1
|
Kim HW, Lee JW, Yoon HS, Park HW, Lee YI, Lee SK, Whang J, Kim JS. Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of Mycobacterium abscessus in macrophages. Virulence 2025; 16:2454323. [PMID: 39828906 PMCID: PMC11749347 DOI: 10.1080/21505594.2025.2454323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.
Collapse
Affiliation(s)
- Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| | | | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Günther M, Paczia N, Michels S, Fiebich BL, Vogt S, Drewe J, Boonen G, Butterweck V, Culmsee C. Cimicifuga racemosa extract Ze 450 shifts macrophage immunometabolism and attenuates pro-inflammatory signaling. Biomed Pharmacother 2025; 188:118130. [PMID: 40382826 DOI: 10.1016/j.biopha.2025.118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Extracts from the rhizomes of Cimicifuga racemosa (CRE) are well-studied for treating climacteric symptoms and considered as a safe alternative to hormone replacement therapy (HRT). Chronic low-grade inflammation, or "inflammaging," resulting from the loss of oestrogen's regulatory effect on the immune system, is increasingly recognized as a significant factor in the health of postmenopausal women, contributing to a higher risk for cardiovascular disease, osteoporosis, metabolic syndrome, and cognitive decline. Recent studies have suggested that CRE may exert anti-inflammatory effects, though the underlying mechanisms remain unclear. In this study, we aimed to investigate the effects of Cimicifuga racemosa extract Ze 450 on lipopolysaccharide (LPS)-induced inflammation in macrophages, as macrophage inflammation is crucial in the pathogenesis of several metabolic diseases associated with menopause. Our results demonstrated that CRE Ze 450 reduced the production of NO, IL-1α/β, IL-6, and IL-10, as well as the expression of the pro-inflammatory proteins iNOS, HIF-1α, and mTOR in LPS-stimulated macrophages. Moreover, we observed that Ze 450 induced a shift in energy production from oxidative phosphorylation (OXPHOS) to glycolysis. Mechanistically this was mediated by the modulation of TCA cycle and electron transport chain activity at an early stage, which was further accompanied by the reduction of metabolic signaling molecules such as succinate and citrate. In conclusion, our study identifies a novel mode of action for the Cimicifuga racemosa extract Ze 450, demonstrating its ability to regulate mitochondrial function and macrophage metabolism, but also highlighting its potential to improve the climacteric symptoms by mitigating pro-inflammatory signaling.
Collapse
Affiliation(s)
- Madeline Günther
- Institute for Pharmacology and Clinical Pharmacy, Department of Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 2, 35032 Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, University of Marburg, Hans-Meerwein-Strasse 2, 35032 Marburg, Germany; Department of Cardiac and Vascular Surgery, University Hospital Giessen and Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Susanne Michels
- Institute for Pharmacology and Clinical Pharmacy, Department of Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 2, 35032 Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, University of Marburg, Hans-Meerwein-Strasse 2, 35032 Marburg, Germany; A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Bernd L Fiebich
- VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, 79211 Denzlingen, Germany
| | - Sebastian Vogt
- Department of Cardiac and Vascular Surgery, University Hospital Giessen and Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Veronika Butterweck
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Department of Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 2, 35032 Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, University of Marburg, Hans-Meerwein-Strasse 2, 35032 Marburg, Germany.
| |
Collapse
|
3
|
Liu Y, Wang TT, Lu Y, Riaz M, Qyang Y. Cardiac macrophage: Insights from murine models to translational potential for human studies. J Mol Cell Cardiol 2025; 204:17-31. [PMID: 40354877 DOI: 10.1016/j.yjmcc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Macrophages are a cell type that are known to play dynamic roles in acute and progressive pathology. They are highly attuned to their microenvironments throughout maturation, tailoring their functional responses according to the specific tissues in which they reside and their developmental origin. Cardiac macrophages (cMacs) have emerged as focal points of interest for their interactions with the unique electrical and mechanical stimuli of the heart, as well as for their role in maintaining cardiac homeostasis. Through an in-depth analysis of their origin, lineage, and functional significance, this review aims to shed light on cMacs' distinct contributions to both normal physiological maintenance as well as disease progression. Central to our discussion is the comparison of cMac characteristics between mouse and human models, highlighting current challenges and proposing novel experimental tools for deciphering cMac function within the intricate human cardiac microenvironments based on current murine studies. Our review offers valuable insights for identifying novel therapeutic targets and interventions tailored to the distinct roles of these immune cells in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Yufeng Liu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Tricia T Wang
- Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yinsheng Lu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Ogger PP, Murray PJ. Dissecting inflammation in the immunemetabolomic era. Cell Mol Life Sci 2025; 82:182. [PMID: 40293552 PMCID: PMC12037969 DOI: 10.1007/s00018-025-05715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
The role of immune metabolism, specific metabolites and cell-intrinsic and -extrinsic metabolic states across the time course of an inflammatory response are emerging knowledge. Targeted and untargeted metabolomic analysis is essential to understand how immune cells adapt their metabolic program throughout an immune response. In addition, metabolomic analysis can aid to identify pathophysiological patterns in inflammatory disease. Here, we discuss new metabolomic findings within the transition from inflammation to resolution, focusing on three key programs of immunity: Efferocytosis, IL-10 signaling and trained immunity. Particularly the tryptophan-derived metabolite kynurenine was identified as essential for efferocytosis and inflammation resolution as well as a potential biomarker in diverse inflammatory conditions. In summary, metabolomic analysis and integration with transcriptomic and proteomic data, high resolution imaging and spatial information is key to unravel metabolic drivers and dependencies during inflammation and progression to tissue-repair.
Collapse
Affiliation(s)
- Patricia P Ogger
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Peter J Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
5
|
Moses JC, Sapkota A, Wu Y, Martinez I, Handa H, Brisbois EJ. In Situ Nitric Oxide Generating Nano-Bioactive Glass-Based Coatings and Its Therapeutic Ion Release toward Attenuating Implant-Associated Fibrosis and Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411984. [PMID: 39989185 PMCID: PMC11962685 DOI: 10.1002/smll.202411984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Nitric oxide (NO) is a potent gasotransmitter that exhibits a pleiotropic effect in regulating homeostasis and pathophysiology. Though it is a versatile biomaterial, silicone-based devices are still challenged by implant-associated infections and fibrous capsule formation complications. Here, a NO-generating (NOgen) interface is developed from copper or strontium-doped mesoporous bioactive glass-based coating on silicone substrates to facilitate metal-ion catalysis of endogenous S-nitrosothiols. The copper or strontium-based interfaces can generate physiologically relevant NO levels, which have bactericidal and antithrombotic effects to combat implant-associated early onsite infection and thrombosis. The NO generated in tandem with the low therapeutic release of strontium ions from the NOgen interface regulates cellular fate pertaining to fibroblasts, macrophages, and endothelial cells. Strontium suppresses the collagen expression and migration of activated fibroblasts while favoring M2 phenotype bias in macrophages. Differential NO flux observed over time from NOgen interfaces helps switch macrophages from proinflammatory M1 phenotype to M2 anti-inflammatory phenotype. Moreover, the synergistic effect of leachate and NO generated by the silicone substrate demonstrates a proangiogenic effect by aiding endothelial network maturation in vitro. Thus, the multifunctional features of the developed strontium-doped bioactive glass-based coating hold promise in regulating local immune-micromilieu and attenuating implant-associated fibrosis of silicone-based implantable devices.
Collapse
Affiliation(s)
- Joseph Christakiran Moses
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Aasma Sapkota
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yi Wu
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Isabel Martinez
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Hitesh Handa
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
- Pharmaceutical and Biomedical Sciences DepartmentCollege of PharmacyUniversity of GeorgiaAthensGA30602USA
| | - Elizabeth J. Brisbois
- School of ChemicalMaterials and Biomedical EngineeringCollege of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
6
|
Vizcaino-Castro A, Chen S, Hoogeboom BN, Boerma A, Daemen T, Oyarce C. Effect of repurposed metabolic drugs on human macrophage polarization and antitumoral activity. Clin Immunol 2025; 272:110440. [PMID: 39889896 DOI: 10.1016/j.clim.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
AIM This study aimed to investigate whether the polarization of monocyte-derived macrophages towards an anti-inflammatory phenotype could be hindered by modulating cellular metabolism. Several metabolic drugs were selected: Perhexiline (PerHx) and Nitazoxanide (NTZ) targeting fatty acid oxidation, CB839 (Telaglenastat) targeting glutaminolysis and Metformin (Metf) targeting the mitochondrial electron transport chain. RESULTS Our findings demonstrate that the presence of PerHx, NTZ, and CB839 during IL-4-mediated macrophages polarization impaired the acquisition of full anti-inflammatory phenotype, as evidenced by reduced expression of CD163 and CD209 and decreased secretion of CCL17 chemokine. Besides, CB839 induced tumoricidal activity in macrophages, comparable to that observed in macrophages activated by LPS and IFNγ. CONCLUSION This study reveals that targeting glutamine metabolism with CB839 effectively blocks the IL-4-induced anti-inflammatory phenotype in macrophages and enhances their tumor-killing capability. Our results provide a compelling rationale for repurposing metabolic drugs to create a pro-inflammatory tumor microenvironment, thereby potentially enhancing the efficacy of current immunotherapies.
Collapse
Affiliation(s)
- Ana Vizcaino-Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Shipeng Chen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Baukje Nynke Hoogeboom
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Landwehr KR, Larcombe AN. Comment on Karthikeyan et al. Concordance between In Vitro and In Vivo Relative Toxic Potencies of Diesel Exhaust Particles from Different Biodiesel Blends. Toxics 2024, 12, 290. TOXICS 2025; 13:174. [PMID: 40137501 PMCID: PMC11945800 DOI: 10.3390/toxics13030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Biodiesel exhaust toxicology is a difficult field of study, for which there is a paucity of literature, despite decades of research into the subject [...].
Collapse
Affiliation(s)
- Katherine R. Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia;
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Perth Children’s Hospital, Nedlands, Perth, WA 6009, Australia
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia;
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Perth Children’s Hospital, Nedlands, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
8
|
Rad LM, Hughes KR, Wheeler SN, Decker JT, Orbach SM, Galvan A, Thornhill J, Griffin KV, Turkistani H, Urie RR, Irani DN, Shea LD, Morris AH. Engineered immunological niche directs therapeutic development in models of progressive multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2409852122. [PMID: 39937858 PMCID: PMC11848328 DOI: 10.1073/pnas.2409852122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
Primary progressive multiple sclerosis (MS) is a demyelinating autoimmune disease with only a single class of FDA-approved treatment, B cell depletion. Novel treatments could emerge from a deeper understanding of the interplay between multiple cell types within diseased tissue throughout progression. We initially describe an engineered biomaterial-based immunological niche (IN) as a surrogate for diseased tissue to investigate immune cell function and phenotype dynamics throughout a chronic progressive mouse model of MS. Using these niches, we identify an array of dysregulated CC chemokine signaling as potential targets. We then develop antigen-loaded nanoparticles that reduce CC chemokine signaling, while delivering antigen. These nanoparticles serve as an antigen-specific treatment, and a single injection reduces disease burden, even if administered after symptomatic disease onset. This report demonstrates proof of principle of a biomaterial scaffold as a diseased tissue surrogate that can monitor immune function, identify potential drug targets, and guide the development of a therapeutic.
Collapse
Affiliation(s)
- Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sydney N. Wheeler
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Angelica Galvan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Jasmine Thornhill
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kate V. Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - David N. Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Aaron H. Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
9
|
Ball AB, Jones AE, Nguyễn KB, Rios A, Marx N, Hsieh WY, Yang K, Desousa BR, Kim KKO, Veliova M, Del Mundo ZM, Shirihai OS, Benincá C, Stiles L, Bensinger SJ, Divakaruni AS. Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation. EMBO Rep 2025; 26:982-1002. [PMID: 39753784 PMCID: PMC11850891 DOI: 10.1038/s44319-024-00351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 02/26/2025] Open
Abstract
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Different pro-inflammatory stimuli elicit varying effects on bioenergetic parameters, and pharmacologic and genetic models of electron transport chain inhibition show no causative link between respiration and macrophage activation. Furthermore, the signaling metabolites succinate and itaconate can accumulate independently of characteristic breaks in the TCA cycle in mouse and human macrophages, and peritoneal macrophages can be activated in vivo without inhibition of oxidative phosphorylation. The results indicate there is plasticity in the metabolic phenotypes that can support pro-inflammatory macrophage activation.
Collapse
Affiliation(s)
- Andréa B Ball
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078, Münster, Germany
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Krista Yang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen K O Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zena Marie Del Mundo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristiane Benincá
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
11
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
12
|
Jeroundi N, Roy C, Basset L, Pignon P, Preisser L, Blanchard S, Bocca C, Abadie C, Lalande J, Gueguen N, Mabilleau G, Lenaers G, Moreau A, Copin MC, Tcherkez G, Delneste Y, Couez D, Jeannin P. Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions. EMBO Rep 2024; 25:5383-5407. [PMID: 39424955 PMCID: PMC11624281 DOI: 10.1038/s44319-024-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.
Collapse
Affiliation(s)
- Najia Jeroundi
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laetitia Basset
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Pignon
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laurence Preisser
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Cinzia Bocca
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Cyril Abadie
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julie Lalande
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Naïg Gueguen
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, Inserm, Oniris, RMeS, SFR ICAT, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guy Lenaers
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Aurélie Moreau
- Inserm, Nantes Université, University Hospital of Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Marie-Christine Copin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
- Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Dominique Couez
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Jeannin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France.
- Immunology and Allergology laboratory, University Hospital, Angers, France.
| |
Collapse
|
13
|
Chen H, Buzdar JA, Riaz R, Fouad D, Ahmed N, Shah QA, Chen S. Bovine lactoferrin alleviates aflatoxin B1 induced hepatic and renal injury in broilers by mediating Nrf2 signaling pathway. Poult Sci 2024; 103:104316. [PMID: 39383667 PMCID: PMC11492589 DOI: 10.1016/j.psj.2024.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024] Open
Abstract
Aflatoxin B1 (AFB1) a mycotoxin found in chicken feed that possess a global hazard to poultry health. However different potent compounds like bovine lactoferrin (bLF) may prove to be protective effects against AFB1. This study aims to explore the protective effect of bLF against AFB1-induced injury in the liver and kidney in broiler. For this purpose, 600 broilers chicks were randomly alienated into 5 groups (n = 120 each): negative control; positive control (3 mg/kg AFB1), and bLF high, medium, and low dosage groups (600 mg/kg, 300 mg/kg, and 150 mg/kg, respectively). The results highlight that AFB1 toxicity in birds exhibited low feed intake, reduction in weight gain, and a decrease in FCR while, bLF regulated these adverse effects. Meanwhile, AFB1 group showed higher levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and lower levels of superoxide dismutase (SOD) and glutathione (GSHpx) in liver, while urea and creatinine were decline in kidney. Supplementation with bLF effectively controlled these biomarkers and control the negative effects of toxicity. Furthermore, hematoxylin and eosin (H&E) staining exhibited normal morphological structures within liver and kidney in the bLF treated groups, while degenerative changes were observed in AFB1 group. Similarly, bLF, decreased oxidative stress and thus prevented apoptosis in the liver and kidney cells of the birds. Whereas, mRNA level of mitochondrial apoptosis related gene including Bcl-2 (Bak and Bax), caspase-3 and caspase-9 was upregulated, while bcl2 gene were downregulated in AFB1 group. Dietary supplementation of bLF effectively normalizes the expression of these genes. AFB1 exposed birds shown to decrease gene expression level of the crucial component of Nrf2 pathway, responsible to regulate antioxidant defense. Interestingly, bLF reverse these detrimental effects of and restore the normal expression levels of Nrf2 pathway. Conclusively, our findings demonstrate that bLF mitigates the detrimental effects of AFB1, besides regulation of the apoptosis-related genes via mitochondrial pathways. These findings validate that the bLF (600 mg/kg) could be used as protective agent against AFB1-induced liver and kidney damage.
Collapse
Affiliation(s)
- Hong Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jameel Ahmed Buzdar
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, Kars, 36100, Türkiye
| | - Dalia Fouad
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nisar Ahmed
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Qurban Ali Shah
- Department of Basic Veterinary Science, Faculty of Veterinary & Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Baluchistan, Pakistan
| | - Shulin Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
14
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Lloyd AF, Martinez-Muriana A, Davis E, Daniels MJD, Hou P, Mancuso R, Brenes AJ, Sinclair LV, Geric I, Snellinx A, Craessaerts K, Theys T, Fiers M, De Strooper B, Howden AJM. Deep proteomic analysis of microglia reveals fundamental biological differences between model systems. Cell Rep 2024; 43:114908. [PMID: 39460937 DOI: 10.1016/j.celrep.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Using high-resolution quantitative mass spectrometry, we present comprehensive human and mouse microglia proteomic datasets consisting of over 11,000 proteins across six microglia groups. Microglia share a core protein signature of over 5,600 proteins, yet fundamental differences are observed between species and culture conditions. Mouse microglia demonstrate proteome differences in inflammation- and Alzheimer's disease-associated proteins. We identify differences in the protein content of ex vivo and in vitro cells and significant proteome differences associated with protein synthesis, metabolism, microglia marker expression, and environmental sensors. Culturing microglia induces rapidly increased growth, protein content, and inflammatory protein expression. These changes are restored by engrafting in vitro cells into the brain, with xenografted human embryonic stem cell (hESC)-derived microglia closely resembling microglia from the human brain. These data provide an important resource for the field and highlight important considerations needed when using model systems to study human physiology and pathology of microglia.
Collapse
Affiliation(s)
- Amy F Lloyd
- Cell Signaling and Immunology, University of Dundee, Dundee, UK.
| | - Anna Martinez-Muriana
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK
| | | | - Pengfei Hou
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Renzo Mancuso
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; MINDlab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Alejandro J Brenes
- Cell Signaling and Immunology, University of Dundee, Dundee, UK; Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | | | - Ivana Geric
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK.
| | | |
Collapse
|
16
|
Lin WY, Tsui JL, Chiu HW, Wong WT, Wu CH, Hsu HT, Ho CL, Yeh SP, Rao YK, Chen A, Wang CC, Hsu CH, Chernikov OV, Hua KF, Li LH. Exploring Candesartan, an angiotensin II receptor antagonist, as a novel inhibitor of NLRP3 inflammasome: alleviating inflammation in Neisseria gonorrhoeae infection. BMC Infect Dis 2024; 24:1338. [PMID: 39578786 PMCID: PMC11585111 DOI: 10.1186/s12879-024-10208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Gonorrhea, induced by Neisseria gonorrhoeae infection, stands as a prevalent sexually transmitted inflammatory disease globally. Our earlier research illuminated that N. gonorrhoeae-infected macrophages provoke inflammation by activating the intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, a pivotal regulator in inflammatory diseases governing the maturation and secretion of interleukin (IL)-1β and IL-18. Nevertheless, effective therapies addressing N. gonorrhoeae-mediated NLRP3 inflammasome activation and ensuing inflammation are currently lacking. This study delves into the impact of the angiotensin II receptor antagonist Candesartan (CS) on N. gonorrhoeae-infected macrophages. METHODS The protein expression levels were examined through ELISA and Western blotting. Intracellular H2O2 levels, mitochondrial reactive oxygen species, and mitochondrial membrane integrity were evaluated using targeted fluorescent probes and analyzed via flow cytometry. NF-κB transcriptional activity was assessed using NF-κB reporter cells. LC3-knockdown cells were created using CRISPR/Cas9 technology. RESULTS CS effectively inhibits the NLRP3 inflammasome, as indicated by the suppression of caspase-1 activation, IL-1β secretion, NLRP3 release, and the release of apoptosis-associated speck-like protein containing a CARD (ASC) in N. gonorrhoeae-infected J774A.1 macrophages. Additionally, CS selectively impedes IL-6 secretion and iNOS expression in both N. gonorrhoeae-infected J774A.1 and RAW264.7 macrophages. Mechanistic insights uncover the inhibition of NF-κB by CS in N. gonorrhoeae-infected J774A.1 macrophages, while intracellular H2O2 generation, mitogen-activated protein kinases phosphorylation, and mitochondrial damage remain unaffected. Notably, our study highlights that CS-induced autophagy contributes partially to its inhibitory effect on the NLRP3 inflammasome. CONCLUSIONS These results underscore the potential of CS as an anti-inflammatory drug for the treatment of gonorrhea, addressing a critical unmet medical need in combating N. gonorrhoeae-induced inflammation.
Collapse
Affiliation(s)
- Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Lian Tsui
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shan-Pei Yeh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ann Chen
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chun Wang
- Infectious Disease Division, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Kunming Prevention and Control Center, Taipei City Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Smith R, Bassand K, Dussol A, Piesse C, Duplus E, El Hadri K. A new model and precious tool to study molecular mechanisms of macrophage aging. Aging (Albany NY) 2024; 16:12697-12725. [PMID: 39373702 PMCID: PMC11501386 DOI: 10.18632/aging.206124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 10/08/2024]
Abstract
The accumulation of senescent cells, characterized by a senescence-associated secretory phenotype (SASP), contributes to chronic inflammation and age-related diseases (ARD). During aging, macrophages can adopt a senescent-like phenotype and an altered function, which promotes senescent cell accumulation. In the context of aging and ARD, controlling the resolution of the inflammatory response and preventing chronic inflammation, especially by targeting macrophages, must be a priority. Aging being a dynamic process, we developed a model of in vitro murine peritoneal macrophage aging. Our results show that macrophages cultured for 7 or 14 days exhibit a senescence-like phenotype: proliferation decrease, the levels of cyclin-dependent kinase inhibitors p16INK4A and p21CIP1 and of pro-inflammatory SASP components (MCP-1, IL-6, IL-1β, TNF-α, and MMP-9) increase, phagocytosis capacity decline and glycolytic activity is induced. In our model, chronic treatment with CB3, a thioredoxin-1 mimetic anti-inflammatory peptide, completely prevents p21CIP1 increase and enables day 14 macrophages to maintain proliferative activity.We describe a new model of macrophage aging with a senescence-like phenotype associated with inflammatory, metabolic and functional perturbations. This model is a valuable tool for characterizing macrophage aging mechanisms and developing innovative strategies with promising therapeutical purpose in limiting inflammaging and ARD.
Collapse
Affiliation(s)
- Rémy Smith
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Kévin Bassand
- INSERM U1148, Laboratory for Vascular and Translational Sciences (LVTS), Université Sorbonne Paris Nord, Bobigny 93000, France
| | - Ashok Dussol
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Plate-forme Ingénierie des Protéines et Synthèse Peptidique, Paris 75005, France
| | - Eric Duplus
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Khadija El Hadri
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| |
Collapse
|
18
|
Harati MD, King J, Langer S, Binder F, Heilker R. Recapitulation of NOD/RIPK2 signaling in iPSC-derived macrophages. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100185. [PMID: 39341280 DOI: 10.1016/j.slasd.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Mozhgan Dehghan Harati
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Jim King
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Simon Langer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Florian Binder
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Ralf Heilker
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
19
|
Schukfeh N, Sivaraman K, Schmidt A, Vieten G, Dingemann J, Weidner J, Olmer R, Janciauskiene S. Alpha-1-antitrypsin improves anastomotic healing in intestinal epithelial cells model. Pediatr Surg Int 2024; 40:258. [PMID: 39347946 DOI: 10.1007/s00383-024-05841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Intestinal anastomosis is a routine procedure in pediatric surgery, with leakage being a significant complication. Human alpha1-antitrypsin (AAT), whose physiological serum concentrations range from 0.9-2.0 mg/ml, is known to accelerate wound healing and stimulate the expression of cell proliferation-related genes. We hypothesized that AAT might enhance anastomotic healing. METHODS In a monolayer of non-tumorigenic HIEC-6 epithelial cells derived from fetal intestine a scratch was created. Standard medium without (control) or with AAT (0.5 and 1 mg/ml) was added. Cells were observed using a Life-Cell Imaging System. Cell proliferation was assessed, and the expression of proliferation-related genes was measured by qRT-PCR. RESULTS In the presence of AAT, the scratch closed significantly faster. Cells treated with 1 mg/ml AAT showed 53% repopulation after 8 h and 97% after 18 h, while control cells showed 24% and 60% repopulation, respectively (p < 0.02). The treatment with AAT induced HIEC-6-cell proliferation and significantly increased the mRNA-expression of CDKN1A, CDKN2A, ANGPTL4, WNT3 and COL3A1 genes. AAT did not change the mRNA-expression of CXCL8 but decreased levels of IL-8 as compared to controls. CONCLUSION At physiological concentrations AAT accelerates the confluence of intestinal cells and increases cell proliferation. The local administration of AAT may bear therapeutic potential to improve anastomotic healing.
Collapse
Affiliation(s)
- Nagoud Schukfeh
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany.
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Aileen Schmidt
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Jens Dingemann
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Johannes Weidner
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Ruth Olmer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
20
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Zhang B, Li F, Shi Y, Ji C, Kong Q, Sun K, Sun X. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury. CNS Neurosci Ther 2024; 30:e70028. [PMID: 39218784 PMCID: PMC11366449 DOI: 10.1111/cns.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord injury (SCI) results in significant neurological deficits, and microglia play the critical role in regulating the immune microenvironment and neurological recovery. Protein lactylation has been found to modulate the function of immune cells. Therefore, this study aimed to elucidate the effects of glycolysis-derived lactate on microglial function and its potential neuroprotective mechanisms via lactylation after SCI. METHODS Single-cell RNA sequencing (scRNA-seq) data were obtained from figshare to analyze cellular and molecular alterations within the spinal cord post-SCI, further focusing on the expression of microglia-related genes for cell sub-clustering, trajectory analysis, and glycolysis function analysis. We also evaluated the expression of lactylation-related genes in microglia between day 7 after SCI and sham group. Additionally, we established the mice SCI model and performed the bulk RNA sequencing in a time-dependent manner. The expression of glycolysis- and lactylation-related genes was evaluated, as well as the immune infiltration analysis based on the lactylation-related genes. Then, we investigated the bio-effects of lactate on the inflammation and polarization phenotype of microglia. Finally, adult male C57BL/6 mice were subjected to exercise first to increase lactate level, before SCI surgery, aiming to evaluate the protective effects of lactate-mediated lactylation of microglia-related proteins on SCI. RESULTS scRNA-seq identified a subcluster of microglia, recombinant chemokine C-X3-C-motif receptor 1+ (CX3CR1+) microglia, which is featured by M1-like phenotype and increased after SCI. KEGG analysis revealed the dysfunctional glycolysis in microglia after SCI surgery, and AUCell analysis suggested that the decreased glycolysis an increased oxidative phosphorylation in CX3CR1+ microglia. Differential gene analysis suggested that several lactylation-related genes (Fabp5, Lgals1, Vim, and Nefl) were downregulated in CX3CR1+ microglia at day 7 after SCI, further validated by the results from bulk RNA sequencing. Immunofluorescence staining indicated the expression of lactate dehydrogenase A (LDHA) in CX3CR1+ microglia also decreased at day 7 after SCI. Cellular experiments demonstrated that the administration of lactate could increase the lactylation level and inhibit the pro-inflammatory phenotype in microglia. Functionally, exercise-mediated lactate production resulted in improved locomotor recovery and decreased inflammatory markers in SCI mice compared to SCI alone. CONCLUSIONS In the subacute phase of SCI, metabolic remodeling in microglia may be key therapeutic targets to promote nerve regeneration, and lactate contributed to neuroprotection after SCI by influencing microglial lactylation and inflammatory phenotype, which offered a novel approach for therapeutic intervention.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Fudong Li
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Yangyang Shi
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Chenglong Ji
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
- Department of OrthopedicsNaval Medical Center of PLAShanghaiChina
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Shanghai Changzheng HospitalNavy Medical UniversityShanghaiChina
| |
Collapse
|
22
|
Bartens MC, Willcocks S, Werling D, Gibson AJ. Respiratory bioenergetics is enhanced in human, but not bovine macrophages after exposure to M. bovis PPD: Exploratory insights into overall similar Cellular Metabolic Profiles. Innate Immun 2024; 30:136-149. [PMID: 39563509 PMCID: PMC11577332 DOI: 10.1177/17534259241296630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
The role of macrophage (MØ) cellular metabolism and reprogramming during TB infection is of great interest due to the influence of Mycobacterium spp. on MØ bioenergetics. Recent studies have shown that M. tuberculosis induces a TLR2-dependent shift towards aerobic glycolysis, comparable to the established LPS induced pro-inflammatory M1 MØ polarisation. Distinct differences in the metabolic profile of murine and human MØ indicates species-specific differences in bioenergetics. So far, studies examining the metabolic potential of bovine MØ are lacking, thus the basic bioenergetics of bovine and human MØ were explored in response to a variety of innate immune stimuli. Cellular energy metabolism kinetics were measured concurrently for both species on a Seahorse XFe96 platform to generate bioenergetic profiles for the response to the bona-fide TLR2 and TLR4 ligands, FSL-1 and LPS respectively. Despite previous reports of species-specific differences in TLR signalling and cytokine production between human and bovine MØ, we observed similar respiratory profiles for both species. Basal respiration remained constant between stimulated MØ and controls, whereas addition of TLR ligands induced increased glycolysis, as measured by the surrogate parameter ECAR. In contrast to MØ stimulation with M. tuberculosis PPD, another TLR2 ligand, M. bovis PPD treatment significantly enhanced basal respiration rates and glycolysis only in human MØ. Respiratory profiling further revealed significant elevation of ATP-linked OCR and maximal respiration suggesting a strong OXPHOS activation upon M. bovis PPD stimulation in human MØ. Our results provide an exploratory set of data elucidating the basic respiratory profile of bovine vs. human MØ that will not only lay the foundation for future studies to investigate host-tropism of the M. tuberculosis complex but may explain inflammatory differences observed for other zoonotic diseases.
Collapse
Affiliation(s)
- Marie-Christine Bartens
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
- Department of Life Sciences, Brunel University, UK
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
| | - Amanda J Gibson
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Science, Royal Veterinary College, Hatfield, UK
- Department of Life Science, Aberystwyth University, UK
| |
Collapse
|
23
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
24
|
Wang H, Wang L, Gong G, Lin X, Luo J, Liu C, Mor G, Liao A. Interleukin-10: a novel metabolic inducer of macrophage differentiation and subsequently contributing to improved pregnancy outcomes of mice by orchestrating oxidative phosphorylation metabolism†. Biol Reprod 2024; 111:76-91. [PMID: 38501817 PMCID: PMC11466864 DOI: 10.1093/biolre/ioae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolism regulates the phenotype and function of macrophages. After recruitment to local tissues, monocytes are influenced by the local microenvironment and differentiate into various macrophages depending on different metabolic pathways. However, the metabolic mechanisms underlying decidual macrophage differentiation remain unknown. Interleukin-10 (IL-10) is an important decidual macrophage inducer and promotes oxidative phosphorylation (OXPHOS) of bone marrow-derived macrophages. In this study, we mainly investigate the metabolic changes involved in IL-10-generated macrophages from monocytes using in vitro models. We demonstrate that exposure of monocytes (either peripheral or THP-1) to IL-10 altered the phenotype and function of resultant macrophages that are linked with OXPHOS changes. Interleukin-10 enhanced the mitochondrial complex I and III activity of THP-1 cell-differentiated macrophages and increased the mitochondrial membrane potential, intracellular adenosine triphosphate, and reactive oxygen species levels. Oxidative phosphorylation blockage with oligomycin changed the cell morphology of IL-10-generated macrophages and the expression levels of cytokines, such as transforming growth factor beta, tumor necrosis factor-alpha, interferon gamma, and IL-10, apart from changes in the expression level of the surface markers CD206, CD209, and CD163. Moreover, in vivo IL-10 administration reduced the lipopolysaccharide (LPS)-induced embryo resorption rate, and this effect was diminished when OXPHOS was inhibited, demonstrating that OXPHOS is important for the improved pregnancy outcomes of IL-10 in LPS-induced abortion-prone mice. Our findings provide deep insights into the roles of IL-10 in macrophage biology and pregnancy maintenance. Nevertheless, the direct evidence that OXPHOS is involved in decidual macrophage differentiation needs further investigations.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Guangshun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xinxiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
25
|
Pradhan P, Vijayan V, Liu B, Martinez-Delgado B, Matamala N, Nikolin C, Greite R, DeLuca DS, Janciauskiene S, Motterlini R, Foresti R, Immenschuh S. Distinct metabolic responses to heme in inflammatory human and mouse macrophages - Role of nitric oxide. Redox Biol 2024; 73:103191. [PMID: 38762951 PMCID: PMC11130737 DOI: 10.1016/j.redox.2024.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024] Open
Abstract
Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.
Collapse
Affiliation(s)
- Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Vijith Vijayan
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Robert Greite
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - David S. DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Yao Z, Bai R, Liu W, Liu Y, Zhou W, Xu Z, Sheng J. Activation of angiogenin expression in macrophages by lipopolysaccharide via the TLR4/NF-κB pathway in colitis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:857-865. [PMID: 38567413 PMCID: PMC11214953 DOI: 10.3724/abbs.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.
Collapse
Affiliation(s)
- Zhengrong Yao
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Liu
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Yaxing Liu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Zhou
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| |
Collapse
|
27
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Bahiraii S, Braunböck-Müller B, Heiss EH. Increased Glycolytic Activity Is Part of Impeded M1(LPS) Macrophage Polarization in the Presence of Urolithin A. PLANTA MEDICA 2024; 90:546-553. [PMID: 38843794 PMCID: PMC11156499 DOI: 10.1055/a-2240-7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 06/10/2024]
Abstract
Urolithin A is a gut metabolite of ellagitannins and reported to confer health benefits, e.g., by increased clearance of damaged mitochondria by macroautophagy or curbed inflammation. One targeted cell type are macrophages, which are plastic and able to adopt pro- or anti-inflammatory polarization states, usually assigned as M1 and M2 macrophages, respectively. This flexibility is tightly coupled to characteristic shifts in metabolism, such as increased glycolysis in M1 macrophages, and protein expression upon appropriate stimulation. This study aimed at investigating whether the anti-inflammatory properties of U: rolithin A may be driven by metabolic alterations in cultivated murine M1(lipopolysaccharide) macrophages. Expression and extracellular flux analyses showed that urolithin A led to reduced il1β, il6, and nos2 expression and boosted glycolytic activity in M1(lipopolysaccharide) macrophages. The pro-glycolytic feature of UROLITHIN A: occurred in order to causally contribute to its anti-inflammatory potential, based on experiments in cells with impeded glycolysis. Mdivi, an inhibitor of mitochondrial fission, blunted increased glycolytic activity and reduced M1 marker expression in M1(lipopolysaccharide/UROLITHIN A: ), indicating that segregation of mitochondria was a prerequisite for both actions of UROLITHIN A: . Overall, we uncovered a so far unappreciated metabolic facet within the anti-inflammatory activity of UROLITHIN A: and call for caution about the simplified notion of increased aerobic glycolysis as an inevitably proinflammatory feature in macrophages upon exposure to natural products.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | | | - Elke H. Heiss
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Vittori C, Faia C, Wyczechowska D, Trauth A, Plaisance-Bonstaff K, Meyaski-Schluter M, Reiss K, Peruzzi F. IKAROS expression drives the aberrant metabolic phenotype of macrophages in chronic HIV infection. Clin Immunol 2024; 260:109915. [PMID: 38286172 PMCID: PMC10922842 DOI: 10.1016/j.clim.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Amber Trauth
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Karlie Plaisance-Bonstaff
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA; Louisiana State University Health Sciences Center, Department of Medicine, Louisiana Cancer Research Center; New Orleans, LA 70112, USA.
| |
Collapse
|
30
|
Suleimanov SK, Efremov YM, Klyucherev TO, Salimov EL, Ragimov AA, Timashev PS, Vlasova II. Radical-Generating Activity, Phagocytosis, and Mechanical Properties of Four Phenotypes of Human Macrophages. Int J Mol Sci 2024; 25:1860. [PMID: 38339139 PMCID: PMC10855323 DOI: 10.3390/ijms25031860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Macrophages are the major players and orchestrators of inflammatory response. Expressed proteins and secreted cytokines have been well studied for two polar macrophage phenotypes-pro-inflammatory M1 and anti-inflammatory regenerative M2, but little is known about how the polarization modulates macrophage functions. In this study, we used biochemical and biophysical methods to compare the functional activity and mechanical properties of activated human macrophages differentiated from monocyte with GM-CSF (M0_GM) and M-CSF (M0_M) and polarized into M1 and M2 phenotypes, respectively. Unlike GM-CSF, which generates dormant cells with low activity, M-CSF confers functional activity on macrophages. M0_M and M2 macrophages had very similar functional characteristics-high reactive oxygen species (ROS) production level, and higher phagocytosis and survival compared to M1, while M1 macrophages showed the highest radical-generating activity but the lowest phagocytosis and survival among all phenotypes. All phenotypes decreased their height upon activation, but only M1 and M2 cells increased in stiffness, which can indicate a decrease in the migration ability of these cells and changes in their interactions with other cells. Our results demonstrated that while mechanical properties differ between M0 and polarized cells, all four phenotypes of monocyte-derived macrophages differ in their functional activities, namely in cytokine secretion, ROS production, and phagocytosis. Within the broad continuum of human macrophages obtained in experimental models and existing in vivo, there is a diversity of phenotypes with varying combinations of both markers and functional activities.
Collapse
Affiliation(s)
- Shakir K. Suleimanov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (S.K.S.); (Y.M.E.); (T.O.K.); (P.S.T.)
- Laboratory of Clinical Smart Nanotechnologies, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (S.K.S.); (Y.M.E.); (T.O.K.); (P.S.T.)
| | - Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (S.K.S.); (Y.M.E.); (T.O.K.); (P.S.T.)
- Laboratory of Clinical Smart Nanotechnologies, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Emin L. Salimov
- Laboratory Blood Transfusion Complex, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.L.S.); (A.A.R.)
| | - Aligeydar A. Ragimov
- Laboratory Blood Transfusion Complex, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.L.S.); (A.A.R.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (S.K.S.); (Y.M.E.); (T.O.K.); (P.S.T.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (S.K.S.); (Y.M.E.); (T.O.K.); (P.S.T.)
| |
Collapse
|
31
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Selig M, Poehlman L, Lang NC, Völker M, Rolauffs B, Hart ML. Prediction of six macrophage phenotypes and their IL-10 content based on single-cell morphology using artificial intelligence. Front Immunol 2024; 14:1336393. [PMID: 38239351 PMCID: PMC10794337 DOI: 10.3389/fimmu.2023.1336393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The last decade has led to rapid developments and increased usage of computational tools at the single-cell level. However, our knowledge remains limited in how extracellular cues alter quantitative macrophage morphology and how such morphological changes can be used to predict macrophage phenotype as well as cytokine content at the single-cell level. Methods Using an artificial intelligence (AI) based approach, this study determined whether (i) accurate macrophage classification and (ii) prediction of intracellular IL-10 at the single-cell level was possible, using only morphological features as predictors for AI. Using a quantitative panel of shape descriptors, our study assessed image-based original and synthetic single-cell data in two different datasets in which CD14+ monocyte-derived macrophages generated from human peripheral blood monocytes were initially primed with GM-CSF or M-CSF followed by polarization with specific stimuli in the presence/absence of continuous GM-CSF or M-CSF. Specifically, M0, M1 (GM-CSF-M1, TNFα/IFNγ-M1, GM-CSF/TNFα/IFNγ-M1) and M2 (M-CSF-M2, IL-4-M2a, M-CSF/IL-4-M2a, IL-10-M2c, M-CSF/IL-10-M2c) macrophages were examined. Results Phenotypes were confirmed by ELISA and immunostaining of CD markers. Variations of polarization techniques significantly changed multiple macrophage morphological features, demonstrating that macrophage morphology is a highly sensitive, dynamic marker of phenotype. Using original and synthetic single-cell data, cell morphology alone yielded an accuracy of 93% for the classification of 6 different human macrophage phenotypes (with continuous GM-CSF or M-CSF). A similarly high phenotype classification accuracy of 95% was reached with data generated with different stimuli (discontinuous GM-CSF or M-CSF) and measured at a different time point. These comparably high accuracies clearly validated the here chosen AI-based approach. Quantitative morphology also allowed prediction of intracellular IL-10 with 95% accuracy using only original data. Discussion Thus, image-based machine learning using morphology-based features not only (i) classified M0, M1 and M2 macrophages but also (ii) classified M2a and M2c subtypes and (iii) predicted intracellular IL-10 at the single-cell level among six phenotypes. This simple approach can be used as a general strategy not only for macrophage phenotyping but also for prediction of IL-10 content of any IL-10 producing cell, which can help improve our understanding of cytokine biology at the single-cell level.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Logan Poehlman
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils C Lang
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marita Völker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
33
|
Jin YM, Huang AR, Yu MQ, Ye WD, Hu XG, Wang HM, Xu ZW, Liang DS. Protective Effects of NaHS/miR-133a-3p on Lipopolysaccharide-Induced Cardiomyocytes Injury. J Toxicol 2023; 2023:2566754. [PMID: 38106638 PMCID: PMC10723929 DOI: 10.1155/2023/2566754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Objective The aim of this study was to investigate the effects of sodium hydrosulfide (NaHS) on Lipopolysaccharide (LPS)-induced cardiomyocyte injury in H9c2 cells. Methods H9c2 cardiomyocytes cultivated with medium containing 10 μg/mL LPS were used to recapitulate the phenotypes of those in sepsis. Two sequential experiments were performed. The first contained a control group, a LPS group, and a LPS + NaHS group, with the aim to assure the protective effects of NaHS on LPS-treated cardiomyocytes. The second experiment added a fourth group, the LPS + NaHS + miR-133a-3p inhibition group, with the aim to preliminarily explore whether miR-133-3p exerts a protective function downstream of NaHS. The adenosine triphosphate (ATP) kit was used to detect ATP content; real-time quantitative polynucleotide chain reaction (qPCR) was used to measure the levels of mammalian targets of rapamycin (mTOR), AMP-dependent protein kinase (AMPK), and miR-133a-3p, and Western blot (WB) was used to detect protein levels of mTOR, AMPK, myosin-like Bcl2 interacting protein (Beclin-1), microtubule-associated protein 1 light chain 3 (LC3I/II), and P62 (sequestosome-1, sqstm-1/P62). Results Compared with the control group, the expressions of miR-133a-3p (P < 0.001), P62 (P < 0.001), and the content of ATP (P < 0.001) decreased, while the expressions of Beclin-1 (P = 0.023) and LC3I/II (P = 0.048) increased in the LPS group. Compared with the LPS group, the expressions of miR-133a-3p (P < 0.001), P62 (P < 0.001), and the content of ATP (P < 0.001) in the NaHS + LPS group increased, while the expressions of Beclin-1 (P = 0.023) and LC3I/II (P = 0.022) decreased. Compared with the NaHS + LPS group, the expression levels of miR-133a-3p (P < 0.001), P62 (P = 0.001), and the content of ATP (P < 0.001) in the LPS + NaHS + miR-133a-3p inhibition group were downregulated, and the expression levels of Beclin-1 (P = 0.012) and LC3I/II (P = 0.010) were upregulated. The difference was statistically significant. There was no significant difference in the expression of AMPK and mTOR between groups. Conclusion Our research demonstrated that NaHS relieved LPS-induced myocardial injury in H9c2 by promoting the expression of miR-133a-3p, inhibiting autophagy in cardiomyocytes, and restoring cellular ATP levels.
Collapse
Affiliation(s)
- Yi-Mei Jin
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ai-Rong Huang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mei-qian Yu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wan-Ding Ye
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao-guang Hu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hua-min Wang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-wei Xu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dong-shi Liang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
34
|
Roy RM, Allawzi A, Burns N, Sul C, Rubio V, Graham J, Stenmark K, Nozik ES, Tuder RM, Vohwinkel CU. Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury. FASEB J 2023; 37:e23316. [PMID: 37983890 PMCID: PMC10914122 DOI: 10.1096/fj.202301722r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.
Collapse
Affiliation(s)
- René M. Roy
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ayed Allawzi
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nana Burns
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina Sul
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Victoria Rubio
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Graham
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt Stenmark
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva S. Nozik
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christine U. Vohwinkel
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
35
|
Giuliani A, Giudetti AM, Vergara D, Del Coco L, Ramini D, Caccese S, Sbriscia M, Graciotti L, Fulgenzi G, Tiano L, Fanizzi FP, Olivieri F, Rippo MR, Sabbatinelli J. Senescent Endothelial Cells Sustain Their Senescence-Associated Secretory Phenotype (SASP) through Enhanced Fatty Acid Oxidation. Antioxidants (Basel) 2023; 12:1956. [PMID: 38001810 PMCID: PMC10668971 DOI: 10.3390/antiox12111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular senescence is closely linked to endothelial dysfunction, a key factor in age-related vascular diseases. Senescent endothelial cells exhibit a proinflammatory phenotype known as SASP, leading to chronic inflammation (inflammaging) and vascular impairments. Albeit in a state of permanent growth arrest, senescent cells paradoxically display a high metabolic activity. The relationship between metabolism and inflammation is complex and varies across cell types and senescence inductions. While some cell types shift towards glycolysis during senescence, others favor oxidative phosphorylation (OXPHOS). Despite the high availability of oxygen, quiescent endothelial cells (ECs) tend to rely on glycolysis for their bioenergetic needs. However, there are limited data on the metabolic behavior of senescent ECs. Here, we characterized the metabolic profiles of young and senescent human umbilical vein endothelial cells (HUVECs) to establish a possible link between the metabolic status and the proinflammatory phenotype of senescent ECs. Senescent ECs internalize a smaller amount of glucose, have a lower glycolytic rate, and produce/release less lactate than younger cells. On the other hand, an increased fatty acid oxidation activity was observed in senescent HUVECs, together with a greater intracellular content of ATP. Interestingly, blockade of glycolysis with 2-deoxy-D-glucose in young cells resulted in enhanced production of proinflammatory cytokines, while the inhibition of carnitine palmitoyltransferase 1 (CPT1), a key rate-limiting enzyme of fatty acid oxidation, ameliorated the SASP in senescent ECs. In summary, metabolic changes in senescent ECs are complex, and this research seeks to uncover potential strategies for modulating these metabolic pathways to influence the SASP.
Collapse
Affiliation(s)
- Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
| | - Sara Caccese
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Matilde Sbriscia
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.G.); (D.V.); (L.D.C.); (F.P.F.)
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (D.R.); (M.S.); (F.O.)
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.C.); (G.F.); (M.R.R.); (J.S.)
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
36
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
37
|
Sabogal-Guáqueta AM, Marmolejo-Garza A, Trombetta-Lima M, Oun A, Hunneman J, Chen T, Koistinaho J, Lehtonen S, Kortholt A, Wolters JC, Bakker BM, Eggen BJL, Boddeke E, Dolga A. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat Commun 2023; 14:6454. [PMID: 37833292 PMCID: PMC10575978 DOI: 10.1038/s41467-023-42096-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Metabolic reprogramming is a hallmark of the immune cells in response to inflammatory stimuli. This metabolic process involves a switch from oxidative phosphorylation (OXPHOS) to glycolysis or alterations in other metabolic pathways. However, most of the experimental findings have been acquired in murine immune cells, and little is known about the metabolic reprogramming of human microglia. In this study, we investigate the transcriptomic, proteomic, and metabolic profiles of mouse and iPSC-derived human microglia challenged with the TLR4 agonist LPS. We demonstrate that both species display a metabolic shift and an overall increased glycolytic gene signature in response to LPS treatment. The metabolic reprogramming is characterized by the upregulation of hexokinases in mouse microglia and phosphofructokinases in human microglia. This study provides a direct comparison of metabolism between mouse and human microglia, highlighting the species-specific pathways involved in immunometabolism and the importance of considering these differences in translational research.
Collapse
Affiliation(s)
- Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jasmijn Hunneman
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, The Netherlands
- YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
38
|
Tomlinson KL, Chen YT, Junker A, Urso A, Wong Fok Lung T, Ahn D, Hofstaedter CE, Baskota SU, Ernst RK, Prince A, Riquelme SA. Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection. Cell Metab 2023; 35:1767-1781.e6. [PMID: 37793346 PMCID: PMC10558090 DOI: 10.1016/j.cmet.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.
Collapse
Affiliation(s)
- Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Ying-Tsun Chen
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Alex Junker
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - AndreaCarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Swikrity U Baskota
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
39
|
Schilperoort M, Ngai D, Sukka SR, Avrampou K, Shi H, Tabas I. The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol Rev 2023; 319:65-80. [PMID: 37158427 PMCID: PMC10615666 DOI: 10.1111/imr.13214] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
The phagocytosis of dying cells by macrophages, termed efferocytosis, is a tightly regulated process that involves the sensing, binding, engulfment, and digestion of apoptotic cells. Efferocytosis not only prevents tissue necrosis and inflammation caused by secondary necrosis of dying cells, but it also promotes pro-resolving signaling in macrophages, which is essential for tissue resolution and repair following injury or inflammation. An important factor that contributes to this pro-resolving reprogramming is the cargo that is released from apoptotic cells after their engulfment and phagolysosomal digestion by macrophages. The apoptotic cell cargo contains amino acids, nucleotides, fatty acids, and cholesterol that function as metabolites and signaling molecules to bring about this re-programming. Here, we review efferocytosis-induced changes in macrophage metabolism that mediate the pro-resolving functions of macrophages. We also discuss various strategies, challenges, and future perspectives related to drugging efferocytosis-fueled macrophage metabolism as strategy to dampen inflammation and promote resolution in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Santosh R Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kleopatra Avrampou
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
40
|
Karkossa I, Fürst S, Großkopf H, von Bergen M, Schubert K. Oxidation is an underappreciated post-translational modification in the regulation of immune responses associated with changes in phosphorylation. Front Immunol 2023; 14:1244431. [PMID: 37809076 PMCID: PMC10559879 DOI: 10.3389/fimmu.2023.1244431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Although macrophages are known to be affected by their redox status, oxidation is not yet a well-recognized post-translational modification (PTM) in regulating macrophages and immune cells in general. While it has been described that the redox status of single cysteines in specific proteins is relevant for macrophage functions, global oxidation information is scarce. Hence, we globally assessed the impact of oxidation on macrophage activation using untargeted proteomics and PTM-omics. We exposed THP-1 macrophages to lipopolysaccharide (LPS) for 4 h and 24 h and applied a sequential iodoTMT labeling approach to get information on overall oxidation as well as reversible oxidation of cysteines. Thus, we identified 10452 oxidation sites, which were integratively analyzed with 5057 proteins and 7148 phosphorylation sites to investigate their co-occurance with other omics layers. Based on this integrative analysis, we found significant upregulation of several immune-related pathways, e.g. toll-like receptor 4 (TLR4) signaling, for which 19 proteins, 7 phosphorylation sites, and 39 oxidation sites were significantly affected, highlighting the relevance of oxidations in TLR4-induced macrophage activation. Co-regulation of oxidation and phosphorylation was observed, as evidenced by multiply modified proteins related to inflammatory pathways. Additionally, we observed time-dependent effects, with differences in the dynamics of oxidation sites compared to proteins and phosphorylation sites. Overall, this study highlights the importance of oxidation in regulating inflammatory processes and provides a method that can be readily applied to study the cellular redoxome globally.
Collapse
Affiliation(s)
- Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sabine Fürst
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
41
|
de Jong R, Tenbrock K, Ohl K. New Insights in Immunometabolism in Neonatal Monocytes and Macrophages in Health and Disease. Int J Mol Sci 2023; 24:14173. [PMID: 37762476 PMCID: PMC10531550 DOI: 10.3390/ijms241814173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It is well established that the neonatal immune system is different from the adult immune system. A major task of the neonatal immune system is to bridge the achievement of tolerance towards harmless antigens and commensal bacteria while providing protection against pathogens. This is highly important because neonates are immunologically challenged directly after birth by a rigorous change from a semi-allogeneic sterile environment into a world rich with microbes. A so called disease tolerogenic state is typical for neonates and is anticipated to prevent immunopathological damage potentially at the cost of uncontrolled pathogen proliferation. As a consequence, neonates are more susceptible than adults to life-threatening infections. At the basis of a well-functioning immune response, both for adults and neonates, innate immune cells such as monocytes and monocyte-derived macrophages play an essential role. A well-responsive monocyte will alter its cellular metabolism to subsequently induce certain immune effector function, a process which is called immunometabolism. Immunometabolism has received extensive attention in the last decade; however, it has not been broadly studied in neonates. This review focuses on carbohydrate metabolism in monocytes and macrophages in neonates. We will exhibit pathways involving glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation and their role in shaping neonates' immune systems to a favorable tolerogenic state. More insight into these pathways will elucidate potential treatments targets in life-threatening conditions including neonatal sepsis or expose potential targets which can be used to induce tolerance in conditions where tolerance is harmfully impaired such as in autoimmune diseases.
Collapse
Affiliation(s)
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, 52074 Aachen, Germany; (R.d.J.); (K.O.)
| | | |
Collapse
|
42
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
43
|
Zhang LF, Zhang XY, Wang AC, Feng YJ, Qi XM, Zhang YL, Li QF, Qiao YB, Li QS. Bidirectional crosstalk of the cAMP/ROS-dependent signaling pathways in inflammatory macrophage: An activation of formononetin. Toxicol Appl Pharmacol 2023; 472:116571. [PMID: 37269934 DOI: 10.1016/j.taap.2023.116571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Bacterial lipopolysaccharide (LPS) is a toxic stimulant to macrophage inflammation. Inflammation intersects cell metabolism and often directs host immunopathogenesis stress. We aim here at pharmacological discovering of formononetin (FMN) action, to which anti-inflammatory signaling spans across immune membrane receptors and second messenger metabolites. In ANA-1 macrophage stimulated by LPS, and simultaneous treatment with FMN, results show the Toll-like receptor 4 (TLR4) and estrogen receptor (ER) signals, in concert with reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP), respectively. LPS stimulates inactivation of the ROS-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) by upregulating TLR4, but it does not affect cAMP. However, FMN treatment not only activates Nrf2 signaling by TLR4 inhibition, but also it activates cAMP-dependent protein kinase activities by upregulating ER. The cAMP activity gives rise to phosphorylation (p-) of protein kinase A, liver kinase B1 and 5'-AMP activated protein kinase (AMPK). Moreover, bidirectional signal crosstalk is amplified between p-AMPK and ROS, as FMN combinational validation with AMPK activator/inhibitor/target small-interfering RNA or ROS scavenger. The signal crosstalk is well positioned serving as the 'plug-in' knot for rather long signaling axis, and the immune-to-metabolic circuit via ER/TLR4 signal transduction. Collectively, convergence of the FMN-activated signals drives significant reduction of cyclooxygenase-2, interleukin-6 and NLR family pyrin domain-containing protein 3, in LPS-stimulated cell. Although anti-inflammatory signaling is specifically related to the immune-type macrophage, the p-AMPK antagonizing effect arises from FMN combination with ROS scavenger H-bond donors. Information of our work assists in predictive traits against macrophage inflammatory challenges, using phytoestrogen discoveries.
Collapse
Affiliation(s)
- Lan-Fang Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Xiao-Yan Zhang
- Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Ai-Cheng Wang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Yi-Jia Feng
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Xiao-Ming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Qing-Fang Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| |
Collapse
|
44
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Wan Y, Slevin E, Koyama S, Huang CK, Shetty AK, Li X, Harrison K, Li T, Zhou B, Lorenzo SR, Zhang Y, Salinas JM, Xu W, Klaunig JE, Wu C, Tsukamoto H, Meng F. miR-34a regulates macrophage-associated inflammation and angiogenesis in alcohol-induced liver injury. Hepatol Commun 2023; 7:e0089. [PMID: 37026704 PMCID: PMC10079357 DOI: 10.1097/hc9.0000000000000089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a syndrome of progressive inflammatory liver injury and vascular remodeling associated with long-term heavy intake of ethanol. Elevated miR-34a expression, macrophage activation, and liver angiogenesis in ALD and their correlation with the degree of inflammation and fibrosis have been reported. The current study aims to characterize the functional role of miR-34a-regulated macrophage- associated angiogenesis during ALD. METHODS RESULTS We identified that knockout of miR-34a in 5 weeks of ethanol-fed mice significantly decreased the total liver histopathology score and miR-34a expression, along with the inhibited liver inflammation and angiogenesis by reduced macrophage infiltration and CD31/VEGF-A expression. Treatment of murine macrophages (RAW 264.7) with lipopolysaccharide (20 ng/mL) for 24 h significantly increased miR-34a expression, along with the enhanced M1/M2 phenotype changes and reduced Sirt1 expression. Silencing of miR-34a significantly increased oxygen consumption rate (OCR) in ethanol treated macrophages, and decreased lipopolysaccharide-induced activation of M1 phenotypes in cultured macrophages by upregulation of Sirt1. Furthermore, the expressions of miR-34a and its target Sirt1, macrophage polarization, and angiogenic phenotypes were significantly altered in isolated macrophages from ethanol-fed mouse liver specimens compared to controls. TLR4/miR-34a knockout mice and miR-34a Morpho/AS treated mice displayed less sensitivity to alcohol-associated injury, along with the enhanced Sirt1 and M2 markers in isolated macrophages, as well as reduced angiogenesis and hepatic expressions of inflammation markers MPO, LY6G, CXCL1, and CXCL2. CONCLUSION Our results show that miR-34a-mediated Sirt1 signaling in macrophages is essential for steatohepatitis and angiogenesis during alcohol-induced liver injury. These findings provide new insight into the function of microRNA-regulated liver inflammation and angiogenesis and the implications for reversing steatohepatitis with potential therapeutic benefits in human alcohol-associated liver diseases.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Elise Slevin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chiung-Kuei Huang
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas, USA
| | - Xuedong Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kelly Harrison
- Department of Transplant Surgery, Baylor Scott & White Memorial Hospital, Temple, Texas, USA
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bingru Zhou
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | | | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenjuan Xu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James E. Klaunig
- Department of Environmental and Occupational Health, Laboratory of Investigative Toxicology and Pathology, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Greater Los Angeles VA Health care System, Los Angeles, California, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Wolf AJ. Peptidoglycan-induced modulation of metabolic and inflammatory responses. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00024. [PMID: 37128291 PMCID: PMC10144284 DOI: 10.1097/in9.0000000000000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Bacterial cell wall peptidoglycan is composed of innate immune ligands and, due to its important structural role, also regulates access to many other innate immune ligands contained within the bacteria. There is a growing body of literature demonstrating how innate immune recognition impacts the metabolic functions of immune cells and how metabolic changes are not only important to inflammatory responses but are often essential. Peptidoglycan is primarily sensed in the context of the whole bacteria during lysosomal degradation; consequently, the innate immune receptors for peptidoglycan are primarily intracellular cytosolic innate immune sensors. However, during bacterial growth, peptidoglycan fragments are shed and can be found in the bloodstream of humans and mice, not only during infection but also derived from the abundant bacterial component of the gut microbiota. These peptidoglycan fragments influence cells throughout the body and are important for regulating inflammation and whole-body metabolic function. Therefore, it is important to understand how peptidoglycan-induced signals in innate immune cells and cells throughout the body interact to regulate how the body responds to both pathogenic and nonpathogenic bacteria. This mini-review will highlight key research regarding how cellular metabolism shifts in response to peptidoglycan and how systemic peptidoglycan sensing impacts whole-body metabolic function.
Collapse
Affiliation(s)
- Andrea J. Wolf
- The Karsh Division of Gastroenterology and Hepatology, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
47
|
Privitera A, Cardaci V, Weerasekara D, Saab MW, Diolosà L, Fidilio A, Jolivet RB, Lazzarino G, Amorini AM, Camarda M, Lunte SM, Caraci F, Caruso G. Microfluidic/HPLC combination to study carnosine protective activity on challenged human microglia: Focus on oxidative stress and energy metabolism. Front Pharmacol 2023; 14:1161794. [PMID: 37063279 PMCID: PMC10095171 DOI: 10.3389/fphar.2023.1161794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide possesses well-demonstrated antioxidant, anti-inflammatory, and anti-aggregation properties, and it may be useful for treatment of pathologies characterized by oxidative stress and energy unbalance such as depression and Alzheimer's disease (AD). Microglia, the brain-resident macrophages, are involved in different physiological brain activities such synaptic plasticity and neurogenesis, but their dysregulation has been linked to the pathogenesis of numerous diseases. In AD brain, the activation of microglia towards a pro-oxidant and pro-inflammatory phenotype has found in an early phase of cognitive decline, reason why new pharmacological targets related to microglia activation are of great importance to develop innovative therapeutic strategies. In particular, microglia represent a common model of lipopolysaccharides (LPS)-induced activation to identify novel pharmacological targets for depression and AD and numerous studies have linked the impairment of energy metabolism, including ATP dyshomeostasis, to the onset of depressive episodes. In the present study, we first investigated the toxic potential of LPS + ATP in the absence or presence of carnosine. Our studies were carried out on human microglia (HMC3 cell line) in which LPS + ATP combination has shown the ability to promote cell death, oxidative stress, and inflammation. Additionally, to shed more light on the molecular mechanisms underlying the protective effect of carnosine, its ability to modulate reactive oxygen species production and the variation of parameters representative of cellular energy metabolism was evaluated by microchip electrophoresis coupled to laser-induced fluorescence and high performance liquid chromatography, respectively. In our experimental conditions, carnosine prevented LPS + ATP-induced cell death and oxidative stress, also completely restoring basal energy metabolism in human HMC3 microglia. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of multifactorial disorders characterize by neuroinflammatory phenomena including depression and AD.
Collapse
Affiliation(s)
- Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milano, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Dhanushka Weerasekara
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lidia Diolosà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Susan Marie Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry, University of Kansas, Lawrence, KS, United States
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
48
|
Hickman E, Smyth T, Cobos-Uribe C, Immormino R, Rebuli ME, Moran T, Alexis NE, Jaspers I. Expanded characterization of in vitro polarized M0, M1, and M2 human monocyte-derived macrophages: Bioenergetic and secreted mediator profiles. PLoS One 2023; 18:e0279037. [PMID: 36862675 PMCID: PMC9980743 DOI: 10.1371/journal.pone.0279037] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 03/03/2023] Open
Abstract
Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract, posing a challenge to in vitro macrophage model systems. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics that are typically independently measured to phenotype these cells. Bioenergetics is emerging as a key central regulator of macrophage function and phenotype but is often not included in the characterization of human monocyte-derived macrophage (hMDM) models. The objective of this study was to expand the phenotype characterization of naïve hMDMs, and their M1 and M2 subsets by measuring cellular bioenergetic outcomes and including an expanded cytokine profile. Known markers of M0, M1 and M2 phenotypes were also measured and integrated into the phenotype characterization. Peripheral blood monocytes from healthy volunteers were differentiated into hMDM and polarized with either IFN-γ + LPS (M1) or IL-4 (M2). As expected, our M0, M1, and M2 hMDMs exhibited cell surface marker, phagocytosis, and gene expression profiles indicative of their different phenotypes. M2 hMDMs however were uniquely characterized and different from M1 hMDMs by being preferentially dependent on oxidativte phosphorylation for their ATP generation and by secreting a distinct cluster of soluble mediators (MCP4, MDC, and TARC). In contrast, M1 hMDMs secreted prototypic pro-inflammatory cytokines (MCP1, eotaxin, eotaxin-3, IL12p70, IL-1α, IL15, TNF-β, IL-6, TNF-α, IL12p40, IL-13, and IL-2), but demonstrated a relatively constitutively heightened bioenergetic state, and relied on glycolysis for ATP generation. These data are similar to the bioenergetic profiles we previously observed in vivo in sputum (M1) and BAL (M2)-derived macrophages in healthy volunteers, supporting the notion that polarized hMDMs can provide an acceptable in vitro model to study specific human respiratory macrophage subtypes.
Collapse
Affiliation(s)
- Elise Hickman
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Smyth
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Catalina Cobos-Uribe
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert Immormino
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Meghan E. Rebuli
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Moran
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
49
|
Mittli D, Tukacs V, Ravasz L, Csősz É, Kozma T, Kardos J, Juhász G, Kékesi KA. LPS-induced acute neuroinflammation, involving interleukin-1 beta signaling, leads to proteomic, cellular, and network-level changes in the prefrontal cortex of mice. Brain Behav Immun Health 2023; 28:100594. [PMID: 36713475 PMCID: PMC9880243 DOI: 10.1016/j.bbih.2023.100594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Neuroinflammation induced by peripheral infections leads to various neuropsychiatric symptoms both in humans and laboratory animals, e.g., to the manifestation of sickness behavior that resembles some features of clinical depression. However, in addition to depression-like behavior, there are other symptoms of acute systemic inflammation that can be associated with the impairment of prefrontal cortex (PFC)-regulated cognitive functions. Thus, we investigated the electrophysiological and proteomic alterations of the PFC using brain slices and the lipopolysaccharide (LPS) model of acute peripheral infection in male mice. Based on the gene expression differences of the coreceptor (Il1rap) of interleukin-1 beta (IL-1β) between neuron types in our previous single-cell sequencing dataset, we first compared the electrophysiological effects of IL-1β on PFC pyramidal cells and interneurons. We found that pyramidal cells are more responsive to IL-1β, as could be presumed from our transcriptomic data. To examine the possible circuit-level correlates of the cellular changes, frontal electroencephalographic (EEG) activity and fronto-occipital functional connectivity were analyzed in LPS-treated mice and significant changes were found in the fronto-occipital EEG correlation and coherence in the delta and high-gamma frequency bands. The upregulation of the prefrontal IL-1 system (IL-1β and its receptor) after LPS treatment was revealed by immunoassays simultaneously with the observed EEG changes. Furthermore, we investigated the LPS-induced alterations of the synaptic proteome in the PFC using 2-D differential gel electrophoresis and mass spectrometry and found 48 altered proteins mainly related to cellular signaling, cytoskeletal organization, and carbohydrate/energy metabolism. Thus, our results indicate remarkable electrophysiological and molecular changes in the PFC related to acute systemic inflammation that may explain some of the concomitant behavioral and physiological symptoms.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Lilla Ravasz
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- CRU Hungary Ltd., Göd, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- CRU Hungary Ltd., Göd, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| |
Collapse
|
50
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|