1
|
Gugliucci A. The Hepatic Axis Fructose-Methylglyoxal-AMPK: Starring or Secondary Role in Chronic Metabolic Disease? J Clin Med 2025; 14:3559. [PMID: 40429553 PMCID: PMC12112759 DOI: 10.3390/jcm14103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% of ingested fructose is metabolized by the liver at first pass, where it stimulates de novo lipogenesis (DNL) to drive hepatic triglyceride (TG) synthesis, which contributes to MASLD, hepatic insulin resistance (IR), and dyslipidemia. Fructose reduction produces quick and significant amelioration in these metabolic disturbances. We hereby propose potential overarching processes that can link these pathways to signaling disruption by the critical metabolic sensor AMP-activated protein kinase (AMPK). We proffer that when large amounts of fructose and glucose enter the liver, triose fluxes may be sufficient to produce transient increases in methylglyoxal (MG), allowing steady-state concentrations between its production and catabolism by glyoxalases to be high enough to modify AMPK-sensitive functional amino acid residues. These reactions would transiently interfere with AMPK activation by both AMP and aldolase. Such a sequence of events would boost the well-documented lipogenic impact of fructose. Given that MG adducts are irreversible, modified AMPK molecules would be less effective in metabolite sensing until they were replaced by synthesis. If proven, this mechanism provides another avenue of possibilities to tackle the problem of fructose in our diet. We additionally discuss potential multimodal treatments and future research avenues for this apparent hepatic AMPK malfunction.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Department of Research, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
2
|
Gugliucci A. Exploring Glyoxalase Strategies for Managing Sugar-Induced Chronic Diseases. Life (Basel) 2025; 15:794. [PMID: 40430220 PMCID: PMC12112988 DOI: 10.3390/life15050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The liver's crucial role in methylglyoxal (MG) metabolism is frequently overlooked in the literature. We present a perspective that enhances the current understanding of the role of methylglyoxal (MG) and the glyoxalase cycle in the pathogenesis of insulin resistance and obesity, ultimately leading to type 2 diabetes mellitus (DM) and cardiovascular disease (CVD). Fructose may be a significant substrate contributing, particularly in contemporary times, to the flux of trioses in the liver, accounting for a substantial portion of MG production. The steady-state concentration of MG-and the subsequent modification of proteins-would then be determined by the flux of trioses, their utilization in lipogenesis, and their decomposition into MG, which is further converted into D-lactate by glyoxalase enzymes GLO1 and GLO2. Consequently, enhancing the activity and/or expression of GLO1 could potentially mitigate the adverse effects of fructose in the liver. Additional research and validation are required to confirm these biological pathways. These arguments are in favor of further research into safe and efficient ways to activate the glyoxalase pathway to lessen the negative effects of fructose metabolism that lead to insulin resistance (IR) and its related repercussions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
3
|
Levin Y, Tickotsky N, Morgenstern D, Wolf-Levy H, Markus B, Cooper I, Reiner-Benaim A, Uribarri J, Unger R, Buchman AS, Beeri MS. Cognitive decline in older adults with type 2 diabetes: Unraveling site-specific glycoproteomic alterations. PLoS One 2025; 20:e0318916. [PMID: 40338932 PMCID: PMC12061096 DOI: 10.1371/journal.pone.0318916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/23/2025] [Indexed: 05/10/2025] Open
Abstract
Type 2 diabetes (T2D) is consistently related to an increased risk of cognitive decline and dementia. However, the molecular underpinnings of this association remain poorly understood. In this study, we applied a novel mass spectrometry-based glycoproteomic methodology to profile serum glycoproteins in older adults with T2D, aiming to identify glycopeptiforms associated with cognitive impairment. Our method allowed comprehensive profiling of N glycosylation in addition to the unique ability to profile glycation events on specific amino acid sites. Serum samples from initially cognitively normal older adults with T2D were collected, with participants classified as cognitive decliners (who developed impairment) and non-decliners (who maintained normal cognition over time). We identified significant differences in the abundance of glycopeptiforms between these groups, noting that certain glycopeptiforms exhibited unique changes over time in decliners. We identified 13 glycopeptiforms that exhibited significant differences between the groups both at baseline and in their rates of change over time. Pathway analysis indicated that glycation events were linked to metabolic pathways while glycosylation to immune-related pathways, aligning with established links between these processes and cognitive decline. This study offers new insights into glycoproteoform alterations in older adults with T2D experiencing cognitive decline. It highlights the potential of specific glycopeptiforms as biomarkers for early cognitive impairment in T2D. Further validation in larger cohorts will enhance our understanding of glycosylation and glycation in T2D and potentially lead to the discovery of novel treatment targets for T2D-related cognitive decline. Raw data and search are available via ProteomeXchange with identifier PXD050780.
Collapse
Affiliation(s)
- Yishai Levin
- The de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Tickotsky
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - David Morgenstern
- The de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- The de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Markus
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- School of Psychology, Reichman University, Herzliya, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ron Unger
- The Goodman faculty of life sciences, Bar Ilan University, Ramat Gan, Israel.
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Herbert and Jackeline Krieger Klein Alzheimer’s Research Center, Brain Health Institute, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
4
|
Zawadzka M, Gil W, Konieczny A, Krakowska-Jura K, Kijewska M, Stefanowicz P. Affinity on Demand: A One-Pot Method for Synthesis and Sample Enrichment Using TentaGel-Functionalized Resins. ACS OMEGA 2025; 10:18135-18144. [PMID: 40352538 PMCID: PMC12060058 DOI: 10.1021/acsomega.5c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Protein glycation is a nonenzymatic reaction that results in the formation of early glycation products, commonly referred to as Amadori products, which play an important role in diabetes complications. In proteomic research, the analysis of glycated peptides is very challenging due to the low amount of analyte in a biological sample. One of the methods to overcome this is selective enrichment of the sample in the desired analyte. A method for synthesizing functionalized resins with phenylboronic acids has been developed, which allows for the incorporation of different linkers and a variable number of phenylboronic acid moieties, as well as the use of any solid support. Furthermore, the resins are prepared for use in sample enrichment following the completion of the synthesis process and demonstrate a high affinity for glycated peptides. The highest-affinity resin (4PhB-3Lys-TGR) was applied to artificially glycated albumin hydrolyzate and patient serum, and, in addition, it was used in conjunction with a biological sample (i.e., milk) for the selective enrichment of glycated peptides. The bioinformatics analysis provided results that confirmed the high coverage of protein sequences identified in the complex samples based on glycated peptides. This paper presents a novel, fast, simple, and cost-effective one-pot method for the synthesis of functionalized resins, along with a selective method for the enrichment of samples with glycated peptides. We believe that the presented approach is general and, with necessary modifications, could be applied for affinity-based isolation not only of Amadori products but also of carbonyl compounds, thiols, compounds with chelating properties, and others.
Collapse
Affiliation(s)
- Michalina Zawadzka
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Wojciech Gil
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Andrzej Konieczny
- Department
of Nephrology and Transplantation Medicine, Wrocław Medical University, Borowska 213, Wrocław 50-556, Poland
| | - Kornelia Krakowska-Jura
- Department
of Nephrology and Transplantation Medicine, Wrocław Medical University, Borowska 213, Wrocław 50-556, Poland
| | - Monika Kijewska
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| | - Piotr Stefanowicz
- Faculty
of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław 50-383, Poland
| |
Collapse
|
5
|
Rizzi MA, Pérez A, Guizzardi S, Tolosa de Talamoni N, Rodríguez VA. Naringin prevents the impairment of hepatic mitochondrial function in diabetic rats. Can J Physiol Pharmacol 2025. [PMID: 40266048 DOI: 10.1139/cjpp-2024-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
We previously demonstrated that naringin (NAR) protects against liver damage in streptozotocin (STZ)-induced diabetes in rats. The aim of this study was to elucidate whether NAR is also able to protect the functioning, biogenesis and dynamics of the liver mitochondria in diabetic rats (DM). The activities of isocitrate dehydrogenase and malate dehydrogenase from the Krebs cycle, complex I-III from electron chain and adenosine triphosphate synthase were decreased in DM rats, effects that were blocked by NAR. The gene expression of mitofusin-2 and GTPase dynamin-related protein 1, markers of mitochondrial fusion and fission, were decreased in DM rats, which was prevented by NAR. Total glutathione was decreased and protein carbonyl contents as well as the activity of the antioxidant enzymes were increased in DM rats. All these changes were blocked by NAR. In conclusion, NAR protects the liver mitochondria from DM rats avoiding changes in the activity of Krebs cycle, the respiratory chain and the oxidative phosphorylation as well as preventing alterations in the fusion-fission processes. These effects are mediated, at least in part, by decreasing oxidative stress and anomalies in the enzymatic antioxidant system. Further studies are necessary to validate efficacy and safety of NAR for human use.
Collapse
Affiliation(s)
- María A Rizzi
- Laboratorio "Dr. Fernando Cañas",Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Adriana Pérez
- Laboratorio "Dr. Fernando Cañas",Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Solange Guizzardi
- Laboratorio "Dr. Fernando Cañas",Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas",Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Valeria A Rodríguez
- Laboratorio "Dr. Fernando Cañas",Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|
6
|
Xie J, Wang ZH, Zhang ZJ, Li YM, Shen C, Meng Y, Zhao WJ, Chen DQ, Sun LY, Wang YF. Adjusted glycated albumin is a novel indicator of glycemic control in patients with macroalbuminuria in diabetic kidney disease. Sci Rep 2025; 15:13812. [PMID: 40258945 PMCID: PMC12012077 DOI: 10.1038/s41598-025-98641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Glycated albumin (GA), a blood glucose monitoring biomarker, is impacted by variables such as albumin turnover and is not entirely relevant throughout diabetic kidney disease (DKD). There is insufficient data to routinely adjust GA measurements. We examined how albuminuria affected clinically measured GA (mGA) and adjusted GA (adjGA). We included 195 patients with DKD, 108 with non-macroalbuminuria and 87 with macroalbuminuria, and adjusted GA based on albumin, albuminuria, and body weight. Subgroups were divided to two groups according to albuminuria and serum albumin levels. The relationship between mGA, adjGA, and glucose was investigated. The optimum GA correction method based on albumin turnover metabolism was investigated: adjGA = mGA×[1+(8×K×UP) ÷ (11×V×SA)]. where K represents the standard metabolic days of albumin (15 days), UP is 24-hour urine protein excretion (g/24 h), V is plasma volume (calculated as 5% of body weight in liters), and SA is serum albumin concentration (g/L). In non-macroalbuminuria, mGA was 19.75% and adjGA was 22.32%, and in macroalbuminuria, mGA was 13.20% and adjGA was 22.45%, the mGA was substantially different across albuminuria categories (P < 0.001), but adjGA was not. HbA1c, 24-h urine protein(24hUP) and serum albumin (ALB) were influencing variables for mGA (P < 0.001), while 24hUP and ALB had no effect on adjGA (P > 0.05). The adjGA had stronger cor-relation with blood glucose than mGA, especially in the context of macroalbuminuria. Macroalbuminuria lowers mGA accuracy. In DKD patients with macroalbuminuria, adjusted GA is a novel indication of glucose monitoring.
Collapse
Affiliation(s)
- Jin Xie
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ze-Hou Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China
| | | | - Yi-Min Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Wen-Jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Dan-Qian Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, 710127, China
| | - Lu-Ying Sun
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yue-Fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
7
|
Smykiewicz J, Tomasiuk R, Cemaga R, Buczkowski J, Maciejczyk M. Association of inflammation and protein carbamylation in patients with COVID-19. Front Med (Lausanne) 2025; 12:1561670. [PMID: 40241896 PMCID: PMC11999942 DOI: 10.3389/fmed.2025.1561670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Carbamylation involves the non-enzymatic binding of isocyanic acid to the amino groups of proteins, making it associated with many pathological conditions, including inflammation, aging, arteriosclerosis, and renal failure. However, there are no data on protein carbamylation in patients with COVID-19. Our study is the first to evaluate the association between blood inflammation and protein carbamylation in patients who died from COVID-19 compared to COVID-19 survivors. Methods The study included 50 patients admitted to Dr. Tytus Chałubiński Specialist Hospital in Radom, Poland. Twenty-five of them were COVID-19 survivors (15 men, 10 women), and 25 were COVID-19 deceased patients (15 men, 10 women). The number of subjects was based on a pilot study assuming a significance level of 0.05 and a test power of 0.8. Plasma/serum samples were assayed for carbamyl-lysine (CBL) and inflammatory biomarkers (CRP, procalcitonin, D-dimer, IL-6, and WBC). The concentration of CBL was measured using an enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using the Mann-Whitney U test and Spearman rank correlation. Receiver Operating Characteristic (ROC) analysis was used to assess the diagnostic utility of serum CBL. Results Serum CBL levels were significantly higher in patients who died from COVID-19 compared to COVID-19 survivors (p = 0.0011). There was a positive correlation of serum CBL with IL-6, D-dimer, and WBC. Serum CBL levels >101 ng/mL, with moderate sensitivity and specificity, differentiate COVID-19 deceased from recovered patients (area under the curve 0.76). Discussion In conclusion, COVID-19 is associated with excessive protein carbamylation. Inflammation may be a source of higher CBL production in COVID-19. A thorough understanding of the consequences of increased protein carbamylation may clarify the consequences of COVID-19 complications.
Collapse
Affiliation(s)
| | - Ryszard Tomasiuk
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Roman Cemaga
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | - Jakub Buczkowski
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Komsa-Penkova R, Alexandrova-Watanabe A, Todinova S, Ivanova V, Stoycheva S, Temnishki P, Dimitrov B, Dimitrov D, Tonchev P, Georgieva G, Kukov A, Ivanova I, Tiankov T, Abadjieva E, Strijkova V, Altankov G. Adhesion of Mesenchymal Stem Cells to Glycated Collagen-Comparative Analysis of Dynamic and Static Conditions. Polymers (Basel) 2025; 17:821. [PMID: 40292686 PMCID: PMC11944920 DOI: 10.3390/polym17060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding mesenchymal stem cell (MSC) behavior on glycated collagen is crucial for advancing regenerative medicine and understanding pathological mechanisms in diseases such as diabetes, cancer, and aging. While previous research has demonstrated reduced MSC interaction with glycated collagen under static conditions due to disrupted integrin signaling, these studies did not accurately replicate the dynamic mechanical environment that MSCs encounter in vivo. Here we present a comprehensive investigation comparing adipose-derived MSC (ADMSC) behavior under both dynamic flow conditions and static adhesion, revealing unexpected temporal dynamics and challenging existing paradigms of cell-matrix interactions. Using a sophisticated microfluidic BioFlux system combined with traditional static adhesion assays, we examined ADMSC interactions with native collagen for 1-day glycated (GL1), and 5-day glycated (GL5) samples. Under flow conditions, MSCs demonstrated remarkably rapid attachment-within 3-5 min-contrasting sharply with the classical 2 h static incubation protocol. This rapid adhesion was particularly enhanced on 5-day glycated collagen, though subsequent testing revealed significantly weaker adhesion strength under shear stress compared to native collagen. Static conditions also showed a distinct pattern: increased ADMSC adhesion to glycated samples within the first 30 min, followed by a progressive decrease in adhesion and compromised cell spreading over longer periods. Atomic force microscopy (AFM) analysis revealed significant changes in collagen surface properties upon glycation. These included a substantial reduction in the negative surface charge (from ~800 to 600 mV), altered surface roughness patterns (Rrms varying from 3.0 ± 0.4 nm in native collagen to 7.70 ± 0.6 nm in GL5), and decreased elasticity (Young's modulus dropping from 34.8 ± 5.4 MPa to 2.07 ± 0.3 MPa in GL5). These physical alterations appear to facilitate rapid initial cell attachment while potentially compromising long-term stable adhesion through traditional integrin-mediated mechanisms. This study provides novel insights into the complex dynamics of MSC adhesion to glycated collagen, revealing previously unknown temporal patterns and challenging existing models of cell-matrix interactions. The findings suggest a need for revised approaches in tissue engineering and regenerative medicine, particularly in conditions where glycated collagen is prevalent.
Collapse
Affiliation(s)
- Regina Komsa-Penkova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Anika Alexandrova-Watanabe
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Violina Ivanova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Svetoslava Stoycheva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Petar Temnishki
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Borislav Dimitrov
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Dobromir Dimitrov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Department of Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Pencho Tonchev
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Department of Surgery, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
| | - Aleksandar Kukov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “Lozenetz”, 1407 Sofia, Bulgaria
| | - Izabela Ivanova
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “Lozenetz”, 1407 Sofia, Bulgaria
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Velichka Strijkova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - George Altankov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
9
|
Wang Z, Ou J, Liang J, Song Y, Huang C, Liu F, Ou S, Zheng J. Co-Exposure to Formaldehyde and Acrolein Generates a New Protein Adduct Activating RAGE. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6931-6942. [PMID: 40052628 DOI: 10.1021/acs.jafc.4c12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Reactive carbonyl species (RCS), sourced exogenously and endogenously, can modify proteins to generate advanced glycation end products (AGEs), which can lead to cell damage and various diseases. To date, it has not been reported that two or more RCSs can modify a single amino acid residue in proteins. The aim of the present study is to investigate whether and how formaldehyde and acrolein simultaneously modify lysine residues in proteins and whether the resulting adducts are capable of binding to the AGE receptor (RAGE). We found that the two aldehydes can comodify lysine residues in bovine serum albumin (BSA), generating a novel adduct, 5-formyl-3-methylene-2,6-dihydropyridin-lysine (FMD-lysine). In a protein band obtained from SDS-PAGE, the modified sites account for 55% of the 60 lysine residues in BSA when the molar ratio of BSA: formaldehyde: acrolein was 1:10:10. This new adduct was identified by mass spectrometry in proteins from various organs in mice after inhalation exposure to the two aldehydes. A total of 231 FMD modification sites were detected across the heart (35), liver (29), lung (33), kidney (34), hippocampus (38), brain tissues (32), plasma (8), and aorta (22). Moreover, N-acetyl-l-lysine-FMD (N-lys-FMD) stimulated more RAGE expression in RAW264.7 cells than the two common endogenous AGEs, Nε-carboxymethyl lysine and Nε-carboxyethyl lysine. Additionally, BSA-bound FMD induced a higher RAGE expression than N-lys-FMD. The activation of RAGE by FMD-lysine may trigger an inflammatory response in vivo. Thus, protein-bound FMD-lysine may serve as a promising target for monitoring both endogenous and exogenous exposure to formaldehyde and acrolein.
Collapse
Affiliation(s)
- Zitong Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junze Liang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Song
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jie Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Haiman ZB, Key A, D’Alessandro A, Palsson BO. RBC-GEM: A genome-scale metabolic model for systems biology of the human red blood cell. PLoS Comput Biol 2025; 21:e1012109. [PMID: 40072998 PMCID: PMC11925312 DOI: 10.1371/journal.pcbi.1012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, one of the most comprehensive, curated genome-scale metabolic reconstructions of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 29 studies published over the past two decades resulting in an RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome to form a genome-scale metabolic model (GEM) of the RBC. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. RBC-GEM represents a metabolic network is a consisting of 820 genes encoding proteins acting on 1,685 unique metabolites through 2,723 biochemical reactions: a 740% size expansion over its predecessor. We demonstrated the utility of RBC-GEM by creating context-specific proteome-constrained models derived from proteomic data of stored RBCs for 616 blood donors, and classified reactions based on their simulated abundance dependence. This reconstruction as an up-to-date curated GEM can be used for contextualization of data and for the construction of a computational whole-cell models of the human RBC.
Collapse
Affiliation(s)
- Zachary B. Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, California, United States of America
| |
Collapse
|
11
|
Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem 2025; 13:1543455. [PMID: 40070406 PMCID: PMC11893434 DOI: 10.3389/fchem.2025.1543455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Oxidative stress is considered as the root-cause of different pathological conditions. Transition metals, because of their redox-active states, are capable of free radical generation contributing oxidative stress. Hemoglobin and myoglobin are two major heme proteins, involved in oxygen transport and oxygen storage, respectively. Heme prosthetic group of heme proteins is a good reservoir of iron, the most abundant transition metal in human body. Although iron is tightly bound in the heme pocket of these proteins, it is liberated under specific circumstances yielding free ferrous iron. This active iron can react with H2O2, a secondary metabolite, forming hydroxyl radical via Fenton reaction. Hydroxyl radical is the most harmful free radical among all the reactive oxygen species. It causes oxidative stress by damaging lipid membranes, proteins and nucleic acids, activating inflammatory pathways and altering membrane channels, resulting disease conditions. In this review, we have discussed how heme-irons of hemoglobin and myoglobin can promote oxidative stress under different pathophysiological conditions including metabolic syndrome, diabetes, cardiovascular, neurodegenerative and renal diseases. Understanding the association of heme proteins to oxidative stress may be important for knowing the complications as well as therapeutic management of different pathological conditions.
Collapse
Affiliation(s)
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
12
|
Alhamar G, Vinci C, Franzese V, Tramontana F, Le Goux N, Ludvigsson J, Nissim A, Strollo R. The role of oxidative post-translational modifications in type 1 diabetes pathogenesis. Front Immunol 2025; 16:1537405. [PMID: 40028329 PMCID: PMC11868110 DOI: 10.3389/fimmu.2025.1537405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
The pathogenesis of type 1 diabetes (T1D) involves a complex interplay of genetic predisposition, immune processes, and environmental factors, leading to the selective destruction of pancreatic beta-cells by the immune system. Emerging evidence suggests that intrinsic beta-cell factors, including oxidative stress and post-translational modifications (PTM) of beta-cell antigens, may also contribute to their immunogenicity, shedding new light on the multifaceted pathogenesis of T1D. Over the past 30 years, neoepitopes generated by PTMs have been hypothesized to play a role in T1D pathogenesis, but their involvement has only been systematically investigated in recent years. In this review, we explored the interplay between oxidative PTMs, neoepitopes, and T1D, highlighting oxidative stress as a pivotal factor in immune system dysfunction, beta-cell vulnerability, and disease onset.
Collapse
Affiliation(s)
- Ghadeer Alhamar
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Chiara Vinci
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Franzese
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavia Tramontana
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nelig Le Goux
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahuva Nissim
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rocky Strollo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
13
|
Wang ZH, Zhang ZJ, Wang YF, Xie J, Li YM, Shen C, Meng Y, Zhao WJ, Sun LY, Liu WJ. Serum advanced glycation end products as a putative biomarker in Type2 DKD patients' prognosis. Front Physiol 2025; 16:1541198. [PMID: 39958689 PMCID: PMC11825471 DOI: 10.3389/fphys.2025.1541198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Aim Advanced glycation end products (AGEs) are pivotal mediators in diabetic kidney disease (DKD). However, their prognostic utility remains underexplored. This study introduced corrected lgAGEs [novel biomarker derived by adjusting logarithmically transformed AGEs (lgAGEs) levels based on serum albumin (ALB) levels] to enhance the prediction of adverse renal outcomes in patients with type 2 DKD (T2DKD). Methods In this prospective cohort study, 196 T2DKD patients were followed up longitudinally. Serum AGEs levels were log-transformed and adjusted for ALB to calculate corrected lgAGEs. Participants were stratified into the high- and low-level groups based on the median corrected lgAGEs. The association between corrected lgAGEs and renal outcomes was assessed using Cox proportional hazards models. Receiver operating characteristic (ROC) curve was utilized to evaluate the predictive performance of corrected lgAGEs alone and in combination with the urinary albumin-to-creatinine ratio (UACR). Results High level of corrected lgAGEs was independently associated with adverse renal outcomes [hazard ratio (HR), 3.252; 95% confidence interval (CI), 1.461-7.243; p = 0.003]. Kaplan-Meier analysis demonstrated that patients in the high-level group (12 months) exhibited significantly shorter median survival times compared with those in the low-level group (50 months). ROC analysis showed that UACR alone had an area under the curve (AUC) of 0.782 (95% CI, 0.705-0.858), with 82.8% sensitivity and 61.5% specificity. Corrected lgAGEs achieved an AUC of 0.725 (95% CI, 0.637-0.814), with 69.0% sensitivity and 76.9% specificity. Combining UACR and corrected lgAGEs improved the specificity to 75.6%, with an AUC of 0.764 (95% CI, 0.682-0.847), while maintaining a sensitivity of 70.7%. Conclusion Corrected lgAGEs are novel and independent biomarkers for predicting adverse renal outcomes in T2DKD. Combining UACR with corrected lgAGEs could enhance risk stratification by improving the specificity, highlighting its potential application in early identification of high-risk patients. These findings should be validated in broader populations in future research.
Collapse
Affiliation(s)
- Ze-Hou Wang
- Department of Nephrology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zong-Jin Zhang
- Department of Traditional Chinese Medicine, Majiapu Community Health Service Center, Beijing, China
| | - Yue-Fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jin Xie
- Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yi-Min Li
- Department of Geriatrics, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wen-Jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu-Ying Sun
- Department of Nephrology, Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Suchý T, Horný L, Šupová M, Adámek T, Blanková A, Žaloudková M, Grajciarová M, Yakushko O, Blassová T, Braun M. Age-related changes in the biochemical composition of the human aorta and their correlation with the delamination strength. Acta Biomater 2024; 190:344-361. [PMID: 39510151 DOI: 10.1016/j.actbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Various studies have correlated the mechanical properties of the aortic wall with its biochemical parameters and inner structure. Very few studies have addressed correlations with the cohesive properties, which are crucial for understanding fracture phenomena such as aortic dissection, i.e. a life-threatening process. Aimed at filling this gap, we conducted a comprehensive biochemical and histological analysis of human aortas (the ascending and descending thoracic and infrarenal abdominal aorta) from 34 cadavers obtained post-mortem during regular autopsies. The pentosidine, hydroxyproline and calcium contents, calcium/phosphorus molar ratio, degree of atherosclerosis, area fraction of elastin, collagen type I and III, alpha smooth muscle actin, vasa vasorum, vasa vasorum density, aortic wall thickness, thicknesses of the adventitia, media and intima were determined and correlated with the delamination forces in the longitudinal and circumferential directions of the vessel as determined from identical cadavers. The majority of the parameters determined did not indicate significant correlation with age, except for the calcium content and collagen maturation (enzymatic crosslinking). The main results concern differences between enzymatic and non-enzymatic crosslinking and those caused by the presence of atherosclerosis. The enzymatic crosslinking of collagen increased with age and was accompanied by a decrease in the delamination strength, while non-enzymatic crosslinking tended to decrease with age and was accompanied by an increase in the delamination strength. As the rate of calcification increased, the presence of atherosclerosis led to the formation of calcium phosphate plaques with higher solubility than the tissue without or with only mild signs of atherosclerosis. STATEMENT OF SIGNIFICANCE: This study presents a detailed biochemical and histological analysis of human aortic samples (ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta) taken from 34 cadavers. The contribution of this scientific study lies in the detailed biochemical comparison of the enzymatic and non-enzymatic glycosylation-derived crosslinks of vascular tissues and their influence on the delamination strength of the human aorta since, to the best of our knowledge, no such comprehensive studies exist in the literature. A further benefit concerns the notification of the limitations of the various analytical methods applied; an important factor that must be taken into account in such studies.
Collapse
Affiliation(s)
- Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic.
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
| | - Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Tomáš Adámek
- Department of Forensic Medicine and Toxicology, Regional Hospital Liberec, 460 63 Liberec, Czech Republic
| | - Alžběta Blanková
- Department of Forensic Medicine and Toxicology, Regional Hospital Liberec, 460 63 Liberec, Czech Republic
| | - Margit Žaloudková
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Martina Grajciarová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Olena Yakushko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tereza Blassová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Martin Braun
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| |
Collapse
|
15
|
Laskowska E, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K. Role of protein aggregates in bacteria. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:73-112. [PMID: 40324851 DOI: 10.1016/bs.apcsb.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation in bacteria, induced by a variety of intrinsic and environmental stresses, have often been associated with proteostasis disruption and toxic effects. However, a growing body of evidence suggests that these aggregates may also serve as functional membrane-less organelles (MLOs), playing a protective role in bacterial cells. The main mechanism responsible for the formation of MLOs is liquid-liquid phase separation (LLPS), a process that transforms a homogenous solution of macromolecules into dense condensates (liquid droplets) and a diluted phase. Over time, these liquid droplets can be transformed into solid aggregates. Bacterial MLOs, containing one dominant component or hundreds of cytoplasmic proteins, have been shown to be involved in various processes, including replication, transcription, cell division, and stress tolerance. The protective function of bacterial MLOs involves sequestration and protection of proteins and RNA from irreversible inactivation or degradation, upregulation of molecular chaperones, and induction of a dormant state. This protective role is particularly significant in the case of pathogenic bacteria exposed to antibiotic therapy. In a dormant state triggered by protein aggregation, pathogens can survive antibiotic therapy as persisters and, after resuming growth, can cause recurrent infections. Recent research has explored the potential use of bacterial MLOs as nanoreactors that catalyze biochemical reactions or serve as protein reservoirs and biosensors, highlighting their potential in biotechnology.
Collapse
Affiliation(s)
- Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
16
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 PMCID: PMC11921270 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
She YM, Jia Z, Zhang X. Region-selective and site-specific glycation of influenza proteins surrounding the viral envelope membrane. Sci Rep 2024; 14:18975. [PMID: 39152175 PMCID: PMC11329638 DOI: 10.1038/s41598-024-69793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells. Straightforward sequencing was enhanced by MS/MS fragmentation of small peptides. As a result, we determined a widespread distribution of lysine modifications attributed by the region-selectivity and site-specificity of glycation toward influenza matrix 1, hemagglutinin and neuraminidase. Topological analysis provides insights into the site-specific lysine glycation, localizing in the distinct structural regions of proteins surrounding the viral envelope membrane. Our finding highlights the proteome-wide discovery of lysine glycation of influenza membrane proteins and potential effects on the structural assembly, stability, receptor binding and enzyme activity, demonstrating that the impacts of accumulated glycation on the quality of products can be directly monitored by mass spectrometry-based structural proteomics analyses.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
18
|
Qin S, Gao K, Tian Z. Comprehensive characterization of differential glycation in hepatocellular carcinoma using tissue proteomics with stable isotopic labeling. Anal Bioanal Chem 2024; 416:4531-4541. [PMID: 38922433 DOI: 10.1007/s00216-024-05392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Rhein S, Costalunga R, Inderhees J, Gürtzgen T, Faupel TC, Shaheryar Z, Arrulo Pereira A, Othman A, Begemann K, Binder S, Stölting I, Dorta V, Nawroth PP, Fleming T, Oexle K, Prevot V, Nogueiras R, Meyhöfer S, Meyhöfer SM, Schwaninger M. The reactive pyruvate metabolite dimethylglyoxal mediates neurological consequences of diabetes. Nat Commun 2024; 15:5745. [PMID: 38987239 PMCID: PMC11237006 DOI: 10.1038/s41467-024-50089-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Riccardo Costalunga
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Tammo Gürtzgen
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Teresa Christina Faupel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Zaib Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Adriana Arrulo Pereira
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Functional Genomics Center Zurich, ETH Zurich, Zurich, Switzerland
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de, Compostela, Spain
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Konrad Oexle
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz, Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, EGID, Lille, France
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de, Compostela, Spain
| | - Svenja Meyhöfer
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Sebastian M Meyhöfer
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.
| |
Collapse
|
20
|
Liu Y, Cai X, Hu S, Wang Z, Tian H, Wang H. Suppression of N-Glycosylation of Zinc Finger Protein 471 Affects Proliferation, Invasion, and Docetaxel Sensitivity of Tongue Squamous Cell Carcinoma via Regulation of c-Myc. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1106-1125. [PMID: 38749608 DOI: 10.1016/j.ajpath.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 08/09/2024]
Abstract
Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.
Collapse
Affiliation(s)
- Yan Liu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Cai
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tian
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Honghan Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
21
|
Duval C, Criscuolo F, Bertile F. Glycation resistance and life-history traits: lessons from non-conventional animal models. Biol Lett 2024; 20:20230601. [PMID: 38863347 DOI: 10.1098/rsbl.2023.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
Glycation reactions play a key role in the senescence process and are involved in numerous age-related pathologies, such as diabetes complications or Alzheimer's disease. As a result, past studies on glycation have mostly focused on human and laboratory animal models for medical purposes. Very little is known about glycation and its link to senescence in wild animal species. Yet, despite feeding on high-sugar diets, several bat and bird species are long-lived and seem to escape the toxic effects of high glycaemia. The study of these models could open new avenues both for understanding the mechanisms that coevolved with glycation resistance and for treating the damaging effects of glycations in humans. Our understanding of glycaemia's correlation to proxies of animals' pace of life is emerging in few wild species; however, virtually nothing is known about their resistance to glycation, nor on the relationship between glycation, species' life-history traits and individual fitness. Our review summarizes the scarce current knowledge on the links between glycation and life-history traits in non-conventional animal models, highlighting the predominance of avian research. We also investigate some key molecular and physiological parameters involved in glycation regulation, which hold promise for future research on fitness and senescence of individuals.
Collapse
Affiliation(s)
- Cyrielle Duval
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| | - François Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| |
Collapse
|
22
|
Najjar JA, Calvert JW. Effects of protein glycation and protective mechanisms against glycative stress. Curr Opin Pharmacol 2024; 76:102464. [PMID: 38796877 PMCID: PMC11229435 DOI: 10.1016/j.coph.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Glycation is a posttranslational modification of proteins that contributes to the vast array of biological information that can be conveyed via a singular proteome. Understanding the role of advanced glycation end-products (AGEs) in human health and pathophysiology can be difficult, as the physiological effects of AGEs have been associated with multiple biological processes and disease state development, including acute myocardial ischemia-reperfusion injury, heart failure, and atherosclerosis, as well as tumor cell migration. The critical role of the glyoxalase system in the detoxification of methylglyoxal and other AGEs has been well established. Recently, evidence has emerged that DJ-1 displays antiglycative activity and may contribute to another mechanism of protection against protein glycation outside of the glyoxalase system. Identification of potential substrates of DJ-1 and determination of the pathways in which DJ-1 operates, is needed to fully understand the role of this protein in modulating biological homeostasis and the development of disease.
Collapse
Affiliation(s)
- Jade A Najjar
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, USA.
| |
Collapse
|
23
|
Komsa-Penkova R, Dimitrov B, Todinova S, Ivanova V, Stoycheva S, Temnishki P, Georgieva G, Tonchev P, Iliev M, Altankov G. Early Stages of Ex Vivo Collagen Glycation Disrupt the Cellular Interaction and Its Remodeling by Mesenchymal Stem Cells-Morphological and Biochemical Evidence. Int J Mol Sci 2024; 25:5795. [PMID: 38891981 PMCID: PMC11172055 DOI: 10.3390/ijms25115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs), pivotal for tissue repair, utilize collagen to restore structural integrity in damaged tissue, preserving its organization through concomitant remodeling. The non-enzymatic glycation of collagen potentially compromises MSC communication, particularly upon advancing the process, underlying various pathologies such as late-stage diabetic complications and aging. However, an understanding of the impact of early-stage collagen glycation on MSC interaction is lacking. This study examines the fate of in vitro glycated rat tail collagen (RTC) upon exposure to glucose for 1 or 5 days in contact with MSCs. Utilizing human adipose tissue-derived MSCs (ADMSCs), we demonstrate their significantly altered interaction with glycated collagen, characterized morphologically by reduced cell spreading, diminished focal adhesions formation, and attenuated development of the actin cytoskeleton. The morphological findings were confirmed by ImageJ 1.54g morphometric analysis with the most significant drop in the cell spreading area (CSA), from 246.8 μm2 for the native collagen to 216.8 μm2 and 163.7 μm2 for glycated ones, for 1 day and 5 days, respectively, and a similar trend was observed for cell perimeter 112.9 μm vs. 95.1 μm and 86.2 μm, respectively. These data suggest impaired recognition of early glycated collagen by integrin receptors. Moreover, they coincide with the reduced fibril-like reorganization of adsorbed FITC-collagen (indicating impaired remodeling) and a presumed decreased sensitivity to proteases. Indeed, confirmatory assays reveal diminished FITC-collagen degradation for glycated samples at 1 day and 5 days by attached cells (22.8 and 30.4%) and reduced proteolysis upon exogenous collagenase addition (24.5 and 40.4%) in a cell-free system, respectively. The mechanisms behind these effects remain uncertain, although differential scanning calorimetry confirms subtle structural/thermodynamic changes in glycated collagen.
Collapse
Affiliation(s)
| | - Borislav Dimitrov
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Violina Ivanova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | | | - Peter Temnishki
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Pencho Tonchev
- Department of Surgery, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Mario Iliev
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria
| | - George Altankov
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
24
|
Sivaram A, Patil N. Nanoparticles in prevention of protein glycation. VITAMINS AND HORMONES 2024; 125:287-309. [PMID: 38997167 DOI: 10.1016/bs.vh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are formed by the non-enzymatic attachment of carbohydrates to a biological macromolecule. These AGEs bind to their cognate receptor called receptor for AGEs (RAGEs), which becomes one of the important causal factors for the initiation and progression of several diseases. A deep understanding into the pathways of RAGEs will help in identifying novel intervention modalities as a part of new therapeutic strategies. Although several approaches exist to target this pathway using small molecules, compounds of plant origin etc, nanoparticles have proven to be a critical method, given its several advantages. A high bioavailability, biocompatibility, ability to cross blood brain barrier and modifiable surface properties give nanoparticles an upper edge over other strategies. In this chapter, we will discuss AGEs, their involvement in diseases and the nanoparticles used for targeting this pathway.
Collapse
Affiliation(s)
- Aruna Sivaram
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Nayana Patil
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India.
| |
Collapse
|
25
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
26
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Al-Saei ANJM, Nour-Eldine W, Rajpoot K, Arshad N, Al-Shammari AR, Kamal M, Akil AAS, Fakhro KA, Thornalley PJ, Rabbani N. Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of autism. Mol Psychiatry 2024; 29:653-659. [PMID: 38135754 PMCID: PMC11153128 DOI: 10.1038/s41380-023-02357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children. It is currently diagnosed by behaviour-based assessments made by observation and interview. In 2018 we reported a discovery study of a blood biomarker diagnostic test for ASD based on a combination of four plasma protein glycation and oxidation adducts. The test had 88% accuracy in children 5-12 years old. Herein, we present an international multicenter clinical validation study (N = 478) with application of similar biomarkers to a wider age range of 1.5-12 years old children. Three hundred and eleven children with ASD (247 male, 64 female; age 5.2 ± 3.0 years) and 167 children with typical development (94 male, 73 female; 4.9 ± 2.4 years) were recruited for this study at Sidra Medicine and Hamad Medical Corporation hospitals, Qatar, and Hospital Regional Universitario de Málaga, Spain. For subjects 5-12 years old, the diagnostic algorithm with features, advanced glycation endproducts (AGEs)-Nε-carboxymethyl-lysine (CML), Nω-carboxymethylarginine (CMA) and 3-deoxyglucosone-derived hydroimidazolone (3DG-H), and oxidative damage marker, o,o'-dityrosine (DT), age and gender had accuracy 83% (CI 79 - 89%), sensitivity 94% (CI 90-98%), specificity 67% (CI 57-76%) and area-under-the-curve of receiver operating characteristic plot (AUROC) 0.87 (CI 0.84-0.90). Inclusion of additional plasma protein glycation and oxidation adducts increased the specificity to 74%. An algorithm with 12 plasma protein glycation and oxidation adduct features was optimum for children of 1.5-12 years old: accuracy 74% (CI 70-79%), sensitivity 75% (CI 63-87%), specificity 74% (CI 58-90%) and AUROC 0.79 (CI 0.74-0.84). We conclude that ASD diagnosis may be supported using an algorithm with features of plasma protein CML, CMA, 3DG-H and DT in 5-12 years-old children, and an algorithm with additional features applicable for ASD screening in younger children. ASD severity, as assessed by ADOS-2 score, correlated positively with plasma protein glycation adducts derived from methylglyoxal, hydroimidazolone MG-H1 and Nε(1-carboxyethyl)lysine (CEL). The successful validation herein may indicate that the algorithm modifiable features are mechanistic risk markers linking ASD to increased lipid peroxidation, neuronal plasticity and proteotoxic stress.
Collapse
Affiliation(s)
| | - Wared Nour-Eldine
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Kashif Rajpoot
- University of Birmingham Dubai, Dubai International Academic City, PO Box 341799, Dubai, UAE
| | - Noman Arshad
- BIOMISA Laboratory, Department of Computer & Software Engineering, National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Abeer R Al-Shammari
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Madeeha Kamal
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pediatrics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Precision Medicine in Diabetes Prevention Laboratory, Population Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar
- Precision Medicine in Diabetes Prevention Laboratory, Population Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Paul J Thornalley
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar
| | - Naila Rabbani
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
28
|
Ahmad R, Warsi MS, Abidi M, Habib S, Siddiqui S, Khan H, Nabi F, Moinuddin. Structural perturbations induced by cumulative action of methylglyoxal and peroxynitrite on human fibrinogen: An in vitro and in silico approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123500. [PMID: 37989033 DOI: 10.1016/j.saa.2023.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Methylglyoxal (MGO); a reducing sugar and a dicarbonyl; attaches to the biomolecules (proteins, lipids, and DNA) leading to glycation and accumulation of oxidative stress in cells and tissues. Superoxide anion formed under such conditions entraps free nitric oxide radical (NO) to form peroxynitrite (PON). Nitro-oxidative stress due to PON is well established. Human fibrinogen plays a key role in haemostasis and is a highly vulnerable target for oxidation. Modifications of fibrinogen can potentially disrupt its structure and function. Earlier evidence suggested that glycation and nitro-oxidation lead to protein aggregation by making it resistant to lysis. This study aims to reveal the structural perturbations on fibrinogen in the presence of MGO and PON synergistically. The in vitro glyco-nitro-oxidation of human fibrinogen by MGO and PON leads to substantial structural alterations, as evident by biophysical and biochemical studies. In-silico results revealed the formation of stable complexes. UV-visible, intrinsic fluorescence, and circular dichroism investigations confirmed the synergistic effect of MGO and PON caused micro-structural modifications leading to secondary structural alterations. AGEs formation in MGO-modified fibrinogen reduced the free lysine and free arginine residues which were quantified by TNBS and phenanthrenequinone assays. Enhanced oxidative status was confirmed by estimating carbonyl content. ANS fluorophore validated exposure of hydrophobic patches in modified protein and thioflavin-T showed maximum binding with synergistically modified fibrinogen, indicated the formation of β-sheet. Confocal and electron microscope results corroborated the formation of aggregates. This study, therefore, evaluated the impact of MGO and PON on the structural integrity, oxidative status and aggregate formation of fibrinogen that can aggravate metabolic complications.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sana Siddiqui
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
29
|
Xue M, Irshad Z, Rabbani N, Thornalley PJ. Increased cellular protein modification by methylglyoxal activates endoplasmic reticulum-based sensors of the unfolded protein response. Redox Biol 2024; 69:103025. [PMID: 38199038 PMCID: PMC10821617 DOI: 10.1016/j.redox.2024.103025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The unfolded protein response (UPR) detects increased misfolded proteins and activates protein refolding, protein degradation and inflammatory responses. UPR sensors in the endoplasmic reticulum, IRE1α and PERK, bind and are activated by proteins with unexpected surface hydrophobicity, whereas sensor ATF6 is activated by proteolytic cleavage when released from complexation with protein disulfide isomerases (PDIs). Metabolic dysfunction leading to the formation of misfolded proteins with surface hydrophobicity and disruption of ATF6-PDI complexes leading to activation of UPR sensors remains unclear. The cellular concentration of reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in impaired metabolic health, producing increased MG-modified cellular proteins. Herein we assessed the effect of high glucose concentration and related increased cellular MG on activation status of IRE1α, PERK and ATF6. Human aortal endothelial cells and HMEC-1 microvascular endothelial cells were incubated in low and high glucose concentration to model blood glucose control, with increase or decrease of MG by silencing or increasing expression of glyoxalase 1 (Glo1), which metabolizes MG. Increased MG induced by high glucose concentration activated IRE1α, PERK and ATF6 and related downstream signalling leading to increased chaperone, apoptotic and inflammatory gene expression. Correction of increased MG by increasing Glo1 expression prevented UPR activation. MG modification of proteins produces surface hydrophobicity through arginine-derived hydroimidazolone MG-H1 formation, with related protein unfolding and preferentially targets PDIs and chaperone pathways for modification. It thereby poses a major challenge to proteostasis and activates UPR sensors. Pharmacological decrease of MG with Glo1 inducer, trans-resveratrol and hesperetin in combination, offers a novel treatment strategy to counter UPR-related cell dysfunction, particularly in hyperglycemia associated with diabetes.
Collapse
Affiliation(s)
- Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Zehra Irshad
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar; Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
30
|
Hota D, Padhy BM, Maiti R, Bisoi D, Sahoo JP, Patro BK, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Bagchi D. A Placebo-Controlled, Double-Blind Clinical Investigation to Evaluate the Efficacy of a Patented Trigonella foenum-graecum Seed Extract "Fenfuro®" in Type 2 Diabetics. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:147-156. [PMID: 37459747 DOI: 10.1080/27697061.2023.2233008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.
Collapse
Affiliation(s)
- Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Biswa M Padhy
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Debasis Bisoi
- Department of Pharmacology, AIIMS, Bibinagar, Hyderabad, India
| | - Jyoti Prakash Sahoo
- Department of Pharmacology, SCB Medical College & Hospital, Cuttack, Orissa, India
| | - Binod K Patro
- Department of Community and Family Medicine, AIIMS, Bhubaneswar, Orissa, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Manashi Bagchi
- Department of R&D, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
31
|
Wu Y, Chen J, Zhu R, Huang G, Zeng J, Yu H, He Z, Han C. Integrating TCGA and Single-Cell Sequencing Data for Hepatocellular Carcinoma: A Novel Glycosylation (GLY)/Tumor Microenvironment (TME) Classifier to Predict Prognosis and Immunotherapy Response. Metabolites 2024; 14:51. [PMID: 38248854 PMCID: PMC10818448 DOI: 10.3390/metabo14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC. However, the molecular pathways that drive immune cell variation in the tumor microenvironment (TME) remain poorly understood. Glycosylation (GLY)-related genes have a vital function in the pathogenesis of numerous tumors, including HCC. This study aimed to develop a GLY/TME classifier based on glycosylation-related gene scores and tumor microenvironment scores to provide a novel prognostic model to improve the prediction of clinical outcomes. The reliability of the signatures was assessed using receiver operating characteristic (ROC) and survival analyses and was verified with external datasets. Furthermore, the correlation between glycosylation-related genes and other cells in the immune environment, the immune signature of the GLY/TME classifier, and the efficacy of immunotherapy were also investigated. The GLY score low/TME score high subgroup showed a favorable prognosis and therapeutic response based on significant differences in immune-related molecules and cancer cell signaling mechanisms. We evaluated the prognostic role of the GLY/TME classifier that demonstrated overall prognostic significance for prognosis and therapeutic response before treatment, which may provide new options for creating the best possible therapeutic approaches for patients.
Collapse
Affiliation(s)
- Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Jiaru Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Riting Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Hongbing Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Cuifang Han
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| |
Collapse
|
32
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
33
|
Sanni O, Nkomozepi P, Islam MS. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose-Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 25:28. [PMID: 38203195 PMCID: PMC10778942 DOI: 10.3390/ijms25010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health challenge with increased morbidity and mortality rates yearly. Herbal medicine has provided an alternative approach to treating T2D with limited access to formal healthcare. Tectona grandis is being used traditionally in the treatment of diabetes. The present study investigated the antidiabetic potential of T. grandis leaves in different solvent extractions, and the crude extract that demonstrated the best activity was further fractionated through solvent-solvent partitioning. The ethyl acetate fraction of the ethanol crude extract showed the best antidiabetic activity in inhibiting α-glucosidase, delaying glucose absorption at the small intestine's lumen, and enhancing the muscle's postprandial glucose uptake. The ethyl acetate fraction was further elucidated for its ability to reduce hyperglycemia in diabetic rats. The ethyl acetate fraction significantly reduced high blood glucose levels in diabetic rats with concomitant modulation in stimulated insulin secretions through improved pancreatic β-cell function, insulin sensitivity by increasing liver glycogen content, and reduced elevated levels of liver glucose-6-phosphatase activity. These activities could be attributed to the phytochemical constituents of the plant.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
34
|
Jasenovec T, Radosinska D, Jansakova K, Kopcikova M, Tomova A, Snurikova D, Vrbjar N, Radosinska J. Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants (Basel) 2023; 12:2054. [PMID: 38136174 PMCID: PMC10741171 DOI: 10.3390/antiox12122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Erythrocytes are responsible for the transport of oxygen within the organism, which is particularly important for nerve tissues. Erythrocyte quality has been shown to be deteriorated in oxidative stress conditions. In this study, we measured the same series of oxidative stress markers in plasma and erythrocytes to compare the differences between neurotypical children (controls) and children with autism spectrum disorder (ASD). We also focused on erythrocyte properties including their deformability, osmotic resistance, Na,K-ATPase activity, nitric oxide levels and free radical levels in children with ASD and controls. Greater oxidative damage to proteins and lipids was observed in the erythrocytes than in the plasma of ASD subjects. Additionally, antioxidant enzymes were more active in plasma samples from ASD children than in their erythrocytes. Significantly higher nitric oxide level and Na,K-ATPase enzyme activity were detected in erythrocytes of ASD individuals in comparison with the controls. Changes in oxidative status could at least partially contribute to the deterioration of erythrocyte morphology, as more frequent echinocyte formation was detected in ASD individuals. These alterations are most probably responsible for worsening the erythrocyte deformability observed in children with ASD. We can conclude that abnormalities in antioxidant status and erythrocyte properties could be involved in the pathomechanisms of ASD and eventually contribute to its clinical manifestations.
Collapse
Affiliation(s)
- Tomas Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia; (T.J.); (K.J.); (M.K.); (A.T.)
| | - Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Katarina Jansakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia; (T.J.); (K.J.); (M.K.); (A.T.)
| | - Maria Kopcikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia; (T.J.); (K.J.); (M.K.); (A.T.)
| | - Aleksandra Tomova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia; (T.J.); (K.J.); (M.K.); (A.T.)
| | - Denisa Snurikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia; (T.J.); (K.J.); (M.K.); (A.T.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| |
Collapse
|
35
|
Park JH, Tanaka M, Nakano T, Licastro E, Nakamura Y, Li W, Esposito E, Mandeville ET, Chou SHY, Ning M, Lo EH, Hayakawa K. O-GlcNAcylation is essential for therapeutic mitochondrial transplantation. COMMUNICATIONS MEDICINE 2023; 3:169. [PMID: 38007588 PMCID: PMC10676354 DOI: 10.1038/s43856-023-00402-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/06/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Transplantation of mitochondria is increasingly explored as a novel therapy in central nervous system (CNS) injury and disease. However, there are limitations in safety and efficacy because mitochondria are vulnerable in extracellular environments and damaged mitochondria can induce unfavorable danger signals. METHODS Mitochondrial O-GlcNAc-modification was amplified by recombinant O-GlcNAc transferase (OGT) and UDP-GlcNAc. O-GlcNAcylated mitochondrial proteins were identified by mass spectrometry and the antiglycation ability of O-GlcNAcylated DJ1 was determined by loss-of-function via mutagenesis. Therapeutic efficacy of O-GlcNAcylated mitochondria was assessed in a mouse model of transient focal cerebral ischemia-reperfusion. To explore translational potential, we evaluated O-GlcNAcylated DJ1 in CSF collected from patients with subarachnoid hemorrhagic stroke (SAH). RESULTS We show that isolated mitochondria are susceptible to advanced glycation end product (AGE) modification, and these glycated mitochondria induce the receptor for advanced glycation end product (RAGE)-mediated autophagy and oxidative stress when transferred into neurons. However, modifying mitochondria with O-GlcNAcylation counteracts glycation, diminishes RAGE-mediated effects, and improves viability of mitochondria recipient neurons. In a mouse model of stroke, treatment with extracellular mitochondria modified by O-GlcNAcylation reduces neuronal injury and improves neurologic deficits. In cerebrospinal fluid (CSF) samples from SAH patients, levels of O-GlcNAcylation in extracellular mitochondria correlate with better clinical outcomes. CONCLUSIONS These findings suggest that AGE-modification in extracellular mitochondria may induce danger signals, but O-GlcNAcylation can prevent glycation and improve the therapeutic efficacy of transplanted mitochondria in the CNS.
Collapse
Affiliation(s)
- Ji Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Masayoshi Tanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takafumi Nakano
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ester Licastro
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yoshihiko Nakamura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Elga Esposito
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sherry Hsiang-Yi Chou
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Departments of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - MingMing Ning
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
36
|
Toriumi K, Iino K, Ozawa A, Miyashita M, Yamasaki S, Suzuki K, Sugawa H, Tabata K, Yamaguchi S, Usami S, Itokawa M, Nishida A, Nagai R, Kamiguchi H, Arai M. Glucuronic acid is a novel source of pentosidine, associated with schizophrenia. Redox Biol 2023; 67:102876. [PMID: 37703666 PMCID: PMC10502438 DOI: 10.1016/j.redox.2023.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Pentosidine (PEN) is an advanced glycation end-product (AGEs), where a fluorescent cross-link is formed between lysine and arginine residues in proteins. Accumulation of PEN is associated with aging and various diseases. We previously reported that a subpopulation of patients with schizophrenia showed PEN accumulation in the blood, having severe clinical features. PEN is thought to be produced from glucose, fructose, pentoses, or ascorbate. However, patients with schizophrenia with high PEN levels present no elevation of these precursors of PEN in their blood. Therefore, the molecular mechanisms underlying PEN accumulation and the molecular pathogenesis of schizophrenia associated with PEN accumulation remain unclear. Here, we identified glucuronic acid (GlcA) as a novel precursor of PEN from the plasma of subjects with high PEN levels. We demonstrated that PEN can be generated from GlcA, both in vitro and in vivo. Furthermore, we found that GlcA was associated with the diagnosis of schizophrenia. Among patients with high PEN, the proportion of those who also have high GlcA is 25.6%. We also showed that Aldo-keto reductase (AKR) activity to degrade GlcA was decreased in patients with schizophrenia, and its activity was negatively correlated with GlcA levels in the plasma. This is the first report to show that PEN is generated from GlcA. In the future, this finding will contribute to understanding the molecular pathogenesis of not only schizophrenia but also other diseases with PEN accumulation.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Azuna Ozawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Community Mental Health, School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, 113-8510, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | | | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
37
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
38
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Liquid-Liquid Phase Separation and Protective Protein Aggregates in Bacteria. Molecules 2023; 28:6582. [PMID: 37764358 PMCID: PMC10534466 DOI: 10.3390/molecules28186582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) and the formation of membraneless organelles (MLOs) contribute to the spatiotemporal organization of various physiological processes in the cell. These phenomena have been studied and characterized mainly in eukaryotic cells. However, increasing evidence indicates that LLPS-driven protein condensation may also occur in prokaryotes. Recent studies indicate that aggregates formed during proteotoxic stresses may also play the role of MLOs and increase the fitness of bacteria under stress. The beneficial effect of aggregates may result from the sequestration and protection of proteins against irreversible inactivation or degradation, activation of the protein quality control system and induction of dormancy. The most common stress that bacteria encounter in the natural environment is water loss. Therefore, in this review, we focus on protein aggregates formed in E. coli upon desiccation-rehydration stress. In silico analyses suggest that various mechanisms and interactions are responsible for their formation, including LLPS, disordered sequences and aggregation-prone regions. These data support findings that intrinsically disordered proteins and LLPS may contribute to desiccation tolerance not only in eukaryotic cells but also in bacteria. LLPS-driven aggregation may be a strategy used by pathogens to survive antibiotic treatment and desiccation stress in the hospital environment.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
39
|
Ferreyro-Bravo F, Ceballos-Cruz Á, Urruchua-Rodríguez MJ, Martínez-Reyes G, Cortés-Pastrana C, Pacheco-Pantoja EL. Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1451. [PMID: 37629742 PMCID: PMC10456706 DOI: 10.3390/medicina59081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Background: Glycation products have been linked to decreased bone mineral density (BMD) in a number of clinical settings. This study examined the correlation between early glycation products (HbA1c and glycated albumin (ALB-g)) and advanced glycation end products (pentosidine (PTD)) with BMD in two groups of participants: those with type 2 diabetes mellitus (DM2) and those without diabetes or any other comorbidities (noDM). All of the participants had resided in southeastern Mexico for a minimum of 10 years. Material and Methods: This study included 204 participants: 112 (55%) with DM2 and 92 (45%) healthy subjects. We utilized dual X-ray absorptiometry (DXA) to measure both the total and segment-specific BMD and adipose mass. In addition, the fasting blood glucose, HbA1c, PTD, and ALB-g parameters were measured. Correlation and logistic regression analyses were conducted. Results: There was an inverse correlation between PTD and BMD in all anatomical regions among postmenopausal women (PMW) in the DM2 group, whereas in non-PMW, only the waist-to-height ratio was statistically significant. A negative correlation was observed between HbA1c levels and BMD in the arms and legs of DM2 individuals. However, in the noDM group, a negative correlation was found between HbA1c levels and BMD in the pelvis, while a positive association was observed between HbA1c and indicators of adipose tissue. ALB-g, demonstrated a negative correlation with fat mass. After performing binary logistic regressions, the following odds ratios (OR) for osteopenia/osteoporosis risk were determined: PTD OR 1.1 (p = 0.047) for DM2 PMW, HbA1c OR 1.4 (p = 0.048), and fat mass content OR 1.011 (p = 0.023) for the entire sample. Conclusions: Glycation products are associated with BMD differentially depending on the analyzed anatomical segment, but PTD, HbA1c, and fat mass are significant predictors of low bone mass. In prospective studies, this association could be determined using other techniques involving three-dimensional analysis of bone architecture to evaluate bone architecture.
Collapse
Affiliation(s)
- Fernando Ferreyro-Bravo
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, 30107 Guadalupe de Maciascoque, Murcia, Spain;
| | - Ángel Ceballos-Cruz
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Mary Jose Urruchua-Rodríguez
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Gabriela Martínez-Reyes
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Carolina Cortés-Pastrana
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Elda Leonor Pacheco-Pantoja
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| |
Collapse
|
40
|
Zoanni B, Brioschi M, Mallia A, Gianazza E, Eligini S, Carini M, Aldini G, Banfi C. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. MASS SPECTROMETRY REVIEWS 2023; 42:1113-1128. [PMID: 34747521 DOI: 10.1002/mas.21743] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/07/2023]
Abstract
The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | - Marina Carini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | | |
Collapse
|
41
|
Waseem R, Khan T, Shamsi A, Shahid M, Kazim SN, Hassan MI, Islam A. Inhibitory potential of N-acetylaspartate against protein glycation, AGEs formation and aggregation: Implication of brain osmolyte in glycation-related complications. Int J Biol Macromol 2023:125405. [PMID: 37336383 DOI: 10.1016/j.ijbiomac.2023.125405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Protein glycation and aggregation have a pivotal role in many diseases including diabetes and neurodegenerative disorders. N-acetyl aspartate (NAA), an osmolyte derived from L-aspartic acid, is one of the most abundant metabolites in the mammalian brain. Although NAA is supposed to be a substitute for a neuronal marker, its function is not fully elucidated. Herein, we have investigated the effect of NAA on glycation, AGEs formation and aggregation of irisin. AGE-specific fluorescence showed the strong inhibition of AGEs formation in the presence of NAA, demonstrating its anti-glycating property. The aggregates present in MG-modified irisin were also reduced by NAA, which was confirmed by Thioflavin T fluorescence and fluorescence microscopy. Further, for the explanation of the strong anti-glycating potential of NAA, the interaction between irisin and NAA was also examined. Interaction studies involving steady-state fluorescence and molecular docking demonstrated that hydrogen bonding and salt bridges by NAA stabilize the irisin. It was found that glycation-prone residues i.e., lysine and arginine are specifically involved in the interaction which might prevent them from getting modified during the process of glycation. This study for the first time reported the antiglycating potential of NAA which can be implicated in the therapeutic management of various glycation-related complications.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
42
|
Seong SH, Kim BR, Park JS, Jeong DY, Kim TS, Im S, Jeong JW, Cho ML. Phytochemical profiling of Symplocos tanakana Nakai and S. sawafutagi Nagam. leaf and identification of their antioxidant and anti-diabetic potential. J Pharm Biomed Anal 2023; 233:115441. [PMID: 37148699 DOI: 10.1016/j.jpba.2023.115441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Symplocos sp. contains various phytochemicals and is used as a folk remedy for treatment of diseases such as enteritis, malaria, and leprosy. In this study, we discovered that 70% ethanol extracts of Symplocos sawafutagi Nagam. and S. tanakana Nakai leaves have antioxidant and anti-diabetic effects. The components in the extracts were profiled using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry; quercetin-3-O-(6''-O-galloyl)-β-d-galactopyranoside (6) and tellimagrandin II (7) were the main phenolic compounds. They acted as strong antioxidants with excellent radical scavenging activity and as inhibitors of non-enzymatic advanced glycation end-products (AGEs) formation. Mass fragmentation analysis demonstrated that compounds 6 and 7 could form mono- or di-methylglyoxal adducts via reaction with methylglyoxal, which is a reactive carbonyl intermediate and an important precursor of AGEs. In addition, compound 7 effectively inhibited the binding between AGE2 and receptor for AGEs as well as the activity of α-glucosidase. Enzyme kinetic study revealed that compound 7 acts as a competitive inhibitor of α-glucosidase, through interaction with the active site of the enzyme. Therefore, compounds 6 and 7, the major constituents of S. sawafutagi and S. tanakana leaves, are promising for developing drugs for preventing or treating diseases caused by aging and excessive sugar consumption.
Collapse
Affiliation(s)
- Su Hui Seong
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Bo-Ram Kim
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Jong-Soo Park
- Division of Botany, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Do Yun Jeong
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Tae-Su Kim
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Sua Im
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Jin-Woo Jeong
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea
| | - Myoung Lae Cho
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo 58762, Republic of Korea.
| |
Collapse
|
43
|
Knörlein A, Xiao Y, David Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023; 9:410-420. [PMID: 36804508 PMCID: PMC10121827 DOI: 10.1016/j.trecan.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Cancer cells undergo metabolic reprogramming to rely mostly on aerobic glycolysis (the Warburg effect). The increased glycolytic intake enhances the intracellular levels of reactive sugars and sugar metabolites. These reactive species can covalently modify macromolecules in a process termed glycation. Histones are particularly susceptible to glycation, resulting in substantial alterations to chromatin structure, function, and transcriptional output. Growing evidence suggests a link between dysregulated metabolism of tumors and cancer proliferation through epigenetic changes. This review discusses recent advances in the understanding of histone glycation, its impact on the epigenetic landscape and cellular fate, and its role in cancer. In addition, we investigate the possibility of using histone glycation as biomarkers and targets for anticancer therapeutics.
Collapse
Affiliation(s)
- Anna Knörlein
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Xiao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Łupkowska A, Monem S, Dębski J, Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Protein aggregation and glycation in Escherichia coli exposed to desiccation-rehydration stress. Microbiol Res 2023; 270:127335. [PMID: 36841129 DOI: 10.1016/j.micres.2023.127335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
In natural environments, bacteria often enter a state of anhydrobiosis due to water loss. Multiple studies have demonstrated that desiccation may lead to protein aggregation and glycation both in vivo and in vitro. However, the exact effects of water-loss-induced proteotoxic stress and the interplay between protein glycation and aggregation in bacteria remain elusive. Our studies revealed that protein aggregates formation in Escherichia coli started during desiccation and continued during the rehydration stage. The aggregates were enriched in proteins prone to liquid-liquid phase separation. Although it is known that glycation may induce protein aggregation in vitro, the aggregates formed in E. coli contained low levels of glycation products compared to the soluble protein fraction. Carnosine, glycine betaine and trehalose diminished the formation of protein aggregates and glycation products, resulting in increased E. coli viability. Notably, although high concentrations of glycine-betaine and trehalose significantly enhanced protein aggregation, glycation was still inhibited and E. coli cells survived desiccation better than bacteria grown without osmolytes. Taken together, our results suggest that the aggregates might play protective functions during early desiccation-rehydration stress. Moreover, it seems glycation rather than protein aggregation is the main cause of E. coli death upon desiccation-rehydration stress.
Collapse
Affiliation(s)
- Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
45
|
Hosseini S, Abediankenari S, Rasouli M. Serum total carbohydrates, conjugated carbohydrates and total protein glycation index in diabetes mellitus. Glycoconj J 2023; 40:375-381. [PMID: 37060503 DOI: 10.1007/s10719-023-10115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Diabetes mellitus is defined according to fasting blood glucose and clinical signs. But, the markers of glycation have been used recently as a criterion to diagnose and monitor the therapy. OBJECTIVES To measure serum total- and conjugated- saccharides and to define the new marker as serum total protein glycation index (sTPGI ) for diabetes. DESIGN AND METHODS The study population consisted of 172 subjects who were divided to control and diabetic cases. Serum total and conjugated saccharides were measured and sTPGI was defined to discriminate serum glycosylated and glycated saccharides. RESULTS Patients with diabetes compared with the controls had increased levels of serum (free) glucose, HbA1c, serum total carbohydrates, total conjugated carbohydrates and sTPGI. All three indices of serum carbohydrates showed significant positive correlation with serum glucose, HbA1c and diabetes. The equations: sTPGI = 0.12 Glucose (mg/dL) + 12 and sTPGI = 3.5HbA1c (%) + 5, were deduced for the association of sTPGI with serum free glucose and HbA1c. In ROC analysis, both HbA1c (AUC = 0.965, p ≤ 0.001) and sTPGI (AUC = 0.734, p ≤ 0.001) had strong and significant efficiency to discriminate diabetic cases from control subjects. CONCLUSIONS The results confirm that sTPGI obtained by indirect assay has high significant efficiency comparable to HbA1c to diagnose diabetes. sTPGI relative to HbA1c indicates the mean level of glycaemia over a shorter period of about one month so it responds more quickly to changes in therapy.
Collapse
Affiliation(s)
- Sepideh Hosseini
- Department of, Clinical Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center and Department of Immunology,, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Mehdi Rasouli
- Department of, Clinical Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran.
| |
Collapse
|
46
|
Masania J, Wijten P, Keipert S, Ost M, Klaus S, Rabbani N, Thornalley PJ. Decreased methylglyoxal-mediated protein glycation in the healthy aging mouse model of ectopic expression of UCP1 in skeletal muscle. Redox Biol 2023; 59:102574. [PMID: 36521306 PMCID: PMC9772855 DOI: 10.1016/j.redox.2022.102574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mice with ectopic expression of uncoupling protein-1 (UCP1) in skeletal muscle exhibit a healthy aging phenotype with increased longevity and resistance to impaired metabolic health. This may be achieved by decreasing protein glycation by the reactive metabolite, methylglyoxal (MG). We investigated protein glycation and oxidative damage in skeletal muscle of mice with UCP1 expression under control of the human skeletal actin promoter (HSA-mUCP1) at age 12 weeks (young) and 70 weeks (aged). We found both young and aged HSA-mUCP1 mice had decreased advanced glycation endproducts (AGEs) formed from MG, lysine-derived Nε(1-carboxyethyl)lysine (CEL) and arginine-derived hydroimidazolone, MG-H1, whereas protein glycation by glucose forming Nε-fructosyl-lysine (FL) was increased ca. 2-fold, compared to wildtype controls. There were related increases in FL-linked AGEs, Nε-carboxymethyl-lysine (CML) and 3-deoxylglucosone-derived hydroimidazolone 3DG-H, and minor changes in protein oxidative and nitration adducts. In aged HSA-mUCP1 mice, urinary MG-derived AGEs/FL ratio was decreased ca. 60% whereas there was no change in CML/FL ratio - a marker of oxidative damage. This suggests that, normalized for glycemic status, aged HSA-mUCP1 mice had a lower flux of whole body MG-derived AGE exposure compared to wildtype controls. Proteomics analysis of skeletal muscle revealed a shift to increased heat shock proteins and mechanoprotection and repair in HSA-mUCP1 mice. Decreased MG-derived AGE protein content in skeletal muscle of aged HSA-mUCP1 mice is therefore likely produced by increased proteolysis of MG-modified proteins and increased proteostasis surveillance of the skeletal muscle proteome. From this and previous transcriptomic studies, signaling involved in enhanced removal of MG-modified protein is likely increased HSPB1-directed HUWE1 ubiquitination through eIF2α-mediated, ATF5-induced increased expression of HSPB1. Decreased whole body exposure to MG-derived AGEs may be linked to increased weight specific physical activity of HSA-mUCP1 mice. Decreased formation and increased clearance of MG-derived AGEs may be associated with healthy aging in the HSA-mUCP1 mouse.
Collapse
Affiliation(s)
- Jinit Masania
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Susanne Keipert
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; University of Potsdam, Institute of Nutrition Science, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
47
|
Rabbani N, Adaikalakoteswari A, Larkin JR, Panagiotopoulos S, MacIsaac RJ, Yue DK, Fulcher GR, Roberts MA, Thomas M, Ekinci E, Thornalley PJ. Analysis of Serum Advanced Glycation Endproducts Reveals Methylglyoxal-Derived Advanced Glycation MG-H1 Free Adduct Is a Risk Marker in Non-Diabetic and Diabetic Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010152. [PMID: 36613596 PMCID: PMC9820473 DOI: 10.3390/ijms24010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulation of advanced glycation endproducts (AGEs) is linked to decline in renal function, particularly in patients with diabetes. Major forms of AGEs in serum are protein-bound AGEs and AGE free adducts. In this study, we assessed levels of AGEs in subjects with and without diabetes, with normal renal function and stages 2 to 4 chronic kidney disease (CKD), to identify which AGE has the greatest progressive change with decline in renal function and change in diabetes. We performed a cross-sectional study of patients with stages 2-4 CKD, with and without diabetes, and healthy controls (n = 135). Nine protein-bound and free adduct AGEs were quantified in serum. Most protein-bound AGEs increased moderately through stages 2-4 CKD whereas AGE free adducts increased markedly. Methylglyoxal-derived hydroimidazolone MG-H1 free adduct was the AGE most responsive to CKD status, increasing 8-fold and 30-fold in stage 4 CKD in patients without and with diabetes, respectively. MG-H1 Glomerular filtration flux was increased 5-fold in diabetes, likely reflecting increased methylglyoxal glycation status. We conclude that serum MG-H1 free adduct concentration was strongly related to stage of CKD and increased in diabetes status. Serum MG-H1 free adduct is a candidate AGE risk marker of non-diabetic and diabetic CKD.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Antonysunil Adaikalakoteswari
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - James R. Larkin
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Sianna Panagiotopoulos
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis K. Yue
- Diabetes Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Gregory R. Fulcher
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Matthew A. Roberts
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
| | - Merlin Thomas
- Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Elif Ekinci
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J. Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: ; Tel.: +974-7090-1635
| |
Collapse
|
48
|
Fuentes-Lemus E, Reyes JS, López-Alarcón C, Davies MJ. Crowding modulates the glycation of plasma proteins: In vitro analysis of structural modifications to albumin and transferrin and identification of sites of modification. Free Radic Biol Med 2022; 193:551-566. [PMID: 36336230 DOI: 10.1016/j.freeradbiomed.2022.10.319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Protein modification occurs in biological milieus that are characterized by high concentrations of (macro)molecules (i.e. heterogeneous and packed environments). Recent data indicate that crowding can modulate the extent and rate of protein oxidation, however its effect on other post-translational modifications remains to be explored. In this work we hypothesized that crowding would affect the glycation of plasma proteins. Physiologically-relevant concentrations of albumin (35 mg mL-1) and transferrin (2 mg mL-1) were incubated with methylglyoxal and glyoxal (5 μM-5 mM), two α-oxoaldehyde metabolites that are elevated in the plasma of people with diabetes. Crowding was induced by adding dextran or ficoll polymers. Electrophoresis, electron microscopy, fluorescence spectroscopy and mass spectrometry were employed to investigate the structural consequences of glycation under crowded conditions. Our data demonstrate that crowding modulates the extent of formation of transferrin cross-links, and also the modification pathways in both albumin and transferrin. Arginine was the most susceptible residue to modification, with lysine and cysteine also affected. Loss of 0.48 and 7.28 arginine residues per protein molecule were determined on incubation with 500 μM methylglyoxal for albumin and transferrin, respectively. Crowding did not influence the extent of loss of arginine and lysine for either protein, but the sites of modification, detected by LC-MS, were different between dilute and crowded conditions. These data confirm the relevance of studying modification processes under conditions that closely mimic biological milieus. These data unveil additional factors that influence the pattern and extent of protein modification, and their structural consequences, in biological systems.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Juan S Reyes
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo López-Alarcón
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
49
|
Rabbani N, Thornalley PJ. An Introduction to the Special Issue "Protein Glycation in Food, Nutrition, Health and Disease". Int J Mol Sci 2022; 23:13053. [PMID: 36361833 PMCID: PMC9656604 DOI: 10.3390/ijms232113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...].
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
50
|
Que-Salinas U, Martinez-Peon D, Reyes-Figueroa AD, Ibarra I, Scheckhuber CQ. On the Prediction of In Vitro Arginine Glycation of Short Peptides Using Artificial Neural Networks. SENSORS (BASEL, SWITZERLAND) 2022; 22:5237. [PMID: 35890916 PMCID: PMC9324327 DOI: 10.3390/s22145237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
One of the hallmarks of diabetes is an increased modification of cellular proteins. The most prominent type of modification stems from the reaction of methylglyoxal with arginine and lysine residues, leading to structural and functional impairments of target proteins. For lysine glycation, several algorithms allow a prediction of occurrence; thus, making it possible to pinpoint likely targets. However, according to our knowledge, no approaches have been published for predicting the likelihood of arginine glycation. There are indications that arginine and not lysine is the most prominent target for the toxic dialdehyde. One of the reasons why there is no arginine glycation predictor is the limited availability of quantitative data. Here, we used a recently published high-quality dataset of arginine modification probabilities to employ an artificial neural network strategy. Despite the limited data availability, our results achieve an accuracy of about 75% of correctly predicting the exact value of the glycation probability of an arginine-containing peptide without setting thresholds upon whether it is decided if a given arginine is modified or not. This contribution suggests a solution for predicting arginine glycation of short peptides.
Collapse
Affiliation(s)
- Ulices Que-Salinas
- Centro de Ciencias de la Tierra, Universidad Veracruzana, Xalapa 91090, VER, Mexico;
| | - Dulce Martinez-Peon
- Department of Electrical and Electronic Engineering, National Technological Institute of Mexico/IT, Monterrey 67170, NL, Mexico;
| | - Angel D. Reyes-Figueroa
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, DF, Mexico;
- Centro de Investigación en Matemáticas Unidad Monterrey, Parque de Investigación e Innovación Tecnológica (PIIT), Av. Alianza Centro No. 502, Apodaca 66628, NL, Mexico
| | - Ivonne Ibarra
- Independent Researcher, Monterrey 66620, NL, Mexico;
| | - Christian Quintus Scheckhuber
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|