1
|
Sun X, Teng R, Xu N, Sun Y, Zhang E, Chen X, Guo Q, Li S. PFOS exposure impairs porcine oocyte maturation and embryo development via mitochondria-dependent ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126185. [PMID: 40189092 DOI: 10.1016/j.envpol.2025.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a widely utilized chemical known for its exceptional environmental stability over extended periods, its significant potential to bioaccumulate in living organisms, and its considerable risks to both health and the environment. Several studies have suggested that PFOS may pose reproductive risks in mammals; however, the exact mechanisms driving these effects are not well understood. In this study, we explored the possible mechanisms by which PFOS toxicity affects the maturation of mammalian oocytes and the embryonic development employing porcine oocytes as a model system. SMART-seq results suggested that PFOS may affect oocyte maturation through mechanisms involving ferroptosis, autophagy, and alterations in membrane structure. Our results suggest that PFOS exposure adversely affects mitochondrial function and structure, thereby influencing peroxisome biogenesis and contributing to oxidative stress. Most importantly, we found that exposure to PFOS significantly elevated Fe2+ levels, an indicator associated with ferroptosis in oocytes. Furthermore, malondialdehyde (MDA) levels in the PFOS group were significantly higher than those in the control group. Additionally, the mRNA expression levels of PCBP1 and PCBP2, which are related to ferroptosis, as well as the expression level of P53, were significantly reduced in the PFOS group. Overall, exposure to PFOS in vitro results in mitochondrial damage in porcine oocytes, which induces lipid peroxidation and subsequently leads to the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ran Teng
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ning Xu
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Yutong Sun
- Affiliated Middle School to Jilin University, Changchun, 130000, China
| | - Enbo Zhang
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xingfu Chen
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
2
|
Liu RQ, Wu YT, Cheng Y, Chang YH, Saleem MAU, Hu ZY, Yang SJ, Wang XQ, Song YJ, Mao XY, Zheng J, Wang YB, Lou M, Zhao Y, Li JL. TBBPA induced hepatocyte ferroptosis by PCBP1-mediated ferritinophagy. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138515. [PMID: 40359755 DOI: 10.1016/j.jhazmat.2025.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant and has been identified as emerging widespread pollutants. Ferroptosis, a recently characterized form of iron-dependent cell death, is related to a wide range of liver diseases. Ferritinophagy as a novel selective form of autophagy functions in iron processing is essential to induce ferroptosis. Poly(rC)-binding protein 1 (PCBP1) is an iron chaperone involved in iron loading to ferritin. Nevertheless, the potential health risk caused by TBBPA in mammals is unknown. Thus, this study is conducted to explore the molecular mechanism of TBBPA-induced liver injury and the unique role of PCBP1 in it. In this study, we found that TBBPA exposure caused hepatic pathological injury and hepatocyte mitochondrial morphological changes, such as decreased or absent mitochondrial crest, ruptured mitochondrial membranes and mitochondrial shrinkage. The result showed that TBBPA exposure exacerbated glutathione depletion and lipid peroxidation, which are hallmarks of ferroptosis. Consistent with the results in vivo, TBBPA exposure activated ferritinophagy and upregulated indicators related to ferroptosis in hepatocytes. Of note, overexpression of PCBP1 inhibited TBBPA-induced ferroptosis by reducing overstimulated ferritinophagy. Here, we uncover a new mechanism whereby TBBPA triggers hepatocyte ferroptosis through the activation of ferritinophagy. Of note, we identify PCBP1 as critical for liver iron homeostasis, link this molecule to liver disease. Taken together, our findings provide a new therapeutic strategy and potential target for the treatment of liver disease.
Collapse
Affiliation(s)
- Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Jia Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yue Mao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Bo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025; 209:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
4
|
Mei W, Wei M, Tang C, Li W, Ye B, Xin S, Ma W, Ye L. BCAT2 binding to PCBP1 regulates the PI3K/AKT signaling pathway to inhibit autophagy-related apoptosis and ferroptosis in prostate cancer. Cell Death Dis 2025; 16:337. [PMID: 40274762 PMCID: PMC12022009 DOI: 10.1038/s41419-025-07559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Prostate cancer (PCa) has emerged as a predominant cause of cancer-related mortality among men globally. The mechanisms of branched-chain amino acids (BCAAs) contributing to the development of PCa remain inadequately elucidated. The objective of this study was to examine the involvement of BCAAs and BCAT2 in tumorigenesis. BCAAs exhibited elevated expression levels in PCa tissues and cells. Among the critical enzymes involved in the BCAA metabolic pathway, only BCAT2 demonstrated significant expression in PCa and was closely associated with tumor progression and patient prognosis. RNA sequencing along with related functional experiments indicated that BCAT2 can inhibit autophagy, autophagy-related apoptosis, and ferroptosis in PCa. Furthermore, the results of co-immunoprecipitation, mass spectrometry, and other methodologies established that PCBP1, as a downstream protein interacting with BCAT2, co-regulates the PI3K/AKT pathway, thereby influencing progression of PCa. Moreover, BCAT2 interacted with PCBP1 at Leucine 239 to collaboratively regulate the PI3K/AKT signaling pathway, which is crucial for the initiation and progression of PCa. Targeting BCAT2 may represent a promising therapeutic strategy to prevent proliferation of PCa.
Collapse
Affiliation(s)
- Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Mengyu Wei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Bowen Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiyong Xin
- Department of Urology, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Weiguo Ma
- Department of Urology, Tongxin People's Hospital, Ningxia, 751300, China.
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
5
|
Zhu Z, Chen Q, Song S, Peng S, Ding H, Li B, Liu C, Jin X, Li L, Zhu J, Zhang G. RNF128 promotes gastric cancer progression by inhibiting autophagy-dependent ferroptosis through Beclin1 ubiquitination. Cell Death Discov 2025; 11:187. [PMID: 40253377 PMCID: PMC12009371 DOI: 10.1038/s41420-025-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
As an important protein post-translational modification process, ubiquitination plays an indispensable role in the regulation of gastric cancer (GC) occurrence and development. And recent studies have demonstrated that this modification is closely related to regulated cell death. This suggests that our therapeutic approach to inhibit the malignant progression of GC by regulating the intracellular death mode through ubiquitination modification becomes possible. Although ubiquitination modification has been well described in some tumorigenesis, its potential role and specific mechanisms are still unknown. In the present study, we identified RNF128, an E3 ubiquitin ligase with a RING structural domain, whose expression was significantly increased in GC. In-depth studies showed that knockdown of RNF128 significantly inhibited GC cell proliferation and increased intracellular autophagic flux and lipid peroxidation production, and we hypothesized that autophagy-dependent ferroptosis might be the main mode of death mediated by RNF128. Mechanistically, RNF128 directly binds and ubiquitinates degradation of Beclin1 through its PA structural domain and significantly inhibits the Beclin1/solute transport family 7 member 11(SLC7A11)/glutathione peroxidase 4(GPX4) axis. Taken together, our study reports for the first time that RNF128 acts as a tumor promoter to inhibit autophagy-dependent ferroptosis in GCs by targeting Beclin1. These data provide new insights into the activation of intracellular ferroptosis to inhibit malignant tumor progression and are expected to provide a new strategy for molecular therapy in clinical GC patients.
Collapse
Affiliation(s)
- Zhenguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qishuai Chen
- Department of General Surgery, Zibo Central Hospital, Zibo, China
| | - Siyi Song
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shi Peng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huanxin Ding
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chuxuan Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xin Jin
- Department of General Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shan-dong University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, China.
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
6
|
Xu WX, Wen X, Fu YT, Yang J, Cui H, Fan RF. Nuclear receptor coactive 4-mediated ferritinophagy: a key role of heavy metals toxicity. Arch Toxicol 2025; 99:1257-1270. [PMID: 39928088 DOI: 10.1007/s00204-025-03963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Nuclear receptor coactive 4 (NCOA4) is a specific receptor for ferritinophagy, transporting ferritin to lysosomal degradation, releasing free iron, and excessive iron levels may lead to cellular redox imbalance, contributing to cell death, predominantly ferroptosis. NCOA4 is regulated by a variety of transcriptional, post-transcriptional, translational, and post-translational modifications. Targeted modulation of NCOA4-mediated ferritinophagy has been successfully used as a therapeutic strategy in several disease models. Recent evidences have elucidated that ferritinophagy and ferroptosis played a major role in heavy metals toxicity. In this review, we explored the regulatory mechanism of NCOA4 as the sole receptor for ferritinophagy from multiple perspectives based on previous studies. The significant role of ferritinophagy-mediated ferroptosis in heavy metals toxicity was discussed in detail, emphasizing the great potential of NCOA4 as a target for heavy metals toxicity.
Collapse
Affiliation(s)
- Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Xue Wen
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Yi-Tong Fu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Jie Yang
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
| |
Collapse
|
7
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
8
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
El-Sehrawy AAMA, Rashid TA, Ullah MI, Uthirapathy S, Ganesan S, Singh A, Devi A, Joshi KK, Jasim AS, Kadhim AJ. Cutting edge: ferroptosis in metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis and therapy. Funct Integr Genomics 2025; 25:71. [PMID: 40131513 DOI: 10.1007/s10142-025-01579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis denotes a distinct form of controlled cell death marked by substantial iron buildup and significant lipid peroxidation, playing a crucial role in several disease processes linked to cell death. Given the liver's essential functions in iron and lipid metabolism and its vulnerability to oxidative damage, more research has investigated the correlation between ferroptosis and numerous hepatic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). NAFLD has arisen as a worldwide public health concern due to elevated morbidity and high death rates. The pathogenesis of MASLD remains incompletely elucidated. Recent data suggests that ferroptosis is crucial in the pathophysiology of MASLD; nevertheless, the specific processes by which ferroptosis influences MASLD remain unclear. The present review summarizes the molecular processes of ferroptosis and its intricate regulatory networks, outlines the differing impacts of ferroptosis at different stages of MASLD, and examines possible approaches targeting ferroptosis for the therapy of MASLD, suggesting a novel approach for its management.
Collapse
Affiliation(s)
| | - Teeba Ammar Rashid
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Ahmed Salman Jasim
- Radiology Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 5100, Babylon, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
10
|
Hao Y, Wang X, Ni Z, Ma Y, Wang J, Su W. Analysis of ferritinophagy-related genes associated with the prognosis and regulatory mechanisms in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1480169. [PMID: 40124684 PMCID: PMC11925780 DOI: 10.3389/fmed.2025.1480169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Lung cancer remains a major global health issue, with non-small cell lung cancer (NSCLC) constituting approximately 85% of cases. Ferritinophagy, a pivotal autophagic process in ferroptosis, plays an essential role in tumor initiation and progression. However, the specific contributions of ferritinophagy-related genes (FRGs) to NSCLC pathogenesis remain incompletely understood. In this study, weighted gene co-expression network analysis (WGCNA) was employed to identify key modular genes associated with FRG scores. Genes overlapping between these modules and differentially expressed genes (DEGs) were selected for further investigation. Prognostic genes were identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, with subsequent validation using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) on both clinical samples and the TCGA-NSCLC dataset. A nomogram incorporating clinicopathological features and risk scores was developed to predict patient outcomes. Further analyses focused on functional enrichment, drug sensitivity, and the immune microenvironment. Cross-referencing 2,142 key modular genes with 2,764 DEGs revealed 600 candidate genes. Univariate Cox regression and LASSO analysis of these candidates identified eight prognostic genes: KLK8, MFI2, B3GNT3, MYRF, CREG2, GLB1L3, AHNAK2, and NLRP10. Two distinct risk groups exhibited significant survival differences. Both the risk score and pathological N stage were found to be independent prognostic factors, forming the basis for the nomogram. Notable correlations were observed between certain immune cells, prognostic genes, and immune responses, affecting the efficacy of immunotherapy and drug sensitivity. qRT-PCR confirmed that, except for NLRP10, all prognostic genes exhibited expression patterns consistent with TCGA-NSCLC data. This study highlights the significant role of FRGs in NSCLC prognosis and regulation, offering novel insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Yuan Hao
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Xin Wang
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Zerong Ni
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Yuhui Ma
- Department of Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College Huazhong University Science of and Technology, Taiyuan, China
| | - Jing Wang
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wen Su
- Department of Immunology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
11
|
Sant’Angelo D, Descamps G, Lecomte V, Stanicki D, Penninckx S, Dragan T, Van Gestel D, Laurent S, Journe F. Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers. Pharmaceuticals (Basel) 2025; 18:325. [PMID: 40143107 PMCID: PMC11945075 DOI: 10.3390/ph18030325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The emergence of nanotechnology in medicine, particularly using iron oxide nanoparticles (IONPs), may impact cancer treatment strategies. IONPs exhibit unique properties, such as superparamagnetism, biocompatibility, and ease of surface modification, making them ideal candidates for imaging, and therapeutic interventions. Their application in targeted drug delivery, especially with traditional chemotherapeutic agents like cisplatin, has shown potential in overcoming limitations such as low bioavailability and systemic toxicity of chemotherapies. Moreover, IONPs, by releasing iron ions, can induce ferroptosis, a form of iron-dependent cell death, which offers a promising pathway to reverse radio- and chemoresistance in cancer therapy. In particular, IONPs demonstrate significant potential as radiosensitisers, enhancing the effects of radiotherapy by promoting reactive oxygen species (ROS) generation, lipid peroxidation, and modulating the tumour microenvironment to stimulate antitumour immune responses. This review explores the multifunctional roles of IONPs in radiosensitisation through ferroptosis induction, highlighting their promise in advancing treatment for head and neck cancers. Additional research is crucial to fully addressing their potential in clinical settings, offering a novel approach to personalised cancer treatment.
Collapse
Affiliation(s)
- Dorianne Sant’Angelo
- Department of Human Biology and Toxicology (Cancer Research Unit), Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Géraldine Descamps
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Valentin Lecomte
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Sébastien Penninckx
- Department of Medical Physics, Institut Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Tatiana Dragan
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Dirk Van Gestel
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Fabrice Journe
- Department of Human Biology and Toxicology (Cancer Research Unit), Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
12
|
Lee J, Roh JL. Ferroptosis: iron release mechanisms in the bioenergetic process. Cancer Metastasis Rev 2025; 44:36. [PMID: 40000477 DOI: 10.1007/s10555-025-10252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of cell death, has been the focus of extensive research over the past decade, leading to the elucidation of key molecules and mechanisms involved in this process. While several studies have highlighted iron sources for the Fenton reaction, the predominant mechanism for iron release in ferroptosis has been identified as ferritinophagy, which occurs in response to iron starvation. However, much of the existing literature has concentrated on lipid peroxidation rather than on the mechanisms of iron release. This review proposes three distinct mechanisms of iron mobilization: ferritinophagy, reductive pathways with selective gating of ferritin pores, and quinone-mediated iron mobilization. Notably, the latter two mechanisms operate independently of iron starvation and rely primarily on reductants such as NADH and O2•-. The inhibition of the respiratory chain, particularly under the activation of α-ketoglutarate dehydrogenase, leads to the accumulation of these reductants, which in turn promotes iron release from ferritin and indirectly inhibits AMP-activated protein kinase through excessive iron levels. In this work, we delineate the intricate relationship between iron mobilization and bioenergetic processes under conditions of oxidative stress. Furthermore, this review aims to enhance the understanding of the connections between ferroptosis and these mechanisms.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
13
|
Rithvik A, Wadhavane S, Rasool M. Decoding poly (RC)-binding protein 1 (PCBP1), the underrated guard at the foothill of ferroptosis. Pathol Res Pract 2025; 266:155771. [PMID: 39700662 DOI: 10.1016/j.prp.2024.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PCBP1 is a multifunctional adaptor protein, whose function as an iron chaperone and epigenetic regulator of several chemical messengers involved in ferroptosis has garnered much attention. Herein, this review, several attempts have been made to simplify our understanding of the complex roles of PCBP1. The review begins by elucidating the relevance of PCBP1 in key events governing ferroptosis. We expeditiously shed light on some of the important mechanisms that have critical implications for the ferroptosis landscape. For instance, senescence, EMT, hypoxia, and regulation of the cell cycle and immune checkpoints, among others, have been demonstrated to influence ferroptosis sensitivity to varying degrees. Thus, this review entails a conscious attempt to carefully examine the relevance of PCBP1 in such potential mechanisms. Furthermore, we investigated the therapeutic relevance of PCBP1 in tumor biology and autoimmunity, while underscoring the contrasting perspective of ferroptosis targeting across the disease spectrum. Finally, we debate the different strategies that can be exploited to target PCBP1 in promoting or inhibiting ferroptosis.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sakshi Wadhavane
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
14
|
Wang XQ, Fan AQ, Hong L. LncRNA MIR210HG promotes the proliferation of colon cancer cells by inhibiting ferroptosis through binding to PCBP1. Sci Rep 2025; 15:871. [PMID: 39757305 PMCID: PMC11701131 DOI: 10.1038/s41598-025-85321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025] Open
Abstract
This study aimed to investigate the role of the MIR210 host gene (MIR210HG), a long noncoding RNA (lncRNA), in the proliferation of colon cancer cells and its potential mechanism involving the ferroptosis pathway. We assessed MIR210HG expression in colon cancer cell lines and tissues, and examined the effects of its overexpression and knockdown on cell proliferation. Proteomic analysis was conducted to explore the interaction between MIR210HG and ferroptosis pathway components. The binding of MIR210HG to poly(rC) binding protein 1 (PCBP1) was predicted using catRAPID and confirmed through RNA pull-down and RNA immunoprecipitation (RIP) experiments. MIR210HG was significantly upregulated in colon cancer cells and tissues. Its overexpression promoted, while its knockdown inhibited, colon cancer cell proliferation. MIR210HG was found to be associated with ferroptosis pathway components and to bind to PCBP1, which was experimentally validated. The inhibition of ferroptosis by MIR210HG through PCBP1 binding was confirmed, highlighting its role in promoting cell proliferation. MIR210HG promotes colon cancer cell proliferation by binding to PCBP1 and inhibiting ferroptosis. These findings suggest MIR210HG as a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - A-Qiang Fan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Yang L, Zhang M, Liu M, Yu Y, Zhang Y, Yang J, Xing L, Shao Z, Wang H. Loss of FTH1 Induces Ferritinophagy-Mediated Ferroptosis in Anaemia of Myelodysplastic Syndromes. J Cell Mol Med 2025; 29:e70350. [PMID: 39804099 PMCID: PMC11726652 DOI: 10.1111/jcmm.70350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA+ nucleated erythrocytes from MDS patients was significantly lower than that in control group. FTH1 was implicated in both ferritinophagy and ferroptosis in MDS patients, processes that are linked to the development of anaemia. To further validate our observations, we employed shRNA to knock down the FTH1 gene in K562 and SKM1 cells. This knockdown confirmed that the elevated ferroptosis levels observed after FTH1 depletion were indeed due to the induction of ferritinophagy. Hemin stimulation promoted the differentiation of K562 cells, while downregulation of FTH1 gene expression had an impact on erythroid differentiation and haemoglobin synthesis. Taken together, our results suggest that FTH1-mediated ferritinophagy may represent a novel therapeutic target for MDS.
Collapse
Affiliation(s)
- Liyan Yang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Mengying Zhang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Mengyuan Liu
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Yating Yu
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Yue Zhang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Jinyue Yang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Limin Xing
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Zonghong Shao
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| | - Huaquan Wang
- Department of Hematology, General HospitalTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjinChina
| |
Collapse
|
16
|
Jumabayi W, Reyimu A, Zheng R, Paerhati P, Rahman M, Zou X, Xu A. Ferroptosis: A new way to intervene in the game between Mycobacterium tuberculosis and macrophages. Microb Pathog 2024; 197:107014. [PMID: 39396689 DOI: 10.1016/j.micpath.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the main pathogen responsible for the high mortality and morbidity of tuberculosis (TB) worldwide, primarily targets and invades macrophages. Infected macrophages activate a series of immune mechanisms to clear Mtb, however, Mtb evades host immune surveillance through subtle immune escape strategies to create a microenvironment conducive to its own proliferation, growth, and dissemination, while inducing immune cell death. The course of TB is strongly correlated with the form of cell death, including apoptosis, pyroptosis, and necrosis. Recent studies have revealed that ferroptosis, a novel type of programmed cell death characterized by iron-dependent lipid peroxidation, is closely linked to the regulatory mechanisms of TB. The central role of ferroptosis in the pathologic process of TB is increasingly becoming a focal point for exploring new therapeutic targets in this field. This paper will delve into the dynamic game between Mtb and host immune cells, especially the role of ferroptosis in the pathogenesis of TB. At the same time, this paper will analyze the regulatory pathways of ferroptosis and provide unique insights and innovative perspectives for TB therapeutic strategies based on the ferroptosis mechanism. This study not only expands the theoretical basis of TB treatment, but also points out the direction of future drug development, providing new possibilities for overcoming this global health problem.
Collapse
Affiliation(s)
- Wuerken Jumabayi
- The Third Clinical Medical College (Affiliated Cancer Hospital) of Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | - Aimin Xu
- The First People's Hospital of Kashi, Kashi, China.
| |
Collapse
|
17
|
Guo Q, Dong D, Qiao X, Huang S, Zhao Y. Hub genes, diagnostic model, and predicted drugs related to ferroptosis in chronic rhinosinusitis with nasal polyps. Medicine (Baltimore) 2024; 103:e40624. [PMID: 39612457 PMCID: PMC11608670 DOI: 10.1097/md.0000000000040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
Significant progress has been made in the pathogenesis of chronic rhinosinusitis (CRS). However, the relationship between chronic rhinosinusitis with nasal polyps (CRSwNP) and ferroptosis, as well as its underlying molecular mechanism, remains unclear. This study aimed to investigate the correlation between CRSwNP and ferroptosis and identify key gene associated with ferroptosis that could impact the diagnosis and treatment of CRS. To achieve this, gene expression profiles containing CRSwNP and CRSsNP samples were obtained from the GEO database. In addition, from the FerrDb V2 database, we acquired 2 sets of genes that are connected with ferroptosis, giving us a combined number of 260 genes associated with this particular biological process. Differential analysis and weighted gene co-expression network analysis (WGCNA) were performed on nasal tissue samples from GSE36830, leading to the identification of 1 key gene related to ferroptosis and CRS. Using stepwise regression and logistic regression analysis, we constructed a diagnostic model for CRS using ALOX15. The AUC value demonstrates that the model exhibits a strong diagnostic performance. Furthermore, the connection between immune cell infiltration in the samples and hub gene was explored, suggesting the potential significance of the hub gene in the immune response to CRS. Finally, Five drugs targeting a central gene were identified from the DrugBank database, and a few of them have exhibited efficacy in the treatment of CRS or associated ailments. In conclusion, this model holds potential for supporting the diagnosis of CRS patients, while the central gene identified may contribute to a better understanding of CRS development and drug treatment.
Collapse
Affiliation(s)
- Qian Guo
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Otolaryngology Diseases, Henan Provincial Health Commission, Changsha, China
| | - Dong Dong
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Otolaryngology Diseases, Henan Provincial Health Commission, Changsha, China
| | - Xinjie Qiao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Otolaryngology Diseases, Henan Provincial Health Commission, Changsha, China
| | - Shuman Huang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Otolaryngology Diseases, Henan Provincial Health Commission, Changsha, China
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Otolaryngology Diseases, Henan Provincial Health Commission, Changsha, China
| |
Collapse
|
18
|
Gawargi FI, Mishra PK. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024; 27:110622. [PMID: 39252956 PMCID: PMC11382059 DOI: 10.1016/j.isci.2024.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, defined by the suppression of glutathione peroxidase-4 (GPX4) and iron overload, is a distinctive form of regulated cell death. Our in-depth research identifies matrix metalloproteinase-9 (MMP9) as a critical modulator of ferroptosis through its influence on GPX4 and iron homeostasis. Employing an innovative MMP9 construct without collagenase activity, we reveal that active MMP9 interacts with GPX4 and glutathione reductase, reducing GPX4 expression and activity. Furthermore, MMP9 suppresses key transcription factors (SP1, CREB1, NRF2, FOXO3, and ATF4), alongside GPX1 and ferroptosis suppressor protein-1 (FSP1), thereby disrupting the cellular redox balance. MMP9 regulates iron metabolism by modulating iron import, storage, and export via a network of protein interactions. LC-MS/MS has identified 83 proteins that interact with MMP9 at subcellular levels, implicating them in ferroptosis regulation. Integrated pathway analysis (IPA) highlights MMP9's extensive influence on ferroptosis pathways, underscoring its potential as a therapeutic target in conditions with altered redox homeostasis and iron metabolism.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
20
|
Qiao K, Xu C, Zhang C, Wang Q, Jiang J, Chen Z, Zhou L, Jia S, Cao L. Discovery of an 8-oxoguanine regulator PCBP1 inhibitor by virtual screening and its synergistic effects with ROS-modulating agents in pancreatic cancer. Front Mol Biosci 2024; 11:1441550. [PMID: 39170746 PMCID: PMC11336162 DOI: 10.3389/fmolb.2024.1441550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Drugs that target reactive oxygen species (ROS) metabolism have progressed the treatment of pancreatic cancer treatment, yet their efficacy remains poor because of the adaptation of cancer cells to high concentration of ROS. Cells cope with ROS by recognizing 8-oxoguanine residues and processing severely oxidized RNA, which make it feasible to improve the efficacy of ROS-modulating drugs in pancreatic cancer by targeting 8-oxoguanine regulators. Methods: Poly(rC)-binding protein 1 (PCBP1) was identified as a potential oncogene in pancreatic cancer through datasets of The Cancer Genome Atlas (TCGA) project and Gene Expression Omnibus (GEO). High-throughput virtual screening was used to screen out potential inhibitors for PCBP1. Computational molecular dynamics simulations was used to verify the stable interaction between the two compounds and PCBP1 and their structure-activity relationships. In vitro experiments were performed for functional validation of silychristin. Results: In this study, we identified PCBP1 as a potential oncogene in pancreatic cancer. By applying high-throughput virtual screening, we identified Compound 102 and Compound 934 (silychristin) as potential PCBP1 inhibitors. Computational molecular dynamics simulations and virtual alanine mutagenesis verified the structure-activity correlation between PCBP1 and the two identified compounds. These two compounds interfere with the PCBP1-RNA interaction and impair the ability of PCBP1 to process RNA, leading to intracellular R loop accumulation. Compound 934 synergized with ROS agent hydrogen peroxide to strongly improve induced cell death in pancreatic cancer cells. Discussion: Our results provide valuable insights into the development of drugs that target PCBP1 and identified promising synergistic agents for ROS-modulating drugs in pancreatic cancer.
Collapse
Affiliation(s)
- Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chaolei Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | - Qianqian Wang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jiang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongrong Chen
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
22
|
Jing F, Zhu L, Bai J, Zhou X, Sun L, Zhang H, Li T. A prognostic model built on amino acid metabolism patterns in HPV-associated head and neck squamous cell carcinoma. Arch Oral Biol 2024; 163:105975. [PMID: 38626700 DOI: 10.1016/j.archoralbio.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVES To compare amino acid metabolism patterns between HPV-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) patients and identify key genes for a prognostic model. DESIGN Utilizing the Cancer Genome Atlas dataset, we analyzed amino acid metabolism genes, differentiated genes between HPV statuses, and selected key genes via LASSO regression for the prognostic model. The model's gene expression was verified through immunohistochemistry in clinical samples. Functional enrichment and CIBERSORTx analyses explored biological functions, molecular mechanisms, and immune cell correlations. The model's prognostic capability was assessed using nomograms, calibration, and decision curve analysis. RESULTS We identified 1157 key genes associated with amino acid metabolism in HNSCC and HPV status. The prognostic model, featuring genes like IQCN, SLC22A1, SYT12, and TLX3, highlighted functions in development, metabolism, and pathways related to receptors and enzymes. It significantly correlated with immune cell infiltration and outperformed traditional staging in prognosis prediction, despite immunohistochemistry results showing limited clinical identification of HPV-related HNSCC. CONCLUSIONS Distinct amino acid metabolism patterns differentiate HPV-positive from negative HNSCC patients, underscoring the prognostic model's utility in predicting outcomes and guiding therapeutic strategies.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lisha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
23
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
24
|
Lee J, Hyun DH. NAD(P)H-quinone oxidoreductase 1 induces complicated effects on mitochondrial dysfunction and ferroptosis in an expression level-dependent manner. Biosci Trends 2024; 18:153-164. [PMID: 38599881 DOI: 10.5582/bst.2024.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
25
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Xu L, Li W, Liu D, Cao J, Ge J, Liu X, Wang Y, Teng Y, Liu P, Guo X, He C, Liu M, Tian L. ANXA3-Rich Exosomes Derived from Tumor-Associated Macrophages Regulate Ferroptosis and Lymphatic Metastasis of Laryngeal Squamous Cell Carcinoma. Cancer Immunol Res 2024; 12:614-630. [PMID: 38393971 DOI: 10.1158/2326-6066.cir-23-0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor-associated macrophages (TAM) induce immunosuppression in laryngeal squamous cell carcinoma (LSCC). The interaction between LSCC cells and TAMs affects the progression of laryngeal cancer through exosomes, but the underlying molecular mechanism remains unclear. Proteomics analysis of TAMs isolated from human laryngeal tumor tissues obtained from patients with confirmed lymphatic metastasis revealed an upregulation of annexin A3 (ANXA3). In TAMs, ANXA3 promoted macrophages to polarize to an M2-like phenotype by activating the AKT-GSK3β-β-catenin pathway. In addition, ANXA3-rich exosomes derived from TAMs inhibited ferroptosis in laryngeal cancer cells through an ATF2-CHAC1 axis, and this process was associated with lymphatic metastasis. Mechanistically, ANXA3 in exosomes inhibited the ubiquitination of ATF2, whereas ATF2 acted as a transcription factor to regulate the expression of CHAC1, thus inhibiting ferroptosis in LSCC cells. These data indicate that abnormal ANXA3 expression can drive TAM reprogramming and promote an immunosuppressive microenvironment in LSCC. Meanwhile, ANXA3-rich exosomes inhibit ferroptosis of LSCC cells and promote lymphatic metastasis, thus promoting tumor progression.
Collapse
Affiliation(s)
- Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Hepatosplenic Surgery Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Ge
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujian Teng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyue Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen He
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Yang X, Liu J, Liu W, Wu H, Wei Y, Guo X, Jia H, Can C, Wang D, Hu X, Ma D. circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation. Leukemia 2024; 38:1057-1071. [PMID: 38424136 DOI: 10.1038/s41375-024-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.
Collapse
MESH Headings
- Humans
- Protein-Arginine N-Methyltransferases/metabolism
- Protein-Arginine N-Methyltransferases/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Drug Resistance, Neoplasm
- Mice
- Animals
- Lipid Peroxidation
- Oxidative Stress
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- Nuclear Proteins
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hexiao Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Can Can
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
28
|
Hu X, Bao Y, Li M, Zhang W, Chen C. The role of ferroptosis and its mechanism in ischemic stroke. Exp Neurol 2024; 372:114630. [PMID: 38056585 DOI: 10.1016/j.expneurol.2023.114630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease with a high morbidity, mortality, and disability rate. Persistent ischemia of brain tissue can cause irreversible damage to neurons, leading to neurological dysfunction and seriously affecting patients' quality of life. However, current clinical therapies are limited and have not achieved satisfactory outcome, due to the incomplete understanding of the mechanism of neuronal damage during ischemic stroke. Recent studies have found that ferroptosis is implicated in the pathophysiology of ischemic stroke. Ferroptosis is an iron-dependent regulated cell death driven by lipid peroxidation. Under normal physiological conditions, GSH/GPX4, FSP1/CoQ10, GCH/BH4 and other anti-ferroptosis pathways can function effectively to suppress the occurrence of ferroptosis. After ischemic stroke, two typical ferroptosis characteristics, lipid peroxidation and iron accumulation, are observed, accompanied by changes in the expression of ferroptosis related genes such as GPX4, ACSL4, and SLC7A11, suggesting that ferroptosis plays a key role in ischemic stroke, which provides a new idea for the clinical treatment of ischemic stroke. This article reviewed the pathological mechanisms of ferroptosis in the occurrence and development of ischemic stroke, as well as the related progress of ferroptosis targeted therapy.
Collapse
Affiliation(s)
- Xiaodan Hu
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunhua Chen
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
29
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Liu Y, Pang Z, Wang Y, Liu J, Wang G, Du J. Targeting PKD2 aggravates ferritinophagy-mediated ferroptosis via promoting autophagosome-lysosome fusion and enhances efficacy of carboplatin in lung adenocarcinoma. Chem Biol Interact 2024; 387:110794. [PMID: 37951334 DOI: 10.1016/j.cbi.2023.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Ferroptosis is an iron-dependent cell death and affects efficacies of multiple antitumor regimens, showing a great potential in cancer therapy. Protein kinase D2 (PKD2) plays a crucial role in regulating necrosis and apoptosis. However, the relationship of PKD2 and ferroptosis is still elusive. In this study, we mainly analyzed the roles of PKD2 on ferroptosis and chemotherapy in lung adenocarcinoma (LUAD). We found PKD2 was highly expressed in LUAD and silencing PKD2 could promote erastin-induced reactive oxygen species (ROS), malondialdehyde (MDA) accumulation, intracellular iron content and LUAD cells death. Mechanistically, augmenting PKD2 could prevent autophagic degradation of ferritin, which could be impaired by bafilomycin A1. We further found that PKD2 overexpression would promote LC3B-II, p62/SQSTM1 accumulation and block autophagosome-lysosome fusion in a TFEB-independent manner, which could be impaired by bafilomycin A1. Bafilomycin A1 stimulation could weaken ferroptosis promotion by PKD2 abrogation. Silencing ferritin heavy chain-1 (FTH1) could reverse the resistance to ferroptosis by PKD2 overexpression. Additionally, in vitro and vivo experiments validated PKD2 promoted proliferation, migration and invasion of LUAD cells. PKD2 knockdown or pharmacological inhibition by CRT0066101 could enhance efficacy of carboplatin in LUAD via ferroptosis and apoptosis. Collectively, our study revealed that abrogation of PKD2 could aggravate ferritinophagy-mediated ferroptosis by promoting autophagosome-lysosome fusion and enhance efficacy of carboplatin in LUAD. Targeting PKD2 to induce ferroptosis may be a promising strategy for LUAD therapy.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jichang Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
31
|
Su X, Song C, He Z, Song Q, Meng L, Dong C, Zhou J, Ke H, Xiong Y, Liu J, Liao W, Yang S. Ambra1 in exosomes secreted by HK-2 cells damaged by supersaturated oxalate induce mitophagy and autophagy-ferroptosis in normal HK-2 cells to participate in the occurrence of kidney stones. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119604. [PMID: 37806389 DOI: 10.1016/j.bbamcr.2023.119604] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Injury to the renal tubular epithelium has emerged as a leading factor underlying the formation of kidney stones. Indeed, epithelial cell damage contributes to the adherence and aggregation of crystals, thereby accelerating the formation of renal stones. Meanwhile, exosomes play an instrumental role in cellular communication, including DNA, RNA, mRNA, etc. In this study, homogenous cells were treated with exosomes derived from damaged cells in an attempt to establish "positive feedback" of cell damage, and the desired results were achieved. To begin, a serum-free medium and supersaturated concentrations of oxalate were added to the HK-2 cell line, and then exosomes were isolated from the two groups for analysis and comparison, and the autophagy-related gene Ambra1 (autophagy and beclin-1 regulator 1) was detected. Subsequently, normal HK-2 cells were treated with exosomes, and the related indexes of autophagy, ferroptosis and mitophagy were determined. Thereafter, Ambra1 was knocked down in exosome-derived HK-2 cells, resulting in the down-regulation of Ambra1 expression in exosomes produced by HK-2 cells following oxalate intervention. Thereafter, the ability of exosomes to stimulate autophagy, mitophagy and ferroptosis was re-evaluated in HK-2 cells after Ambra1 knockdown. The results corroborated that exosomes secreted by oxalate-treated HK-2 can directly elevate autophagy, ferroptosis and mitophagy levels in normal cells, and this effect was significantly mitigated following Ambra1 knockdown within exosomes. Meanwhile, exosomes-induced autophagy and ferroptosis were alleviated after knockdown of beclin-1 in recipient HK-2 cells. These results further suggest that beclin-1 plays a critical role in the process of exosome-induced autophagy-ferroptosis.
Collapse
Affiliation(s)
- Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingchao Meng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Yan J, Fang Z, Shi M, Tu C, Zhang S, Jiang C, Li Q, Shao Y. Clinical Significance of Disulfidptosis-related Genes and Functional Analysis in Gastric Cancer. J Cancer 2024; 15:1053-1066. [PMID: 38230212 PMCID: PMC10788733 DOI: 10.7150/jca.91796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Background: Worldwide, gastric cancer (GC) remains intractable due to its poor prognosis and high morbidity and mortality. Disulfidptosis is a novel kind of cell death mediated by abnormal accumulation of intracellular disulphides. The correlation between disulfidptosis and GC is still unknown. Therefore, it is necessary to elucidate the pathogenesis and mechanism of disulfidptosis and GC for clinical diagnosis and intervention. Methods: RNA-sequencing data from several public data portals and clinical samples were collected. We compared the expression levels of four key genes of disulfidptosis, including SLC7A11, SLC3A2, RPN1, and NCKAP1, in GC and selected prognostic genes to build a novel GC prognosis-related nomogram model. The biological functions and immune landscape of the identified prognostic genes were explored. Results: Overexpressed NCKAP1 and SLC7A11 were prognostic disulfidptosis-related genes in GC. We combined these genes and several clinicopathological factors to build a prognostic nomogram model for GC. Meanwhile, the ROC curves showed that NCKAP1 and SLC7A11 were promising biomarkers for GC screening. The biological and cellular functions were focused on actin activities, GTPase and immunoreaction. The tumour immune microenvironment and immune therapy targets were identified. Competing endogenous RNA network was built to explore the downstream regulatory mechanisms. Finally, the elevated NCKAP1 and SLC7A11 expression in GC was validated via qRT-PCR in a cell line and tissue line. Conclusion: In conclusion, NCKAP1 and SLC7A11 are promising prognostic and diagnostic biomarkers for GC that correlate with the activities of actin, energy metabolism of GTPase, immune infiltration and immunotherapy.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Ziyi Fang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Meiqi Shi
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Can Tu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Qier Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| |
Collapse
|
33
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L, Zhi K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother 2023; 169:115892. [PMID: 37976895 DOI: 10.1016/j.biopha.2023.115892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death, mainly manifested by the production of reactive oxygen species and accumulation of lipid peroxides. It is distinct from other forms of cell death with regard to morphology and biochemistry, particularly in disrupting mitochondrial function. Mitochondria are essential compartments where the organism generates energy and are closely associated with the fate of ferroptosis. Currently, researchers focus on the potential value of ferroptosis and mitochondria for overcoming drug sensitivity and assisting in cancer therapy. In this review, we summarize the main mechanisms of ferroptosis (the GPX4-realated pathway, FSP1-related pathway, and iron metabolism pathway) and the functions and regulating pathways of mitochondria (the TCA cycle, oxidative phosphorylation, mitochondrial regulation of iron ions, and mtDNA) in ferroptosis. We believe that exploring the role of mitochondria in ferroptosis will help us understand the potential regulatory mechanisms of ferroptosis in cancer and help us find new therapeutic targets.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoqing Zhou
- Department of the Stomatology, Jining NO.1 People' hospital, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
34
|
Wang J, Wu N, Peng M, Oyang L, Jiang X, Peng Q, Zhou Y, He Z, Liao Q. Ferritinophagy: research advance and clinical significance in cancers. Cell Death Discov 2023; 9:463. [PMID: 38110359 PMCID: PMC10728094 DOI: 10.1038/s41420-023-01753-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Ferritinophagy, a process involving selective autophagy of ferritin facilitated by nuclear receptor coactivator 4 (NCOA4), entails the recognition of ferritin by NCOA4 and subsequent delivery to the autophagosome. Within the autophagosome, ferritin undergoes degradation, leading to the release of iron in the lysosome. It is worth noting that excessive iron levels can trigger cell death. Recent evidence has elucidated the significant roles played by ferritinophagy and ferroptosis in regulation the initiation and progression of cancer. Given the crucial role of ferritinophagy in tumor biology, it may serve as a potential target for future anti-tumor therapeutic interventions. In this study, we have provided the distinctive features of ferritinophagy and its distinctions from ferroptosis. Moreover, we have briefly examined the fundamental regulatory mechanisms of ferritinophagy, encompassing the involvement of the specific receptor NCOA4, the Nrf2/HO-1 signaling and other pathways. Subsequently, we have synthesized the current understanding of the impact of ferritinophagy on cancer progression and its potential therapeutic applications, with a particular emphasis on the utilization of chemotherapy, nanomaterials, and immunotherapy to target the ferritinophagy pathway for anti-tumor purposes.
Collapse
Affiliation(s)
- Jiewen Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
| | - Qianjin Liao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
35
|
Meng X, Peng X, Ouyang W, Li H, Na R, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Zhuang G, Tang H, Peng Z. Musashi-2 Deficiency Triggers Colorectal Cancer Ferroptosis by Downregulating the MAPK Signaling Cascade to Inhibit HSPB1 Phosphorylation. Biol Proced Online 2023; 25:32. [PMID: 38041016 PMCID: PMC10691036 DOI: 10.1186/s12575-023-00222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Peng
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Wang
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
36
|
Wang Y, Bo J, Zhao Z, Han Y, Zhang Q, Liu L. Depletion of Igfbp7 alleviates zebrafish NAFLD progression through inhibiting hepatic ferroptosis. Life Sci 2023; 332:122086. [PMID: 37714372 DOI: 10.1016/j.lfs.2023.122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
AIMS The global increased expression of Insulin-like growth factor binding protein 7 (IGFBP7) has been detected in non-alcoholic fatty liver disease (NAFLD) patients, however, its roles in NAFLD and the mechanism remain largely unclear. The goal of this study is to investigate the effect and mechanism of Igfbp7 using a zebrafish NAFLD model. MAIN METHODS The igfbp7-/- null zebrafish mutant and the Igfbp7 liver overexpressed (LOE) transgenic zebrafish based on Gal4/UAS system were generated by CRISPR/Cas9 and Tol2 transgenic technique, respectively. The zebrafish NAFLD models in wildtypes, igfbp7-/- mutants and Igfbp7 LOE fishes have been established by high-fat diet feeding. The Igfbp7 dynamic expression and its effects on NAFLD progression have been detected and analyzed in both human NAFLD patients and zebrafish models. And the potential mechanism has been investigated through transcriptome analysis and subsequent detection and verification. KEY FINDINGS High Igfbp7 levels in NASH and fibrosis stages have been detected in liver tissues of both human NAFLD patients and zebrafish models. Depletion of Igfbp7 significantly alleviated liver steatosis, inflammation, and fibrosis, whereas liver specific Igfbp7 overexpression dramatically exacerbated liver fibrosis in zebrafish NAFLD model. The hepatic iron deposition, lipid peroxidation products, and ferroptosis-related index were also significantly reduced at the NASH stage in the absence of Igfbp7. Igfbp7 promotes NAFLD progression through regulating ferroptosis, and Ncoa4-mediated ferritinophagy may be the pathway of Igfbp7-regulated ferroptosis. SIGNIFICANCE Igfbp7 is confirmed as an important regulator in NAFLD progression. Depleting Igfbp7 effectively alleviates zebrafish NAFLD progression by inhibiting hepatic ferroptosis, suggesting a novel potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Yanqin Wang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jiaqi Bo
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Yuhang Han
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qianqian Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan 030001, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan 030001, China.
| |
Collapse
|
37
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
38
|
Shan Z, Tang W, Shi Z, Shan T. Ferroptosis: An Emerging Target for Bladder Cancer Therapy. Curr Issues Mol Biol 2023; 45:8201-8214. [PMID: 37886960 PMCID: PMC10605744 DOI: 10.3390/cimb45100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Bladder cancer (BC), as one of the main urological cancers in the world, possesses the abilities of multiple-drug resistance and metastasis. However, there remains a significant gap in the understanding and advancement of prognosis and therapeutic strategies for BC. Ferroptosis, a novel type of iron-dependent regulated cell death, depends on lipid peroxidation, which has been proven to have a strong correlation with the development and treatment of BC. Its mechanism mainly includes three pathways, namely, lipid peroxidation, the antioxidant system, and the iron overload pathway. In this review, we reviewed the mechanism of ferroptosis, along with the related therapeutic targets and drugs for BC, as it might become a new anticancer treatment in the future.
Collapse
Affiliation(s)
- Zhengda Shan
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China;
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Tao Shan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S, Li RF. Mechanisms and regulations of ferroptosis. Front Immunol 2023; 14:1269451. [PMID: 37868994 PMCID: PMC10587589 DOI: 10.3389/fimmu.2023.1269451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Yin LB, Li ZW, Wang JL, Wang L, Hou L, Hu SY, Chen H, Luo P, Cui XB, Zhu JL. Sulfasalazine inhibits esophageal cancer cell proliferation by mediating ferroptosis. Chem Biol Drug Des 2023; 102:730-737. [PMID: 37291716 DOI: 10.1111/cbdd.14281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
This study aimed to explore the potential mechanism by which sulfasalazine (SAS) inhibits esophageal cancer cell proliferation. A cell counting kit-8 (CCK-8) assay was used to detect the effect of SAS (0, 1, 2, and 4 mM) on the proliferation of TE-1 cells. Subsequently, TE-1 cells were divided into control group, SAS group, SAS + ferrostatin-1 (ferroptosis inhibitor) group, and SAS + Z-VAD (OH)-FMK (apoptosis inhibitor) group, and cell proliferation was measured using a CCK-8 assay. Real-time quantitative polymerase chain reaction and western blotting were used to determine the expression of solute carrier family member 7 11 (SLC7A11, also called xCT), glutathione peroxidase 4 (GPX4), and acyl-CoA synthase long-chain family member 4 (ACSL4) in TE-1 cells. Measurement of ferroptosis in TE-1 cells was achieved by flow cytometry. Compared with the control group (0 mM SAS), the proliferation of TE-1 cells was significantly inhibited by different concentrations of SAS for different time lengths, and 4 mM SAS treatment for 48 h could obtain the maximum inhibition rate (53.9%). In addition, SAS treatment caused a significant decrease in the mRNA and protein expression of xCT and GPX4, and a significant increase in ACSL4 expression in TE-1 cells treated with SAS. Flow cytometry results showed that the ferroptosis level was significantly increased after SAS treatment. However, the activation of ferroptosis by SAS was partially eliminated by treatment with ferrostatin-1 or Z-VAD (OH)-FMK. In conclusion, SAS inhibits the proliferation of esophageal carcinoma cells by activating the ferroptosis pathway.
Collapse
Affiliation(s)
- Lai-Bo Yin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhi-Wei Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jing-Ling Wang
- The Second Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang Hou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Si-Yuan Hu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Huan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Pan Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xiao-Bin Cui
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jia-Long Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
41
|
Tong G, Wang X, Chen S, Jin Y. Astragalus polysaccharide inhibits the development of urothelial carcinoma by activating AMPK signaling to induce BENC1-xCT complex formation. Aging (Albany NY) 2023; 15:9438-9452. [PMID: 37733667 PMCID: PMC10564440 DOI: 10.18632/aging.205007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023]
Abstract
In recent years, the incidence of urothelial carcinoma (UC) has been high in men. The aim of this study was to investigate whether astragalus polysaccharide (APS) could inhibit the development of UC and the specific molecular mechanism. Our data showed that APS inhibited the proliferation of UC cells in a dose-dependent manner, and APS reduced the migratory capacity of RT4 and T24 cells. Further studies revealed that the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed APS-induced cell death, intracellular Fe2+ and malondialdehyde (MDA) accumulation, and lipid peroxidation product deposition. The Western blot and immunofluorescence results showed that APS significantly inhibited the expression of glutathione peroxidase 4 (GPX4) but did not alter the protein level of solute carrier family 7 member 11 (xCT, SLC7A11). Further analysis revealed that APS reduced the activity of xCT in RT4 and T24 cells. Moreover, APS significantly increased the phosphorylation levels of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK) and BECN1 in RT4 and T24 cells, which induced the formation of the BECN1-xCT complex. However, when AMPK was silenced in RT4 and T24 cells, APS-induced ferroptosis was reversed to some extent, indicating that APS-mediated ferroptosis involves AMPK signaling. Moreover, APS has been shown to inhibit tumor growth in nude mice in vivo. In summary, our study demonstrated for the first time that APS could promote the formation of the BECN1-xCT complex in UC cells by activating AMPK/BECN1 signaling, which inhibited the activity of xCT to reduce GPX4 expression, thereby inducing ferroptosis and ultimately inhibiting UC progression.
Collapse
Affiliation(s)
- Guangquan Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaowei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Shuangfeng Chen
- Department of Surgery, Golmud Second People’s Hospital, Haixi Mongolian and Tibetan Autonomous Prefecture, Golmud, Qinghai 816099, China
| | - Yanyang Jin
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
42
|
Guo J, Yin J, Liu P, Zhang X, Wei J, Wang M, Xiao Y, Zhen Y, Lin Y, Li J. Glycyrrhizin arginine salt protects against cisplation-induced acute liver injury by repressing BECN1-mediated ferroptosis. Front Pharmacol 2023; 14:1219486. [PMID: 37745084 PMCID: PMC10511756 DOI: 10.3389/fphar.2023.1219486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The study aimed to investigate the protective effects and biological mechanisms of glycyrrhizin arginine salt (Gly-Arg) against cisplatin (Cis)-induced liver injury. Our data showed that Gly-Arg improved Cis-induced liver injury. Further study showed that BECN1 (beclin1) and LC3-II/LC3-I protein expression was significantly increased in primary hepatocytes and mouse liver tissues after Cis treatment, but Gly-Arg reduced the protein levels of BECN1 and LC3-II/LC3-I in primary hepatocytes and mouse liver tissues. Also, Gly-Arg improved indicators related to Cis-induced ferroptosis. Furthermore, Cis increased colocalization of lysosomal membrane-associated protein 1A (LAMP1) with ferritin heavy chain 1 (FTH1) in primary mouse hepatocytes, while Gly-Arg intervention attenuated this colocalization in primary hepatocytes. More improtantly, Cis enhanced the formation of the BECN1-xCT complex, thus inhibiting solute carrier family 7 member 11 (SLC7A11, xCT) and glutathione peroxidase-4 (GPX4) activity. In contrast, Gly-Arg intervention disrupted the formation of this complex. However, Gly-Arg alleviated Cis-induced liver injury in mice by preventing autophagic death and ferroptosis through the inhibition of BECN1-xCT complex formation.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiameng Yin
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingjun Wang
- College of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongzhan Zhen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis Nanomedicine: Clinical Challenges and Opportunities for Modulating Tumor Metabolic and Immunological Landscape. ACS NANO 2023; 17:15328-15353. [PMID: 37573530 DOI: 10.1021/acsnano.3c04632] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis, a type of regulated cell death driven by iron-dependent phospholipid peroxidation, has captured much attention in the field of nanomedicine since it was coined in 2012. Compared with other regulated cell death modes such as apoptosis and pyroptosis, ferroptosis has many distinct features in the molecular mechanisms and cellular morphology, representing a promising strategy for treating cancers that are resistant to conventional therapeutic modalities. Moreover, recent insights collectively reveal that ferroptosis is tightly connected to the maintenance of the tumor immune microenvironment (TIME), suggesting the potential application of ferroptosis therapies for evoking robust antitumor immunity. From a biochemical perspective, ferroptosis is intricately regulated by multiple cellular metabolic pathways, including iron metabolism, lipid metabolism, redox metabolism, etc., highlighting the importance to elucidate the relationship between tumor metabolism and ferroptosis for developing antitumor therapies. In this review, we provide a comprehensive discussion on the current understanding of ferroptosis-inducing mechanisms and thoroughly discuss the relationship between ferroptosis and various metabolic traits of tumors, which offer promising opportunities for direct tumor inhibition through a nanointegrated approach. Extending from the complex impact of ferroptosis on TIME, we also discussed those important considerations in the development of ferroptosis-based immunotherapy, highlighting the challenges and strategies to enhance the ferroptosis-enabled immunostimulatory effects while avoiding potential side effects. We envision that the insights in this study may facilitate the development and translation of ferroptosis-based nanomedicines for tumor treatment.
Collapse
Affiliation(s)
- Huocheng Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
44
|
Lee J, Roh JL. Altered iron metabolism as a target for ferroptosis induction in head and neck cancer. Cell Oncol (Dordr) 2023; 46:801-810. [PMID: 36811720 DOI: 10.1007/s13402-023-00784-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Iron is a mineral micronutrient essential for survival and vital functions in many biological processes in living organisms. Iron plays a crucial role as a cofactor of iron-sulfur clusters in energy metabolism and biosynthesis by binding with enzymes and transferring electrons to targets. Iron can also impair cellular functions by damaging organelles and nucleic acids by producing free radicals from redox cycling. Iron-catalyzed reaction products can induce active-site mutations in tumorigenesis and cancer progression. However, the boosted pro-oxidant iron form may contribute to cytotoxicity by increasing soluble radicals and highly reactive oxygen species via the Fenton reaction. An increased redox-active labile iron pool is required for tumor growth and metastasis, but the increased cytotoxic lipid radicals also lead to regulated cell death, such as ferroptosis. Therefore, this may be a major target for selectively killing cancer cells. This review intends to understand altered iron metabolism in cancers and discuss iron-related molecular regulators highly associated with iron-induced cytotoxic radical production and ferroptosis induction, focusing on head and neck cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
45
|
Yu F, Wang C, Su Y, Chen T, Zhu W, Dong X, Ke W, Cai L, Yang S, Wan P. Comprehensive analysis of ferritinophagy-related genes and immune infiltration landscape in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1177488. [PMID: 37522124 PMCID: PMC10377661 DOI: 10.3389/fendo.2023.1177488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Diabetic retinopathy (DR) is deemed a microangiopathy and neurodegenerative disorder, which is a primary reason of visual impairment in the world. Ferritinophagy is a critical regulator of ferroptosis and has a vital part in the etiopathogenesis of DR. Nevertheless, its molecular mechanism in DR remains to be expounded. Methods The GSE146615 dataset was adopted to identify ferritinophagy-related differentially expressed genes (FRDEGs). The interactions and biological functions of the genes were described by means of functional enrichment analysis (FEA). The enriched gene sets were analyzed utilizing gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). Identification of hub genes was performed utilizing protein-protein interaction (PPI) analysis. mRNA-miRNA, mRNA-transcription factors (TF), mRNA-drugs, mRNA-RNA-binding proteins (RBP) interaction networks were constructed. In addition, datasets GSE60436 and GSE94019 were utilized for validation. The diagnostic performance of FRDEGs was assessed by means of receiver-operating characteristic curve monofactor analysis, followed by immune infiltration analysis. Lastly, quantitative real-time polymerase chain reaction (qRT-PCR) was implemented to analyze the validation of genes. Results In total, the identification of eight FRDEGs was completed utilizing differential expression analysis. FEA mainly implicated the autophagy of mitochondrion, mitochondrion disassembly, autophagosome assembly, and organization pathways. GSEA and GSVA mainly implicated the interferon alpha response, ultraviolet response up, interferon gamma response, apical junction, pical surface, and allograft rejection pathways. BECN1 and HERC2 displayed high diagnostic accuracies in validation sets. Immune infiltration analysis revealed that several immune cells related to ferritinophagy may be play potential roles in DR. Finally, qRT-PCR was utilized to validate the upregulated expression of BECN1 as well as the downregulated expression of BCAT2 and ATG7 in the DR model. Conclusion BECN1, HERC2, ATG7, and BCAT2 act as potential biomarkers for DR and might regulate ferritinophagy and the immune microenvironment to influence its development and progression. This research can provide new insights into pathogenesis of DR related to ferritinophagy.
Collapse
Affiliation(s)
- Fenfen Yu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congyao Wang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihua Su
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanyi Ke
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leqi Cai
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shasha Yang
- Department of Ophthalmology, Guangzhou First People’s Hospital, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Yu D, Wang Q, Zhang Q, Cai M, Liu S, Zhang W. Molecular mechanisms of ferroptosis and its antitumor applications in natural products. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1337-1347. [PMID: 37408372 PMCID: PMC10520475 DOI: 10.3724/abbs.2023120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, results in lipid peroxidation of polyunsaturated fatty acids in the cell membrane, which is catalyzed by iron ions and accumulated to lethal levels. It is mechanistically distinct from other forms of cell death, such as apoptosis, pyroptosis, and necroptosis, so it may address the problem of cancer resistance to apoptosis and provide new therapeutic strategies for cancer treatment, which has been intensively studied over the past few years. Notably, considerable advances have been made in the antitumor research of natural products due to their multitargets and few side effects. According to research, natural products can also induce ferroptosis in cancer therapies. In this review we summarize the molecular mechanisms of ferroptosis, introduce the key regulatory genes of ferroptosis, and discuss the progress of natural product research in the field of ferroptosis to provide theoretical guidance for research on natural product-induced ferroptosis in tumors.
Collapse
Affiliation(s)
- Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
47
|
Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X. Cytoprotective Role of Heme Oxygenase-1 in Cancer Chemoresistance: Focus on Antioxidant, Antiapoptotic, and Pro-Autophagy Properties. Antioxidants (Basel) 2023; 12:1217. [PMID: 37371947 DOI: 10.3390/antiox12061217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chemoresistance remains the foremost challenge in cancer therapy. Targeting reactive oxygen species (ROS) manipulation is a promising strategy in cancer treatment since tumor cells present high levels of intracellular ROS, which makes them more vulnerable to further ROS elevation than normal cells. Nevertheless, dynamic redox evolution and adaptation of tumor cells are capable of counteracting therapy-induced oxidative stress, which leads to chemoresistance. Hence, exploring the cytoprotective mechanisms of tumor cells is urgently needed to overcome chemoresistance. Heme oxygenase-1 (HO-1), a rate-limiting enzyme of heme degradation, acts as a crucial antioxidant defense and cytoprotective molecule in response to cellular stress. Recently, emerging evidence indicated that ROS detoxification and oxidative stress tolerance owing to the antioxidant function of HO-1 contribute to chemoresistance in various cancers. Enhanced HO-1 expression or enzymatic activity was revealed to promote apoptosis resistance and activate protective autophagy, which also involved in the development of chemoresistance. Moreover, inhibition of HO-1 in multiple cancers was identified to reversing chemoresistance or improving chemosensitivity. Here, we summarize the most recent advances regarding the antioxidant, antiapoptotic, and pro-autophagy properties of HO-1 in mediating chemoresistance, highlighting HO-1 as a novel target for overcoming chemoresistance and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qi Cheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingjie Bao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
48
|
Luo Y, Zhang Y, Pang S, Min J, Wang T, Wu D, Lin C, Xiao Z, Xiang Q, Li Q, Ma L. PCBP1 protects bladder cancer cells from mitochondria injury and ferroptosis by inducing LACTB mRNA degradation. Mol Carcinog 2023. [PMID: 37157950 DOI: 10.1002/mc.23533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Although Poly C Binding Protein 1 (PCBP1) affects cellular ferroptosis and mitochondrial dysfunction, the mechanisms by which PCBP1 regulates bladder cancer (BC) cell functions are unknown. In this study, two BC cell lines (T24 and UMUC3) were treated with different doses of ferroptosis inducer erastin to analyze the effect of PCBP1. Online databases (RPISeq and CatRAPID) were used to predict the possible direct interaction between PCBP1 protein and serine β-lactamase-like protein (LACTB) mRNA, which was further validated via RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays. Mitochondria injury and ferroptosis were evaluated using CCK-8 assay, TUNEL staining, flow cytometry, corresponding kits, and JC-1 staining. In vivo experiments were conducted using tumor xenograft models. Quantitative reverse-transcription polymerase chain reaction was used to detect transcript expression levels, while protein levels were analyzed using western blot and immunohistochemistry. PCBP1 expression was significantly upregulated in BC tissues and cell lines. Also, PCBP1 knockdown increased erastin-mediated ferroptosis in T24 and UMUC3 cells, while PCBP1 overexpression decreased erastin-mediated ferroptosis in T24 and UMUC3 cells. Mechanistic results showed that LACTB mRNA is a novel PCBP1-binding transcript. LACTB upregulation promoted erastin-induced ferroptosis and mitochondrial dysfunction. Furthermore, LACTB overexpression reversed PCBP1-mediated ferroptosis protection, including decreased ROS and enhanced mitochondrial function, which were further alleviated after phosphatidylserine decarboxylase (PISD) overexpression. Moreover, PCBP1 silencing significantly enhanced tumor inhibition effect of sulfasalazine in xenograft mice transplanted with T24 and UMUC3 cells, leading to LACTB upregulation and PISD downregulation. In conclusion, PCBP1 protects BC cells against mitochondria injury and ferroptosis via LACTB/PISD axis.
Collapse
Affiliation(s)
- Yang Luo
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yunli Zhang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingxian Min
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wang
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Dali Wu
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zebin Xiao
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi Xiang
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qing Li
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lili Ma
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
50
|
Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988300 DOI: 10.1002/tox.23797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is classified as a stage-IV glioma. Unfortunately, there are currently no curative treatments for GBM. Poly(rC)-binding protein 1 (PCBP1) is a cytosolic iron chaperone with diverse functions. PCBP1 is also known to regulate autophagy, but the role of PCBP1 in ferroptosis, iron-dependent cell death pathway, remains unrevealed in GBM cells. Here, we investigated the effects of borax, a boron compound, on the ferroptosis signaling pathway mediated by PCBP1 and autophagy. The study analyzed cell viability, proliferation, and cell cycle on U87-MG and HMC3 cells to investigate the effects of borax. After determining the cytotoxic concentrations of borax, morphological analyzes and measurement of PCBP1, Beclin1, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPx4) and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were performed. Finally, expression levels of PCBP1, Beclin1, GPx4 and ACSL4, and caspase-3/7 activity were determined. We found that borax reduced U87-MG cell viability in a concentration- and time-dependent manner. Additionally, borax altered cell proliferation and remarkably reduced S phase in the U87-MG cells and exhibited selectivity by having an opposite effect on normal cells (HMC3). According to DAPI staining, borax caused nuclear deficits in U87-MG cells. The result showed that borax in U87-MG cells induced reduction of the PCBP1, GSH, and GPx4 and enhancement of Beclin1, MDA, and ACSL4. Furthermore, borax triggered apoptosis by activating caspase 3/7 in U87-MG cells. Our study indicated that the borax has potential as an anticancer treatment for GBM via regulating PCBP1/Beclin1/GPx4/ACSL4 signaling pathways.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Davran
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Cengiz Tuncer
- Department of Neurosurgery, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|