1
|
Ibars-Serra M, Pascual-Serrano A, Ardid-Ruiz A, Doladé N, Aguilar-González S, Cirasino J, Muguerza B, Suárez M, Keijer J, Arola-Arnal A, Aragonès G. Resveratrol Prevents Weight Gain, Counteracts Visceral Adipose Tissue Dysfunction, and Improves Hypothalamic Leptin Sensitivity in Diet-Induced Obese Rats. Mol Nutr Food Res 2025:e70075. [PMID: 40289401 DOI: 10.1002/mnfr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
In obesity, increased adipocyte size is associated with metabolic complications, while elevated adipocyte numbers are considered a protective mechanism against metabolic disturbances. Adipose tissue dysfunction leads to decreased leptin sensitivity and disrupted energy balance regulation. Resveratrol (RSV), a bioactive compound known for potential health benefits, including obesity-related disorder prevention, has unclear modulatory effects on adipocyte dysfunction and leptin signaling in established obesity. This study investigated the impact of RSV on adiposity and hypothalamic leptin sensitivity in obesity. Rats were fed a cafeteria diet for 9 weeks and subsequently supplemented with different doses of RSV for 22 days. The 200 mg/kg RSV dose reduced leptin concentrations, body weight gain, and body fat mass in obese animals, while mitigating adipocyte hypertrophy and promoting adipocyte hyperplasia in the retroperitoneal fat depot. RSV also improved hypothalamic leptin sensitivity, shedding light on the molecular mechanisms underlying the benefits of RSV consumption for obesity-related disorders.
Collapse
Affiliation(s)
- Maria Ibars-Serra
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Aïda Pascual-Serrano
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Núria Doladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Aguilar-González
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Julieta Cirasino
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Li Z, Huang K, Cao J, Guo M, Dong H, Ye W, Zeng S, Wei J, Xi Q. Silencing Hmox1 Attenuates Cerebral Ischemia/reperfusion Injury and Inhibits Inflammation and Ferroptosis Via the PPAR-γ/FABP4 Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04899-1. [PMID: 40261607 DOI: 10.1007/s12035-025-04899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
Cerebral ischemia/reperfusion (I/R) may aggravate tissue injury by promoting oxidative stress, inflammation and cell death after ischemic injury. This study aimed to identify cerebral I/R-associated hub genes and to reveal the underlying mechanism on ischemic I/R. Differential expressed genes (DEGs) were identified from the Gene Expression Omnibus (GEO) database, and hub genes were screened from a protein-protein interaction (PPI) network. The I/R rat model was constructed using the middle cerebral artery occlusion and reperfusion (MCAO/R), and Hmox1 was silenced to investigate its effects on I/R injury, inflammation, oxidative stress and ferroptosis. The effects of silencing Hmox1 were also evaluated in OGD/R-treated HT22 cells. The inhibitor of peroxisome proliferator-activated receptor (PPAR)-γ pathway, T0070907, was used to determine the regulation of Hmox1 on the PPAR-γ/fatty acid binding protein 4 (FABP4) pathway. Heme oxygenase 1 (Hmox1), matrix metalloproteinase-13 (Mmp13), CD44 molecule (Cd44), C-C motif chemokine ligand 3 (Ccl3) and serpin family B member 5 (Serpinb5) were selected as hub genes with higher expression in MCAO/R rats. Silencing Hmox1 inhibited cell apoptosis, decreased tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), IL-6, Fe2+, malondialdehyde (MDA) and reactive oxygen species (ROS), but increased glutathione (GSH). Silencing Hmox1 suppressed the expression of cyclooxygenase 2 (COX2) and acyl-CoA synthetase long-chain family member 4 (ACSL4) but promoted glutathione peroxidase 4 (GPX4) expression, with the upregulation of PPAR-γ and FABP4. Application of T0070907 reversed the effects of silencing Hmox1. Silencing Hmox1 ameliorated cerebral injury, inflammation and ferroptosis via the PPAR-γ/FABP4 pathway, offering theoretical basis for cerebral I/R management.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Kai Huang
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Jie Cao
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Mingwei Guo
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Haifa Dong
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Weisheng Ye
- Department of Neurology, Longnan Hospital, the First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Songbing Zeng
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Jianing Wei
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Qiujiang Xi
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China.
| |
Collapse
|
3
|
Selvaraju V, Babu SR, Judd RL, Geetha T. Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes. Biomolecules 2025; 15:129. [PMID: 39858523 PMCID: PMC11763665 DOI: 10.3390/biom15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity.
Collapse
Affiliation(s)
| | - Shivani R. Babu
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
5
|
Sedghi M, Javanmard F, Amoozmehr A, Zamany S, Mohammadi I, Kim W, Choppa VSR. Lysophospholipid Supplementation in Broiler Breeders' Diet Benefits Offspring's Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals (Basel) 2024; 14:3066. [PMID: 39518789 PMCID: PMC11545463 DOI: 10.3390/ani14213066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aimed to investigate whether supplementation of modified lysophospholipids (LPLs) in the diet of broiler breeders can benefit their offspring. A total of 264 49-week-old breeders (Ross 308) were allocated and fed based on a 2 × 2 factorial arrangement with two levels of dietary energy (normal energy = 2800 kcal/kg and low energy = 2760 kcal/kg) and two LPL levels (0 and 0.5 g/kg) for periods of 8 and 12 weeks. The offspring were assessed for growth performance, serum parameters, hepatic antioxidative capability, and expression of genes involved in liver β-oxidation at 7 days old. The LPL inclusion improved (p < 0.01) average body weight (ABW), average daily gain (ADG), and feed conversion ratio (FCR). The offspring of 61-week-old breeders fed with LPL exhibited reduced serum triglyceride levels (p < 0.01) but an increase in hepatic glutathione peroxidase (p < 0.05). The LPL increased (p < 0.001) the mRNA expression of the PGC-1α gene in the liver. Supplementing LPL in low-energy diets resulted in higher FABP1 gene expression (p < 0.05) in the intestine. In conclusion, LPL supplementation in the breeders' diet improved offspring performance by enhancing fatty acid absorption, hepatic indices, and the expression of genes involved in liver β-oxidation.
Collapse
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Fatemeh Javanmard
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Anvar Amoozmehr
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Shahid Beheshti Ave, Gorgan 49138-15739, Iran;
| | - Saeid Zamany
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Woo Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (W.K.); (V.S.R.C.)
| | | |
Collapse
|
6
|
DeBerge M, Schroth S, Du F, Yeap XY, Wang JJ, Zhang ZJ, Ansari MJ, Scott EA, Thorp EB. Hypoxia inducible factor 2α promotes tolerogenic macrophage development during cardiac transplantation through transcriptional regulation of colony stimulating factor 1 receptor. Proc Natl Acad Sci U S A 2024; 121:e2319623121. [PMID: 38889142 PMCID: PMC11214057 DOI: 10.1073/pnas.2319623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center, Houston, TX77030
| | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Xin Yi Yeap
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Mohammed Javeed Ansari
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
7
|
Yang M, Shu W, Zhai X, Yang X, Zhou H, Pan B, Li C, Lu D, Cai J, Zheng S, Jin B, Wei X, Xu X. Integrated multi-omic analysis identifies fatty acid binding protein 4 as a biomarker and therapeutic target of ischemia-reperfusion injury in steatotic liver transplantation. Cell Mol Life Sci 2024; 81:83. [PMID: 38341383 PMCID: PMC10858962 DOI: 10.1007/s00018-023-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND AIMS Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, 266035, China
| | - Shusen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China.
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Chen J, Wang Y, Li M, Zhu X, Liu Z, Chen Q, Xiong K. Netrin-1 Alleviates Early Brain Injury by Regulating Ferroptosis via the PPARγ/Nrf2/GPX4 Signaling Pathway Following Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:219-237. [PMID: 36631632 DOI: 10.1007/s12975-022-01122-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Xun Zhu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
Zhang M, Hou L, Tang W, Lei W, Lin H, Wang Y, Long H, Lin S, Chen Z, Wang G, Zhao G. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARγ signalling. J Cell Mol Med 2023; 27:4155-4170. [PMID: 37905351 PMCID: PMC10746953 DOI: 10.1111/jcmm.18000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Both lipid accumulation and inflammatory response in lesion macrophages fuel the progression of atherosclerosis, leading to high mortality of cardiovascular disease. A therapeutic strategy concurrently targeting these two risk factors is promising, but still scarce. Oridonin, the bioactive medicinal compound, is known to protect against inflammatory response and lipid dysfunction. However, its effect on atherosclerosis and the underlying molecular mechanism remain elusive. Here, we showed that oridonin attenuated atherosclerosis in hyperlipidemic ApoE knockout mice. Meanwhile, we confirmed the protective effect of oridonin on the oxidized low-density lipoprotein (oxLDL)-induced foam macrophage formation, resulting from increased cholesterol efflux, as well as reduced inflammatory response. Mechanistically, the network pharmacology prediction and further experiments revealed that oridonin dramatically facilitated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), thereby regulating liver X receptor-alpha (LXRα)-induced ATP-binding cassette transporter A1 (ABCA1) expression and nuclear factor NF-kappa-B (NF-κB) translocation. Antagonist of PPARγ reversed the cholesterol accumulation and inflammatory response mediated by oridonin. Besides, RNA sequencing analysis revealed that fatty acid binding protein 4 (FABP4) was altered responding to lipid modulation effect of oridonin. Overexpression of FABP4 inhibited PPARγ activation and blunted the benefit effect of oridonin on foam macrophages. Taken together, oridonin might have potential to protect against atherosclerosis by modulating the formation and inflammatory response in foam macrophages through FABP4/PPARγ signalling.
Collapse
Affiliation(s)
- Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Wanying Tang
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | | | - Huiling Lin
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Zhi Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Guangliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| |
Collapse
|
10
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Arbildi P, Calvo F, Macías V, Rodríguez-Camejo C, Sóñora C, Hernández A. Study of tissue transglutaminase spliced variants expressed in THP-1 derived macrophages exhibiting distinct functional phenotypes. Immunobiology 2023; 228:152752. [PMID: 37813017 DOI: 10.1016/j.imbio.2023.152752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1β in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.
Collapse
Affiliation(s)
- Paula Arbildi
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Federico Calvo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Victoria Macías
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Claudio Rodríguez-Camejo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Cecilia Sóñora
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay; Escuela Universitaria de Tecnología Médica (EUTM), Facultad de Medicina, Universidad de la República, Alfredo Navarro S/N, Montevideo 11600, Uruguay.
| | - Ana Hernández
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| |
Collapse
|
12
|
Yang J, Liu S, Li Y, Fan Z, Meng Y, Zhou B, Zhang G, Zhan H. FABP4 in macrophages facilitates obesity-associated pancreatic cancer progression via the NLRP3/IL-1β axis. Cancer Lett 2023; 575:216403. [PMID: 37741433 DOI: 10.1016/j.canlet.2023.216403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Obesity is an essential risk factor for pancreatic cancer (PC). Macrophage-induced inflammation plays a pivotal role in obesity-associated carcinogenesis and disease progression; however, the underlying molecular mechanisms remain unclear. In this study, we found that fatty acid-binding protein 4 (FABP4) overexpressed in serum of obese patients and was associated with poor overall survival. In vivo and in vitro experiments have revealed that FABP4 induces macrophage-related inflammation to promote cancer cell migration, invasion and metastasis under obese conditions. Mechanistically, FABP4 participates in transferring saturated fatty acid to induce macrophages pyroptosis in a caspase-1/GSDMD-dependent manner and mediates NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/IL-1β axis in macrophages, which further regulates epithelial-mesenchymal transition signals to promote the migration, invasion, and metastasis of PC cells. Our results suggest that FABP4 in macrophages is a crucial regulator of the NLRP3/IL-1β axis to promote the progression of PC under obese conditions, which could act as a promising molecular target for treating of PC patients with obesity.
Collapse
Affiliation(s)
- Jian Yang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shujie Liu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yufan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China.
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
13
|
Apte SH, Groves PL, Tan ME, Lutzky VP, de Silva T, Monteith JN, Yerkovich ST, O’Sullivan BJ, Davis RA, Chambers DC. A Methodological Approach to Identify Natural Compounds with Antifibrotic Activity and the Potential to Treat Pulmonary Fibrosis Using Single-Cell Sequencing and Primary Human Lung Macrophages. Int J Mol Sci 2023; 24:15104. [PMID: 37894784 PMCID: PMC10606775 DOI: 10.3390/ijms242015104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.
Collapse
Affiliation(s)
- Simon H. Apte
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Penny L. Groves
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
| | - Maxine E. Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Viviana P. Lutzky
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Tharushi de Silva
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Joshua N. Monteith
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Stephanie T. Yerkovich
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Brendan J. O’Sullivan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Rohan A. Davis
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| |
Collapse
|
14
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
15
|
Fraga CG, Trostchansky A, Rocha BS, Laranjinha J, Rubbo H, Galleano M. (Poly)phenols and nitrolipids: Relevant participants in nitric oxide metabolism. Mol Aspects Med 2023; 89:101158. [PMID: 36517273 DOI: 10.1016/j.mam.2022.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.
Collapse
Affiliation(s)
- César G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA, USA
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Monica Galleano
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Bahrami-Nejad Z, Zhang ZB, Tholen S, Sharma S, Rabiee A, Zhao ML, Kraemer FB, Teruel MN. Early enforcement of cell identity by a functional component of the terminally differentiated state. PLoS Biol 2022; 20:e3001900. [PMID: 36469503 PMCID: PMC9721491 DOI: 10.1371/journal.pbio.3001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
How progenitor cells can attain a distinct differentiated cell identity is a challenging problem given the fluctuating signaling environment in which cells exist and that critical transcription factors are often not unique to a differentiation process. Here, we test the hypothesis that a unique differentiated cell identity can result from a core component of the differentiated state doubling up as a signaling protein that also drives differentiation. Using live single-cell imaging in the adipocyte differentiation system, we show that progenitor fat cells (preadipocytes) can only commit to terminally differentiate after up-regulating FABP4, a lipid buffer that is highly enriched in mature adipocytes. Upon induction of adipogenesis in mouse preadipocyte cells, we show that after a long delay, cells first abruptly start to engage a positive feedback between CEBPA and PPARG before then engaging, after a second delay, a positive feedback between FABP4 and PPARG. These sequential positive feedbacks both need to engage in order to drive PPARG levels past the threshold for irreversible differentiation. In the last step before commitment, PPARG transcriptionally increases FABP4 expression while fatty acid-loaded FABP4 increases PPARG activity. Together, our study suggests a control principle for robust cell identity whereby a core component of the differentiated state also promotes differentiation from its own progenitor state.
Collapse
Affiliation(s)
- Zahra Bahrami-Nejad
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Zhi-Bo Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Stefan Tholen
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Sanjeev Sharma
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Atefeh Rabiee
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael L. Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Fredric B. Kraemer
- Department of Medicine/Division of Endocrinology, Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Mary N. Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Weill Center for Metabolic Health, Division of Endocrinology, Diabetes & Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
17
|
Liu S, Shi J, Wang L, Huang Y, Zhao B, Ding H, Liu Y, Wang W, Chen Z, Yang J. Loss of EMP1 promotes the metastasis of human bladder cancer cells by promoting migration and conferring resistance to ferroptosis through activation of PPAR gamma signaling. Free Radic Biol Med 2022; 189:42-57. [PMID: 35850179 DOI: 10.1016/j.freeradbiomed.2022.06.247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022]
Abstract
Metastasis, in which cancer cells detach from the original site and colonise other organs, is the primary cause of death induced by bladder cancer (BCa). Epithelial Membrane Protein 1 (EMP1) is dysregulated in many human cancers, and its clinical significance and biological function in diseases, including BCa, are largely unclear. Here, we demonstrated that EMP1 was downregulated in BCa cells. The deficiency of EMP1 promotes migration and confers resistance to ferroptosis/oxidative stress in BCa cells, favouring tumour cell metastasis. Mechanistically, we demonstrated that EMP1 deficiency enhanced tumour metastasis by increasing PPARG expression and promoting its activation, leading to upregulation of pFAK(Y397) and SLC7A11, which promoted cell migration and anti-ferroptotic cell death respectively. Moreover, we found EMP1-deficient sensitized cells to PPARG's ligand, which effect are metastatic phenotype promoted and could be mitigated by FABP4 knockdown. In conclusion, our study, for the first time, reveals that EMP1 deficiency promotes BCa cell migration and confers resistance to ferroptosis/oxidative stress, thus promoting metastasis of BCa via PPARG. These results revealed a novel role of EMP1-mediated PPARG in bladder cancer metastasis.
Collapse
Affiliation(s)
- Sha Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Liwei Wang
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Baixiong Zhao
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Hua Ding
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Yuting Liu
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Wuxing Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Zhiwen Chen
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
18
|
Tseng HH, Li CY, Wu ST, Su HH, Wong TH, Wu HE, Chang YW, Huang SK, Tsai EM, Suen JL. Di-(2-ethylhexyl) Phthalate Promotes Allergic Lung Inflammation by Modulating CD8α + Dendritic Cell Differentiation via Metabolite MEHP-PPARγ Axis. Front Immunol 2022; 13:581854. [PMID: 35663974 PMCID: PMC9160748 DOI: 10.3389/fimmu.2022.581854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic exposure to DEHP in the environment is associated with the prevalence of childhood allergic diseases; however, the underlying causal relationship and immunological mechanism remain unclear. This study explored the immunomodulatory effect of DEHP on allergic lung inflammation, while particularly focusing on the impact of DEHP and its metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated receptor gamma (PPARγ). The results showed that exposure to DEHP at a human tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased number of CD8α+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow, as well as, less interleukin-12 production in splenic DCs and increased T helper 2 polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8α+ DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by modulating PPARγ activity. These results suggested that chronic exposure to DEHP at environmentally relevant levels, promotes allergic lung inflammation, at least in part, by altering DC differentiation through the MEHP-PPARγ axis. This study has crucial implications for the interaction(s) between environmental pollutants and innate immunity, with respect to the development of allergic asthma.
Collapse
Affiliation(s)
- Hsin-Han Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Chang
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eing Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Arbildi P, Rodríguez-Camejo C, Perelmuter K, Bollati-Fogolín M, Sóñora C, Hernández A. Hypoxia and inflammation conditions differentially affect the expression of tissue transglutaminase spliced variants and functional properties of extravillous trophoblast cells. Am J Reprod Immunol 2022; 87:e13534. [PMID: 35263002 DOI: 10.1111/aji.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Persistent hypoxia and inflammation beyond early pregnancy are involved in a bad outcome because of defective trophoblast invasiveness. Tissue transglutaminase (TG2) coregulates several cell functions. An aberrant expression and/or transamidation activity could contribute to placental dysfunction. METHOD OF STUDY The first-trimester trophoblast cell line (Swan-71) was used to study TG2 expression and cell functions in the absence or presence of inflammatory cytokines (TNF-α, IL-1β) or chemical hypoxia (CoCl2 ). We analyzed The concentration of cytokines in the supernatant by ELISA; Cell migration by scratch assay; NF-κB activation by detection of nuclear p65 by immunofluorescence or flow cytometry using a Swan-71 NF-κB-hrGFP reporter cell line. Tissue transglutaminase expression was analyzed by immunoblot and confocal microscopy. Expression of spliced mRNA variants of tissue transglutaminase was analyzed by RT-PCR. Transamidation activity was assessed by flow cytometry using 5-(biotinamido)-pentylamine substrate. RESULTS Chemical hypoxia and TGase inhibition, but not inflammatory stimuli, decreased Swan-71 migration. IL-6 production was also decreased by chemical hypoxia, but increased by inflammation. Intracellular TGase activity was increased by all stimuli, but NF-κB activation was observed only in the presence of proinflammatory cytokines. TG2 expression was decreased by CoCl2 and TNF-α. Translocation of TG2 and p65 to nuclei was observed only with TNF-α, without colocalization. Differential relative expression of spliced variants of mRNA was observed between CoCl2 and inflammatory stimuli. CONCLUSION The observed decrease in total TG2 expression and relative increase in short variants under hypoxia conditions could contribute to impaired trophoblast invasion and impact on pregnancy outcome.
Collapse
Affiliation(s)
- Paula Arbildi
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Sóñora
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica (EUTM)-Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
20
|
Phthalate monoesters act through peroxisome proliferator-activated receptors in the mouse ovary. Reprod Toxicol 2022; 110:113-123. [PMID: 35421560 PMCID: PMC9749796 DOI: 10.1016/j.reprotox.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Widespread use of phthalates as solvents and plasticizers leads to everyday human exposure. The mechanisms by which phthalate metabolites act as ovarian toxicants are not fully understood. Thus, this study tested the hypothesis that the phthalate metabolites monononyl phthalate (MNP), monoisononyl phthalate (MiNP), mono(2-ethylhexyl) phthalate (MEHP), monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), monoisobutyl phthalate (MiBP), and monoethyl phthalate (MEP) act through peroxisome proliferator-activated receptors (PPARs) in mouse granulosa cells. Primary granulosa cells were isolated from CD-1 mice and cultured with vehicle control (dimethyl sulfoxide) or MNP, MiNP, MEHP, MBzP, MBP, MiBP, or MEP (0.4-400 μM) for 24 h. Following culture, qPCR was performed for known PPAR targets, Fabp4 and Cd36. Treatment with the phthalate metabolites led to significant changes in Fabp4 and Cd36 expression relative to control in dose-dependent or nonmonotonic fashion. Primary granulosa cell cultures were also transfected with a DNA plasmid containing luciferase expressed under the control of a consensus PPAR response element. MNP, MiNP, MEHP, and MBzP caused dose-dependent changes in expression of luciferase, indicating the presence of functional endogenous PPAR receptors in the granulosa cells that respond to phthalate metabolites. The effects of phthalate metabolites on PPAR target genes were inhibited in most of the cultures by co-treatment with the PPAR-γ inhibitor, T0070907, or with the PPAR-α inhibitor, GW6471. Collectively, these data suggest that some phthalate metabolites may act through endogenous PPAR nuclear receptors in the ovary and that the differing structures of the phthalates result in different levels of activity.
Collapse
|
21
|
Yang Y, Shi GN, Wu X, Xu M, Chen CJ, Zhou Y, Wei YZ, Wu L, Cui FF, Sun L, Zhang TT. Quercetin Impedes Th17 Cell Differentiation to Mitigate Arthritis Involving PPARγ-Driven Transactivation of SOCS3 and Redistribution Corepressor SMRT from PPARγ to STAT3. Mol Nutr Food Res 2022; 66:e2100826. [PMID: 35384292 DOI: 10.1002/mnfr.202100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Indexed: 01/08/2023]
Abstract
SCOPE Quercetin (QU) is one of the most abundant flavonoids in plants and has attracted the attention of researchers because of its remarkable antirheumatoid arthritis (RA) effects and extremely low adverse reactions. However, the underlying mechanism needs further study. METHODS AND RESULTS Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) reveal the obvious inhibitory effects of QU on Th17 cell differentiation in arthritic mice. More importantly, QU markedly limits the development of Th17 cell polarization, which is virtually compromised by the treatment with peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662 and knockdown of PPARγ. Additionally, molecular dynamics simulation and immunofluorescence exhibit QU directly binds to PPARγ and increases PPARγ nuclear translocation. Besides, QU confers its moderation effect on suppressor of cytokine signaling protein (SOCS3)/signal transducer and activator of transcription 3 (STAT3) axis partially depending on PPARγ. Furthermore, coimmunoprecipitation shows QU redistributes the corepressor silencing mediator for retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3. Finally, the inhibition of Th17 response and the antiarthritic effect of QU are nullified by GW9662 treatment in arthritic mice. CONCLUSION QU targets PPARγ and consequently inhibits Th17 cell differentiation by dual inhibitory activity of STAT3 to exert antiarthritic effect. The findings facilitate its development and put forth a stage for uncovering the mechanism of other naturally occurring compounds with chemical structures similar to QU.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Gao-Na Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Cheng-Juan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya-Zi Wei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fen-Fang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Hormone sensitive lipase ablation promotes bone regeneration. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166449. [PMID: 35618183 DOI: 10.1016/j.bbadis.2022.166449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
There is an inverse relationship between the differentiation of mesenchymal stem cells (MSCs) along either an adipocyte or osteoblast lineage, with lineage differentiation known to be mediated by transcription factors PPARγ and Runx2, respectively. Endogenous ligands for PPARγ are generated during the hydrolysis of triacylglycerols to fatty acids through the actions of lipases such as hormone sensitive lipase (HSL). To examine whether reduced production of endogenous PPARγ ligands would influence bone regeneration, we examined the effects of HSL knockout on fracture repair in mice using a tibial mono-cortical defect as a model. We found an improved rate of fracture repair in HSL-ko mice documented by serial μCT and bone histomorphometry compared to wild-type (WT) mice. Similarly, accelerated rates of bone regeneration were observed with a calvarial model where implantation of bone grafts from HSL-ko mice accelerated bone regeneration at the injury site. Further analysis revealed improved MSC differentiation down osteoblast and chondrocyte lineage with inhibition of HSL. MSC recruitment to the injury site was greater in HSL-ko mice than WT. Finally, we used single cell RNAseq to understand the osteoimmunological differences between WT and HSL-ko mice and found changes in the pre-osteoclast population. Our study shows HSL-ko mice as an interesting model to study improvements to bone injury repair. Furthermore, our study highlights the potential importance of pre-osteoclasts and osteoclasts in bone repair.
Collapse
|
23
|
Licero J, Illan MS, Descorbeth M, Cordero K, Figueroa JD, De Leon M. Fatty acid-binding protein 4 (FABP4) inhibition promotes locomotor and autonomic recovery in rats following spinal cord injury. J Neurotrauma 2022; 39:1099-1112. [PMID: 35297679 PMCID: PMC9347423 DOI: 10.1089/neu.2021.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response associated with traumatic spinal cord injury (SCI) contributes to locomotor and sensory impairments. Pro-inflammatory (M1) macrophages/microglia (MφMG) are the major cellular players in this response as they promote chronic inflammation resulting in injury expansion and tissue damage. Fatty Acid-Binding Protein 4 (FABP4) promotes M1 MφMG differentiation; however, it is unknown if FABP4 also plays a role in the etiology of SCI. The present study investigates whether FABP4's gene expression influences functional recovery following SCI. Analysis of qPCR data shows a robust induction of FABP4 mRNA (>100 fold) in rats subjected to a T9-T10 contusion injury compared to control. Western blot experiments reveal significant upregulation of FABP4 protein at the injury epicenter, and immunofluorescence analysis identifies this upregulation occurs in CD11b+ MφMG. Furthermore, upregulation of FABP4 gene expression correlates with PPARγ downregulation, inactivation of Iκβα, and the activation of the NF-κB pathway. Analysis of locomotor recovery using the Basso-Beattie-Bresnahan's (BBB) locomotor scale and the CatWalk gait analysis system shows that injured rats treated with FABP4 inhibitor BMS309403 have significant improvements in locomotion compared to vehicle controls. Additionally, inhibitor-treated rats exhibit enhanced autonomic bladder reflex recovery. Immunofluorescence experiments also show the administration of the FABP4 inhibitor increases the number of CD163+ and Liver Arginase+ M2 MφMG within the epicenter and penumbra of the injured spinal cord 28 dpi. These findings show that FABP4 may significantly exacerbate locomotor and sensory impairments during SCI by modulating macrophage/microglial activity.
Collapse
Affiliation(s)
- Jenniffer Licero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Miguel S Illan
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| | - Magda Descorbeth
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Kathia Cordero
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Johnny D Figueroa
- Loma Linda University, Center for Health Disparities and Molecular Medicine, Loma Linda, California, United States;
| | - Marino De Leon
- Loma Linda University, Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus St, Loma Linda, California, United States, 92354;
| |
Collapse
|
24
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
25
|
Wang XW, Sun YJ, Chen X, Zhang WZ. Interleukin-4-induced FABP4 promotes lipogenesis in human skeletal muscle cells by activating the PPAR γ signaling pathway. Cell Biochem Biophys 2022; 80:355-366. [PMID: 35122221 DOI: 10.1007/s12013-022-01063-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
Chronic low back pain (CLBP) is a common symptom of lumbar degenerative disease. Degeneration of the lumbar paravertebral muscles causes a loss of muscle mass and strength, which is a vital factor causing CLBP and often accompanied by lipid infiltration. Tandem mass spectrometry (TMT) was used to identify differentially expressed proteins in lipid-infiltrated and normal muscles. The results show that fatty acid binding protein 4 (FABP4) participated in the peroxisome proliferator-activated receptor-γ (PPAR γ) signaling pathway as an up-regulated protein, which is related to lipogenesis in diverse cells. In addition, chronic inflammation is believed to be involved in lumbar muscle degeneration and lipogenesis, with interleukin-4 (IL-4) considered as the predominant contributor. In present study, we investigate the effect of FABP4 on lipogenesis in human skeletal muscle cells (HSMCs) stimulated by Interleukin-4 (IL-4) and explore the mechanistic basis. We found expression level of FABP4 in lipid-infiltrated muscles was significantly higher than that in normal muscles. Lipogenesis in HSMCs could be increased by IL-4 treatment, as well as by FABP4 overexpression. FABP4 inhibition suppressed IL-4-mediated lipogenesis in HSMCs, whereas the PPAR γ inhibitor alleviated lipogenesis in both IL-4-treated and FABP4-overexpressed HSMCs. Collectively, the results indicate that FABP4 induces lipogenesis in HSMCs stimulated with IL-4 via activating the PPAR γ signaling pathway. Our study offers a detailed perspective on the pathogenesis of muscle lipid infiltration and provides a potential target for the clinical treatment strategy of muscle lipid infiltration and CLBP.
Collapse
Affiliation(s)
- Xin-Wen Wang
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Yong-Jin Sun
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Xiao Chen
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Wen-Zhi Zhang
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| |
Collapse
|
26
|
Yu GZ, Ramasamy T, Fazzari M, Chen X, Freeman B, Pacella JJ. Lipid nitroalkene nanoparticles for the focal treatment of ischemia reperfusion. Nanotheranostics 2022; 6:215-229. [PMID: 34976596 PMCID: PMC8671954 DOI: 10.7150/ntno.62351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: The treatment of microvascular obstruction (MVO) using ultrasound-targeted LNP cavitation (UTC) therapy mechanically relieves the physical obstruction in the microcirculation but does not specifically target the associated inflammatory milieu. Electrophilic fatty acid nitroalkene derivatives (nitro-fatty acids), that display pleiotropic anti-inflammatory signaling and transcriptional regulatory actions, offer strong therapeutic potential but lack a means of rapid targeted delivery. The objective of this study was to develop nitro-fatty acid-containing lipid nanoparticles (LNP) that retain the mechanical efficacy of standard LNP and can rapidly target delivery of a tissue-protective payload that reduces inflammation and improves vascular function following ischemia-reperfusion. Methods: The stability and acoustic behavior of nitro-fatty acid LNP (NO2-FA-LNP) were characterized by HPLC-MS/MS and ultra-high-speed microscopy. The LNP were then used in a rat hindlimb model of ischemia-reperfusion injury with ultrasound-targeted cavitation. Results: Intravenous administration of NO2-FA-LNP followed by ultrasound-targeted LNP cavitation (UTC) in both healthy rat hindlimb and following ischemia-reperfusion injury showed enhanced NO2-FA tissue delivery and microvascular perfusion. In addition, vascular inflammatory mediator expression and lipid peroxidation were decreased in tissues following ischemia-reperfusion revealed NO2-FA-LNP protected against inflammatory injury. Conclusions: Vascular targeting of NO2-FA-LNP with UTC offers a rapid method of focal anti-inflammatory therapy at sites of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
28
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
29
|
Haider M, Al-Rashed F, Albaqsumi Z, Alobaid K, Alqabandi R, Al-Mulla F, Ahmad R. Candida albicans Induces Foaming and Inflammation in Macrophages through FABP4: Its Implication for Atherosclerosis. Biomedicines 2021; 9:biomedicines9111567. [PMID: 34829801 PMCID: PMC8615257 DOI: 10.3390/biomedicines9111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is a chronic degenerative disorder characterized by lipid-dense plaques and low-grade inflammation affecting arterial walls. Foamy macrophages are important in the formation of atherosclerotic plaques and the induction of low-grade inflammation. The presence of lipid-laden macrophages has occurred in infections caused by opportunistic pathogens. Candida albicans is the major cause of candidiasis in immunocompromised patients, including those with diabetes mellitus. However, the role played by C. albicans in macrophage foaming and the associated inflammation is poorly understood. We investigated whether C. albicans induces foaming along with inflammation in macrophages and, if so, by which mechanism(s). We incubated THP-1 macrophages with heat-killed C. albicans (HKCA). HKCA-induced lipid accumulation in macrophages along with increased expression of inflammatory markers, including CD11b and CD11c or expression and secretion of IL-1β. HKCA also increased the expression of PPARγ, CD36, and FABP4 in macrophages. Mechanistically, we found that the foamy and inflammatory macrophage phenotype induced by HKCA requires FABP4 because disruption of FABP4 in macrophages either by chemical inhibitor BMS309404 or small interfering RNA (siRNA) abrogated foam cell formation and expression of inflammatory markers CD11b, CD11c, and IL-1β. Furthermore, HKCA-treated macrophages displayed high expression and secretion of MMP-9. Inhibition of FABP4 resulted in suppression of HCKA-induced MMP-9 production. Overall, our results demonstrate that C. albicans induces foam cell formation, inflammation, and MMP-9 expression in macrophages via the upregulation of FABP4, which may constitute a novel therapeutic target for treating C. albicans-induced atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 15462, Kuwait;
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Zahraa Albaqsumi
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Khaled Alobaid
- Mycology Reference Laboratory, Medical Laboratory Department, Mubarak Al-Kabeer Hospital, Kuwait City 15462, Kuwait;
| | - Rawan Alqabandi
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
- Correspondence: ; Tel.: +965-2224-2999 (ext. 4311)
| |
Collapse
|
30
|
Zhao Y, Chang Z, Zhao G, Lu H, Xiong W, Liang W, Wang H, Villacorta L, Garcia-Barrio MT, Zhu T, Guo Y, Fan Y, Chang L, Schopfer FJ, Freeman BA, Zhang J, Chen YE. Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy. Cardiovasc Drugs Ther 2021; 35:939-951. [PMID: 32671602 PMCID: PMC7855321 DOI: 10.1007/s10557-020-07031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model. METHODS We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies. RESULTS Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA. CONCLUSION Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Metabolism and Endocrinology, Central South University Second Xiangya Hospital, Changsha, Hunan, China
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Wenhao Xiong
- Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Wenying Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Luis Villacorta
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yanbo Fan
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Fang MY, Huang KH, Tu WJ, Chen YT, Pan PY, Hsiao WC, Ke YY, Tsou LK, Zhang MM. Chemoproteomic profiling reveals cellular targets of nitro-fatty acids. Redox Biol 2021; 46:102126. [PMID: 34509914 PMCID: PMC8441202 DOI: 10.1016/j.redox.2021.102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023] Open
Abstract
Nitro-fatty acids are a class of endogenous electrophilic lipid mediators with anti-inflammatory and cytoprotective effects in a wide range of inflammatory and fibrotic disease models. While these beneficial biological effects of nitro-fatty acids are mainly attributed to their ability to form covalent adducts with proteins, only a small number of proteins are known to be nitro-alkylated and the scope of protein nitro-alkylation remains undetermined. Here we describe the synthesis and application of a clickable nitro-fatty acid probe for the detection and first global identification of mammalian proteins that are susceptible to nitro-alkylation. 184 high confidence nitro-alkylated proteins were identified in THP1 macrophages, majority of which are novel targets of nitro-fatty acids, including extended synaptotagmin 2 (ESYT2), signal transducer and activator of transcription 3 (STAT3), toll-like receptor 2 (TLR2), retinoid X receptor alpha (RXRα) and glucocorticoid receptor (NR3C1). In particular, we showed that 9-nitro-oleate covalently modified and inhibited dexamethasone binding to NR3C1. Bioinformatic analyses revealed that nitro-alkylated proteins are highly enriched in endoplasmic reticulum and transmembrane proteins, and are overrepresented in lipid metabolism and transport pathways. This study significantly expands the scope of protein substrates targeted by nitro-fatty acids in living cells and provides a useful resource towards understanding the pleiotropic biological roles of nitro-fatty acids as signaling molecules or as multi-target therapeutic agents.
Collapse
Affiliation(s)
- Ming-Yu Fang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wei-Ju Tu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Pei-Yun Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| |
Collapse
|
32
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
33
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
34
|
Tebbe AW, Hanson J, Weiss WP. Effects of metabolizable protein concentration, amino acid profile, and fiber source on the messenger RNA expression of skeletal muscle in peripartum dairy cows. J Dairy Sci 2021; 104:7888-7901. [PMID: 33814155 DOI: 10.3168/jds.2021-20176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 01/11/2023]
Abstract
After parturition, dairy cows mobilize AA from skeletal muscle to meet metabolizable protein (MP) requirements. High mobilization may compromise cow health and longer-term milk production. Postpartum diets with higher MP concentrations, improved AA profiles, or MP increased at the expense of forages rather than nonforage fiber sources may attenuate muscle catabolism; however, the molecular mechanisms responsible need investigation. We evaluated mRNA expression in the longissimus dorsi of cows fed postpartum diets differing in MP concentration, AA profile, and fiber source. From 0 to 25 d after parturition, 40 multiparous cows received the following diets: (1) 13% deficient in MP (D-MP), (2) adequate in MP using primarily soy protein (A-MP), (3) adequate in MP using blends of proteins and individual AA to improve the AA profile (Blend), or (4) similar to Blend except additional protein replaced forage (Blend-fNDF). Biopsies were taken approximately -5, 7, and 25 d relative to parturition. Greater dietary MP concentration (D-MP vs. A-MP and Blend) decreased expression of genes related to protein synthesis (MTOR, RPS6KB1) and degradation (FOXO1), inflammation (IFNG, TLR4), and endoplasmic reticulum (ER) stress (HSPA5, DDIT) and increased genes associated with lipogenesis (PPARG) and glucose oxidation (LDH, MB). In Blend versus A-MP (i.e., effect of AA profile), expression related to apoptosis (CASP8) and inflammation (TNFA) decreased and genes associated with cell cycle progression (E2F1) and fast-twitch glycolytic muscle fiber type (MYH4) increased. Less forage (Blend-fNDF vs. Blend) decreased genes associated with lipogenesis (PPARG, ACACA) and ER stress (BCL2, DDIT3, EIF2AK3, PPP1R15A) and increased genes associated with inflammation (TNF), inhibition of myogenesis (MSTN), and autophagy (PEBP1). In summary and based on mRNA expression, increasing MP supply may attenuate muscle turnover and ER stress. However, an unbalanced AA supply reduced cell cycle progression and protein synthesis. Lower energy supplies may reduce cell growth and cause autophagy.
Collapse
Affiliation(s)
- Alexander W Tebbe
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Juliette Hanson
- Food Animal Health Research Program, The Ohio State University, Wooster 44691
| | - William P Weiss
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
35
|
Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol 2021; 9:636553. [PMID: 33869181 PMCID: PMC8047138 DOI: 10.3389/fcell.2021.636553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous research has shown that type-2a Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) undergoes posttranscriptional oxidative modifications in cardiac microvascular endothelial cells (CMECs) in the context of excessive cardiac oxidative injury. However, whether SERCA2a inactivity induces cytosolic Ca2+ imbalance in mitochondrial homeostasis is far from clear. Mitofusin2 (Mfn2) is well known as an important protein involved in endoplasmic reticulum (ER)/mitochondrial Ca2+ tethering and the regulation of mitochondrial quality. Therefore, the aim of our study was to elucidate the specific mechanism of SERCA2a-mediated Ca2+ overload in the mitochondria via Mfn2 tethering and the survival rate of the heart under conditions of cardiac microvascular ischemic injury. In vitro, CMECs extracted from mice were subjected to 6 h of hypoxic injury to mimic ischemic heart injury. C57-WT and Mfn2KO mice were subjected to a 1 h ischemia procedure via ligation of the left anterior descending branch to establish an in vivo cardiac ischemic injury model. TTC staining, immunohistochemistry and echocardiography were used to assess the myocardial infarct size, microvascular damage, and heart function. In vitro, ischemic injury induced irreversible oxidative modification of SERCA2a, including sulfonylation at cysteine 674 and nitration at tyrosine 294/295, and inactivation of SERCA2a, which initiated calcium overload. In addition, ischemic injury-triggered [Ca2+]c overload and subsequent [Ca2+]m overload led to mPTP opening and ΔΨm dissipation compared with the control. Furthermore, ablation of Mfn2 alleviated SERCA2a-induced mitochondrial calcium overload and subsequent mito-apoptosis in the context of CMEC hypoxic injury. In vivo, compared with that in wild-type mice, the myocardial infarct size in Mfn2KO mice was significantly decreased. In addition, the findings revealed that Mfn2KO mice had better heart contractile function, decreased myocardial infarction indicators, and improved mitochondrial morphology. Taken together, the results of our study suggested that SERCA2a-dependent [Ca2+]c overload led to mitochondrial dysfunction and activation of Mfn2-mediated [Ca2+]m overload. Overexpression of SERCA2a or ablation of Mfn2 expression mitigated mitochondrial morphological and functional damage by modifying the SERCA2a/Ca2+-Mfn2 pathway. Overall, these pathways are promising therapeutic targets for acute cardiac microvascular ischemic injury.
Collapse
Affiliation(s)
- Feng Tian
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Trostchansky A, Wood I, Rubbo H. Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. Prostaglandins Other Lipid Mediat 2021; 152:106482. [PMID: 33007446 DOI: 10.1016/j.prostaglandins.2020.106482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Irene Wood
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
37
|
Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, Maucher IV, Awad O, Matrone C, Comerma Steffensen SG, Manolikakes G, Heinicke U, Zacharowski KD, Steinhilber D, Maier TJ. The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Front Pharmacol 2020; 11:1297. [PMID: 33013366 PMCID: PMC7495092 DOI: 10.3389/fphar.2020.01297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins. Such modifications are capable of changing target protein function during cell signaling or in biosynthetic pathways. NFA target proteins include the peroxisome proliferator-activated receptor γ (PPAR-γ), the pro-inflammatory and tumorigenic nuclear factor-κB (NF-κB) signaling pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-tolerated NFA has been demonstrated. This has already led to clinical phase II studies investigating possible therapeutic effects of NFA in subjects with pulmonary arterial hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they have for a rather long time been avoided as drug candidates owing to their presumed unselective reactivity and toxicity. However, targeted covalent modification of regulatory proteins by Michael acceptors became recognized as a promising approach to drug discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013), ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates are currently under clinical investigation for pharmacotherapy of inflammation and cancer. In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs, summarizing their potential as an emerging class of future antiphlogistics and adjuvant in tumor therapeutics.
Collapse
Affiliation(s)
- Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.,Oncology Center, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Jessica Roos
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Benjamin Kühn
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Jasmin Fettel
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nadine Hellmuth
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Camilla Brat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Isabelle V Maucher
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Omar Awad
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Simon Gabriel Comerma Steffensen
- Department of Biomedicine, Medicine Faculty, Aarhus University, Aarhus, Denmark.,Animal Physiology, Department of Biomedical Sciences, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Georg Manolikakes
- Department of Organic Chemistry, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Ulrike Heinicke
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kai D Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten J Maier
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
38
|
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020; 113:102510. [PMID: 32622513 PMCID: PMC7327470 DOI: 10.1016/j.jaut.2020.102510] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Autoimmune diseases are common diseases of the immune system that are characterized by the loss of self-tolerance and the production of autoantibodies; the breakdown of immune tolerance and the prolonged inflammatory reaction are undisputedly core steps in the initiation and maintenance of autoimmunity. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that belong to the nuclear hormone receptor family and act as ligand-activated transcription factors. There are three different isotypes of PPARs: PPARα, PPARγ, and PPARβ/δ. PPARγ is an established regulator of glucose homeostasis and lipid metabolism. Recent studies have demonstrated that PPARγ exhibits anti-inflammatory and anti-fibrotic effects in multiple disease models. PPARγ can also modulate the activation and polarization of macrophages, regulate the function of dendritic cells and mediate T cell survival, activation, and differentiation. In this review, we summarize the signaling pathways and biological functions of PPARγ and focus on how PPARγ and its agonists play protective roles in autoimmune diseases, including autoimmune thyroid diseases, multiple sclerosis, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, primary Sjogren syndrome and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Jiayu Wang
- Xiangya Medical School, Central South University, #176 Tongzipo Rd, Changsha, Hunan, 410013, PR China
| | - Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China.
| |
Collapse
|