstract
Phlebotomus tobbi is a widely distributed sand fly species in Turkey and is the proven vector of Leishmania infantum and several Phleboviruses. Information regarding the genetic basis of phenotypic plasticity is crucial for managing vector-borne diseases, as the changing environmental conditions have consequences for the survival of arthropods and the disease agents they transmit. However, limited data is available on the impacts of environmental conditions on the traits associated with sand fly survival, reproduction, and vectorial competence. The present study aimed to reveal the changes in the expression levels of three selected P. tobbi genes using laboratory-reared and wild-caught populations. A nervous system protein, Cacophony (PtCac), related to the life history traits of sand flies, and two sand fly salivary protein genes, PtSP32 and PtSP38, influence the infection of the vertebrate hosts, were assessed. Sand flies were maintained at 23 °C and 27 °C in the laboratory to evaluate the relationship between temperature and the expressed phenotypes. Field collections were carried out in three climatically distinct regions of Turkey to establish the regional differences in the gene expression levels of natural P. tobbi populations. In the laboratory, PtCac expression increased with the temperature. However, PtCac expression was negatively correlated with local temperature and humidity conditions. No differences were detected in the PtSP32 gene expression levels of both laboratory-reared and wild-caught females, but a negative correlation was observed with relative humidity in natural populations. Although the expression levels of PtSP38 did not differ among the females collected from distinct regions, a positive correlation was detected in the laboratory-reared colony. The findings indicated that changes in environmental conditions could drive the expression levels of P. tobbi genes, which influence population dynamics and the transmission risk of the disease.
Collapse
|
25
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
26
|
Developing Wolbachia-based disease interventions for an extreme environment. PLoS Pathog 2023; 19:e1011117. [PMID: 36719928 PMCID: PMC9917306 DOI: 10.1371/journal.ppat.1011117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/10/2023] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.
Collapse
|
27
|
Nava S, Gamietea IJ, Morel N, Guglielmone AA, Estrada-Peña A. Assessment of habitat suitability for the cattle tick Rhipicephalus (Boophilus) microplus in temperate areas. Res Vet Sci 2022; 150:10-21. [DOI: 10.1016/j.rvsc.2022.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
|
28
|
Ma J, Guo Y, Gao J, Tang H, Xu K, Liu Q, Xu L. Climate Change Drives the Transmission and Spread of Vector-Borne Diseases: An Ecological Perspective. BIOLOGY 2022; 11:1628. [PMID: 36358329 PMCID: PMC9687606 DOI: 10.3390/biology11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023]
Abstract
Climate change affects ecosystems and human health in multiple dimensions. With the acceleration of climate change, climate-sensitive vector-borne diseases (VBDs) pose an increasing threat to public health. This paper summaries 10 publications on the impacts of climate change on ecosystems and human health; then it synthesizes the other existing literature to more broadly explain how climate change drives the transmission and spread of VBDs through an ecological perspective. We highlight the multi-dimensional nature of climate change, its interaction with other factors, and the impact of the COVID-19 pandemic on transmission and spread of VBDs, specifically including: (1) the generally nonlinear relationship of local climate (temperature, precipitation and wind) and VBD transmission, with temperature especially exhibiting an n-shape relation; (2) the time-lagged effect of regional climate phenomena (the El Niño-Southern Oscillation and North Atlantic Oscillation) on VBD transmission; (3) the u-shaped effect of extreme climate (heat waves, cold waves, floods, and droughts) on VBD spread; (4) how interactions between non-climatic (land use and human mobility) and climatic factors increase VBD transmission and spread; and (5) that the impact of the COVID-19 pandemic on climate change is debatable, and its impact on VBDs remains uncertain. By exploring the influence of climate change and non-climatic factors on VBD transmission and spread, this paper provides scientific understanding and guidance for their effective prevention and control.
Collapse
Affiliation(s)
- Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Yongman Guo
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanxing Tang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Keqiang Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Ziegler R, Blanckenhorn WU, Mathis A, Verhulst NO. Video analysis of the locomotory behaviour of Aedes aegypti and Ae. japonicus mosquitoes under different temperature regimes in a laboratory setting. J Therm Biol 2022; 105:103205. [DOI: 10.1016/j.jtherbio.2022.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
|
30
|
Zhao S, Li Y, Fu S, Liu M, Li F, Liu C, Yu J, Rui L, Wang D, Wang H. Environmental factors and spatiotemporal distribution of Japanese encephalitis after vaccination campaign in Guizhou Province, China (2004-2016). BMC Infect Dis 2021; 21:1172. [PMID: 34809606 PMCID: PMC8607706 DOI: 10.1186/s12879-021-06857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although a vaccination campaign has been conducted since 2004, Japanese encephalitis (JE) is still a public health problem in Guizhou, one of the provinces with the highest incidence of JE in China. The aim of this study was to understand the spatiotemporal distribution of JE and its relationship with environmental factors in Guizhou Province in the post-vaccination era, 2004–2016. Methods We collected data on human JE cases in Guizhou Province from 2004 to 2016 from the national infectious disease reporting system. A Poisson regression model was used to analyze the relationship between JE occurrence and environmental factors amongst counties. Results Our results showed that the incidence and mortality of JE decreased after the initiation of vaccination. JE cases were mainly concentrated in preschool and school-age children and the number of cases in children over age 15 years was significantly decreased compared with the previous 10 years; the seasonality of JE before and after the use of vaccines was unchanged. JE incidence was positively associated with cultivated land and negatively associated with gross domestic product (GDP) per capita, vegetation coverage, and developed land. In areas with cultivated land coverage < 25%, vegetation coverage > 55%, and urban area coverage > 25%, the JE risk was lower. The highest JE incidence was among mid-level GDP areas and in moderately urbanized areas. Conclusions This study assessed the relationship between incidence of JE and environmental factors in Guizhou Province. Our results highlight that the highest risk of JE transmission in the post-vaccination era is in mid-level developed areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06857-3.
Collapse
Affiliation(s)
- Suye Zhao
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Yidan Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.,School of National Security and Emergency Management, Beijing Normal University, Beijing, 100875, China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Ming Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Chunting Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jing Yu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Liping Rui
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Dingming Wang
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China.
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
31
|
Lim AY, Cheong HK, Chung Y, Sim K, Kim JH. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Parasit Vectors 2021; 14:559. [PMID: 34715902 PMCID: PMC8555308 DOI: 10.1186/s13071-021-05071-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite concerns regarding increasingly frequent and intense heat waves due to global warming, there is still a lack of information on the effects of extremely high temperatures on the adult abundance of mosquito species that are known to transmit vector-borne diseases. This study aimed to evaluate the effects of extremely high temperatures on the abundance of mosquitoes by analyzing time series data for temperature and mosquito abundance in Incheon Metropolitan City (IMC), Republic of Korea, for the period from 2015 to 2020. METHODS A generalized linear model with Poisson distribution and overdispersion was used to model the nonlinear association between temperature and mosquito count for the whole study area and for its constituent urban and rural regions. The association parameters were pooled using multivariate meta-regression. The temperature-mosquito abundance curve was estimated from the pooled estimates, and the ambient temperature at which mosquito populations reached maximum abundance (TMA) was estimated using a Monte Carlo simulation method. To quantify the effect of extremely high temperatures on mosquito abundance, we estimated the mosquito abundance ratio (AR) at the 99th temperature percentile (AR99th) against the TMA. RESULTS Culex pipiens was the most common mosquito species (51.7%) in the urban region of the IMC, while mosquitoes of the genus Aedes (Ochlerotatus) were the most common in the rural region (47.8%). Mosquito abundance reached a maximum at 23.5 °C for Cx. pipiens and 26.4 °C for Aedes vexans. Exposure to extremely high temperatures reduced the abundance of Cx. pipiens mosquitoes {AR99th 0.34 [95% confidence interval (CI) 0.21-0.54]} to a greater extent than that of Anopheles spp. [AR99th 0.64 (95% CI 0.40-1.03)]. When stratified by region, Ae. vexans and Ochlerotatus koreicus mosquitoes showed higher TMA and a smaller reduction in abundance at extreme heat in urban Incheon than in Ganghwa, suggesting that urban mosquitoes can thrive at extremely high temperatures as they adapt to urban thermal environments. CONCLUSIONS We confirmed that the temperature-related abundance of the adult mosquitoes was species and location specific. Tailoring measures for mosquito prevention and control according to mosquito species and anticipated extreme temperature conditions would help to improve the effectiveness of mosquito-borne disease control programs.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kisung Sim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
32
|
Hector TE, Sgrò CM, Hall MD. Thermal limits in the face of infectious disease: How important are pathogens? GLOBAL CHANGE BIOLOGY 2021; 27:4469-4480. [PMID: 34170603 DOI: 10.1111/gcb.15761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of both extreme thermal events and disease outbreaks are predicted to continue to shift as a consequence of global change. As a result, species persistence will likely be increasingly dependent on the interaction between thermal stress and pathogen exposure. Missing from the intersection between studies of infectious disease and thermal ecology, however, is the capacity for pathogen exposure to directly disrupt a host's ability to cope with thermal stress. Common sources of variation in host thermal performance, which are likely to interact with infection, are also often unaccounted for when assessing either the vulnerability of species or the potential for disease spread during extreme thermal events. Here, we describe how infection can directly alter host thermal limits, to a degree that exceeds the level of variation commonly seen across species large geographic distributions and that equals the detrimental impact of other ecologically relevant stressors. We then discuss various sources of heterogeneity within and between populations that are likely to be important in mediating the impact that infection has on variation in host thermal limits. In doing so we highlight how infection is a widespread and important source of variation in host thermal performance, which will have implications for both the persistence and vulnerability of species and the dynamics and transmission of disease in a more thermally extreme world.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
- Centre of Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
33
|
Trypanosoma cruzi infection follow-up in a sylvatic vector of Chagas disease: Comparing early and late stage nymphs. PLoS Negl Trop Dis 2021; 15:e0009729. [PMID: 34543275 PMCID: PMC8452000 DOI: 10.1371/journal.pntd.0009729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and transmitted by the triatomine Mepraia spinolai in the southwest of South America. Here, we examined the T. cruzi-infection dynamics of field-caught M. spinolai after laboratory feeding, with a follow-up procedure on bug populations collected in winter and spring of 2017 and 2018. Bugs were analyzed twice to evaluate T. cruzi-infection by PCR assays of urine/fecal samples, the first evaluation right after collection and the second 40 days after the first feeding. We detected bugs with: the first sample positive and second negative (+/-), the first sample negative and second positive (-/+), and with both samples positive or negative (+/+; -/-). Bugs that resulted positive on both occasions were the most frequent, with the exception of those collected in winter 2018. Infection rate in spring was higher than winter only in 2018. Early and late stage nymphs presented similar T. cruzi-infection rates except for winter 2017; therefore, all nymphs may contribute to T. cruzi-transmission to humans. Assessment of infection using two samples represents a realistic way to determine the infection a triatomine can harbor. The underlying mechanism may be that some bugs do not excrete parasites unless they are fed and maintained for some time under environmentally controlled conditions before releasing T. cruzi, which persists in the vector hindgut. We suggest that T. cruzi-infection dynamics regarding the three types of positive-PCR results detected by follow-up represent: residual T. cruzi in the rectal lumen (+/-), colonization of parasites attached to the rectal wall (-/+), and presence of both kinds of flagellates in the hindgut of triatomines (+/+). We suggest residual T. cruzi-infections are released after feeding, and result 60–90 days after infection persisting in the rectal lumen after a fasting event, a phenomenon that might vary between contrasting seasons and years. In the vector-borne transmission of Chagas disease, approximately 150 species of triatomine bugs are potential vectors for the parasite Trypanosoma cruzi. A competent vector must fulfill several features such as the ability to host, amplify, and differentiate the parasite, allowing T. cruzi persistence within the insect vector. Our aim was to describe the dynamics of T. cruzi infection in a competent triatomine species collected in two contrasting seasons—with different environmental temperatures—of 2017 and 2018. We used a follow-up procedure including T. cruzi detection right after collection and 40 days later; both detections were performed after laboratory feeding. Most infected bugs were T. cruzi positive on both occasions. However, infected bugs from winter 2018 presented switches from T. cruzi negative at collection to T. cruzi positive 40 days later. The results suggest infections with T. cruzi attached to the hindgut wall as the colonization site, caused by infections that persist there after a fasting event, are released after a second feeding.
Collapse
|
34
|
Lewis G, Bonsall MB. Modelling the Efficacy of Febrile Heating in Infected Endotherms. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.717822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fever is a response to infection characterised by an increase in body temperature. The adaptive value of this body temperature increase for endotherms is unclear, given the relatively small absolute temperature increases associated with endotherm fever, its substantial metabolic costs, and the plausibility for pathogens to adapt to higher temperatures. We consider three thermal mechanisms for fever's antimicrobial effect: (1) direct growth inhibition by elevating temperature above the pathogens optimal growth temperature; (2) further differentiating the host body from the wider environment; and (3) through increasing thermal instability of the pathogen environment. We assess these by modelling their effects pathogen on temperature dependent growth, finding thermal effects can vary from highly to minimally effective depending on pathogen species. We also find, depending on the specification of a simple physical model, intermittent heating can inhibit pathogen growth more effectively than continuous heating with an energy constraint.
Collapse
|
35
|
The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in Culex Mosquitoes. Viruses 2021; 13:v13091822. [PMID: 34578403 PMCID: PMC8472872 DOI: 10.3390/v13091822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/22/2023] Open
Abstract
Temperature plays a significant role in the vector competence, extrinsic incubation period, and intensity of infection of arboviruses within mosquito vectors. Most laboratory infection studies use static incubation temperatures that may not accurately reflect daily temperature ranges (DTR) to which mosquitoes are exposed. This could potentially compromise the application of results to real world scenarios. We evaluated the effect of fluctuating DTR versus static temperature treatments on the infection, dissemination, and transmission rates and viral titers of Culex tarsalis and Culex quinquefasciatus mosquitoes for West Nile virus. Two DTR regimens were tested including an 11 and 15 °C range, both fluctuating around an average temperature of 28 °C. Overall, no significant differences were found between DTR and static treatments for infection, dissemination, or transmission rates for either species. However, significant treatment differences were identified for both Cx. tarsalis and Cx. quinquefasciatus viral titers. These effects were species-specific and most prominent later in the infection. These results indicate that future studies on WNV infections in Culex mosquitoes should consider employing realistic DTRs to reflect interactions most accurately between the virus, vector, and environment.
Collapse
|
36
|
González-Rete B, Gutiérrez-Cabrera AE, de Fuentes-Vicente JA, Salazar-Schettino PM, Cabrera-Bravo M, Córdoba-Aguilar A. Higher temperatures reduce the number of Trypanosoma cruzi parasites in the vector Triatoma pallidipennis. Parasit Vectors 2021; 14:385. [PMID: 34348795 PMCID: PMC8336246 DOI: 10.1186/s13071-021-04872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Relatively little is known about how pathogens transmitted by vector insects are affected by changing temperatures analogous to those occurring in the present global warming scenario. One expectation is that, like their ectothermic vectors, an increase in temperature could reduce their fitness. Here, we have investigated the effect of high temperatures on the abundance of Trypanosoma cruzi parasites during infection in the vector Triatoma pallidipennis. Methods We exposed T. pallidipennis nymphs to two strains (Morelos and Chilpancingo) of T. cruzi. Once infected, the fifth-instar bugs were distributed among three different temperature groups, i.e. 20, 30, and 34 °C, and the resulting parasites were counted when the bugs reached adulthood. Results The number of parasites increased linearly with time at 20 °C and, to a lesser extent, at 30 °C, especially in the Chilpancingo compared to the Morelos strain. Conversely, at 34 °C, the number of parasites of both strains decreased significantly compared to the other two temperatures. Conclusions These results suggest negative effects on the abundance of T. cruzi in T. pallidipennis at high temperatures. This is the first evidence of the effect of high temperatures on a pathogenic agent transmitted by an insect vector in the context of global warming. Further tests should be done to determine whether this pattern occurs with other triatomine species and T. cruzi strains. Graphical abstract ![]()
Collapse
Affiliation(s)
- Berenice González-Rete
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Microbiología Y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana E Gutiérrez-Cabrera
- CONACYT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Paz María Salazar-Schettino
- Departamento de Microbiología Y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología Y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
37
|
Ware-Gilmore F, Sgrò CM, Xi Z, Dutra HLC, Jones MJ, Shea K, Hall MD, Thomas MB, McGraw EA. Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Negl Trop Dis 2021; 15:e0009548. [PMID: 34292940 PMCID: PMC8297775 DOI: 10.1371/journal.pntd.0009548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits. Here, we examine how DENV infection alters Ae. aegypti thermotolerance by using a high-throughput physiological 'knockdown' assay modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have previously been shown to accurately predict an insect's distribution in the field. We show that DENV infection increases thermal sensitivity, an effect that may ultimately limit the geographic range of the virus. We also show that the endosymbiotic bacterium Wolbachia pipientis, which is currently being released globally as a biological control agent, has a similar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolbachia did not provide protection against DENV-associated effects on thermal tolerance, nor were the effects of the two infections additive. The latter suggests that the microbes may act by similar means, potentially through activation of shared immune pathways or energetic tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia's efficacy following field release may wish to consider the effects these microbes have on host survival.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Heverton L. C. Dutra
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Katriona Shea
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew B. Thomas
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elizabeth A. McGraw
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
38
|
Oliveira BF, Yogo WIG, Hahn DA, Yongxing J, Scheffers BR. Community-wide seasonal shifts in thermal tolerances of mosquitoes. Ecology 2021; 102:e03368. [PMID: 33866546 DOI: 10.1002/ecy.3368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
The broadening in species' thermal tolerance limits and breadth from tropical to temperate latitudes is proposed to reflect spatial gradients in temperature seasonality, but the importance of seasonal shifts in thermal tolerances within and across locations is much less appreciated. We performed thermal assays to examine the maximum and minimum critical temperatures (CTmax and CTmin , respectively) of a mosquito community across their active seasons. Mosquito CTmin tracked seasonal shifts in temperature, whereas CTmax tracked a countergradient pattern with lowest heat tolerances in summer. Mosquito thermal breadth decreased from spring to summer and then increased from summer to autumn. We show a temporal dichotomy in thermal tolerances with thermal breadths of temperate organisms in summer reflecting those of the tropics ("tropicalization") that is sandwiched between a spring and autumn "temperatization." Therefore, our tolerance patterns at a single temperate latitude recapitulate classical patterns across latitude. These findings highlight the need to understand the temporal and spatial components of thermotolerance variation better, including plasticity and rapid seasonal selection, and the potential for this variation to affect species responses to climate change. With summers becoming longer and increasing winter nighttime temperatures, we expect increasing tropicalization of species thermal tolerances in both space and time.
Collapse
Affiliation(s)
- Brunno F Oliveira
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Wendtwoin I G Yogo
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA.,AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 91190, France
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida/IFAS, Gainesville, Florida, 32611, USA
| | - Jiang Yongxing
- Mosquito Control Services, City of Gainesville, 405 Northwest 39th Avenue, Gainesville, Florida, 32609, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA
| |
Collapse
|
39
|
Interventions can shift the thermal optimum for parasitic disease transmission. Proc Natl Acad Sci U S A 2021; 118:2017537118. [PMID: 33836584 DOI: 10.1073/pnas.2017537118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Temperature constrains the transmission of many pathogens. Interventions that target temperature-sensitive life stages, such as vector control measures that kill intermediate hosts, could shift the thermal optimum of transmission, thereby altering seasonal disease dynamics and rendering interventions less effective at certain times of the year and with global climate change. To test these hypotheses, we integrated an epidemiological model of schistosomiasis with empirically determined temperature-dependent traits of the human parasite Schistosoma mansoni and its intermediate snail host (Biomphalaria spp.). We show that transmission risk peaks at 21.7 °C (T opt ), and simulated interventions targeting snails and free-living parasite larvae increased T opt by up to 1.3 °C because intervention-related mortality overrode thermal constraints on transmission. This T opt shift suggests that snail control is more effective at lower temperatures, and global climate change will increase schistosomiasis risk in regions that move closer to T opt Considering regional transmission phenologies and timing of interventions when local conditions approach T opt will maximize human health outcomes.
Collapse
|
40
|
Flanagan SP, Rose E, Jones AG. The population genomics of repeated freshwater colonizations by Gulf pipefish. Mol Ecol 2021; 30:1672-1687. [PMID: 33580570 DOI: 10.1111/mec.15841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/30/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
How organisms adapt to the novel challenges imposed by the colonization of a new habitat has long been a central question in evolutionary biology. When multiple populations of the same species independently adapt to similar environmental challenges, the question becomes whether the populations have arrived at their adaptations through the same genetic mechanisms. In recent years, genetic techniques have been used to tackle these questions by investigating the genome-level changes underlying local adaptation. Here, we present a genomic analysis of colonization of freshwater habitats by a primarily marine fish, the Gulf pipefish (Syngnathus scovelli). We sample pipefish from four geographically distinct freshwater locations and use double-digest restriction site associated DNA sequencing to compare them to 12 previously studied saltwater populations. The two most geographically distant and isolated freshwater populations are the most genetically distinct, although demographic analysis suggests that these populations are experiencing ongoing migration with their saltwater neighbours. Additionally, outlier regions were found genome-wide, showing parallelism across ecotype pairs. We conclude that these multiple freshwater colonizations involve similar genomic regions, despite the large geographical distances and different underlying mechanisms. These similar patterns are probably facilitated by the interacting effects of intrinsic barriers, gene flow among populations and ecological selection in the Gulf pipefish.
Collapse
Affiliation(s)
- Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily Rose
- Department of Biology, Valdosta State University, Valdosta, GA, USA
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
41
|
Abstract
Climate change is expected to have complex effects on infectious diseases, causing some to increase, others to decrease, and many to shift their distributions. There have been several important advances in understanding the role of climate and climate change on wildlife and human infectious disease dynamics over the past several years. This essay examines 3 major areas of advancement, which include improvements to mechanistic disease models, investigations into the importance of climate variability to disease dynamics, and understanding the consequences of thermal mismatches between host and parasites. Applying the new information derived from these advances to climate-disease models and addressing the pressing knowledge gaps that we identify should improve the capacity to predict how climate change will affect disease risk for both wildlife and humans.
Collapse
Affiliation(s)
- Jason R. Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremy M. Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
42
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020; 4:e416-e423. [PMID: 32918887 PMCID: PMC7490804 DOI: 10.1016/s2542-5196(20)30178-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Jamie M. Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Melisa M. Shah
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
44
|
Gangoso L, Aragonés D, Martínez-de la Puente J, Lucientes J, Delacour-Estrella S, Estrada Peña R, Montalvo T, Bueno-Marí R, Bravo-Barriga D, Frontera E, Marqués E, Ruiz-Arrondo I, Muñoz A, Oteo JA, Miranda MA, Barceló C, Arias Vázquez MS, Silva-Torres MI, Ferraguti M, Magallanes S, Muriel J, Marzal A, Aranda C, Ruiz S, González MA, Morchón R, Gómez-Barroso D, Figuerola J. Determinants of the current and future distribution of the West Nile virus mosquito vector Culex pipiens in Spain. ENVIRONMENTAL RESEARCH 2020; 188:109837. [PMID: 32798954 DOI: 10.1016/j.envres.2020.109837] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Changes in environmental conditions, whether related or not to human activities, are continuously modifying the geographic distribution of vectors, which in turn affects the dynamics and distribution of vector-borne infectious diseases. Determining the main ecological drivers of vector distribution and how predicted changes in these drivers may alter their future distributions is therefore of major importance. However, the drivers of vector populations are largely specific to each vector species and region. Here, we identify the most important human-activity-related and bioclimatic predictors affecting the current distribution and habitat suitability of the mosquito Culex pipiens and potential future changes in its distribution in Spain. We determined the niche of occurrence (NOO) of the species, which considers only those areas lying within the range of suitable environmental conditions using presence data. Although almost ubiquitous, the distribution of Cx. pipiens is mostly explained by elevation and the degree of urbanization but also, to a lesser extent, by mean temperatures during the wettest season and temperature seasonality. The combination of these predictors highlights the existence of a heterogeneous pattern of habitat suitability, with most suitable areas located in the southern and northeastern coastal areas of Spain, and unsuitable areas located at higher altitude and in colder regions. Future climatic predictions indicate a net decrease in distribution of up to 29.55%, probably due to warming and greater temperature oscillations. Despite these predicted changes in vector distribution, their effects on the incidence of infectious diseases are, however, difficult to forecast since different processes such as local adaptation to temperature, vector-pathogen interactions, and human-derived changes in landscape may play important roles in shaping the future dynamics of pathogen transmission.
Collapse
Affiliation(s)
- L Gangoso
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain.
| | - D Aragonés
- Remote Sensing and Geographic Information Systems Laboratory (LAST-EBD), Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain
| | - J Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - J Lucientes
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - S Delacour-Estrella
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - R Estrada Peña
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - T Montalvo
- Agència de Salut Pública de Barcelona, Consorci Sanitari de Barcelona, Plaça Lesseps 8, 08023, Barcelona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - R Bueno-Marí
- Departamento de Investigación y Desarrollo (I+D), Laboratorios Lokímica, Polígono Industrial El Bony, C/42, n°4, 46470, Catarroja, Valencia, Spain
| | - D Bravo-Barriga
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Av. de la Universidad s/n, 10003, Cáceres, Spain
| | - E Frontera
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Av. de la Universidad s/n, 10003, Cáceres, Spain
| | - E Marqués
- Service of Mosquito Control (Badia de Roses i del Baix Ter), Plaça del Bruel 1, Castelló d'Empúries, 17486, Empuriabrava, Girona, Spain
| | - I Ruiz-Arrondo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, La Rioja, Spain
| | - A Muñoz
- Quimera Biological Systems S.L., Pol. Malpica-Alfindén, C/ Olivo 14, Nave 6, 50171, La Puebla de Alfindén, Zaragoza, Spain
| | - J A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, La Rioja, Spain
| | - M A Miranda
- Applied Zoology and Animal Conservation group, Department of Biology, University of the Balearic Islands (UIB), Ctra. de Valldemossa, km 7.5, 07122, Palma, Illes Balears, Spain
| | - C Barceló
- Applied Zoology and Animal Conservation group, Department of Biology, University of the Balearic Islands (UIB), Ctra. de Valldemossa, km 7.5, 07122, Palma, Illes Balears, Spain
| | - M S Arias Vázquez
- Zoonoses and Public Health. COPAR Research Group, Faculty of Veterinary, University of Santiago de Compostela, Av. Carvallo Calero, 27002, Lugo, Spain
| | - M I Silva-Torres
- Zoonoses and Public Health. COPAR Research Group, Faculty of Veterinary, University of Santiago de Compostela, Av. Carvallo Calero, 27002, Lugo, Spain
| | - M Ferraguti
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - S Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - J Muriel
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain; Instituto Pirenaico de Ecología, IPE (CSIC), Av. Nuestra Señora de la Victoria 16, 22700, Jaca, Spain
| | - A Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - C Aranda
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, N-340, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - S Ruiz
- Service of Mosquito Control de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007, Huelva, Spain
| | - M A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development Basque Research and Technology Alliance (BRTA), Berreaga 1, 48160, Derio, Bizkaia, Spain
| | - R Morchón
- Group of Animal and Human dirofilariosis. University of Salamanca, Faculty of Pharmacy, Campus Miguel Unamuno, C/ Lic. Méndez Nieto, s/n, 37007, Salamanca, Spain
| | - D Gómez-Barroso
- Centro Nacional de Epidemiologia. Instituto de Salud Carlos III, C/ Monforte de Lemos 5, 28029, Madrid. Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - J Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| |
Collapse
|
45
|
Aleuy OA, Kutz S. Adaptations, life-history traits and ecological mechanisms of parasites to survive extremes and environmental unpredictability in the face of climate change. Int J Parasitol Parasites Wildl 2020; 12:308-317. [PMID: 33101908 PMCID: PMC7569736 DOI: 10.1016/j.ijppaw.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 10/27/2022]
Abstract
Climate change is increasing weather unpredictability, causing more intense, frequent and longer extreme events including droughts, precipitation, and both heat and cold waves. The performance of parasites, and host-parasite interactions, under these unpredictable conditions, are directly influenced by the ability of parasites to cope with extremes and their capacity to adapt to the new conditions. Here, we review some of the structural, behavioural, life history and ecological characteristics of parasitic nematodes that allow them to persist and adapt to extreme and changing environmental conditions. We focus primarily, but not exclusively, on parasitic nematodes in the Arctic, where temperature extremes are pronounced, climate change is happening most rapidly, and changes in host-parasite interactions are already documented. We discuss how life-history traits, phenotypic plasticity, local adaptation and evolutionary history can influence the short and long term response of parasites to new conditions. A detailed understanding of the complex ecological processes involved in the survival of parasites in extreme and changing conditions is a fundamental step to anticipate the impact of climate change in parasite dynamics.
Collapse
Affiliation(s)
- O. Alejandro Aleuy
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - S. Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
46
|
Suh E, Grossman MK, Waite JL, Dennington NL, Sherrard-Smith E, Churcher TS, Thomas MB. The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. Nat Ecol Evol 2020; 4:940-951. [PMID: 32367033 PMCID: PMC7334094 DOI: 10.1038/s41559-020-1182-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Insecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how the timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite Plasmodium falciparum. In laboratory experiments, we found no effect of biting time itself on the proportion of mosquitoes that became infectious (vector competence) at constant temperature. However, when mosquitoes were maintained under more realistic fluctuating temperatures, there was a significant increase in competence for mosquitoes feeding in the evening (18:00), and a significant reduction in competence for those feeding in the morning (06:00), relative to those feeding at midnight (00:00). These effects appear to be due to thermal sensitivity of malaria parasites during the initial stages of parasite development within the mosquito, and the fact that mosquitoes feeding in the evening experience cooling temperatures during the night, whereas mosquitoes feeding in the morning quickly experience warming temperatures that are inhibitory to parasite establishment. A transmission dynamics model illustrates that such differences in competence could have important implications for malaria prevalence, the extent of transmission that persists in the presence of bed nets, and the epidemiological impact of behavioural resistance. These results indicate that the interaction of temperature and feeding behaviour could be a major ecological determinant of the vectorial capacity of malaria mosquitoes.
Collapse
Affiliation(s)
- Eunho Suh
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA.
| | - Marissa K Grossman
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA.,Green Mountain Antibodies, Burlington, VT, USA
| | - Nina L Dennington
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Penn State University, University Park, PA, USA
| |
Collapse
|
47
|
Cooke SJ, Madliger CL, Cramp RL, Beardall J, Burness G, Chown SL, Clark TD, Dantzer B, de la Barrera E, Fangue NA, Franklin CE, Fuller A, Hawkes LA, Hultine KR, Hunt KE, Love OP, MacMillan HA, Mandelman JW, Mark FC, Martin LB, Newman AEM, Nicotra AB, Robinson SA, Ropert-Coudert Y, Rummer JL, Seebacher F, Todgham AE. Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. CONSERVATION PHYSIOLOGY 2020; 8:coaa016. [PMID: 32274063 PMCID: PMC7125050 DOI: 10.1093/conphys/coaa016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 14 3216, Australia
| | - Ben Dantzer
- Department of Psychology, Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, 58190, Mexico
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, 2193, South Africa
| | - Lucy A Hawkes
- College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27574 Bremerhaven, Germany
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences (SEALS) and Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 5811, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Ave. Davis, CA, 95616, USA
| |
Collapse
|
48
|
Genné D, Sarr A, Rais O, Voordouw MJ. Competition Between Strains of Borrelia afzelii in Immature Ixodes ricinus Ticks Is Not Affected by Season. Front Cell Infect Microbiol 2019; 9:431. [PMID: 31921706 PMCID: PMC6930885 DOI: 10.3389/fcimb.2019.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
49
|
Hector TE, Sgrò CM, Hall MD. Pathogen exposure disrupts an organism's ability to cope with thermal stress. GLOBAL CHANGE BIOLOGY 2019; 25:3893-3905. [PMID: 31148326 DOI: 10.1111/gcb.14713] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
As a result of global climate change, species are experiencing an escalation in the severity and regularity of extreme thermal events. With patterns of disease distribution and transmission predicted to undergo considerable shifts in the coming years, the interplay between temperature and pathogen exposure will likely determine the capacity of a population to persist under the dual threat of global change and infectious disease. In this study, we investigated how exposure to a pathogen affects an individual's ability to cope with extreme temperatures. Using experimental infections of Daphnia magna with its obligate bacterial pathogen Pasteuria ramosa, we measured upper thermal limits of multiple host and pathogen genotype combinations across the dynamic process of infection and under various forms (static and ramping) of thermal stress. We find that pathogens substantially limit the thermal tolerance of their host, with the reduction in upper thermal limits on par with the breadth of variation seen across similar species entire geographical ranges. The precise magnitude of any reduction, however, was specific to the host and pathogen genotype combination. In addition, as thermal ramping rate slowed, upper thermal limits of both healthy and infected individuals were reduced. Our results suggest that the capacity of a population to evolve new thermal limits, when also faced with the threat of infection, will depend not only on a host's genetic variability in warmer environments, but also on the frequency of host and pathogen genotypes. We suggest that pathogen-induced alterations of host thermal performance should be taken into account when assessing the resilience of any population and its potential for adaptation to global change.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|