1
|
Hansen AH, Lorentzen LG, Leeming DJ, Sand JMB, Hägglund P, Davies MJ. Peptidomic and proteomic analysis of precision-cut lung slice supernatants. Anal Biochem 2025; 702:115837. [PMID: 40058539 DOI: 10.1016/j.ab.2025.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
The precision-cut lung slice (PCLS) model is an ex vivo tissue system that has been used to model disease and examine the effects of exogenous compounds. Few studies have been carried out on the complement of proteins (proteome) and peptides (peptidome) secreted by PCLS and other tissue sections, during tissue culture, although such data are likely to provide critical information on the biology of tissue slices and the changes these undergo. In this study, a workflow was developed to examine the peptidome and proteome of PCLS supernatants using a modified single-pot, solid-phase-enhanced sample preparation (SP3) workflow. The performance of the SP3 workflow was evaluated in a head-to-head comparison against ultrafiltration by quantifying the recovery of synthetic peptide constructs. The SP3 workflow outperformed ultrafiltration in terms of recovery of small synthetic peptides regardless of the organic solvent used in SP3 (acetone or acetonitrile) and ultrafiltration molecular mass cut-off (2 or 10 kDa). The developed SP3 workflow provided robust data when analyzing PCLS supernatants across different conditions. The method allows, within a single workflow from individual samples, the identification of both large numbers of different native peptides (489) and also proteins (370) released from the tissue to the supernatants. This approach therefore has the capacity to provide both broad and in-depth peptidome and proteome data, with potential wide applicability to analyze the secretome of cultured tissue samples.
Collapse
Affiliation(s)
- Annika H Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark.
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diana J Leeming
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jannie M B Sand
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Pleiss KL, Mosley DD, Bauer CD, Bailey KL, Ochoa CA, Knoell DL, Wyatt TA. Comparative effects of e-cigarette and conventional cigarette smoke on in vitro bronchial epithelial cell responses. Toxicol Lett 2025; 407:32-40. [PMID: 40101882 PMCID: PMC12011527 DOI: 10.1016/j.toxlet.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Because of cigarette smoking, chronic lung diseases are the third leading cause of death in the United States. Electronic cigarettes (e-cig) were originally marketed as harm reduction devices for cigarette smokers due to low success rates with traditional smoking cessation methods. While several studies show that cigarette smoke causes damage to the lungs, comparative research assessing the injury profile of e-cig to traditional cigarettes is still limited. Comparative lung injury studies are crucial in determining the validity of e-cig as a harm reduction device for chronic smokers and can be used to assess the quality of alternate nicotine delivery options to reduce the morbidity and mortality caused by cigarettes. We hypothesize that exposure to JUUL to e-cig vapor produces decreased in vitro markers of lung injury in comparison to cigarette smoke extract at equivalent and higher nicotine concentrations to that from CSE. We compared the extent of injury to airway epithelial tissue from cigarettes and e-cig using various assays of cellular function, including ciliary beat frequency (CBF), wound closure, barrier function, cytokine release, and kinase activity. Cells were treated with various concentrations of Virginia Tobacco-flavored JUUL™ vapor extract (JVE) and cigarette smoke extract (CSE) either normalized for nicotine concentration or equivalent % dilutions from a 100 % stock extract. CSE stimulated cilia in the short term, but slowed cilia after several hours of exposure, whereas cells treated with JVE showed no significant changes in CBF. CSE slowed wound repair, but nicotine-equivalent doses of JVE did not significantly slow wound repair. CSE increased epithelial cell monolayer permeability and interleukin release in a concentration-dependent manner, but these were not observed with JVE treatment. Kinase activity assays revealed activation translocation of protein kinase C (PKC) activity in cells treated with CSE, but no such change in PKC activity was observed in JVE groups. The results of these in vitro assays suggest that at nicotine-equivalent doses, JVE from Virginia Tobacco-flavored JUUL does not impact the airway epithelium in the same manner as CSE. The lack of evidence for in vitro tissue injury in this study caused by JUUL™ vapor extract is not a justification for the harm posed by nicotine addiction, particularly at the high levels of nicotine contained in these products which are several times the legal limit of many countries.
Collapse
Affiliation(s)
- K L Pleiss
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - D D Mosley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - C D Bauer
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - K L Bailey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - C A Ochoa
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - D L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - T A Wyatt
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
3
|
Nana S, Govender M, Choonara YE. Modified-Release Pulmonary Delivery Systems for Labile Bioactives: Design, Development, and Applications. Pharmaceutics 2025; 17:470. [PMID: 40284465 PMCID: PMC12030271 DOI: 10.3390/pharmaceutics17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Pulmonary delivery of bioactives has shown to be a promising route for the treatment of respiratory conditions, however, numerous physiological barriers, such as mucociliary clearance and immune responses, pose significant hurdles to treatment efficacy. These barriers specifically affect labile bioactives such as mRNA, peptides, proteins, and probiotics, which are susceptible to degradation due to the prevailing conditions. Various drug delivery platforms have been developed to address these challenges, including, among others, polymeric nanoparticles, micelles, liposomes, and solid lipid nanoparticles that encapsulate and protect the labile bioactives during formulation and administration, enabling improved bioavailability, sustained release, and enhanced formulation stability, while further modification of these platforms allows for targeted drug delivery. This review explores the advanced drug delivery systems that have been designed to protect and release labile active agents in a controlled and targeted manner to the lung, with a specific focus provided on the physiological barriers to effective pulmonary delivery and the formulation considerations to overcome these challenges. The outlook of this pertinent field of study has additionally been provided, highlighting the significant potential of the pulmonary delivery of labile bioactive agents for the prevention and treatment of a variety of respiratory ailments.
Collapse
Affiliation(s)
- Shivani Nana
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
4
|
Kollareth DJM, Sharma AK. Precision cut lung slices: an innovative tool for lung transplant research. Front Immunol 2024; 15:1504421. [PMID: 39669559 PMCID: PMC11634892 DOI: 10.3389/fimmu.2024.1504421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Lung ischemia-reperfusion injury (IRI), a common complication after lung transplantation (LTx), plays a crucial role in both primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) thereby adversely impacting the clinical outcomes in these patient cohorts. Lung IRI is characterized by several molecular events including immune cell infiltration, reactive oxygen species (ROS) generation, calcium overload, inflammation and various forms of cell death pathways. Currently, no therapeutic agents are available to clinically prevent lung IRI. While animal and cell culture models are highly valuable in understanding the pathophysiology of lung IRI, they may not completely recapitulate the complexity of human lung tissue pathology. This limitation necessitates the requirement for developing innovative preclinical human research tools that can supplement available scientific modalities. Emerging evidence suggests that precision-cut lung slices (PCLS) have become an indispensable tool in scientific research to study lung biology in an ex vivo tissue system. Recent studies using PCLS have investigated lung diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Although PCLS can be successfully employed to determine the deleterious events in the pathogenesis of lung IRI, including cell-cell interactions as well as hallmarks of inflammation and oxidative stress-dependent pathways, detailed studies employing PCLS to decipher these molecular events in post-LTx injury are currently limited. This review focuses on the applicability and unexplored potential of PCLS as a powerful tool in lung IRI research for understanding the pathophysiology and consequent development of new therapeutic modalities.
Collapse
Affiliation(s)
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Alkadhimi M, Manne AH, Jiang Y, Green M, Ryan AJ. An organotypic model for investigating drug-radiation responses in the lung. J Biol Methods 2024; 12:e99010041. [PMID: 40200943 PMCID: PMC11973049 DOI: 10.14440/jbm.2025.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 04/10/2025] Open
Abstract
Background Established in vivo radiobiological models are commonly used to assess anti-tumor effects and normal tissue toxicity. However, these models have notable limitations, and additional models are necessary to gain a deeper insights into drug-radiation interactions. Objective This study aimed to develop an organotypic ex vivo model by using precision-cut lung slices (PCLSs) to evaluate radiation-induced residual deoxyribonucleic acid (DNA) damage, both alone and in combination with a pharmacological inhibitor of DNA double-strand break (DSB) repair. Methods Left lungs from female C57BL/6 mice were dissected, perfused with 4% low-gelling-temperature agarose, and sliced into 250 μm sections. Lung slices were then incubated ex vivo for up to 7 days. The slices were irradiated using 137Cs, either with or without a DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441). Tissue sections were subsequently fixed and stained for γH2AX and 53BP1, which serve as histological markers of DNA DSBs. Results The established conditions preserved tissue viability for up to 7 days and maintained structural integrity for 2 days. DNA damage, detected through γH2AX and 53BP1 staining, was consistent between lungs irradiated ex vivo and their counterparts irradiated in vivo. In the organotypic model, radiation alone in DNA-PK-deficient SCID mice and radiation combined with DNA-PK inhibition in C57BL/6 mice led to increased residual γH2AX and 53BP1 staining. Conclusion This study demonstrates that residual DNA damage levels following ionizing radiation in lung tissue are comparable between in vivo and ex vivo tissue slices, suggesting that PCLSs serve as a valuable organotypic model for investigating the effects of drug-radiation combinations.
Collapse
Affiliation(s)
- Maryam Alkadhimi
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | | | - Yanyan Jiang
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Marcus Green
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Anderson Joseph Ryan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
- FastBiopharma, Watlington, OX49 5SW, United Kingdom
| |
Collapse
|
6
|
Marimoutou M, Patel V, Kim JH, Schaible N, Alvarez J, Hughes J, Obermok M, Rodríguez CI, Kallarakal T, Suki B, Amin K, Krishnan R, Behrsing HP. The Fibrotic Phenotype of Human Precision-Cut Lung Slices Is Maintained after Cryopreservation. TOXICS 2024; 12:637. [PMID: 39330565 PMCID: PMC11436228 DOI: 10.3390/toxics12090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Human precision-cut lung slices (hPCLS) prepared from fibrotic lungs recapitulate the pathophysiological hallmarks of fibrosis. These hallmark features can also be induced by treating non-fibrotic hPCLS with a fibrotic cocktail (FC). As a result, the fibrotic and fibrosis-induced hPCLS are rapidly emerging as preferred models for disease modeling and drug discovery. However, current hPCLS models are limited by tissue viability in culture, as they are usually only viable for one week after harvesting. Here, we demonstrate that the fibrotic hPCLS can be cryopreserved, stored for months, and then thawed on demand without loss of hPCLS viability or protein content for 14 days post-thawing. Cryopreservation also preserves the pro-fibrotic potential of non-fibrotic hPCLS. Specifically, when we treated the thawed non-fibrotic hPCLS with an FC, we observed significant pro-fibrotic cytokine secretion and elevated tissue stiffness. These pro-fibrotic changes were inhibited by the small-molecule tyrosine kinase inhibitor, Nintedanib. Taken together, our work indicates that a feasible solution to prolong the pre-clinical utility of fibrotic and fibrosis-induced hPCLS is cryopreservation. We anticipate that cryopreserved hPCLS will serve as an advantageous predictive model for the evaluation of pro-fibrotic pathways during acute and chronic toxicity testing.
Collapse
Affiliation(s)
- Méry Marimoutou
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Jae Hun Kim
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose Alvarez
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Joseph Hughes
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - McKenzie Obermok
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | | | | | - Béla Suki
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramaswamy Krishnan
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
7
|
Ahmed DW, Tan ML, Gabbard J, Liu Y, Hu MM, Stevens M, Midekssa FS, Han L, Zemans RL, Baker BM, Loebel C. Local photo-crosslinking of native tissue matrix regulates cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607417. [PMID: 39149281 PMCID: PMC11326225 DOI: 10.1101/2024.08.10.607417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study cell function. However, the initiation of fibrosis has largely been overlooked, due to the challenges in recapitulating early fibrotic lesions within the native extracellular microenvironment. Using visible light mediated photochemistry, we induced local crosslinking and stiffening of extracellular matrix proteins within ex vivo murine and human tissue. In ex vivo lung tissue of epithelial cell lineage-traced mice, local matrix crosslinking mimicked early fibrotic lesions that increased alveolar epithelial cell spreading, differentiation and extracellular matrix remodeling. However, inhibition of cytoskeletal tension or integrin engagement reduced epithelial cell spreading and differentiation, resulting in alveolar epithelial cell dedifferentiation and reduced extracellular matrix deposition. Our findings emphasize the role of local extracellular matrix crosslinking and remodeling in early-stage tissue fibrosis and have implications for ex vivo disease modeling and applications to other tissues.
Collapse
Affiliation(s)
- Donia W Ahmed
- Department of Biomedical Engineering University of Michigan
| | - Matthew L Tan
- Department of Materials Science and Engineering University of Michigan
| | | | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University
| | - Michael M Hu
- Department of Biomedical Engineering University of Michigan
| | - Miriam Stevens
- Department of Biomedical Engineering University of Michigan
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan
- Cellular and Molecular Biology Program, University of Michigan
| | | | - Claudia Loebel
- Department of Biomedical Engineering University of Michigan
- Department of Materials Science and Engineering University of Michigan
| |
Collapse
|
8
|
Chioccioli M, Liu S, Magruder S, Tata A, Borriello L, McDonough JE, Konkimalla A, Kim SH, Nouws J, Gonzalez DG, Traub B, Ye X, Yang T, Entenberg DR, Krishnaswamy S, Hendry CE, Kaminski N, Tata PR, Sauler M. Stem cell migration drives lung repair in living mice. Dev Cell 2024; 59:830-840.e4. [PMID: 38377991 PMCID: PMC11003834 DOI: 10.1016/j.devcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/12/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.
Collapse
Affiliation(s)
- Maurizio Chioccioli
- Department of Genetics and Comparative Medicine, Yale University, New Haven, CT 06519, USA; Department of Comparative Medicine, Yale University, New Haven, CT 06519, USA.
| | - Shuyu Liu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sumner Magruder
- Department of Computer Science, Yale University, New Haven, CT 06511, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lucia Borriello
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Fox Chase Cancer, Philadelphia, PA 19140, USA
| | - John E McDonough
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sang-Hun Kim
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jessica Nouws
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - David G Gonzalez
- Department of Genetics and Comparative Medicine, Yale University, New Haven, CT 06519, USA
| | - Brian Traub
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Xianjun Ye
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tao Yang
- Section of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - David R Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Smita Krishnaswamy
- Department of Genetics and Comparative Medicine, Yale University, New Haven, CT 06519, USA; Department of Computer Science, Yale University, New Haven, CT 06511, USA
| | - Caroline E Hendry
- Department of Genetics and Comparative Medicine, Yale University, New Haven, CT 06519, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maor Sauler
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
10
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
Vaghasiya J, Dalvand A, Sikarwar A, Mangat D, Ragheb M, Kowatsch K, Pandey D, Hosseini SM, Hackett TL, Karimi-Abdolrezaee S, Ravandi A, Pascoe CD, Halayko AJ. Oxidized Phosphatidylcholines Trigger TRPA1 and Ryanodine Receptor-dependent Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2023; 69:649-665. [PMID: 37552547 DOI: 10.1165/rcmb.2022-0457oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Azadeh Dalvand
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag Sikarwar
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Divleen Mangat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Mirna Ragheb
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarina Kowatsch
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Dheerendra Pandey
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology
- Manitoba Multiple Sclerosis Research Center, and
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Amir Ravandi
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
13
|
Alberro-Brage A, Kryvenko V, Malainou C, Günther S, Morty RE, Seeger W, Herold S, Samakovlis C, Vadász I. Influenza virus decreases albumin uptake and megalin expression in alveolar epithelial cells. Front Immunol 2023; 14:1260973. [PMID: 37727782 PMCID: PMC10505651 DOI: 10.3389/fimmu.2023.1260973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a common complication of influenza virus (IV) infection. During ARDS, alveolar protein concentrations often reach 40-90% of plasma levels, causing severe impairment of gas exchange and promoting deleterious alveolar remodeling. Protein clearance from the alveolar space is at least in part facilitated by the multi-ligand receptor megalin through clathrin-mediated endocytosis. Methods To investigate whether IV infection impairs alveolar protein clearance, we examined albumin uptake and megalin expression in MLE-12 cells and alveolar epithelial cells (AEC) from murine precision-cut lung slices (PCLS) and in vivo, under IV infection conditions by flow cytometry and western blot. Transcriptional levels from AEC and broncho-alveolar lavage (BAL) cells were analyzed in an in-vivo mouse model by RNAseq. Results IV significantly downregulated albumin uptake, independently of activation of the TGF-β1/GSK3β axis that has been previously implicated in the regulation of megalin function. Decreased plasma membrane abundance, total protein levels, and mRNA expression of megalin were associated with this phenotype. In IV-infected mice, we identified a significant upregulation of matrix metalloproteinase (MMP)-14 in BAL fluid cells. Furthermore, the inhibition of this protease partially recovered total megalin levels and albumin uptake. Discussion Our results suggest that the previously described MMP-driven shedding mechanisms are potentially involved in downregulation of megalin cell surface abundance and clearance of excess alveolar protein. As lower alveolar edema protein concentrations are associated with better outcomes in respiratory failure, our findings highlight the therapeutic potential of a timely MMP inhibition in the treatment of IV-induced ARDS.
Collapse
Affiliation(s)
- Andrés Alberro-Brage
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E. Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Translational Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
14
|
Bai Y, Li G, Yung L, Yu PB, Ai X. Intrapulmonary arterial contraction assay reveals region-specific deregulation of vasoreactivity to lung injuries. Am J Physiol Lung Cell Mol Physiol 2023; 325:L114-L124. [PMID: 37278410 PMCID: PMC10393320 DOI: 10.1152/ajplung.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.
Collapse
Affiliation(s)
- Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital and Wuhan University, Wuhan, People's Republic of China
| | - Laiming Yung
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
16
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
17
|
Blomberg R, Sompel K, Hauer C, Pe A B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Tissue-engineered models of lung cancer premalignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532835. [PMID: 36993773 PMCID: PMC10055140 DOI: 10.1101/2023.03.15.532835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best preventive action, nearly 50% of all lung cancer diagnoses occur in people who have already quit smoking. Research into treatment options for these high-risk patients has been constrained to rodent models of chemical carcinogenesis, which are time-consuming, expensive, and require large numbers of animals. Here we show that embedding precision-cut lung slices within an engineered hydrogel and exposing this tissue to a carcinogen from cigarette smoke creates an in vitro model of lung cancer premalignancy. Hydrogel formulations were selected to promote early lung cancer cellular phenotypes and extend PCLS viability up to six weeks. In this study, hydrogel-embedded lung slices were exposed to the cigarette smoke derived carcinogen vinyl carbamate, which induces adenocarcinoma in mice. At six weeks, analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content revealed that vinyl carbamate induced the formation of premalignant lesions with a mixed adenoma/squamous phenotype. Two putative chemoprevention agents were able to freely diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue were validated with hydrogel-embedded human PCLS and results showed increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the starting point for more sophisticated ex vivo models and a foundation for the study of carcinogenesis and chemoprevention strategies.
Collapse
|
18
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
19
|
Liu Y, Wu P, Wang Y, Liu Y, Yang H, Zhou G, Wu X, Wen Q. Application of Precision-Cut Lung Slices as an In Vitro Model for Research of Inflammatory Respiratory Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120767. [PMID: 36550973 PMCID: PMC9774555 DOI: 10.3390/bioengineering9120767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The leading cause of many respiratory diseases is an ongoing and progressive inflammatory response. Traditionally, inflammatory lung diseases were studied primarily through animal models, cell cultures, and organoids. These technologies have certain limitations, despite their great contributions to the study of respiratory diseases. Precision-cut lung slices (PCLS) are thin, uniform tissue slices made from human or animal lung tissue and are widely used extensively both nationally and internationally as an in vitro organotypic model. Human lung slices bridge the gap between in vivo and in vitro models, and they can replicate the living lung environment well while preserving the lungs' basic structures, such as their primitive cells and trachea. However, there is no perfect model that can completely replace the structure of the human lung, and there is still a long way to go in the research of lung slice technology. This review details and analyzes the strengths and weaknesses of precision lung slices as an in vitro model for exploring respiratory diseases associated with inflammation, as well as recent advances in this field.
Collapse
Affiliation(s)
- Yan Liu
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Yin Wang
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Yansong Liu
- Anesthesiology Department, Dalian Medical University, Dalian 116041, China
| | - Hongfang Yang
- Department of Anesthesiology, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | | | - Xiaoqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
- Correspondence: ; Tel.: +86-180-9887-7988
| |
Collapse
|
20
|
Xiong D(JP, Martin JG, Lauzon AM. Airway smooth muscle function in asthma. Front Physiol 2022; 13:993406. [PMID: 36277199 PMCID: PMC9581182 DOI: 10.3389/fphys.2022.993406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.
Collapse
Affiliation(s)
- Dora (Jun Ping) Xiong
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Anne-Marie Lauzon,
| |
Collapse
|
21
|
Michalaki C, Dean C, Johansson C. The Use of Precision-Cut Lung Slices for Studying Innate Immunity to Viral Infections. Curr Protoc 2022; 2:e505. [PMID: 35938685 PMCID: PMC9545600 DOI: 10.1002/cpz1.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Precision-cut lung slices (PCLS) are a novel tool to study cells of the lower airways. As PCLS retain the integrity and architecture of the lung, they constitute a robust model for studying the cells of the lower respiratory tract. Use of PCLS for imaging has been previously documented; however, other applications and techniques can also be applied to PCLS to increase their use and therefore decrease the number of animals needed for each experiment. We present a detailed protocol for generating PCLS from the murine lung. We show that cultured PCLS remain viable up to at least 8 days of culture, that RNA can be isolated from the tissue, and that flow cytometry can be carried out on the cells obtained from the PCLS. Furthermore, we demonstrate that cytokines and chemokines can be detected in the culture supernatants of PCLS exposed to viruses. Overall, these protocols expand the use of PCLS, especially for infection studies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Precision-cut lung slices (PCLS) Basic Protocol 2: PCLS culture and viability Basic Protocol 3: RNA isolation from PCLS, cDNA conversion, and RT-qPCR Basic Protocol 4: Staining of cells from PCLS for flow cytometry Basic Protocol 5: In vivo RSV administration and ex vivo PCLS RSV exposure.
Collapse
Affiliation(s)
- Christina Michalaki
- Section of Respiratory Infections, National Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
| | - Charlotte Dean
- Cardio Respiratory Interface Section, National Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Rieg AD, Suleiman S, Anker C, Bünting NA, Verjans E, Spillner J, Kalverkamp S, von Stillfried S, Braunschweig T, Uhlig S, Martin C. Platelet-derived growth factor (PDGF)-BB regulates the airway tone via activation of MAP2K, thromboxane, actin polymerisation and Ca 2+-sensitisation. Respir Res 2022; 23:189. [PMID: 35841089 PMCID: PMC9287894 DOI: 10.1186/s12931-022-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PDGFR-inhibition by the tyrosine kinase inhibitor (TKI) nintedanib attenuates the progress of idiopathic pulmonary fibrosis (IPF). However, the effects of PDGF-BB on the airway tone are almost unknown. We studied this issue and the mechanisms beyond, using isolated perfused lungs (IPL) of guinea pigs (GPs) and precision-cut lung slices (PCLS) of GPs and humans. METHODS IPL: PDGF-BB was perfused after or without pre-treatment with the TKI imatinib (perfused/nebulised) and its effects on the tidal volume (TV), the dynamic compliance (Cdyn) and the resistance were studied. PCLS (GP) The bronchoconstrictive effects of PDGF-BB and the mechanisms beyond were evaluated. PCLS (human): The bronchoconstrictive effects of PDGF-BB and the bronchorelaxant effects of imatinib were studied. All changes of the airway tone were measured by videomicroscopy and indicated as changes of the initial airway area. RESULTS PCLS (GP/human): PDGF-BB lead to a contraction of airways. IPL: PDGF-BB decreased TV and Cdyn, whereas the resistance did not increase significantly. In both models, inhibition of PDGFR-(β) (imatinib/SU6668) prevented the bronchoconstrictive effect of PDGF-BB. The mechanisms beyond PDGF-BB-induced bronchoconstriction include activation of MAP2K and TP-receptors, actin polymerisation and Ca2+-sensitisation, whereas the increase of Ca2+ itself and the activation of EP1-4-receptors were not of relevance. In addition, imatinib relaxed pre-constricted human airways. CONCLUSIONS PDGFR regulates the airway tone. In PCLS from GPs, this regulatory mechanism depends on the β-subunit. Hence, PDGFR-inhibition may not only represent a target to improve chronic airway disease such as IPF, but may also provide acute bronchodilation in asthma. Since asthma therapy uses topical application. This is even more relevant, as nebulisation of imatinib also appears to be effective.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH-Aachen, Aachen, Germany.
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Carolin Anker
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Nina A Bünting
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Eva Verjans
- Department of Paediatrics, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | | | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| |
Collapse
|
23
|
Bai Y, Ai X. Utilizing the Precision-Cut Lung Slice to Study the Contractile Regulation of Airway and Intrapulmonary Arterial Smooth Muscle. J Vis Exp 2022:10.3791/63932. [PMID: 35604150 PMCID: PMC11147671 DOI: 10.3791/63932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Smooth muscle cells (SMC) mediate the contraction of the airway and the intrapulmonary artery to modify airflow resistance and pulmonary circulation, respectively, hence playing a critical role in the homeostasis of the pulmonary system. Deregulation of SMC contractility contributes to several pulmonary diseases, including asthma and pulmonary hypertension. However, due to limited tissue access and a lack of culture systems to maintain in vivo SMC phenotypes, molecular mechanisms underlying the deregulated SMC contractility in these diseases remain fully identified. The precision-cut lung slice (PCLS) offers an ex vivo model that circumvents these technical difficulties. As a live, thin lung tissue section, the PCLS retains SMC in natural surroundings and allows in situ tracking of SMC contraction and intracellular Ca2+ signaling that regulates SMC contractility. Here, a detailed mouse PCLS preparation protocol is provided, which preserves intact airways and intrapulmonary arteries. This protocol involves two essential steps before subjecting the lung lobe to slicing: inflating the airway with low-melting-point agarose through the trachea and infilling pulmonary vessels with gelatin through the right ventricle. The PCLS prepared using this protocol can be used for bioassays to evaluate Ca2+-mediated contractile regulation of SMC in both the airway and the intrapulmonary arterial compartments. When applied to mouse models of respiratory diseases, this protocol enables the functional investigation of SMC, thereby providing insight into the underlying mechanism of SMC contractility deregulation in diseases.
Collapse
Affiliation(s)
- Yan Bai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School;
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
24
|
Bai Y, Guedes AGP, Krishnan R, Ai X. CD38 plays an age-related role in cholinergic deregulation of airway smooth muscle contractility. J Allergy Clin Immunol 2022; 149:1643-1654.e8. [PMID: 34800431 PMCID: PMC9081122 DOI: 10.1016/j.jaci.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Allergen-induced airway hyperresponsiveness in neonatal mice, but not adult mice, is caused by elevated innervation and consequent cholinergic hyperstimulation of airway smooth muscle (ASM). Whether this inflammation-independent mechanism contributes to ASM hypercontraction in childhood asthma warrants investigation. OBJECTIVE We aimed to establish the functional connection between cholinergic stimulation and ASM contractility in different human age groups. METHODS First, we used a neonatal mouse model of asthma to identify age-related mediators of cholinergic deregulation of ASM contractility. Next, we conducted validation and mechanistic studies in primary human ASM cells and precision-cut lung slices from young (<5 years old) and adult (>20 years old) donor lungs. Finally, we evaluated the therapeutic potential of the identified cholinergic signaling mediators using culture models of human ASM hypercontraction. RESULTS ASM hypercontraction due to cholinergic deregulation in early postnatal life requires CD38. Mechanistically, cholinergic signaling activates the phosphatidylinositol 3-kinase/protein kinase B pathway in immature ASM cells to upregulate CD38 levels, thereby augmenting the Ca2+ response to contractile agonists. Strikingly, this early-life, CD38-mediated ASM hypercontraction is not alleviated by the β-agonist formoterol. CONCLUSIONS The acetylcholine-phosphatidylinositol 3-kinase/protein kinase B-CD38 axis is a critical mechanism of airway hyperresponsiveness in early postnatal life. Targeting this axis may provide a tailored treatment for children at high risk for allergic asthma.
Collapse
Affiliation(s)
- Yan Bai
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Pediatrics, Division of Neonatology and Newborn Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| | - Alonso G P Guedes
- Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St Paul, Minn
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Xingbin Ai
- Department of Pediatrics, Division of Neonatology and Newborn Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
25
|
Thomas AP, Corrêa-Velloso JC. Calcium Wave Propagation Underlying Intercellular Signaling and Coordination of Tissue Responses. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac011. [PMID: 35356151 PMCID: PMC8945820 DOI: 10.1093/function/zqac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Andrew P Thomas
- Lead Contact and Address correspondence to A.P.T. (e-mail: )
| | - Juliana C Corrêa-Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
26
|
Nguyen TM, van der Merwe J, Elowsson Rendin L, Larsson-Callerfelt AK, Deprest J, Westergren-Thorsson G, Toelen J. Stretch increases alveolar type 1 cell number in fetal lungs through ROCK-Yap/Taz pathway. Am J Physiol Lung Cell Mol Physiol 2021; 321:L814-L826. [PMID: 34431413 DOI: 10.1152/ajplung.00484.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation toward AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation toward AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Johannes van der Merwe
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Jan Deprest
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, United Kingdom
| | | | - Jaan Toelen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, Budi EH, Hooi L, Wu J, Fridlib M, Martin SP, Huang S, Chen M, Muñoz M, Hom TF, Wolters PJ, Desai TJ, Rock F, Leftheris K, Morgans DJ, Lepist EI, Andre P, Lefebvre EA, Turner SM. Dual inhibition of α vβ 6 and α vβ 1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22:265. [PMID: 34666752 PMCID: PMC8524858 DOI: 10.1186/s12931-021-01863-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
RATIONALE αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. OBJECTIVES We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.
Collapse
Affiliation(s)
| | | | - Chun Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jacob Cha
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Gail G Lee
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Prerna Kotak
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Erine H Budi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Lisa Hooi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jianfeng Wu
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | | | - Shaoyi Huang
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Ming Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Manuel Muñoz
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Tushar J Desai
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David J Morgans
- Pliant Therapeutics, South San Francisco, CA, USA
- Maze Therapeutics, South San Francisco, CA, USA
| | | | - Patrick Andre
- Pliant Therapeutics, South San Francisco, CA, USA
- Acceleron Pharma, Cambridge, MA, USA
| | | | | |
Collapse
|
28
|
Viana F, O'Kane CM, Schroeder GN. Precision-cut lung slices: A powerful ex vivo model to investigate respiratory infectious diseases. Mol Microbiol 2021; 117:578-588. [PMID: 34570407 PMCID: PMC9298270 DOI: 10.1111/mmi.14817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Respiratory infections are a leading cause of mortality worldwide. Most of the research on the underlying disease mechanisms is based on cell culture, organoid, or surrogate animal models. Although these provide important insights, they have limitations. Cell culture models fail to recapitulate cellular interactions in the lung and animal models often do not permit high‐throughput analysis of drugs or pathogen isolates; hence, there is a need for improved, scalable models. Precision‐cut lung slices (PCLS), small, uniform tissue slices generated from animal or human lungs are increasingly recognized and employed as an ex vivo organotypic model. PCLS retain remarkable cellular complexity and the architecture of the lung, providing a platform to investigate respiratory pathogens in a near‐native environment. Here, we review the generation and features of PCLS, their use to investigate the pathogenesis of viral and bacterial pathogens, and highlight their potential to advance respiratory infection research in the future.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
29
|
Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021; 13:3539. [PMID: 34298753 PMCID: PMC8303683 DOI: 10.3390/cancers13143539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Collapse
Affiliation(s)
- Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Rozana Othman
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Sarah Fazalul Rahiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| |
Collapse
|
30
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
31
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
32
|
Pybus HJ, Tatler AL, Edgar LT, O'Dea RD, Brook BS. Reduced biomechanical models for precision-cut lung-slice stretching experiments. J Math Biol 2021; 82:35. [PMID: 33721103 PMCID: PMC7960642 DOI: 10.1007/s00285-021-01578-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/25/2020] [Accepted: 02/14/2021] [Indexed: 01/25/2023]
Abstract
Precision-cut lung-slices (PCLS), in which viable airways embedded within lung parenchyma are stretched or induced to contract, are a widely used ex vivo assay to investigate bronchoconstriction and, more recently, mechanical activation of pro-remodelling cytokines in asthmatic airways. We develop a nonlinear fibre-reinforced biomechanical model accounting for smooth muscle contraction and extracellular matrix strain-stiffening. Through numerical simulation, we describe the stresses and contractile responses of an airway within a PCLS of finite thickness, exposing the importance of smooth muscle contraction on the local stress state within the airway. We then consider two simplifying limits of the model (a membrane representation and an asymptotic reduction in the thin-PCLS-limit), that permit analytical progress. Comparison against numerical solution of the full problem shows that the asymptotic reduction successfully captures the key elements of the full model behaviour. The more tractable reduced model that we develop is suitable to be employed in investigations to elucidate the time-dependent feedback mechanisms linking airway mechanics and cytokine activation in asthma.
Collapse
Affiliation(s)
- Hannah J Pybus
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Amanda L Tatler
- Respiratory Medicine, NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Lowell T Edgar
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Reuben D O'Dea
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
33
|
Kuper-Sassé ME, MacFarlane PM, Mayer CA, Martin RJ, Prakash YS, Pabelick CM, Raffay TM. Prenatal Maternal Lipopolysaccharide and Mild Newborn Hyperoxia Increase Intrapulmonary Airway but Not Vessel Reactivity in a Mouse Model. CHILDREN-BASEL 2021; 8:children8030195. [PMID: 33807828 PMCID: PMC7998377 DOI: 10.3390/children8030195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Maternal infection is a risk for preterm delivery. Preterm newborns often require supplemental oxygen to treat neonatal respiratory distress. Newborn hyperoxia exposure is associated with airway and vascular hyperreactivity, while the complications of maternal infection are variable. In a mouse model of prenatal maternal intraperitoneal lipopolysaccharide (LPS, embryonic day 18) with subsequent newborn hyperoxia (40% oxygen × 7 days) precision-cut living lung slices were used to measure intrapulmonary airway and vascular reactivity at 21 days of age. Hyperoxia increased airway reactivity to methacholine compared to room air controls. Prenatal maternal LPS did not alter airway reactivity in room air. Combined maternal LPS and hyperoxia exposures increased airway reactivity vs. controls, although maximal responses were diminished compared to hyperoxia alone. Vessel reactivity to serotonin did not significantly differ in hyperoxia or room air; however, prenatal maternal LPS appeared to attenuate vessel reactivity in room air. Following room air recovery, LPS with hyperoxia lungs displayed upregulated inflammatory and fibrosis genes compared to room air saline controls (TNFαR1, iNOS, and TGFβ). In this model, mild newborn hyperoxia increases airway but not vessel reactivity. Prenatal maternal LPS did not further increase hyperoxic airway reactivity. However, inflammatory genes remain upregulated weeks after recovery from maternal LPS and newborn hyperoxia exposures.
Collapse
Affiliation(s)
- Margaret E. Kuper-Sassé
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Catherine A. Mayer
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Richard J. Martin
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (Y.S.P.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (Y.S.P.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas M. Raffay
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
- Correspondence: ; Tel.: +216-844-3387
| |
Collapse
|
34
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
35
|
Abstract
Fibroblast-to-myofibroblast transdifferentiation and the acquisition of a senescent phenotype are hallmarks of fibrotic diseases. The study of the localization of senescent myofibroblasts as well as their interactions with other cell types in the fibrotic tissue has been hindered by the lack of methods to detect these cells in vivo. Here, we describe methods to detect tissue localization of senescent myofibroblasts in precision-cut lung slices (PCLS) by combining β-galactosidase staining with immunofluorescence techniques.
Collapse
Affiliation(s)
- Tamara Cruz
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ana L Mora
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Seyfoori A, Amereh M, Dabiri SMH, Askari E, Walsh T, Akbari M. The role of biomaterials and three dimensional (3D) in vitro tissue models in fighting against COVID-19. Biomater Sci 2020; 9:1217-1226. [PMID: 33355542 DOI: 10.1039/d0bm01616k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past century, viral respiratory pandemics have been a leading cause of infectious disease worldwide. A deep understanding of the underlying mechanisms of the viral interactions with host cells at the target sites is necessary for a rapid response to such pandemics. To meet this aim, various testing platforms are required to recapitulate the pathophysiological behavior of the virus within the respiratory tract. These bioengineered platforms can effectively be used for the development of different therapeutics and vaccines. This paper briefly reviews the progress in the areas of biomaterial use for pulmonary tissue regeneration and integration with current bioengineered platforms including engineered tissues, organoids, and organs-on-a-chip platforms for viral respiratory disease studies. Finally, a brief overview of the opportunities presented by organ-on-a-chip systems for studying COVID-19 and subsequent drug development is introduced.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
O'Sullivan MJ, Phung TKN, Park JA. Bronchoconstriction: a potential missing link in airway remodelling. Open Biol 2020; 10:200254. [PMID: 33259745 PMCID: PMC7776576 DOI: 10.1098/rsob.200254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
In asthma, progressive structural changes of the airway wall are collectively termed airway remodelling. Despite its deleterious effect on lung function, airway remodelling is incompletely understood. As one of the important causes leading to airway remodelling, here we discuss the significance of mechanical forces that are produced in the narrowed airway during asthma exacerbation, as a driving force of airway remodelling. We cover in vitro, ex vivo and in vivo work in this field, and discuss up-to-date literature supporting the idea that bronchoconstriction may be the missing link in a comprehensive understanding of airway remodelling in asthma.
Collapse
Affiliation(s)
| | | | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, USA
| |
Collapse
|
38
|
Kim SY, Mongey R, Wang P, Rothery S, Gaboriau DCA, Hind M, Griffiths M, Dean CH. The acid injury and repair (AIR) model: A novel ex-vivo tool to understand lung repair. Biomaterials 2020; 267:120480. [PMID: 33157373 DOI: 10.1016/j.biomaterials.2020.120480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/11/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Research into mechanisms underlying lung injury and subsequent repair responses is currently of paramount importance. There is a paucity of models that bridge the gap between in vitro and in vivo research. Such intermediate models are critical for researchers to decipher the mechanisms that drive repair and to test potential new treatments for lung repair and regeneration. Here we report the establishment of a new tool, the Acid Injury and Repair (AIR) model, that will facilitate studies of lung tissue repair. In this model, injury is applied to a restricted area of a precision-cut lung slice using hydrochloric acid, a clinically relevant driver. The surrounding area remains uninjured, thus mimicking the heterogeneous pattern of injury frequently observed in lung diseases. We show that in response to injury, the percentage of progenitor cells (pro surfactant protein C, proSP-C and TM4SF1 positive) significantly increases in the injured region. Whereas in the uninjured area, the percentage of proSP-C/TM4SF1 cells remains unchanged but proliferating cells (Ki67 positive) increase. These effects are modified in the presence of inhibitors of proliferation (Cytochalasin D) and Wnt secretion (C59) demonstrating that the AIR model is an important new tool for research into lung disease pathogenesis and potential regenerative medicine strategies.
Collapse
Affiliation(s)
- Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peizhu Wang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK; National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK; Peri-Operative Medicine Department, St Bartholomew's Hospital, London, UK
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Harwell Institute, Harwell Campus, Oxfordshire, UK.
| |
Collapse
|
39
|
Silver Nanoparticles Alter Cell Viability Ex Vivo and in Vitro and Induce Proinflammatory Effects in Human Lung Fibroblasts. NANOMATERIALS 2020; 10:nano10091868. [PMID: 32961914 PMCID: PMC7557856 DOI: 10.3390/nano10091868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 μg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 μg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.
Collapse
|
40
|
Bugay V, Wallace DJ, Wang B, Salinas I, Chapparo AP, Smith HR, Dube PH, Brooks EG, Berg KA, Brenner R. Bis-Quinolinium Cyclophane Blockers of SK Potassium Channels Are Antagonists of M3 Muscarinic Acetylcholine Receptors. Front Pharmacol 2020; 11:552211. [PMID: 33041794 PMCID: PMC7525093 DOI: 10.3389/fphar.2020.552211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Dequalinium is used as an antimicrobial compound for oral health and other microbial infections. Derivatives of dequalinium, the bis-quinolinium cyclophanes UCL 1684 and UCL 1848, are high affinity SK potassium channel antagonists. Here we investigated these compounds as M3 muscarinic receptor (mACHR) antagonists. We used the R-CEPIAer endoplasmic reticulum calcium reporter to functionally assay for Gq-coupled receptor signaling, and investigated the bis-quinolinium cyclophanes as antagonists of M3 mACHR activation in transfected CHO cells. Given mACHR roles in airway smooth muscle (ASM) contractility, we also tested the ability of UCL 1684 to relax ASM. We find that these compounds antagonized M3 mACHRs with an IC50 of 0.27 μM for dequalinium chloride, 1.5 μM for UCL 1684 and 1.0 μM for UCL 1848. UCL 1684 also antagonized M1 (IC50 0.12 μM) and M5 (IC50 0.52 μM) mACHR responses. UCL 1684 was determined to be a competitive antagonist at M3 receptors as it increased the EC50 for carbachol without a reduction in the maximum response. The Ki for UCL1684 determined from competition binding experiments was 909 nM. UCL 1684 reduced carbachol-evoked ASM contractions (>90%, IC50 0.43 μM), and calcium mobilization in rodent and human lung ASM cells. We conclude that dequalinium and bis-quinolinium cyclophanes antagonized M3 mACHR activation at sub- to low micromolar concentrations, with UCL 1684 acting as an ASM relaxant. Caution should be taken when using these compounds to block SK potassium channels, as inhibition of mACHRs may be a side-effect if excessive concentrations are used.
Collapse
Affiliation(s)
- Vladislav Bugay
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Derek J Wallace
- Intensive Care Unit, Methodist Hospital Texsan, San Antonio, TX, United States
| | - Bin Wang
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Irving Salinas
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Hudson Ryan Smith
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, United States
| | - Peter Herbert Dube
- Microbiology, Immunology & Molecular Genetics, UT Health San Antonio, San Antonio, TX, United States
| | - Edward G Brooks
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX, United States.,Microbiology, Immunology & Molecular Genetics, UT Health San Antonio, San Antonio, TX, United States
| | - Kelly Ann Berg
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, United States
| | - Robert Brenner
- Cell and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
41
|
Jimenez-Valdes RJ, Can UI, Niemeyer BF, Benam KH. Where We Stand: Lung Organotypic Living Systems That Emulate Human-Relevant Host-Environment/Pathogen Interactions. Front Bioeng Biotechnol 2020; 8:989. [PMID: 32903497 PMCID: PMC7438438 DOI: 10.3389/fbioe.2020.00989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Lung disorders such as chronic obstructive pulmonary disease (COPD) and lower respiratory tract infections (LRTIs) are leading causes of death in humans globally. Cigarette smoking is the principal risk factor for the development of COPD, and LRTIs are caused by inhaling respiratory pathogens. Thus, a thorough understanding of host–environment/pathogen interactions is crucial to developing effective preventive and therapeutic modalities against these disorders. While animal models of human pulmonary conditions have been widely utilized, they suffer major drawbacks due to inter-species differences, hindering clinical translation. Here we summarize recent advances in generating complex 3D culture systems that emulate the microarchitecture and pathophysiology of the human lung, and how these platforms have been implemented for studying exposure to environmental factors, airborne pathogens, and therapeutic agents.
Collapse
Affiliation(s)
- Rocio J Jimenez-Valdes
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uryan I Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian F Niemeyer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kambez H Benam
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Bioengineering, University of Colorado Denver, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
42
|
Evans KV, Lee J. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med 2020; 9:867-881. [PMID: 32272001 PMCID: PMC7381809 DOI: 10.1002/sctm.19-0433] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia injure the gas-exchanging alveoli of the human lung. Animal studies have indicated that dysregulation of alveolar cells, including alveolar type II stem/progenitor cells, is implicated in disease pathogenesis. Due to mouse-human differences, there has been a desperate need to develop human-relevant lung models that can more closely recapitulate the human lung during homeostasis, injury repair, and disease. Here we discuss how current single-cell RNA sequencing studies have increased knowledge of the cellular and molecular composition of human lung alveoli, including the identification of molecular heterogeneity, cellular diversity, and previously unknown cell types, some of which arise specifically during disease. For functional analysis of alveolar cells, in vitro human alveolar organoids established from human pluripotent stem cells, embryonic progenitors, and adult tissue from both healthy and diseased lungs have modeled aspects of the cellular and molecular features of alveolar epithelium. Drawbacks of such systems are highlighted, along with possible solutions. Organoid-on-a-chip and ex vivo systems including precision-cut lung slices can complement organoid studies by providing further cellular and structural complexity of lung tissues, and have been shown to be invaluable models of human lung disease, while the production of acellular and synthetic scaffolds hold promise in lung transplant efforts. Further improvements to such systems will increase understanding of the underlying biology of human alveolar stem/progenitor cells, and could lead to future therapeutic or pharmacological intervention in patients suffering from end-stage lung diseases.
Collapse
Affiliation(s)
- Kelly V. Evans
- Wellcome – MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Joo‐Hyeon Lee
- Wellcome – MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
43
|
Klouda T, Condon D, Hao Y, Tian W, Lvova M, Chakraborty A, Nicolls MR, Zhou X, Raby BA, Yuan K. From 2D to 3D: Promising Advances in Imaging Lung Structure. Front Med (Lausanne) 2020; 7:343. [PMID: 32766264 PMCID: PMC7381109 DOI: 10.3389/fmed.2020.00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The delicate structure of murine lungs poses many challenges for acquiring high-quality images that truly represent the living lung. Here, we describe several optimized procedures for obtaining and imaging murine lung tissue. Compared to traditional paraffin cross-section and optimal cutting temperature (OCT), agarose-inflated vibratome sections (aka precision-cut lung slices), combines comparable structural preservation with experimental flexibility. In particular, we discuss an optimized procedure to precision-cut lung slices that can be used to visualize three-dimensional cell-cell interactions beyond the limitations of two-dimensional imaging. Super-resolution microscopy can then be used to reveal the fine structure of lung tissue's cellular bodies and processes that regular confocal cannot. Lastly, we evaluate the entire lung vasculature with clearing technology that allows imaging of the entire volume of the lung without sectioning. In this manuscript, we combine the above procedures to create a novel and evolutionary method to study cell behavior ex vivo, trace and reconstruct pulmonary vasculature, address fundamental questions relevant to a wide variety of vascular disorders, and perceive implications to better imaging clinical tissue.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - David Condon
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
| | - Yuan Hao
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Wen Tian
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
- VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Maria Lvova
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ananya Chakraborty
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
| | - Mark R. Nicolls
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
- VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Xiaobo Zhou
- Division of Pulmonary and Critical Care Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Raby
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Mondoñedo JR, Bartolák-Suki E, Bou Jawde S, Nelson K, Cao K, Sonnenberg A, Obrochta WP, Imsirovic J, Ram-Mohan S, Krishnan R, Suki B. A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Front Physiol 2020; 11:566. [PMID: 32655401 PMCID: PMC7326018 DOI: 10.3389/fphys.2020.00566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue responses to an acute exposure; however, cyclic stretching may be necessary to recapitulate physiologic, tidal breathing conditions. Objectives To develop a multi-well stretcher and characterize the PCLS response following acute exposure to cigarette smoke extract (CSE). Methods A 12-well stretching device was designed, built, and calibrated. PCLS were obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1β (IL-1β), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate. Results The stretcher system produced nearly identical normal Lagrangian strains (Exx and Eyy, p > 0.999) with negligible shear strain (Exy < 0.0005) and low intra-well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by a four-parameter logistic model (R2 = 0.893), yielding an IC50 value of 0.018 cig/mL. Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a significant interaction between CSE and stretch pattern for IL-1β (p = 0.017), MMP-1, TIMP1, and MT1-MMP (p < 0.001). Conclusion This platform is capable of high-throughput testing of an acute exposure under tightly-regulated, cyclic stretching conditions. We conclude that the acute mechano-inflammatory response to CSE exhibits complex, stretch-dependence in the PCLS.
Collapse
Affiliation(s)
- Jarred R Mondoñedo
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Elizabeth Bartolák-Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Samer Bou Jawde
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kara Nelson
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kun Cao
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Adam Sonnenberg
- Department of Systems Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Walter Patrick Obrochta
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Jasmin Imsirovic
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Béla Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
45
|
Crotoxin-Induced Mice Lung Impairment: Role of Nicotinic Acetylcholine Receptors and COX-Derived Prostanoids. Biomolecules 2020; 10:biom10050794. [PMID: 32443924 PMCID: PMC7277605 DOI: 10.3390/biom10050794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory compromise in Crotalus durissus terrificus (C.d.t.) snakebite is an important pathological condition. Considering that crotoxin (CTX), a phospholipase A2 from C.d.t. venom, is the main component of the venom, the present work investigated the toxin effects on respiratory failure. Lung mechanics, morphology and soluble markers were evaluated from Swiss male mice, and mechanism determined using drugs/inhibitors of eicosanoids biosynthesis pathway and autonomic nervous system. Acute respiratory failure was observed, with an early phase (within 2 h) characterized by enhanced presence of eicosanoids, including prostaglandin E2, that accounted for the increased vascular permeability in the lung. The alterations of early phase were inhibited by indomethacin. The late phase (peaked 12 h) was marked by neutrophil infiltration, presence of pro-inflammatory cytokines/chemokines, and morphological alterations characterized by alveolar septal thickening and bronchoconstriction. In addition, lung mechanical function was impaired, with decreased lung compliance and inspiratory capacity. Hexamethonium, a nicotinic acetylcholine receptor antagonist, hampered late phase damages indicating that CTX-induced lung impairment could be associated with cholinergic transmission. The findings reported herein highlight the impact of CTX on respiratory compromise, and introduce the use of nicotinic blockers and prostanoids biosynthesis inhibitors as possible symptomatic therapy to Crotalus durissus terrificus snakebite.
Collapse
|
46
|
Lam M, Bourke JE. A New Pathway to Airway Relaxation: Targeting the "Other" Cyclase in Asthma. Am J Respir Cell Mol Biol 2020; 62:3-4. [PMID: 31414885 PMCID: PMC6938138 DOI: 10.1165/rcmb.2019-0274ed] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery InstituteMonash UniversityClayton, Australia
| | - Jane E Bourke
- Biomedicine Discovery InstituteMonash UniversityClayton, Australia
| |
Collapse
|
47
|
Preserving Airway Smooth Muscle Contraction in Precision-Cut Lung Slices. Sci Rep 2020; 10:6480. [PMID: 32296115 PMCID: PMC7160136 DOI: 10.1038/s41598-020-63225-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
Abstract
Precision-cut lung slices (PCLS) are ideal for measuring small airway contraction. However, these measurements are currently limited to acute exposure scenarios that typically last a few minutes to a few hours. Using an insulin-supplemented culture medium, we prolong the small airway contractility in mouse PCLS for up to two weeks. Compared to conventional culture medium, insulin-supplemented culture medium provides no additional benefit in preserving cellular viability or airway structure. However, it protects the airway smooth muscle (ASM) against a loss of smooth muscle myosin heavy chain (SMMHC) expression. We elucidate the significance of this new culture medium for chronic disease modeling of IL-13-induced airway hyper-responsiveness.
Collapse
|
48
|
Ram-Mohan S, Bai Y, Schaible N, Ehrlicher AJ, Cook DP, Suki B, Stoltz DA, Solway J, Ai X, Krishnan R. Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2020; 318:L323-L330. [PMID: 31774304 PMCID: PMC7052683 DOI: 10.1152/ajplung.00297.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.
Collapse
Affiliation(s)
- Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Bela Suki
- Biomedical Engineering Department, Boston University, Boston, Massachusetts
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
49
|
Bailey KE, Pino C, Lennon ML, Lyons A, Jacot JG, Lammers SR, Königshoff M, Magin CM. Embedding of Precision-Cut Lung Slices in Engineered Hydrogel Biomaterials Supports Extended Ex Vivo Culture. Am J Respir Cell Mol Biol 2020; 62:14-22. [PMID: 31513744 PMCID: PMC6938134 DOI: 10.1165/rcmb.2019-0232ma] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
Maintaining the three-dimensional architecture and cellular complexity of lung tissue ex vivo can enable elucidation of the cellular and molecular pathways underlying chronic pulmonary diseases. Precision-cut lung slices (PCLS) are one human-lung model with the potential to support critical mechanistic studies and early drug discovery. However, many studies report short culture times of 7-10 days. Here, we systematically evaluated poly(ethylene glycol)-based hydrogel platforms for the encapsulation of PCLS. We demonstrated the ability to support ex vivo culture of embedded PCLS for at least 21 days compared with control PCLS floating in media. These customized hydrogels maintained PCLS architecture (no difference), viability (4.7-fold increase, P < 0.0001), and cellular phenotype as measured by SFTPC (1.8-fold increase, P < 0.0001) and vimentin expression (no change) compared with nonencapsulated controls. Collectively, these results demonstrate that hydrogel biomaterials support the extended culture times required to study chronic pulmonary diseases ex vivo using PCLS technology.
Collapse
Affiliation(s)
- Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
| | - Christopher Pino
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Mallory L. Lennon
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Anne Lyons
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Steven R. Lammers
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
| | - Chelsea M. Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| |
Collapse
|
50
|
Akram KM, Yates LL, Mongey R, Rothery S, Gaboriau DCA, Sanderson J, Hind M, Griffiths M, Dean CH. Time-lapse Imaging of Alveologenesis in Mouse Precision-cut Lung Slices. Bio Protoc 2019; 9:e3403. [PMID: 33654904 PMCID: PMC7853931 DOI: 10.21769/bioprotoc.3403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/02/2022] Open
Abstract
Alveoli are the gas-exchange units of lung. The process of alveolar development, alveologenesis, is regulated by a complex network of signaling pathways that act on various cell types including alveolar type I and II epithelial cells, fibroblasts and the vascular endothelium. Dysregulated alveologenesis results in bronchopulmonary dysplasia in neonates and in adults, disrupted alveolar regeneration is associated with chronic lung diseases including COPD and pulmonary fibrosis. Therefore, visualizing alveologenesis is critical to understand lung homeostasis and for the development of effective therapies for incurable lung diseases. We have developed a technique to visualize alveologenesis in real-time using a combination of widefield microscopy and image deconvolution of precision-cut lung slices. Here, we describe this live imaging technique in step-by-step detail. This time-lapse imaging technique can be used to capture the dynamics of individual cells within tissue slices over a long time period (up to 16 h), with minimal loss of fluorescence or cell toxicity.
Collapse
Affiliation(s)
- Khondoker M. Akram
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Laura L. Yates
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen Rothery
- National Heart and Lung Institute, Imperial College London, London, UK
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - David C. A. Gaboriau
- National Heart and Lung Institute, Imperial College London, London, UK
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | | | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK
- Peri-Operative Medicine Department, St Bartholomew’s Hospital, London, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| |
Collapse
|