1
|
Tian M, Sun W, Mao Y, Zhang Y, Liu H, Tang Y. Mechanistic study of acupuncture on the pterygopalatine ganglion to improve allergic rhinitis: analysis of multi-target effects based on bioinformatics/network topology strategie. Brief Bioinform 2024; 25:bbae287. [PMID: 38877888 PMCID: PMC11179119 DOI: 10.1093/bib/bbae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
One of the prevalent chronic inflammatory disorders of the nasal mucosa, allergic rhinitis (AR) has become more widespread in recent years. Acupuncture pterygopalatine ganglion (aPPG) is an emerging alternative therapy that is used to treat AR, but the molecular mechanisms underlying its anti-inflammatory effects are unclear. This work methodically demonstrated the multi-target mechanisms of aPPG in treating AR based on bioinformatics/topology using techniques including text mining, bioinformatics, and network topology, among others. A total of 16 active biomarkers and 108 protein targets related to aPPG treatment of AR were obtained. A total of 345 Gene Ontology terms related to aPPG of AR were identified, and 135 pathways were screened based on Kyoto Encyclopedia of Genes and Genomes analysis. Our study revealed for the first time the multi-targeted mechanism of action of aPPG in the treatment of AR. In animal experiments, aPPG ameliorated rhinitis symptoms in OVA-induced AR rats; decreased serum immunoglobulin E, OVA-sIgE, and substance P levels; elevated serum neuropeptide Y levels; and modulated serum Th1/Th2/Treg/Th17 cytokine expression by a mechanism that may be related to the inhibition of activation of the TLR4/NF-κB/NLRP3 signaling pathway. In vivo animal experiments once again validated the results of the bioinformatics analysis. This study revealed a possible multi-target mechanism of action between aPPG and AR, provided new insights into the potential pathogenesis of AR, and proved that aPPG was a promising complementary alternative therapy for the treatment of AR.
Collapse
|
2
|
Russjan E. The Role of Peptides in Asthma-Obesity Phenotype. Int J Mol Sci 2024; 25:3213. [PMID: 38542187 PMCID: PMC10970696 DOI: 10.3390/ijms25063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 01/04/2025] Open
Abstract
The co-occurrence of asthma and obesity is becoming an increasingly common health problem. It became clear that both diseases are closely related, since overweight/obesity are associated with an increased risk of asthma development, and more than half of the subjects with severe or difficult-to-treat asthma are obese. Currently, there are no specific guidelines for the treatment of this group of patients. The mechanisms involved in the asthma-obesity phenotype include low-grade chronic inflammation and changes in pulmonary physiology. However, genetic predispositions, gender differences, comorbid conditions, and gut microbiota also seem to be important. Regulatory peptides affect many processes related to the functioning of the respiratory tract and adipose tissue. Adipokines such as leptin, adiponectin, resistin, and the less studied omentin, chemerin, and visfatin, as well as the gastrointestinal hormones ghrelin, cholecystokinin, glucagon-like peptide-1, and neuropeptides, including substance P or neuropeptide Y, can play a significant role in asthma with obesity. The aim of this article is to provide a concise review of the contribution of particular peptides in inflammatory reactions, obesity, asthma, and a combination of both diseases, as well as emphasize their potential role in the effective treatment of the asthma-obesity phenotype in the future.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Yang T, Hei R, Li X, Ma T, Shen Y, Liu C, He W, Zhu L, Gu Y, Hu Y, Wei W, Shen Y. The role of NPY2R/NFATc1/DYRK1A regulatory axis in sebaceous glands for sebum synthesis. Cell Mol Biol Lett 2023; 28:60. [PMID: 37501148 PMCID: PMC10375735 DOI: 10.1186/s11658-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Sebaceous glands (SGs) synthesize and secret sebum to protect and moisturize the dermal system via the complicated endocrine modulation. Dysfunction of SG are usually implicated in a number of dermal and inflammatory diseases. However, the molecular mechanism behind the differentiation, development and proliferation of SGs is far away to fully understand. METHODS Herein, the rat volar and mammary tissues with abundant SGs from female SD rats with (post-natal day (PND)-35) and without puberty onset (PND-25) were arrested, and conducted RNA sequencing. The protein complex of Neuropeptide Y receptor Y2 (NPY2R)/NPY5R/Nuclear factor of activated T cells 1 (NFATc1) was performed by immunoprecipitation, mass spectrum and gel filtration. Genome-wide occupancy of NFATc1 was measured by chromatin immunoprecipitation sequencing. Target proteins' expression and localization was detected by western blot and immunofluorescence. RESULTS NPY2R gene was significantly up-regulated in volar and mammary SGs of PND-25. A special protein complex of NPY2R/NPY5R/NFATc1 in PND-25. NFATc1 was dephosphorylated and activated, then localized into nucleus to exert as a transcription factor in volar SGs of PND-35. NFATc1 was especially binding at enhancer regions to facilitate the distal SG and sebum related genes' transcription. Dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) contributed to NFATc1 phosphorylation in PND-25, and inactivated of DYRK1A resulted in NFATc1 dephosphorylation and nuclear localization in PND-35. CONCLUSIONS Our findings unmask the new role of NPY2R/NFATc1/DYRK1A in pubertal SG, and are of benefit to advanced understanding the molecular mechanism of SGs' function after puberty, and provide some theoretical basis for the treatment of acne vulgaris from the perspective of hormone regulation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Renyi Hei
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of Shenyang Military Area Command, Shenyang, 110016, Liaoning, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Tianhua Ma
- Graduate School of Soochow University, Suzhou, 215031, Jiangsu, China
| | - Yifen Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Wen He
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Lin Zhu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yongchun Gu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200013, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
4
|
Liu Y, Gu R, Gao M, Wei Y, Shi Y, Wang X, Gu Y, Gu X, Zhang H. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne) 2023; 14:1126271. [PMID: 37051193 PMCID: PMC10084767 DOI: 10.3389/fendo.2023.1126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the second most common cause of mortality in the world. One of the unresolved difficult pathological mechanism issues in malignant tumors is the imbalance of substance and energy metabolism of tumor cells. Cells maintain life through energy metabolism, and normal cells provide energy through mitochondrial oxidative phosphorylation to generate ATP, while tumor cells demonstrate different energy metabolism. Neuroendocrine control is crucial for tumor cells' consumption of nutrients and energy. As a result, better combinatorial therapeutic approaches will be made possible by knowing the neuroendocrine regulating mechanism of how the neuroendocrine system can fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells for nutrients and metabolites are presented, showing how the neuroendocrine system regulates substance and energy metabolic pathways to satisfy tumor cell proliferation and survival requirements. In this context, targeting neuroendocrine regulatory pathways in tumor cell metabolism can beneficially enhance or temper tumor cell metabolism and serve as promising alternatives to available treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Murong Gao
- Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yangwa Wei
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Wang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- The Second Hospital of Nanjing, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Xin Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Hongru Zhang
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| |
Collapse
|
5
|
Prexler C, Knape MS, Erlewein-Schweizer J, Roll W, Specht K, Woertler K, Weichert W, von Luettichau I, Rossig C, Hauer J, Richter GHS, Weber W, Burdach S. Correlation of Transcriptomics and FDG-PET SUVmax Indicates Reciprocal Expression of Stemness-Related Transcription Factor and Neuropeptide Signaling Pathways in Glucose Metabolism of Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14235999. [PMID: 36497479 PMCID: PMC9735504 DOI: 10.3390/cancers14235999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In Ewing sarcoma (EwS), long-term treatment effects and poor survival rates for relapsed or metastatic cases require individualization of therapy and the discovery of new treatment methods. Tumor glucose metabolic activity varies significantly between patients, and FDG-PET signals have been proposed as prognostic factors. However, the biological basis for the generally elevated but variable glucose metabolism in EwS is not well understood. METHODS We retrospectively included 19 EwS samples (17 patients). Affymetrix gene expression was correlated with maximal standardized uptake value (SUVmax) using machine learning, linear regression modelling, and gene set enrichment analyses for functional annotation. RESULTS Expression of five genes correlated (MYBL2, ELOVL2, NETO2) or anticorrelated (FAXDC2, PLSCR4) significantly with SUVmax (adjusted p-value ≤ 0.05). Additionally, we identified 23 genes with large SUVmax effect size, which were significantly enriched for "neuropeptide Y receptor activity (GO:0004983)" (adjusted p-value = 0.0007). The expression of the members of this signaling pathway (NPY, NPY1R, NPY5R) anticorrelated with SUVmax. In contrast, three transcription factors associated with maintaining stemness displayed enrichment of their target genes with higher SUVmax: RNF2, E2F family, and TCF3. CONCLUSION Our large-scale analysis examined comprehensively the correlations between transcriptomics and tumor glucose utilization. Based on our findings, we hypothesize that stemness may be associated with increased glucose uptake, whereas neuroectodermal differentiation may anticorrelate with glucose uptake.
Collapse
Affiliation(s)
- Carolin Prexler
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, 80804 Munich, Germany
| | - Marie Sophie Knape
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, 80804 Munich, Germany
| | | | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 A1, 48149 Munster, Germany
| | - Katja Specht
- Institute of Pathology, Technische Universität München, 81675 Munich, Germany
| | - Klaus Woertler
- Musculoskeletal Radiology Section, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Irene von Luettichau
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, 80804 Munich, Germany
- ERN PaedCan, 1090 Vienna, Austria
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, 48149 Muenster, Germany
| | - Julia Hauer
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, 80804 Munich, Germany
| | - Guenther H. S. Richter
- Department of Pediatrics, Division of Oncology and Hematology, Charite–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, 13353 Berlin, Germany
| | - Wolfgang Weber
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, 80804 Munich, Germany
- Institute of Pathology, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Academy of Translational Medicine and Department of Molecular Oncology–British Columbia Cancer Research Centre, University of British Columbia, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Correspondence:
| |
Collapse
|
6
|
Oda S, Fukui Y, Hozumi Y, Takeuchi Y, Hosoya M. Development of an Optimized Synthetic Process for an Antiobesity Drug Candidate (S-234462) Featuring Mild Chlorination of Benzoxazolone and In Situ IR Monitoring of a Mitsunobu Reaction. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinichi Oda
- API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yuki Fukui
- API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yasuyuki Hozumi
- API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yoshiyuki Takeuchi
- API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Masahiro Hosoya
- API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| |
Collapse
|
7
|
Taniguchi A, Oda N, Morichika D, Senoo S, Itano J, Fujii U, Guo L, Sunami R, Kiura K, Maeda Y, Miyahara N. Protective effects of neuropeptide Y against elastase-induced pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2022; 322:L539-L549. [PMID: 35107033 DOI: 10.1152/ajplung.00353.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide widely expressed in not only the central nervous system but also immune cells and the respiratory epithelium. Patients with chronic obstructive pulmonary disease (COPD) reportedly exhibit decreased NPY expression in the airway epithelium, but the involvement of NPY in the pathophysiology of COPD has not been defined. We investigated the role of NPY in elastase-induced emphysema. NPY-deficient (NPY-/-) mice and wild-type (NPY+/+) mice received intratracheal instillation of porcine pancreas elastase (PPE). The numbers of inflammatory cells and the levels of cytokines and chemokines in the bronchoalveolar lavage (BAL) fluid and lung homogenates were determined along with quantitative morphometry of lung sections. Intratracheal instillation of PPE induced emphysematous changes and increased NPY levels in the lungs. Compared with NPY+/+ mice, NPY-/- mice had significantly enhanced PPE-induced emphysematous changes and alveolar enlargement. Neutrophilia seen in BAL flu12id of NPY+/+ mice on day 4 after PPE instillation was also enhanced in NPY-/- mice, and the enhancement was associated with increased levels of neutrophil-related and macrophage-related chemokines and IL-17A as well as increased numbers of type 3 innate lymphoid cells in the airways. Treatment with NPY significantly reduced PPE-induced emphysematous changes. Conversely, treatment with a NPY receptor antagonist exacerbated PPE-induced emphysematous changes. These observations indicate that NPY has protective effects against elastase-induced emphysema, and suggest that targeting NPY in emphysema has potential as a therapeutic strategy for delaying disease progression.
Collapse
Affiliation(s)
- Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Naohiro Oda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Morichika
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Junko Itano
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Utako Fujii
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Lili Guo
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Ryota Sunami
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| |
Collapse
|
8
|
Zeng D, Hu Z, Yi Y, Valeria B, Shan G, Chen Z, Zhan C, Lin M, Lin Z, Wang Q. Differences in genetics and microenvironment of lung adenocarcinoma patients with or without TP53 mutation. BMC Pulm Med 2021; 21:316. [PMID: 34635074 PMCID: PMC8507221 DOI: 10.1186/s12890-021-01671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Differences in genetics and microenvironment of LUAD patients with or without TP53 mutation were analyzed to illustrate the role of TP53 mutation within the carcinogenesis of LUAD, which will provide new concepts for the treatment of LUAD. Methods
In this study, we used genetics and clinical info from the TCGA database, including somatic mutations data, RNA-seq, miRNA-seq, and clinical data. More than one bioinformatics tools were used to analyze the unique genomic pattern of TP53-related LUAD. Results According to TP53 gene mutation status, we divided the LUAD patients into two groups, including 265 in the mutant group (MU) and 295 in the wild-type group (WT). 787 significant somatic mutations were detected between the groups, including mutations in titin (TTN), type 2 ryanodine receptor (RYR2) and CUB and Sushi multiple domains 3(CSMD3), which were up-regulated in the MU. However, no significant survival difference was observed. At the RNA level, we obtained 923 significantly differentially expressed genes; in the MU, α-defensin 5(DEFA5), pregnancy-specific glycoprotein 5(PSG5) and neuropeptide Y(NPY) were the most up-regulated genes, glucose-6-phosphatase (G6PC), alpha-fetoprotein (AFP) and carry gametocidal (GC) were the most down-regulated genes. GSVA analysis revealed 30 significant pathways. Compared with the WT, the expression of 12 pathways in the mutant group was up-regulated, most of which pointed to cell division. There were significant differences in tumor immune infiltrating cells, such as Macrophages M1, T cells CD4 memory activated, Mast cells resting, and Dendritic cells resting. In terms of immune genes, a total of 35 immune-related genes were screened, of which VGF (VGF nerve growth factor inducible) and PGC (peroxisome proliferator-activated receptor gamma coactivator) were the most significant up-regulated and down-regulated genes, respectively. Research on the expression pattern of immunomodulators found that 9 immune checkpoint molecules and 6 immune costimulatory molecules were considerably wholly different between the two groups. Conclusions Taking the mutant group as a reference, LUAD patients in the mutant group had significant differences in somatic mutations, mRNA-seq, miRNA-seq, immune infiltration, and immunomodulators, indicating that TP53 mutation plays a crucial role in the occurrence and development of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01671-8.
Collapse
Affiliation(s)
- Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Besskaya Valeria
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Neuropeptide Y Reduces Nasal Epithelial T2R Bitter Taste Receptor-Stimulated Nitric Oxide Production. Nutrients 2021; 13:nu13103392. [PMID: 34684394 PMCID: PMC8538228 DOI: 10.3390/nu13103392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Bitter taste receptors (T2Rs) are G-protein-coupled receptors (GPCRs) expressed on the tongue but also in various locations throughout the body, including on motile cilia within the upper and lower airways. Within the nasal airway, T2Rs detect secreted bacterial ligands and initiate bactericidal nitric oxide (NO) responses, which also increase ciliary beat frequency (CBF) and mucociliary clearance of pathogens. Various neuropeptides, including neuropeptide tyrosine (neuropeptide Y or NPY), control physiological processes in the airway including cytokine release, fluid secretion, and ciliary beating. NPY levels and/or density of NPYergic neurons may be increased in some sinonasal diseases. We hypothesized that NPY modulates cilia-localized T2R responses in nasal epithelia. Using primary sinonasal epithelial cells cultured at air–liquid interface (ALI), we demonstrate that NPY reduces CBF through NPY2R activation of protein kinase C (PKC) and attenuates responses to T2R14 agonist apigenin. We find that NPY does not alter T2R-induced calcium elevation but does reduce T2R-stimulated NO production via a PKC-dependent process. This study extends our understanding of how T2R responses are modulated within the inflammatory environment of sinonasal diseases, which may improve our ability to effectively treat these disorders.
Collapse
|
10
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
11
|
Oztas B, Sahin D, Kir H, Kuskay S, Ates N. Effects of leptin, ghrelin and neuropeptide y on spike-wave discharge activity and certain biochemical parameters in WAG/Rij rats with genetic absence epilepsy. J Neuroimmunol 2020; 351:577454. [PMID: 33333420 DOI: 10.1016/j.jneuroim.2020.577454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the effects of leptin, ghrelin and neuropeptide-Y on the development of nonconvulsive seizure activity and their role on combating oxidative stress and cytokines produced by the systemic immune response in the WAG/Rij rat model for genetic absence epilepsy. Current study showed that all three peptides aggravated spike wave discharges activity and affected the oxidative stress in WAG/Rij rats without any significant changes in the levels of IL-1β, IL-6 and TNF-α except leptin that only induced an increment in the concentration of IL-1β. Our results support the modulatory role of these endogenous peptides on absence epilepsy.
Collapse
Affiliation(s)
- Berrin Oztas
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Sevinc Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
12
|
Brodskaya TA, Nevzorova VA, Vasileva MS, Lavrenyuk VV. [Endothelium-related and neuro-mediated mechanisms of emphysema development in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2020; 92:116-124. [PMID: 32598803 DOI: 10.26442/00403660.2020.03.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Emphysema is one of the main manifestations of chronic obstructive pulmonary disease (COPD), and smoking is one of the most significant risk factors. The results of studies in humans and animals show the vascular endothelium initiates and modulates the main pathological processes in COPD and smoking is an important factor initiating, developing and persisting inflammation and remodeling of blood vessels and tissues, including the destruction of small respiratory tracts with the development of lung tissue destruction and emphysema. The latest studies describe mechanisms not just associated with the endothelium, but specific neuro-mediated mechanisms. There is reason to believe that neuro-mediated and neuro-similar mechanisms associated and not related to endothelial dysfunction may play the significant role in the pathogenesis of COPD and emphysema formation. Information about components and mechanisms of neurogenic inflammation in emphysema development is fragmentary and not systematized in the literature. It is described that long-term tobacco smoking can initiate processes not only of cells and tissues damage, but also become a trigger for excessive release of neurotransmitters, which entails whole cascades of adverse reactions that have an effect on emphysema formation. With prolonged and/or intensive stimulation of sensor fibers, excessive release of neuropeptides is accompanied by a number of plastic and destructive processes due to a cascade of pathological reactions of neurogenic inflammation, the main participants of which are classical neuropeptides and their receptors. The most important consequences can be the maintenance and stagnation of chronic inflammation, activation of the mechanisms of destruction and remodeling, inadequate repair processes in response to damage, resulting in irreversible loss of lung tissue. For future research, there is interest to evaluate the possibilities of therapeutic and prophylactic effects on neuro-mediated mechanisms of endothelial dysfunction and damage emphysema in COPD and smoking development.
Collapse
|
13
|
Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton Neurosci 2019; 223:102610. [PMID: 31790954 DOI: 10.1016/j.autneu.2019.102610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Lower extremity ulcerations represent a major complication in diabetes mellitus and involve multiple physiological factors that lead to impairment of wound healing. Neuropeptides are neuromodulators implicated in various processes including diabetic wound healing. Diabetes causes autonomic and small sensory nerve fibers neuropathy as well as inflammatory dysregulation, which manifest with decreased neuropeptide expression and a disproportion in pro- and anti- inflammatory cytokine response. Therefore to fully understand the contribution of autonomic nerve dysfunction in diabetic wound healing it is crucial to explore the implication of neuropeptides. Here, we will discuss recent studies elucidating the role of specific neuropeptides in wound healing.
Collapse
|
14
|
Murugesan V, Dwivedi R, Saini M, Gupta V, Dada T, Vivekanandhan S. Tear neuromediators in eyes on chronic topical antiglaucoma therapy with and without BAK preservatives. Br J Ophthalmol 2019; 105:141-148. [PMID: 31383648 DOI: 10.1136/bjophthalmol-2019-314234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate tear neuropeptides (NPs) (vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF)) in chronic ocular topical hypotensive therapy with and without benzalkonium chloride (BAK) preservative. METHODS A comparative, open label, cross-sectional study of patients using antiglaucoma medications for >6 months with BAK (group I), without BAK (group II) and controls was done. Tear NPs (ELISA), ocular surface evaluation tests (tear breakup time (TBUT), Schirmer's test, corneal and conjunctival staining score) and confocal central corneal subbasal nerve fibre layer (SBNFL) imaging was done. RESULTS Of 153 eyes evaluated, group 1 (82 eyes (41 patients; mean age 48±14.5 years)) and group 2 (71 eyes (36 patients; mean age 43.11±15 years)) were on therapy for a mean duration of 10.05±2.0 and 9.67±2.3 months, respectively. Tear analysis showed elevated SP and NGF (p<0.01); decreased CGRP (p=0.03), VIP and NPY (p<0.01) compared with controls (n=30, mean age 29.33±5.7 years). Tear NP levels (SP (p=0.1), NGF (p=0.33), CGRP (p=1), VIP (p=0.87), NPY (p=0.83)) and SBNFL (p=0.09) were comparable in both groups. There was no correlation seen between tear NP levels and clinical tests and SBNFL. CONCLUSION Our study analysis points towards altered tear NP levels in eyes on chronic topical hypotensive therapy in comparison with controls with no significant difference in tear NP levels and central corneal SBNFL density between the BAK preservative and BAK-free antiglaucoma therapy.
Collapse
Affiliation(s)
- Vanathi Murugesan
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Roopa Dwivedi
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Manu Saini
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Viney Gupta
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Tanuj Dada
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - S Vivekanandhan
- Neurobiochemistry Lab, C N Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
16
|
Shende P, Desai D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:37-47. [PMID: 31468359 DOI: 10.1007/5584_2019_427] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY), an amino acid, used for various physiological processes for management and treatment of various ailments related to central nervous system, cardiovascular system, respiratory system, gastro-intestinal system and endocrinal system. In nasal mucosa, high concentrations of NPY are stored with noradrenaline in sympathetic nerve fibers. NPY Y1 receptor mediates nitric oxide levels and reduction in blood flow in nasal mucosa of the human. NPY plays a role in dietary consumption via various factors like signaling the CNS for a prerequisite of energy in hypothalamus by mediating appetite and shows orexigenic effect. NPY emerges as a natural ligand of G-protein coupled receptors which activates the Y-receptors (Y1-Y6). But applications of NPY are limited due to shows the cost inefficiency and stability issues in the formulation design and development. In this review, authors present the findings on various therapeutic applications of NPY on different organ systems. Moreover, its role in food intake, sexual behavior, blood pressure, etc. by inhibiting calcium and activating potassium channels. The combination therapies of drugs with neuropeptide Y and its receptors will show new targets for treating diseases. Further evaluation and detection of NPY needs to be investigated for animal models of various diseases like retinal degeneration and immune mechanisms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India.
| | - Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Kaczyńska K, Zając D, Wojciechowski P, Kogut E, Szereda-Przestaszewska M. Neuropeptides and breathing in health and disease. Pulm Pharmacol Ther 2017; 48:217-224. [PMID: 29223509 DOI: 10.1016/j.pupt.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Dominika Zając
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Wojciechowski
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Kogut
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
20
|
Abstract
Recent findings have indicated that immune responses are subjected to modulation by the sympathetic nervous system (SNS). Moreover, the findings show that the SNS inhibits the production of pro-inflammatory cytokines, while stimulating the production of anti-inflammatory cytokines. The present review is an attempt to summarize the current results on how the SNS affects inflammation in dental tissues. In dental tissues, it has been found that the SNS is significant for recruitment of inflammatory cells such as CD 43+ granulocytes. Sympathetic nerves appear to have an inhibitory effect on osteoclasts, odontoclasts, and on IL-1α production. The SNS stimulates reparative dentin production, since reparative dentin formation was reduced after sympathectomy. Sprouting of sympathetic nerve fibers occurs in chronically inflamed dental pulp, and neural imbalance caused by unilateral sympathectomy recruits immunoglobulin-producing cells to the dental pulp. In conclusion, this article presents evidence in support of interactions between the sympathetic nervous system and dental inflammation.
Collapse
Affiliation(s)
- S R Haug
- Department of Biomedicine, Section for Physiology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| | | |
Collapse
|
21
|
Lu Y, Andiappan AK, Lee B, Ho R, Lim TK, Kuan WS, Goh DYT, Mahadevan M, Sim TB, Wang DY, Van Bever HPS, Rotzschke O, Larbi A, Ng TP. Neuropeptide Y associated with asthma in young adults. Neuropeptides 2016; 59:117-121. [PMID: 27469060 DOI: 10.1016/j.npep.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Neuropeptide Y, a widely circulating neurotransmitter, plays a pivotal role in energy balance, immunomodulation and asthma, and several NPY polymorphisms are promising genetic risk factors for asthma and obesity. We explored the associations of candidate NPY gene polymorphisms with prevalent asthma and its relationship with obesity in young adult asthma patients free of other chronic medical morbidity. METHODS Five common gene variants of NPY (rs16147 (-399T/C), rs17149106 (-602G/T), rs16140 (+1000C/G), rs5573 (+1201A/G), rs5574 (+5327C/T)) previously validated to account for most of the NPY expression in vitro and in vivo were investigated in 126 physician-diagnosed asthma patients without other chronic medical morbidity and 182 healthy controls (21-35years). Plasma levels of NPY, adiponectin, and CRP were determined using ELISA, and IL-6 was measured by Luminex in a subgroup of 70 patients and 69 age- and sex-matched healthy controls. RESULTS In logistic regression models controlling for gender and obesity, the CT genotype of rs5574 (OR=0.54, 95%CI: 0.30-0.89) and the GT genotype of rs17149106 (OR=5.58, 95%CI: 1.09-28.54) were significantly associated with asthma. No significant interaction between NPY SNP polymorphisms and obesity were detected. Plasma NPY level was correlated with adiponectin levels (p<0.05). Compared with the healthy controls, patients with asthma had higher BMI (p<0.001), adiponectin (p<0.05), IL-6 (p=0.001) and CRP (p<0.001), and lower NPY levels (p<0.01). CONCLUSIONS The CT genotype of rs5574 and the GT genotype of rs17149106 are significantly associated with prevalent asthma.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tow Keang Lim
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital System, Singapore
| | - Win Sen Kuan
- Emergency Medicine Department, National University Health System, Singapore
| | - Daniel Yam Thiam Goh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Malcolm Mahadevan
- Emergency Medicine Department, National University Health System, Singapore
| | - Tiong Beng Sim
- Emergency Medicine Department, National University Health System, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore
| | - Hugo P S Van Bever
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Bolden AL, Kwiatkowski CF, Colborn T. New Look at BTEX: Are Ambient Levels a Problem? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5261-76. [PMID: 25873211 DOI: 10.1021/es505316f] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) are retrieved during fossil fuel extraction and used as solvents in consumer and industrial products, as gasoline additives, and as intermediates in the synthesis of organic compounds for many consumer products. Emissions from the combustion of gasoline and diesel fuels are the largest contributors to atmospheric BTEX concentrations. However, levels indoors (where people spend greater than 83% of their time) can be many times greater than outdoors. In this review we identified epidemiological studies assessing the noncancer health impacts of ambient level BTEX exposure (i.e., nonoccupational) and discussed how the health conditions may be hormonally mediated. Health effects significantly associated with ambient level exposure included sperm abnormalities, reduced fetal growth, cardiovascular disease, respiratory dysfunction, asthma, sensitization to common antigens, and more. Several hormones including estrogens, androgens, glucocorticoids, insulin, and serotonin may be involved in these health outcomes. This analysis suggests that all four chemicals may have endocrine disrupting properties at exposure levels below reference concentrations (i.e., safe levels) issued by the U.S. Environmental Protection Agency. These data should be considered when evaluating the use of BTEX in consumer and industrial products and indicates a need to change how chemicals present at low concentrations are assessed and regulated.
Collapse
Affiliation(s)
- Ashley L Bolden
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
| | - Carol F Kwiatkowski
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
- ‡Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Theo Colborn
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
| |
Collapse
|
23
|
Fehér E, Pongor É, Altdorfer K, Kóbori L, Lengyel G. Neuroimmunomodulation in human autoimmune liver disease. Cell Tissue Res 2013; 354:543-50. [PMID: 23881405 DOI: 10.1007/s00441-013-1683-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/10/2013] [Indexed: 01/15/2023]
Abstract
Bidirectional interaction between immune and nervous systems is considered an important biological process in health and disease. However, little is known about the mechanisms involved in their interaction in the human liver. This study examines the distribution of intrahepatic NPY, SP immunoreactive (IR) nerve fibers and their antomical relationship with immunocells containing tumor necrosis factor-α (TNF-α) and nuclear factor κB (NF-κB) in patients with autoimmune hepatitis. Liver specimens were obtained from control liver and autoimmune hepatitis patients. The immunoreactivity was determined by immunohisto- and immunocytochemistry and confocal laser microscopy. In hepatitis, the number of NPY-IR and SP-IR nerve fibers increased significantly. These IR nerve fibers were in very close contact with the lymphocytes. In healthy controls, no NPY-IR, SP-IR or NF-κB IR lymphocytes and only a few TNF-α positive cells, were observed. In hepatitis, some of the lymphocytes showed immunoreactivity for SP and NPY in the portal area. Fluorescent double-labeled immunostaining revealed that in these cells NPY did not colocalize with TNF-α or NF-κB. However, some of the SP fluorescence-positive immune cells exhibited immunostaining for p65 of NF-κB, where their labeling was detected in the nuclei. Under the electronmicroscope, these cells could be identified (lymphocytes, plasmacells and mast cells). The gap between the IR nerve fibers and immunocells was 1 μm or even less. Overexpression of SP in lymphocytes may amplify local inflammation, while NPY may contribute to liver homeostasis in hepatitis. Neural immunomodulation (SP antagonists and NPY) might be a novel therapeutic concept in the management of liver inflammation.
Collapse
Affiliation(s)
- Erzsébet Fehér
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary,
| | | | | | | | | |
Collapse
|
24
|
Levels of dipeptidyl peptidase IV/CD26 substrates neuropeptide Y and vasoactive intestinal peptide in rheumatoid arthritis patients. Rheumatol Int 2013; 33:2867-74. [DOI: 10.1007/s00296-013-2823-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 07/05/2013] [Indexed: 01/28/2023]
|
25
|
Zhou JR, Zhang LD, Wei HF, Wang X, Ni HL, Yang F, Zhang T, Jiang CL. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J Neuroimmunol 2013; 260:55-9. [PMID: 23623189 DOI: 10.1016/j.jneuroim.2013.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Despite increasing evidence highlighting the role of NPY in the modulation of inflammatory reaction, surprisingly little is known about the direct effects of NPY on the release of proinflammatory mediators. In the present work, we have evaluated the effects of NPY on the release of TNF-α, IL-1β, IL-6 and HMGB1 mediators in peritoneal macrophages. Our results demonstrate for the first time that NPY can directly induce active HMGB1 release and cytoplasmic translocation, while the production of TNF-α, IL-1β and IL-6 is not affected. PKC and ERK pathway inhibitors can abolish the promotive effect of NPY on HMGB1 secretion. Thus, our results indicate that NPY might impact on the innate immune system by directly potentiating the HMGB1 release from the macrophage.
Collapse
Affiliation(s)
- Jiang-Rui Zhou
- Laboratory of Stress Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 2012; 107:699-710. [PMID: 22429904 PMCID: PMC3532931 DOI: 10.1016/j.physbeh.2012.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.
Collapse
Affiliation(s)
- Mallory E Bowers
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | | | | |
Collapse
|
27
|
Jaakkola U, Kakko T, Juonala M, Lehtimäki T, Viikari J, Jääskeläinen AE, Mononen N, Kähönen M, Koskinen T, Keltikangas-Järvinen L, Raitakari O, Kallio J. Neuropeptide Y polymorphism increases the risk for asthma in overweight subjects; protection from atherosclerosis in asthmatic subjects--the cardiovascular risk in young Finns study. Neuropeptides 2012; 46:321-8. [PMID: 23122776 DOI: 10.1016/j.npep.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 01/22/2023]
Abstract
AIMS The role of neuropeptide Y (NPY) and its gene polymorphisms in the development of atherosclerosis has become increasingly evident. In asthma, NPY has been shown to be involved as immunomodulator. In this study, we investigated the role of two functional NPY polymorphisms, NPY-Leu7Pro (rs16139) and NPY-399C/T (rs16147) and obesity for the development of asthma as well as atherosclerosis in asthmatic and non-asthmatic subjects. Also, we measured heart rate variability (HRV) and NPY in serum since these might contribute through these polymorphisms to both diseases. METHODS AND RESULTS Thousand hundred and seventy six Finnish young adults were genotyped and three groups (G1-G3) were formed based on the observed diplotypes. The NPY-Pro7 allele always co-existed with the NPY-399T allele indicating complete linkage disequilibrium. Here we show that overweight (BMI≥25kg/m2) was associated with 2.5-fold increased risk for asthma in subjects with the NPY-399T allele without NPY-Pro7 allele (G2, n=716). Overweight was also associated with increased atherosclerosis determined by carotid intima media thickness (cIMT), but asthma seemed to be more significant determinant than overweight in determing cIMT having a decreasing effect. NPY concentration in serum was diplotype-driven (G1=792.2(29.5), G2=849.0(18.9), G3=873.9(45.2) pg/ml) and correlated positively with cIMT in the group having NPY-Pro7 allele (G3, n=142). However, the subjects with asthma had a negative NPY-cIMT relationship. Total HRV was increased in asthma and correlated negatively with cIMT irrespective of the NPY genotype. CONCLUSIONS Overweight together with the NPY-399T allele without NPY-Pro7 allele was associated with increased risk for asthma. Atherosclerosis was decreased in subjects with asthma depending on the NPY genotype. The results reveal novel insights into the genetics and biology of the relationship of atherosclerosis and asthma.
Collapse
Affiliation(s)
- U Jaakkola
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
29
|
The intriguing mission of neuropeptide Y in the immune system. Amino Acids 2011; 45:41-53. [DOI: 10.1007/s00726-011-1185-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
|
30
|
Wu ZX, Benders KB, Hunter DD, Dey RD. Early postnatal exposure of mice to side-steam tobacco smoke increases neuropeptide Y in lung. Am J Physiol Lung Cell Mol Physiol 2011; 302:L152-9. [PMID: 22003086 DOI: 10.1152/ajplung.00071.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our recent study showed that prenatal and early postnatal exposure of mice to side-steam tobacco smoke (SS), a surrogate to environmental tobacco smoke (ETS), leads to increased airway responsiveness and sensory innervation later in life. However, the underlying mechanism initiated in early life that affects airway responses later in life remains undefined. The concomitant increase in nerve growth factor (NGF) after exposures suggests that NGF may be involved the regulation of airway innervation. Since NGF regulates sympathetic nerve responses, as well as sensory nerves, we extended previous studies by examining neuropeptide Y (NPY), a neuropeptide associated with sympathetic nerves. Different age groups of mice, postnatal day (PD) 2 and PD21, were exposed to either SS or filtered air (FA) for 10 consecutive days. The level of NPY protein in lung and the density of NPY nerve fibers in tracheal smooth muscle were significantly increased in the PD2-11SS exposure group compared with PD2-11FA exposure. At the same time, the level of NGF in lung tissue was significantly elevated in the PD2-11SS exposure groups. However, neither NPY (protein or nerves) nor NGF levels were significantly altered in PD21-30SS exposure group compared with the PD21-30FA exposure group. Furthermore, pretreatment with NGF antibody or K252a, which inhibits a key enzyme (tyrosine kinase) in the transduction pathway for NGF receptor binding, significantly diminished SS-enhanced NPY tracheal smooth muscle innervation and the increase in methacholine-induced airway resistance. These findings show that SS exposure in early life increases NPY tracheal innervation and alters pulmonary function and that these changes are mediated through the NGF.
Collapse
Affiliation(s)
- Z-X Wu
- Dept. of Neurobiology and Anatomy, PO Box 9128, Robert C. Byrd Health, Sciences Center, West Virginia Univ., Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
31
|
Mitić K, Stanojević S, Kuštrimović N, Vujić V, Dimitrijević M. Neuropeptide Y modulates functions of inflammatory cells in the rat: distinct role for Y1, Y2 and Y5 receptors. Peptides 2011; 32:1626-33. [PMID: 21699939 DOI: 10.1016/j.peptides.2011.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocytochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.
Collapse
Affiliation(s)
- Katarina Mitić
- Institute of Virology, Vaccines and Sera, Torlak, Immunology Research Center Branislav Janković, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
32
|
Y1 signalling has a critical role in allergic airway inflammation. Immunol Cell Biol 2011; 89:882-8. [PMID: 21383768 DOI: 10.1038/icb.2011.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma affects 300 million people worldwide, yet the mechanism behind this pathology has only been partially elucidated. The documented connection between psychological stress and airway inflammation strongly suggests the involvement of the nervous system and its secreted mediators, including neuropeptides, on allergic respiratory disease. In this study, we show that neuropeptide Y (NPY), a prominent neurotransmitter, which release is strongly upregulated during stress, exacerbates allergic airway inflammation (AAI) in mice, via its Y1 receptor. Our data indicate that the development of AAI was associated with elevated NPY expression in the lung and that lack of NPY-mediated signalling in NPYKO mice or its Y1 receptor in Y1KO mice significantly improved AAI. In vivo, eosinophilia in the bronchoalveolar fluid as well as circulating immunoglobulin E in response to AAI, were significantly reduced in NPY- and Y1-deficient compared with wild-type mice. These changes correlated with a blunting of the Th2 immune profile that is characteristic for AAI, as shown by the decreased release of interleukin-5 during ex vivo re-stimulation of T cells isolated from the thoracic draining lymph nodes of NPY- or Y1-deficient mice subjected to AAI. Taken together this study demonstrates that signalling through Y1-receptors emerges as a critical pathway for the development of airway inflammation and as such potentially opens novel avenues for therapeutic intervention in asthma.
Collapse
|
33
|
Sheriff S, Ali M, Yahya A, Haider KH, Balasubramaniam A, Amlal H. Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. Mol Cancer Res 2010; 8:604-14. [PMID: 20332211 DOI: 10.1158/1541-7786.mcr-09-0301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of neuropeptide Y (NPY) and its receptor system has been reported in various types of cancers. NPY Y5 receptor (Y5R) has been implicated in cell growth and angiogenesis. However, the role of Y5R in breast cancer is unknown. To identify the role of Y5R in breast cancer, we screened several breast cancer cell lines to examine the expression of Y5R and its function in breast cancer. All screened cell lines express both Y1 receptor and Y5R except BT-549, which expresses mainly Y5R. Binding studies showed that NPY, Y5R-selective agonist peptide, and Y5R-selective antagonist (CGP71683A) displaced (125)I-PYY binding in BT-549 cell membranes in a dose-dependent manner. The displacement studies revealed the presence of two binding sites in Y5R with IC(50) values of 29 pmol/L and 531 nmol/L. NPY inhibited forskolin-stimulated cyclic AMP accumulation with an IC(50) value of 52 pmol/L. NPY treatment of BT-549 cells induced extracellular signal-regulated kinase phosphorylation but did not alter intracellular calcium. Y5R activation stimulates BT-549 cell growth, which is inhibited by CGP71683A, pertussis toxin, and extracellular signal-regulated kinase blockade. CGP71683A alone induced cell death in a time- and dose-dependent manner in Y5R-expressing cells. The stimulation of MDA MB-231 cell migration by NPY is inhibited by CGP71683A. Together, our results suggest that Y5R plays an important role in cancer cell growth and migration and could be a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Sulaiman Sheriff
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Gomide VC, Laureano MR, Silveira GA, Chadi G. Neuropeptide Y in Rat Spiral Ganglion Neurons and Inner Hair Cells of Organ of Corti and Effects of a Nontraumatic Acoustic Stimulation. Int J Neurosci 2009; 119:508-30. [DOI: 10.1080/00207450802330462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Barklin A, Theodorsson E, Tyvold SS, Larsson A, Granfeldt A, Sloth E, Tonnesen E. Alteration of Neuropeptides in the Lung Tissue Correlates Brain Death-Induced Neurogenic Edema. J Heart Lung Transplant 2009; 28:725-32. [DOI: 10.1016/j.healun.2009.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/23/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022] Open
|
36
|
Abstract
Abnormal wound healing is a major complication of both type 1 and type 2 diabetes, with nonhealing foot ulcerations leading in the worst cases to lower-limb amputation. Wound healing requires the integration of complex cellular and molecular events in successive phases of inflammation, cell proliferation, cell migration, angiogenesis and re-epithelialisation. A link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30-50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. Indeed, a bidirectional connection between the nervous and the immune systems and its role in wound repair has emerged as one of the focal features of the wound-healing dogma. This review provides a broad overview of the mediators of this connection, which include neuropeptides and cytokines released from nerve fibres, immune cells and cutaneous cells. In-depth understanding of the signalling pathways in the neuroimmune axis in diabetic wound healing is vital to the development of successful wound-healing therapies.
Collapse
|
37
|
Deswal S, Roy N. A novel range based QSAR study of human neuropeptide Y (NPY) Y5 receptor inhibitors. Eur J Med Chem 2007; 42:463-70. [PMID: 17083999 DOI: 10.1016/j.ejmech.2006.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 12/13/2022]
Abstract
A conventional QSAR study has been carried out using thermodynamic and other descriptors, on a set of arylsulfonamidomethylcyclohexyl derivatives as antagonists of potential obesity drug target human neuropeptide Y Y5 receptor. In addition, a novel range based method was applied to obtain a QSAR model so that the information contained in the compounds for which an approximate value instead of exact value of inhibitory activity was available could be included in the model. Analysis of models suggests that range based model is better in screening biologically active compounds from chemical library. The conventional model is able to predict activity accurately only for active compounds whereas the range based method is better in discriminating active and inactive compounds.
Collapse
Affiliation(s)
- Sumit Deswal
- Pharmacoinformatics Division, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | | |
Collapse
|
38
|
Deswal S, Roy N. Quantitative structure activity relationship of benzoxazinone derivatives as neuropeptide Y Y5 receptor antagonists. Eur J Med Chem 2006; 41:552-7. [PMID: 16545499 DOI: 10.1016/j.ejmech.2006.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/30/2005] [Accepted: 01/02/2006] [Indexed: 11/22/2022]
Abstract
Quantitative structure activity relationship (QSAR) has been established for 30 benzoxazinone derivatives acting as neuropeptide Y Y5 receptor antagonists. The genetic algorithm and multiple linear regression were used to generate the relationship between biological activity and calculated descriptors. Model with good statistical qualities was developed using four descriptors from topological, thermodynamic, spatial and electrotopological class. The validation of the model was done by cross validation, randomization and external test set prediction.
Collapse
Affiliation(s)
- S Deswal
- Pharmacocinformatics Division, National Institute of Pharmaceutical Education and Research, Phase X, SAS Nagar, Punjab, India
| | | |
Collapse
|
39
|
Prod'homme T, Weber MS, Steinman L, Zamvil SS. A neuropeptide in immune-mediated inflammation, Y? Trends Immunol 2006; 27:164-7. [PMID: 16530483 DOI: 10.1016/j.it.2006.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 01/23/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Disturbances in crosstalk between the immune system and the sympathetic nervous system (SNS) can contribute to the pathogenesis of Th1-mediated autoimmunity. Recent studies indicate that neuropeptide Y (NPY) has a major role in the regulation of Th1 responses. The precise role of NPY has been an enigma, but a recent study provides a breakthrough, demonstrating that NPY has a bimodal role as a negative regulator of T cells and an activator of antigen-presenting cell function.
Collapse
Affiliation(s)
- Thomas Prod'homme
- Department of Neurology, and Program in Immunology, University of California, San Francisco, San Francisco, CA 94143-0114, USA
| | | | | | | |
Collapse
|
40
|
Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, Mackay F. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. ACTA ACUST UNITED AC 2006; 202:1527-38. [PMID: 16330815 PMCID: PMC2213323 DOI: 10.1084/jem.20051971] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Psychological conditions, including stress, compromise immune defenses. Although this concept is not novel, the molecular mechanism behind it remains unclear. Neuropeptide Y (NPY) in the central nervous system is a major regulator of numerous physiological functions, including stress. Postganglionic sympathetic nerves innervating lymphoid organs release NPY, which together with other peptides activate five Y receptors (Y1, Y2, Y4, Y5, and y(6)). Using Y1-deficient (Y1(-/-)) mice, we showed that Y1(-/-) T cells are hyperresponsive to activation and trigger severe colitis after transfer into lymphopenic mice. Thus, signaling through Y1 receptor on T cells inhibits T cell activation and controls the magnitude of T cell responses. Paradoxically, Y1(-/-) mice were resistant to T helper type 1 (Th1) cell-mediated inflammatory responses and showed reduced levels of the Th1 cell-promoting cytokine interleukin 12 and reduced interferon gamma production. This defect was due to functionally impaired antigen-presenting cells (APCs), and consequently, Y1(-/-) mice had reduced numbers of effector T cells. These results demonstrate a fundamental bimodal role for the Y1 receptor in the immune system, serving as a strong negative regulator on T cells as well as a key activator of APC function. Our findings uncover a sophisticated molecular mechanism regulating immune cell functions that can lead to stress-induced immunosuppression.
Collapse
Affiliation(s)
- Julie Wheway
- The Arthritis and Inflammation Research Program, The Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Brandt I, Lambeir AM, Maes MB, Scharpé S, De Meester I. Peptide substrates of dipeptidyl peptidases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:3-18. [PMID: 16700503 DOI: 10.1007/0-387-32824-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inger Brandt
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
42
|
Sajdyk TJ. Neuropeptide Y receptors as therapeutic targets in anxiety and depression. Drug Dev Res 2005. [DOI: 10.1002/ddr.20031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Fischer A, Wussow A, Cryer A, Schmeck B, Noga O, Zweng M, Peiser C, Dinh QT, Heppt W, Groneberg DA. Neuronal Plasticity in Persistent Perennial Allergic Rhinitis. J Occup Environ Med 2005; 47:20-5. [PMID: 15643155 DOI: 10.1097/01.jom.0000150238.77663.49] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent perennial allergic rhinitis belongs to the most frequent diseases in occupational and environmental medicine. Because the innervation may play a role in the pathogenesis of the disease, the present study analyzed nasal mucosal nerve profiles. METHODS Neuropeptide-containing nerve fibers were examined using immunohistochemistry and related to eosinophil and mast cell numbers. RESULTS In contrast to constant numbers of mast cells, there was a significant increase in the number of eosinophils. Immunohistochemistry for calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and neuropeptide tyrosine (NPY) revealed abundant staining of mucosal nerves. Semiquantitative assessment of nerve fiber neuropeptide density demonstrated a significant increase of VIP-positive fibers in rhinitis tissues. CONCLUSIONS The present data indicate a differential regulation of neuropeptide-containing nerve fibers with increased numbers of VIPergic fibers suggesting a modulatory role of the upper airway innervation in perennial allergic rhinitis.
Collapse
Affiliation(s)
- Axel Fischer
- Occupational and Environmental Medicine Research Unit, Division of Allergy Research, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|