1
|
Zhang B, Fan Z, Liu X, Wu Y, Cheng L, Wang L, Liu H. Bisphenol AF induces lipid metabolism disorders, oxidative stress and upregulation of heat shock protein 70 in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 293:110164. [PMID: 40020955 DOI: 10.1016/j.cbpc.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Bisphenol AF (BPAF) is a widespread endocrine disruptor in the environment, and the use of BPAF has been strongly associated with the development of several diseases. In this study, we investigated the effects of BPAF on growth, development, oxidative stress and lipid metabolism in zebrafish. We chose the concentrations based on the measured LC50 at 96 h post-fertilization (96 hpf), and the zebrafish embryos were exposed to three different concentrations (0.125, 0.5 and 2 μmol/L). The findings indicated that BPAF exposure in zebrafish leaded to alterations in heart rate, body length and hatching rate, as well as an accumulation of red blood cells in the heart. Additionally, BPAF exposure resulted in increased levels of neutrophils, reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased activity of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), thus disturbing the balance between oxidative and antioxidative systems. BPAF promoted fatty acid catabolism and inhibited fatty acid synthesis, ultimately leading to a reduction in fatty acid content. Mechanistically, RNA-seq analysis and RT-qPCR revealed a significant upregulation of heat shock protein 70 (hsp70) after BPAF exposure. Inhibition of hsp70 with VER-155008 ameliorated BPAF-induced oxidative stress. These data provided a novel approach to investigate BPAF-induced oxidative stress and suggested that regulation of hsp70 is a crucial target for alleviating this process.
Collapse
Affiliation(s)
- Bingya Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Zhonghua Fan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China.
| |
Collapse
|
2
|
Gao X, Yang X, Deng C, Chen Y, Bian Y, Zhang X, Jin Y, Zhang J, Liang XJ. A mitochondria-targeted nanozyme with enhanced antioxidant activity to prevent acute liver injury by remodeling mitochondria respiratory chain. Biomaterials 2025; 318:123133. [PMID: 39879841 DOI: 10.1016/j.biomaterials.2025.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO2) is designed. TBP@CeO2 nanozymes exhibit multienzyme activities and display significantly enhanced ROS scavenging capacity. They can effectively mitigate acetaminophen (APAP)-induced liver injury by scavenging excessive ROS and restoring mitochondrial complex II activity to promote energy-dependent liver cell repair. The in vitro experiments reveal that TBP@CeO2 nanozymes can effectively eliminate ROS and restore mitochondrial function, thereby decreasing the cytotoxicity on BRL 3A cells exposed to APAP/H2O2. The in vivo studies show that TBP@CeO2 nanozymes can improve the complex II activity and mitochondrial function in the liver, decreasing ROS and ensuring sufficient adenosine triphosphate (ATP) production, which helps protect the liver tissue against oxidative damage. This research introduces an innovative design strategy for nanozymes in the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Chunlin Deng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yaxiao Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yueying Bian
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinyu Zhang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| |
Collapse
|
3
|
Tao X, Zhang W, Chen L, Lu S, Li Z, Gao Y, Fan Q, Li J, Wu J, Zhao C. The DHCR7 is the key target of lipotoxic liver injury caused by matrine through abnormal activation of the cholesterol synthesis pathway. Toxicon 2025; 260:108366. [PMID: 40250732 DOI: 10.1016/j.toxicon.2025.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Matrine, the main active ingredient in Sophora flavescens and Sophorae tonkinensis radix et rhizome, is a highly effective insecticide. However, its hepatotoxicity to some extent affects its application value. This study aimed to explore the mechanism underlying matrine-induced liver injury. METHODS The zebrafish (Danio rerio) and L02 cell model were utilized to investigate the toxic dose of matrine and its effects on liver tissue damage, liver cell morphology and activity, and expression levels of ALT and AST. Zebrafish and L02 cell samples were then collected for transcriptomic testing to further explore the possible mechanism by which matrine induced liver injury. Finally, integrated bioinformatics methods and experiments were used to elucidate the possible mechanisms behind matrine-induced liver injury. RESULTS The result presented solid in vivo evidence of matrine-induced hepatotoxicity, supported by abnormal changes of liver morphological, disturbed liver cell structure, obvious apoptosis, as well as elevated levels of ALT and AST in zebrafish. In addition, in vitro L02 cell experiments also showed that matrine can produce significant liver cell damage effects. The integrated bioinformatics analysis results revealed that differentially expressed genes (DEGs) were substantially enriched in multiple pathways related to lipid regulation. Among which, the steroid biosynthesis was the most key signaling pathway, evidenced by the enhanced expression of eight genes, including DHCR7, SQLE, CYP51, CYP24A1, SC5D, LSS, MSMO1 and SOAT1. Furthermore, AY9944, the targeted inhibitor of DHCR7, could offset the toxic effect, as reflected by diminished liver phenotype damage, steatosis, and cholesterol accumulation caused by matrine. CONCLUSIONS Matrine can upregulate the expression of key genes in steroid biosynthesis pathway, resulting in cholesterol accumulation and then inducing hepatotoxicity. Among them, targeted inhibition of DHCR7 gene expression can alleviate matrine-induced liver injury.
Collapse
Affiliation(s)
- Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenting Zhang
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Institute for Drug Control, Beijing, China; Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China.
| | - Linzhen Chen
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhiqi Li
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yifei Gao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qiqi Fan
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Xue W, Qu Y, Ma S, Li Z, Lyu S, Diao X, Sun K, Wang Z, Sun R. Design, synthesis, and in-vitro/in-vivo pharmacodynamic studies of novel aza-fused heterocyclic compounds against herpes simplex virus type 1. Bioorg Chem 2025; 162:108589. [PMID: 40403497 DOI: 10.1016/j.bioorg.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent pathogen that can lead to severe diseases, including herpes labialis, keratitis, and encephalitis. The development of novel antiviral therapies is significant due to the limited number of available treatments and the emergence of drug-resistant strains. In this study, a series of aza-fused heterocyclic derivatives were synthesized and evaluated for antiviral efficacy. Compound 5i demonstrated notable antiviral activity in vitro with an EC50 (Effective Concentration 50 %) of 1.95 ± 0.07 μM. This effect was achieved by inhibiting viral replication and targeting viral ICP4 and gD proteins. In addition, the expression of STING and NF-κB signaling pathways was down-regulated, cytokine storm was reduced, and the multi-targeted activity of compound 5i inhibited apoptosis. The high efficacy of compound 5i was demonstrated in a mouse herpes encephalitis model. Infected mice's survival significantly improved, and viral load in brain tissue was substantially reduced in the presence of compound 5i. Furthermore, compound 5i demonstrated favorable safety in preliminary in vivo evaluations, with no adverse effects on major organs observed. In conclusion, the aza-fused heterocyclic derivative 5i has substantial potential as a therapeutic agent for HSV-1 infection, providing a valuable foundation for further drug development and clinical translation.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Qu
- School of Pharmaceutical Sciences, Zhengzhou University, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Shouye Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Ziyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Su Lyu
- School of Nursing, Henan University of Chinese Medicine, Zhengzhou 450001, China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kai Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan, P.R. China; College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Wang Z, Zhang T, Tang M. Navigating nanotoxicity: Unraveling nanomaterial-induced effects via multi-omics integration. NANOIMPACT 2025; 38:100565. [PMID: 40383513 DOI: 10.1016/j.impact.2025.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/14/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The growing use of nanomaterials in industry and medicine raises significant concerns about their safety, particularly regarding their interactions with biological systems. Traditional toxicological methods, with limited throughput and mechanistic understanding, are increasingly being complemented by omics technologies. Genomics, transcriptomics, proteomics, and metabolomics provide comprehensive insights into the molecular mechanisms of nanomaterial toxicity and enable the identification of potential biomarkers. In addition, single-cell and spatial omics approaches are emerging as powerful tools to assess toxicity at the cellular and tissue levels, revealing heterogeneous responses and spatial distribution of nanomaterials. Despite their advantages, omics technologies face challenges in nanotoxicology, including large, complex data sets, integration difficulties, and a lack of standardized protocols. To address these challenges, we propose the development of new bioinformatics tools, multi-omics integration platforms, and standardized analysis processes to enhance research efficiency and accuracy. These efforts can provide a practical roadmap for integrating the application of omics technologies, including single-cell and spatial approaches, in the study of nanomaterial toxicity studies.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
6
|
Tian C, Deng S, Zhang Z, Zheng K, Wei L. Bifidobacterium bifidum 1007478 derived indole-3-lactic acid alleviates NASH via an aromatic hydrocarbon receptor-dependent pathway in zebrafish. Life Sci 2025; 369:123557. [PMID: 40074143 DOI: 10.1016/j.lfs.2025.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
AIMS This study investigates the potential of Bifidobacterium bifidum 1007478 (BB478) and its metabolite indole-3-lactic acid (ILA) in alleviating non-alcoholic steatohepatitis (NASH) induced by a high-fat diet (HFD) and fructose exposure. MATERIALS AND METHODS A zebrafish model of NASH was established by exposure to HFD and fructose. BB478 was administered, and the effects on liver lipid accumulation, oxidative stress, and inflammation were assessed. ILA production by BB478 was confirmed, and its impact on hepatic lipogenesis and inflammatory pathways was evaluated. The involvement of the aromatic hydrocarbon receptor (AhR) was also examined using an AhR inhibitor. KEY FINDINGS BB478 supplementation inhibited lipid accumulation in the liver, reduced triglycerides (TG) and total cholesterol (TC), and mitigated oxidative stress, as evidenced by lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). ILA, produced by BB478, could alleviate the hepatic damage and fat deposition in liver. Mechanistically, it suppressed hepatic lipogenesis by downregulating lipogenesis-related genes, including sterol response element binding protein 1 (SREBP1) and fatty acid synthase (FASN). ILA also inhibited the expression of pro-inflammatory cytokines to suppress inflammation. The therapeutic effects of ILA were reversed by the AhR inhibitor, indicating that ILA's actions are AhR-dependent. SIGNIFICANCE These findings reveal the potential of ILA, produced by Bifidobacterium bifidum, as a therapeutic agent for NASH. The mechanistic insights into AhR-mediated effects provide a foundation for further exploration of ILA as a novel approach for managing liver diseases.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China
| | - Zhao Zhang
- Research and Development Centre, GuangDong Longseek Testing Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Kangdi Zheng
- Research and Development Centre, GuangDong Longseek Testing Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Xu S, Li M, Zheng Y, Xu M, Zhou J, Wang S, Li S, Wang M. Nanoplastics disrupt hepatic lipid metabolism via the inhibition of PPARγ: a study based on digestive system exposure. Toxicology 2025; 516:154194. [PMID: 40378908 DOI: 10.1016/j.tox.2025.154194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Nanoplastics (NPs) are emerging environmental contaminants capable of crossing biological barriers and accumulating in organs such as the liver, raising growing concerns about their potential contribution to nonalcoholic fatty liver disease (NAFLD). Notably, bottled water has been recognised as a major daily source of NP exposure. However, the associations between NP exposure and NAFLD onset, as well as the mechanistic basis, remain unclear. To investigate this, we analysed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016 cycles, using daily bottled water intake to estimate NP exposure and the hepatic steatosis index (HSI) as an indicator of liver fat accumulation. Animal and cellular experiments were conducted to evaluate NP-induced hepatic alterations. Additionally, transcriptomic analysis of liver tissues was performed, and integration with DisGeNET and the Comparative Toxicogenomics Database (CTD) enabled bioinformatic analyses and identification of key regulatory pathways. Epidemiological results revealed a significant positive correlation between bottled water consumption and HSI. Experimental findings demonstrated that NP exposure induced liver vacuolisation, oxidative damage, metabolic disruption, and inflammation in both in vivo and in vitro models. Transcriptomic and database integration revealed that NP exposure suppressed the PPAR signalling pathway, particularly by downregulating PPARγ expression, with excessive ROS generation likely contributing to this inhibition. These results were summarised in an adverse outcome pathway (AOP) framework, illustrating how NP exposure may impair PPARγ signalling and promote hepatic lipid accumulation. In conclusion, this study provides evidence that environmental NP exposure may be a contributing factor to NAFLD development and highlights the potential public health impact of the intake of NPs from bottled water.
Collapse
Affiliation(s)
- Shenya Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yudan Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
8
|
Wang L, Yang Y, Sun H, Fei M. Magnoflorine alleviates nonalcoholic fatty liver disease by modulating lipid metabolism, mitophagy and inflammation. Prostaglandins Other Lipid Mediat 2025; 178:106997. [PMID: 40378915 DOI: 10.1016/j.prostaglandins.2025.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver condition associated with metabolic syndrome, often aggravated by inflammation and mitochondrial dysfunction. This study aims to explore the therapeutic potential of magnoflorine, an alkaloid with known anti-inflammatory properties, in ameliorating NAFLD by modulating mitochondrial autophagy and inhibiting the NLRP3 inflammasome. METHODS Male C57BL/6 J mice were fed a high-fat diet (HFD) for 16 weeks to induce NAFLD. Magnoflorine (5 and 10 mg/kg) was administered by gavage daily for 16 weeks. Liver and serum samples were analyzed for lipid profiles, inflammation markers, and autophagy-related proteins, and liver histology was examined to assess changes. RESULTS Magnoflorine treatment improved dyslipidemia in NAFLD mice, shown by decreased serum triglycerides, total cholesterol, and LDL-C, and increased HDL-C. Histological analysis showed reduced hepatic steatosis and inflammation, with less lipid droplet accumulation and hepatocyte ballooning. Western blot results indicated upregulation of Parkin and PINK1, and downregulation of NLRP3, ASC, and caspase-1, with lower serum IL-1β levels, reflecting reduced inflammation. CONCLUSIONS Magnoflorine offers a promising approach for mitigating NAFLD progression through modulating mitochondrial autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Liming Wang
- Department of Gastroenterology, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui 230000, China.
| | - Yan Yang
- Department of Gastroenterology, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui 230000, China
| | - Haibing Sun
- Department of Gastroenterology, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui 230000, China
| | - Mengxue Fei
- Department of Gastroenterology, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui 230000, China
| |
Collapse
|
9
|
Xiang G, Gong L, Wang K, Sun X, Liu Z, Cai Q. Suppression of NOX2-Derived Reactive Oxygen Species (ROS) Reduces Epithelial-to-MesEnchymal Transition Through Blocking SiO 2-Regulated JNK Activation. TOXICS 2025; 13:365. [PMID: 40423444 DOI: 10.3390/toxics13050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025]
Abstract
(1) Background: Silicosis, a chronic lung fibrosis disorder triggered by the accumulation of silica dust in the deep lung regions, is characterized by intricate molecular mechanisms. Among these, the NOX2 (NADPH oxidase 2) and JNK (C-Jun N-terminal kinase) signaling pathways play pivotal roles in the progression of pulmonary fibrosis. Despite their significance, the precise mechanisms underlying the crosstalk between these pathways remain largely unexplored. (2) Methods: To unravel these interactions, we examined the interplay between JNK and NOX2 in human epithelial cells subjected to silica dust exposure through in vivo assays, followed by validation using single-cell sequencing. Our findings consistently revealed elevated expression levels of key components from both the JNK signaling pathway and NOX2 in the lungs of silicosis-induced mice and silica-treated human epithelial cells. (3) Results: Notably, the activation of these pathways was linked to increased ROS (reactive oxygen species) production, elevated levels of profibrogenic factors, and diminished cell proliferation in silica-exposed human lung epithelial cells. Further mechanistic analyses demonstrated that JNK signaling amplifies NOX2 expression and ROS production induced by silica exposure, while treatment with the JNK inhibitor SP600125 mitigates these effects. Conversely, overexpression of NOX2 enhanced silica-induced JNK activation and the expression of epithelial-mesenchymal transition (EMT)-related factors, whereas NOX2 knockdown exerted the opposite effect. These results suggest a positive feedback loop between JNK and NOX2 signaling, which may drive EMT in lung epithelial cells following silica exposure. (4) Conclusions: This reciprocal interaction appears to play a critical role in lung epithelial cell damage and the pathogenesis of silicosis, shedding light on the molecular mechanisms underlying profibrogenic disease and offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Guanhan Xiang
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| | - Liang Gong
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| | - Kai Wang
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| | - Xiaobo Sun
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| | - Qian Cai
- School of Public Health, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750101, China
| |
Collapse
|
10
|
Ding X, Liang S, Zhang T, Zhang M, Fang H, Tian J, Liu J, Peng Y, Zheng L, Wang B, Feng W. Surface Modification of Gold Nanoparticle Impacts Distinct Lipid Metabolism. Molecules 2025; 30:1727. [PMID: 40333646 PMCID: PMC12029855 DOI: 10.3390/molecules30081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Gold nanomaterials have garnered significant attention in biomedicine owing to their tunable size and morphology, facile surface modification capabilities, and distinctive optical properties. The surface functionalization of these nanoparticles can enhance their safety and efficacy in nanomedical applications. In this study, we examined the biological effects of gold nanoparticles (GNPs) with three distinct surface modifications (polyethylene glycol, chitosan, and polyethylenimine) in murine models, elucidating their mechanisms of action on hepatic tissue at both the transcriptomic and metabolomic levels. Our findings revealed that PEG-modified GNPs did not significantly alter any major metabolic pathway. In contrast, CS-GNPs markedly affected the metabolic pathways of retinol, arachidonic acid, linoleic acid, and glycerophospholipids (FDR < 0.05). Similarly, PEI-GNPs significantly influenced the metabolic pathways of retinol, arachidonic acid, linoleic acid, and sphingolipids (FDR < 0.05). Through a comprehensive analysis of the regulatory information within these pathways, we identified phosphatidylcholine compounds as potential biomarkers that may underlie the differential biological effects of the three functionalized GNPs. These findings provide valuable experimental data for evaluating the biological safety of functionalized GNPs.
Collapse
Affiliation(s)
- Xinyu Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Yuyuan Peng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (X.D.); (S.L.); (T.Z.); (M.Z.); (H.F.); (J.T.); (J.L.); (Y.P.); (L.Z.)
| |
Collapse
|
11
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Xu H, Zhu Y, Zhu L, Wang D, Lv S, Li X, Guo C, Li Y. Warning on the inhalation of silica nanoparticles: Experimental evidence for its easy passage through the air-blood barrier, resulting in systemic distribution and pathological injuries. Chem Biol Interact 2025; 409:111423. [PMID: 39947274 DOI: 10.1016/j.cbi.2025.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/25/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
As a result of accumulating data, silica nanoparticles (SiNPs) are known to be harmful when inhaled. Nevertheless, the systemic research on its biological processes remains incompletely understood. In our work, we investigated the systemic effects in rats in response to the respiratory exposure of SiNPs, and in-depth clarified the particle distribution in vivo. Moreover, a model of the air-blood barrier was developed to assess the interplay of SiNPs with the epithelium/endothelium interface in vitro. The model was established via a transwell co-culturing of the alveolar epithelium (MLE-12) and the pulmonary microvascular epithelium (MPVECs). Consequently, our data revealed a systemic particle distribution and ensuing multi-tissue pathological injuries in SiNPs-instilled rats, including the heart, spleen, and kidneys. Simultaneously, the translocation of SiNPs passing through the air-blood barrier was verified in vitro. Also, a dose-dependent interruption to the air-blood barrier integrity by SiNPs was noticed in vitro, accompanied by the damage of tight junctions. SiNPs translocation across the air-blood barrier can inevitably facilitate the extra-pulmonary distribution of SiNPs and ensuing systemic effects. Overall, this study provides evidence on the systemic toxicity potential of SiNPs, while highlighting the significance of comprehending SiNPs toxicity and ultimately controlling the health hazards.
Collapse
Affiliation(s)
- Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Donglei Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Xu J, Liu Y. Nanomaterials for liver cancer targeting: research progress and future prospects. Front Immunol 2025; 16:1496498. [PMID: 40092984 PMCID: PMC11906451 DOI: 10.3389/fimmu.2025.1496498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The incidence and mortality rates of liver cancer in China remain elevated. Although early-stage liver cancer is amenable to surgical resection, a significant proportion of patients are diagnosed at advanced stages. Currently, in addition to surgical resection for hepatocellular carcinoma, the primary treatment modalities predominantly include chemotherapy. The widespread use of chemotherapy, which non-selectively targets both malignant and healthy cells, often results in substantial immunosuppression. Simultaneously, the accumulation of chemotherapeutic agents can readily induce drug resistance upon reaching the physiological threshold, thereby diminishing the efficacy of these treatments. Besides chemotherapy, there exist targeted therapy, immunotherapy and other therapeutic approaches. Nevertheless, the development of drug resistance remains an inevitable challenge. To address these challenges, we turn to nanomedicine, an emerging and widely utilized discipline that significantly influences medical imaging, antimicrobial strategies, drug delivery systems, and other related areas. Stable and safe nanomaterials serve as effective carriers for delivering anticancer drugs. They enhance the precision of drug targeting, improve bioavailability, and minimize damage to healthy cells. This review focuses on common nanomaterial carriers used in hepatocellular carcinoma (HCC) treatment over the past five years. The following is a summary of the three drugs: Sorafenib, Gefitinib, and lenvatinib. Each drug employs distinct nanomaterial delivery systems, which result in varying levels of bioavailability, drug release rates, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of
Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
14
|
Wu Y, Zhou J. Dapansutrile Regulates Mitochondrial Oxidative Stress and Reduces Hepatic Lipid Accumulation in Diabetic Mice. Curr Issues Mol Biol 2025; 47:148. [PMID: 40136402 PMCID: PMC11941701 DOI: 10.3390/cimb47030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Hepatic lipid accumulation is the initial factor in metabolic-associated fatty liver disease (MAFLD) in type 2 diabetics, leading to accelerated liver damage. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a critical role in this process. Dapansutrile (DAPA) is a novel NLRP3 inflammasome inhibitor; however, its effect on ectopic lipid accumulation in the liver remains unclear. This study aimed to investigate the therapeutic effect of DAPA on hepatic lipid accumulation in a diabetic mouse model and its potential mechanisms. (2) Methods: The effects of DAPA on hepatic ectopic lipid deposition and liver function under metabolic stress were evaluated in vivo using db/db and high-fat diet (HFD) + streptozotocin (STZ) mouse models. Additionally, the role and mechanism of DAPA in cellular lipid deposition, mitochondrial oxidative stress, and inflammation were assessed in HepG2 cells treated with free fatty acids (FFA) and DAPA. (3) Results: Our findings indicated that DAPA treatment improved glucose and lipid metabolism in diabetic mice, particularly addressing liver heterotopic lipid deposition and insulin resistance. DAPA treatment also ameliorated lipid accumulation and mitochondrial-related functions and inflammation in HepG2 cells through the NLRP3-Caspase-1 signaling axis. (4) Conclusions: Targeting NLRP3 with DAPA may represent a novel therapeutic approach for diabetes-related fatty liver diseases.
Collapse
Affiliation(s)
| | - Jiaqiang Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
15
|
Tan Z, An Z, Lv J, Xiao F, Li L, Li J, Duan W, Guo M, Zeng X, Liu Y, Li A, Guo H. Tissue accumulation and hepatotoxicity of 8:2 chlorinated polyfluoroalkyl ether sulfonate: A multi-omics analysis deciphering hepatic amino acid metabolic dysregulation in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136668. [PMID: 39612878 DOI: 10.1016/j.jhazmat.2024.136668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
8:2 Chlorinated polyfluoroalkyl ether sulfonate (8:2 Cl-PFESA) is a substitute for perfluorooctane sulfonate and an emerging environmental pollutant, yet its bioaccumulation and health risks are poorly understood. We established a subchronic exposure model in mice (0.04, 0.2, and 1 mg/kg/d) to evaluate its adverse effects. Our findings show extensive distribution of 8:2 Cl-PFESA in various tissues (plasma, liver, kidney, brain, heart, lung, testis, ovary, spleen, thymus, thyroid, uterus, large intestine, small intestine, muscle, and fat), with the highest accumulation in the liver, identified as the primary storage organ. Liver histopathology revealed elevated alanine aminotransferase levels, reduced triglycerides, and ballooning degeneration. Proteomics analysis indicated significant involvement of amino acid metabolism in 8:2 Cl-PFESA-induced hepatotoxicity. Metabolomics analysis further highlighted pronounced alterations in amino acid interconversion. Multi-omics integration revealed disruptions in amino acid metabolism, particularly with alanine, histidine, and tryptophan, identifying key proteins EHHADH, HAL, MAO-A, ALDH3A2, and TDO2 as crucial connectors in these metabolic processes, validated by Western blot experiments. This study provides a comprehensive analysis of 8:2 Cl-PFESA accumulation and distribution in biological systems, demonstrating that hepatotoxicity is primarily mediated through amino acid metabolism disruption, offering insights for pollution mitigation strategies and future toxicological research.
Collapse
Affiliation(s)
- Zhenzhen Tan
- Postdoctoral Station of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China.
| |
Collapse
|
16
|
Wang X, Zhou Y, Xie D, Yin F, Liang Y, Luo X. Melatonin intervention to prevent nanomaterial exposure-induced damages: A systematic review and meta-analysis of in vitro and in vivo studies. J Appl Toxicol 2025; 45:179-199. [PMID: 39090837 DOI: 10.1002/jat.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Given its antioxidant, anti-inflammatory, and antiapoptotic properties, melatonin (MEL), a health-caring food to improve sleep disorders, is hypothesized to protect against nanomaterial exposure-induced toxicity. However, the conclusion derived from different studies seemed inconsistent. A meta-analysis of all available preclinical studies was performed to examine the effects of MEL on nanomaterial-induced damages. Eighteen relevant studies were retrieved through searching five electronic databases up to December 2023. The meta-analysis showed that relative to control, MEL treatment significantly increased cell viability (standardized mean difference [SMD = 1.27]) and alleviated liver function (lowered AST [SMD = -3.89] and ALT [SMD = -5.89]), bone formation (enhanced BV/TV [SMD = 4.13] and lessened eroded bone surface [SMD = -5.40]), and brain nerve (inhibition of AChE activity [SMD = -3.60]) damages in animals. The protective mechanisms of MEL against damages caused by nanomaterial exposure were associated with its antiapoptotic (decreased Bax/Bcl-2 ratio [SMD = -4.50] and caspase-3 levels [dose <100 μM: SMD = -3.66]), antioxidant (decreased MDA [in vitro: SMD = -2.84; in vivo: SMD = -4.27]), and anti-inflammatory (downregulated TNF-α [in vitro: SMD = -5.41; in vivo: SMD = -3.21] and IL-6 [in vitro: SMD = -5.90; in vivo: SMD = -2.81]) capabilities. In conclusion, our study suggests that MEL should be supplemented to prevent damages in populations exposed to nanomaterials.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Xu C, Wang S, Meng D, Wang M, Yan R, Dai Y. Neuregulin1 ameliorates metabolic dysfunction-associated fatty liver disease via the ERK/SIRT1 signaling pathways. BMC Gastroenterol 2025; 25:47. [PMID: 39885382 PMCID: PMC11783944 DOI: 10.1186/s12876-025-03632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Neuregulin (NRG) family is involved in energy metabolism, among which NRG1 is a neuregulin proved to play a protective role in MAFLD cells. But the presice echanism has not been fully illustrated. This study aimed to investigate the role of NRG1 via the ERK/SIRT1 signaling in the pathogenesis of MAFLD. METHODS C57BL/6 mice were fed with high-fat diet for 8 weeks, and then injected with NRG1 (0.3 mg/kg/d) and PD98059 (0.3 mg/kg/d) via tail vein for 5 weeks. HepG2 cells induced by oleic acid and palmitic acid were treated with 20ng/mL NRG1 and 10µmol/L PD98059. The changes of histopathological, biochemical indexes, inflammatory factors, lipid metabolism, apoptosis and autophagy parameters were measured. RESULTS The expressions of NRG1 in MAFLD cell and animal models were significantly lower than that in the control group. After the intervention of ERK inhibitor PD98059, the expression of NRG1 decreased significantly in vivo, but no significant change was observed in vitro. Moreover, NRG1 ameliorated hepatic steatosis, enhanced cell viability, reduced cell apoptosis, and attenuated liver injury both in vitro and in vivo. After NRG1 intervention, the expressions of ERBB2, ERBB3, p-ERK1/2, SIRT1 and p-FOXO1 as well as the LC3II/I ratio in MAFLD cells and liver tissues of MAFLD mice were significantly increased, while the expression of SREBP1c was decreased. The aforementioned therapeutic effect of NRG1 was lost after the intervention of PD98059. CONCLUSION NRG1 might play a protective role in the pathogenesis of MAFLD by activating the downstream ERK1/2 through ErbB2-ErbB3, which promotes the expression of SIRT1 and autophagy markers. This study might indicate a new therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Chengan Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shouhao Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Mingshan Wang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Rong Yan
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yining Dai
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Shi B, Chen J, Guo H, Shi X, Tai Q, Chen G, Yao H, Mi X, Zhong R, Lu Y, Zhao Y, Sun L, Zhou D, Yao Y, He S. ACOX1 activates autophagy via the ROS/mTOR pathway to suppress proliferation and migration of colorectal cancer. Sci Rep 2025; 15:2992. [PMID: 39849090 PMCID: PMC11757735 DOI: 10.1038/s41598-025-87728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/21/2025] [Indexed: 01/25/2025] Open
Abstract
Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis. Additionally, in vitro as well as in vivo, ACOX1 overexpression dramatically reduced the proliferation and metastasis of CRC cells. Mass spectrometry revealed the crucial role of ACOX1 in fatty acid β-oxidation, as its overexpression led to a substantial increase in reactive oxygen species (ROS) derived from fatty acid β-oxidation. Further experiments demonstrated that ACOX1 overexpression, through modulation of fatty acid metabolism, increased ROS levels, reduced the phosphorylation activation of the key autophagy regulator mTOR, enhanced autophagy, and ultimately suppressed the growth and metastasis of CRC. In conclusions, ACOX1 expression is decreased in CRC. ACOX1 may regulate autophagy by reprogramming lipid metabolism to modulate the ROS/mTOR signaling pathway, consequently inhibiting the proliferation and migration of CRC.
Collapse
Affiliation(s)
- Bo Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Junjie Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Haoran Guo
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Xinyu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Qingliang Tai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Guoliang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiuwei Mi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Runze Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yiyuan Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
19
|
Zhang J, Li C, Duan M, Qu Z, Wang Y, Dong Y, Wu Y, Fang S, Gu S. The Improvement Effects of Weizmannia coagulans BC99 on Liver Function and Gut Microbiota of Long-Term Alcohol Drinkers: A Randomized Double-Blind Clinical Trial. Nutrients 2025; 17:320. [PMID: 39861457 PMCID: PMC11769147 DOI: 10.3390/nu17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation. METHODS This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group. Two groups were given BC99 (3 g/day, 1 × 1010 CFU) or placebo (3 g/day) for 60 days, respectively. Before and after the intervention, blood routine indicators, liver function, renal function, inflammatory factors and intestinal flora were evaluated. RESULTS The results showed that intervention with Weizmannia coagulans BC99 reduced the levels of alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, serum total bilirubin, blood urea nitrogen, uric acid and 'blood urea nitrogen/creatinine'. Weizmannia coagulans BC99 also reduced the levels of pro-inflammatory factors TNF-α and IL-6 and increased the levels of anti-inflammatory factor IL-10. The results of intestinal flora analysis showed that Weizmannia coagulans BC99 regulated the imbalance of intestinal flora, increased the beneficial bacteria abundance (Prevotella, Faecalibacterium and Roseburia) and reduced the conditionally pathogenic bacteria abundance (Escherichia-Shigella and Klebsiella). Both LEfSe analysis and random forest analysis indicated that the increase in the abundance of Muribaculaceae induced by BC99 was a key factor in alleviating alcohol-induced liver damage. CONCLUSIONS These findings demonstrate that Weizmannia coagulans BC99 has the potential to alleviate alcoholic liver injury and provide an effective strategy for liver protection in long-term drinkers.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
20
|
Li K, Yang X, Xu T, Shi X, Xu S. Quercetin Protects against Silicon dioxide Particles-induced spleen ZBP1-Mediated PANoptosis by regulating the Nrf2/Drp1/mtDNA axis. Int Immunopharmacol 2024; 143:113546. [PMID: 39488923 DOI: 10.1016/j.intimp.2024.113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Silicon dioxide particles (SiO2) are a widely used novel material, and SiO2 that enter the body can accumulate in the spleen and cause spleen injury. Quercetin (Que) has a strong antioxidant activity and can also regulate and improve immune function, but whether Que can improve SiO2-induced spleen injury and its underlying mechanism remain to be explored. Herein, we established a C57BL/6 mice model with SiO2 exposure (10 mg/kg) and treated with Que (25 mg/kg). We also cultured CTLL-2 cells for in vitro experiments. Studies in vivo and in vitro showed that SiO2 exposure caused oxidative stress and mitochondrial dynamics disorder, which led to decrease of mitochondrial membrane potential (ΔΨm) and mitochondrial DNA (mtDNA) leakage. mtDNA was recognized by Z-DNA binding protein 1 (ZBP1) in the cytoplasm and increased the expression of ZBP1. This process further promoted the assembly of the ZBP1-mediated PANoptosome, which subsequently induced PANoptosis. Interestingly, supplementation with Que significantly reversed these changes. Specifically, Que mitigated spleen ZBP-1 mediated PANoptosis through preventing mtDNA leakage via regulating nuclear factor erythroid 2-related factor 2/reactive oxygen species/dynamin-related protein 1 (Nrf2/ROS/Drp1) axis. This study enriches the understanding of the toxicological mechanisms of SiO2 and provides evidence for the protective effects of Que against SiO2-induced splenic toxicity.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Zheng M, Chen Z, Xie J, Yang Q, Mo M, Liu J, Chen L. The Genetic and Epigenetic Toxicity of Silica Nanoparticles: An Updated Review. Int J Nanomedicine 2024; 19:13901-13923. [PMID: 39735322 PMCID: PMC11681786 DOI: 10.2147/ijn.s486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility. This review summarizes SiNPs-induced genetic and epigenetic toxicity, especially to germ cells, and explore their potential mechanisms. SiNPs cause genetic material damage mainly by inducing oxidative stress. Furtherly, the molecular mechanisms of epigenetic toxicity are discussed in detail for the first time. SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling by regulating epigenetic-related enzymes and transcription factors. This review is beneficial for investigating potential solutions to avoid toxicity and provide guidance for better application of SiNPs in the biomedical field.
Collapse
Affiliation(s)
- Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Li J, Peng H, Ru S, Wang B, Su E, Wu D, Wang W. Lower-dose vs high-dose oral bisphenol S action of lipid metabolism in liver of male SD rat via mediating different SREBP isoforms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125186. [PMID: 39454810 DOI: 10.1016/j.envpol.2024.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bisphenol S (BPS) is commonly used for the industrial production of thermal paper, polycarbonate plastics, epoxy resins and other materials. Studies have reported that BPS can lead to triglyceride (TAG) or/and cholesterol (CHO) accumulation in the liver in zebrafish and mice, but the reasons for the different types of lipids that accumulate in the liver following BPS exposure are unclear. Here, the influences of lower-dose (10 mg/kg body weight/day) and high-dose (50 mg/kg body weight/day) BPS exposure to male SD rats on the accumulation of different lipids in the liver were explored. The results indicated that BPS treatment increased the levels of acetyl-CoA and glycogen in the liver. A lower dose of BPS upregulated the mRNA and protein expression levels of sterol regulatory element-binding protein 1 (srebp1), which is involved in the de novo synthesis of TAG in the liver, thus promoting the synthesis of glycerides (diacetylglyceride and TAG). However, a higher dose of BPS induced CHO accumulation, but inhibited the mRNA expression of genes (i.e., srebp2, hmgcr and hmgcs) involved in the de novo synthesis of CHO in the liver. Excessive accumulation of glycerides and CHO led to destruction of the physiological structure of rat liver, causing disorders in liver function. Our data provide new insight into the different mechanisms by which glyceride and CHO accumulate in the liver after BPS exposure.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Enping Su
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Dehua Wu
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
23
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
24
|
Li Y, Yao Q, Xu H, Ren J, Zhu Y, Guo C, Li Y. Lung Single-Cell Transcriptomics Offers Insights into the Pulmonary Interstitial Toxicity Caused by Silica Nanoparticles. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:786-801. [PMID: 39568699 PMCID: PMC11574632 DOI: 10.1021/envhealth.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 11/22/2024]
Abstract
The adverse respiratory outcomes motivated by silica nanoparticles (SiNPs) exposure have received increasing attention. Herein, we aim to elucidate the interplay of diverse cell populations in the lungs and key contributors in triggering lung injuries caused by SiNPs. We conducted a subchronic respiratory exposure model of SiNPs via intratracheal instillation in Wistar rats, where rats were administered with 1.5, 3.0, or 6.0 mg/kg body weight SiNPs once a week for 12 times in total. We revealed that SiNPs caused pulmonary interstitial injury in rats by histopathological examination and pulmonary hydroxyproline determination. Further, a single-cell RNA-Seq via screening 10 457 cells in the rat lungs disclosed cell-specific responses to SiNPs and cell-to-cell interactions within the alveolar macrophages, epithelial cells, and fibroblasts from rat lungs. These disturbed responses were principally related to the dysregulation of protein homeostasis (proteostasis), accompanied by an inflammatory response in macrophages, cell death in epithelial, proliferation, and extracellular matrix deposition in fibroblast. These cell-specific responses may serve a synergistic role in the pathogenesis of pulmonary interstitial disease triggered by SiNPs. In particular, the analyses of gene interaction networks and gene-disease associations filtered out heat shock proteins (Hsps) family genes crucial to the observed pulmonary lesions caused by SiNPs. Of note, both GEO database analysis and our experiments' validation indicated that Hsps, especially Hspd1, may be a key contributor to pulmonary interstitial injury, possibly through triggering oxidative stress, immune response, and disrupting protein homeostasis. Taken together, our study provides insights into pulmonary toxic effects and underlying molecular mechanisms of SiNPs from a single-cell perspective.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaze Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
25
|
Liu J, Lu L, Song H, Liu S, Liu G, Lou B, Shi W. Effects of triclosan on lipid metabolism and underlying mechanisms in the cyprinid fish Squalidus argentatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175627. [PMID: 39168348 DOI: 10.1016/j.scitotenv.2024.175627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The ubiquitous presence of the disinfectant triclosan (TCS) has raised global concerns regarding its potential threat to aquatic organisms. However, the effects of TCS on lipid metabolism in fish and its underlying mechanisms remain unclear. This study investigated the effect of environmentally relevant levels of TCS on the lipid metabolism in the cyprinid fish Squalidus argentatus. Our results showed that the lipid metabolism in the cyprinid fish S. argentatus was perturbed by 28-day exposure to TCS, as evidenced by higher levels of lipid accumulation in both the liver and blood. To elucidate the mechanisms underlying toxicity, we evaluated oxidative stress, inflammatory status, and lipase activity in the liver. Our findings indicated increased ROS-specific fluorescence intensity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in the livers of S. argentatus exposed to TCS, suggesting oxidative damage. Additionally, TCS treatment induced the production of proinflammatory cytokines in the liver of S. argentatus exposed to TCS, which suppressed hepatic lipase activity. Intestinal tissue morphology, inflammation, and blood lipopolysaccharide (LPS) levels were also examined. Significant increases in goblet cell count and MDA levels were observed in the intestinal tract. After 28 days of TCS exposure, the serum LPS levels were significantly elevated. 16S rRNA sequencing was conducted to analyze the effects of TCS on the diversity and composition of the intestinal microbiota. Transcriptomic analysis was performed to reveal global molecular alterations following TCS exposure. In conclusion, our results indicate that TCS may disrupt the lipid metabolism in S. argentatus by (i) inducing hepatic oxidative stress and inflammation, which suppress lipoprotein lipase activity, (ii) affecting the production of beneficial metabolites and endotoxins by dysregulating gut microbiota composition, and (iii) altering the expression levels of lipid metabolism-related pathways.
Collapse
Affiliation(s)
- Jindian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongjian Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
27
|
Siquan L, Weilin C, Xiuwen C, Meiyan Z, Weihong G, Xiaoli F. Evaluating the safety and efficiency of nanomaterials: A focus on mitochondrial health. Biomed Pharmacother 2024; 180:117484. [PMID: 39316969 DOI: 10.1016/j.biopha.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Nanomaterials (NMs) have extensive application potential in drug delivery, tissue engineering, and various other domains, attributable to their exceptional physical and chemical properties. Nevertheless, an increasing body of literature underscores the diverse safety risks are associated with NMs upon interaction with the human body, including oxidative stress and programmed cell death. Mitochondria, serving as cellular energy factories, play a pivotal role in energy metabolism and the regulation of cell fate. Organs with substantial energy demands, including the heart and brain, are highly sensitive to mitochondrial integrity, with mitochondrial impairment potentially resulting in significant dysfunction and pathologies such as as heart failure and neurodegenerative disease. This review elucidates the pathways by which NMs translocate into mitochondria, their intracellular dynamics, and their impact on mitochondrial morphology, respiratory chain activity, and metabolic processes. We further investigate associated molecular mechanisms, including mitochondrial dynamic imbalance, calcium overload, and oxidative stress, and elucidate the pivotal roles of mitochondria in different forms of programmed cell death such as apoptosis and autophagy. Finally, we offer recommendations regarding the safety and efficacy of NMs for medical applications. By systematically analyzing the interactions and molecular mechanisms between NMs and mitochondria, this paper aims to enhance the toxicological evaluation framework of NMs and provide a foundational reference and theoretical basis for their clinical utilization.
Collapse
Affiliation(s)
- Liu Siquan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Cheng Weilin
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Chen Xiuwen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zou Meiyan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Guo Weihong
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Feng Xiaoli
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
Shi M, Guo Y, Xu J, Yan L, Li X, Liu R, Feng Y, Zhang Y, Zhao Y, Zhang C, Du K, Li M, Zhang Y, Zhang J, Li Z, Ren D, Liu P. Gaudichaudione H ameliorates liver fibrosis and inflammation by targeting NRF2 signaling pathway. Free Radic Biol Med 2024; 224:770-784. [PMID: 39313014 DOI: 10.1016/j.freeradbiomed.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Gaudichaudione H (GH) is a natural small molecular compound isolated from Garcinia oligantha Merr. (Clusiaceae). Being an uncommon rare caged polyprenylated xanthone, the potential pharmacological functions of GH remain to be fully elucidated currently. In this study, we primarily focused on identifying potential bioavailable targets and elucidating related therapeutic actions. Herein, the network pharmacology analysis, metabolomics analysis and genome-wide mRNA transcription assay were performed firstly to predict the major pharmacological action and potential targets of GH. To confirm the hypothesis, gene knockout model was created using CRISPR/Cas9 method. The pharmacological action of GH was evaluated in vitro and in vivo. Firstly, our results of network pharmacology analysis and omics assay indicated that GH significantly activated NRF2 signaling pathway, and the function could be associated with liver disease treatment. Then, the pharmacological action of GH was evaluated in vitro and in vivo. The treatment with GH significantly increased the protein levels of NRF2 and promoted the transcription of NRF2 downstream genes. Further analysis suggested that GH regulated NRF2 through an autophagy-mediated non-canonical mechanism. Additionally, the administration of GH effectively protected the liver from carbon tetrachloride (CCl4)-induced liver fibrosis and inflammation, which depended on the activation of NRF2 in hepatic stellate cells and inflammatory cells respectively. Collectively, our findings underscore the potential therapeutic effect of GH on alleviating hepatic fibrosis and inflammation through the augmentation of NRF2 signaling pathway, providing a promising avenue for the treatment of liver fibrosis and inflammation in clinical settings.
Collapse
Affiliation(s)
- Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Guo
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongrong Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yetong Feng
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chongyu Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Du
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
29
|
Ren Z, Gao S, Hu S, Chen S, Jiang W, Ge Y. Chondroitin Sulfate from Halaelurus burgeri Skin Inhibits Hepatic Endoplasmic Reticulum Stress and Inflammation, and Regulates Gut Microbiota. Mol Nutr Food Res 2024; 68:e2400501. [PMID: 39328034 DOI: 10.1002/mnfr.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Indexed: 09/28/2024]
Abstract
SCOPE Previous study has demonstrated the chemical structure of chondroitin sulfate (CHS) from Halaelurus burgeri skin and its effects on insulin resistance. However, the precise impact of this phenomenon on endoplasmic reticulum (ER) stress and inflammation, which contribute to insulin resistance, remains unclear. This study is to investigate the impact of CHS on ER stress, inflammatory response and signaling, and gut microbiota in high-fat diet (HFD)-fed mice. METHODS AND RESULTS HFD-fed C57BL/6J mice receive dietary gavage intervention of CHS for 18 weeks. Blood, liver tissue, and feces are harvested for further investigation. Results show that CHS inhibits ER stress, accompanied by lowered blood glucose, nitric oxide (NO), reactive oxygen (ROS), and free fatty acids (FFA) levels, and increases hepatic glycogen accumulation. Moreover, hepatic inflammation is improved by CHS treatment via inactivation of Toll-like receptor 4 (TLR4) signaling and its downstream c-jun N-terminal kinase (JNK) and nuclear factor kappa B (NFκB) pathways. Additionally, CHS regulates gut microbiota, particularly the decline in the Firmicutes to Bacteroidetes ratio. CHS also lowers fecal lipopolysaccharide and elevates several fecal short chain fatty acids. CONCLUSION These findings suggest that CHS from H. burgeri skin may be an alternative functional food supplement for anti-ER stress, anti-inflammtion, and regulation of gut microbiota.
Collapse
Affiliation(s)
- Zhaocai Ren
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shang Gao
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shiwei Hu
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Sichun Chen
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Jiang
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yaming Ge
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
30
|
Yu Y, Yao Q, Chen D, Zhang Z, Pan Q, Yu J, Cao H, Li L, Li L. Serum metabonomics reveal the effectiveness of human placental mesenchymal stem cell therapy for primary sclerosing cholangitis. Stem Cell Res Ther 2024; 15:346. [PMID: 39380092 PMCID: PMC11462665 DOI: 10.1186/s13287-024-03967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The metabolic patterns of human placental-derived mesenchymal stem cell (hP-MSC) treatment for primary sclerosing cholangitis (PSC) remain unclear, and therapeutic effects significantly vary due to individual differences. Therefore, it is crucial to investigate the serological response to hP-MSC transplantation through small molecular metabolites and identify easily detectable markers for efficacy evaluation. METHODS Using Mdr2-/- mice as a PSC model and Mdr2+/+ mice as controls, the efficacy of hP-MSC treatment was assessed based on liver pathology, liver enzymes, and inflammatory factors. Serum samples were collected for 12C-/13C-dansylation and DmPA labeling LC-MS analysis to investigate changes in metabolic pathways after hP-MSC treatment. Key metabolites and regulatory enzymes were validated by qRT-PCR and Western blotting. Potential biomarkers of hP-MSC efficacy were identified through correlation analysis and machine learning. RESULTS Collectively, the results of the liver histology, serum liver enzyme levels, and inflammatory factors supported the therapeutic efficacy of hP-MSC treatment. Based on significant differences, 41 differentially expressed metabolites were initially identified; these were enriched in bile acid, lipid, and hydroxyproline metabolism. After treatment, bile acid transport was accelerated, whereas bile acid production was reduced; unsaturated fatty acid synthesis was upregulated overall, with increased FADS2 and elongase expression and enhanced fatty acid β-oxidation; hepatic proline 4-hydroxylase expression was decreased, leading to reduced hydroxyproline production. Correlation analysis of liver enzymes and metabolites, combined with time trends, identified eight potential biomarkers: 2-aminomuconate semialdehyde, L-1-pyrroline-3-hydroxy-5-carboxylic acid, L-isoglutamine, and maleamic acid were more abundant in model mice but decreased after hP-MSC treatment. Conversely, 15-methylpalmitic, eicosenoic, nonadecanoic, and octadecanoic acids were less abundant in model mice but increased after hP-MSC treatment. CONCLUSIONS This study revealed metabolic regulatory changes in PSC model mice after hP-MSC treatment and identified eight promising biomarkers, providing preclinical evidence to support therapeutic applications of hP-MSC.
Collapse
Affiliation(s)
- Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Deying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhehua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| |
Collapse
|
31
|
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia 2024; 178:106178. [PMID: 39153555 DOI: 10.1016/j.fitote.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been steadily increasing, making it a leading chronic liver disease. MAFLD refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity. However, its pathophysiology is complex, there are currently no effective and approved medicines for therapy. Rutin, a naturally occurring polyphenolic flavonoid, is widely distributed in fruits, vegetables, and other plants. It exhibits a plethora of bioactive properties, such as antioxidant, anticancer, and anti-inflammatory and neuroprotective activities, making it an extremely promising phytochemical. Rutin has shown great potential in the treatment of a wide variety of metabolic diseases and received considerable attention in recent years. Fortuitously, various research studies have validated rutin's extensive biological functions in treating metabolic disorders. Despite the fact that the exact pathophysiological mechanisms through which rutin has a hepatoprotective effect on MAFLD are still not fully elucidated. This review comprehensively outlines rutin's multifaceted preventive and therapeutic effects in MAFLD, including the modulation of lipid metabolism, reduction of insulin resistance, diminution of inflammation and oxidative stress, combatting of obesity, and influence on intestinal flora. This paper details the known molecular targets and pathways of rutin in MAFLD pathogenesis. It endeavored to provide new ideas for treating MAFLD and accelerating its translation from bench to bedside.
Collapse
Affiliation(s)
- Qianzhuo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
32
|
Shi X, Jiang W, Yang X, Li Y, Zhong X, Niu J, Shi Y. TIR8 protects against nonalcoholic steatohepatitis by antagonizing lipotoxicity-induced PPARα downregulation and reducing the sensitivity of hepatocytes to LPS. Transl Res 2024; 272:68-80. [PMID: 38851532 DOI: 10.1016/j.trsl.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
In up to one-third of nonalcoholic fatty liver disease (NAFLD) patients, simple steatosis progresses to its more severe form, nonalcoholic steatohepatitis (NASH), but the precise mechanisms underlying this transition are not fully understood. Toll/interleukin-1 receptor 8 (TIR8), a conventional innate immune regulator highly expressed in hepatic tissue, has shown potential for ameliorating various inflammation-related disorders. However, its role in NASH pathogenesis, especially its regulatory effects on lipid metabolism and inflammatory responses, is still unclear. Here, using a TIR8 knockout (TIR8KO) mouse model and mass spectrometry analyses, we found that TIR8KO mice displayed aggravated hepatic steatosis and inflammation, whereas TIR8 overexpression attenuated these adverse effects. Ectopic TIR8 expression counteracts free fatty acid (FFA)-induced PPARα inhibition and downstream signaling. A decrease in TIR8 levels in hepatocytes heightened lipopolysaccharide (LPS) sensitivity. Notably, FFA stimulation led to a direct interaction between TIR8 and proteasome subunit alpha type 4 (PSMA4), facilitating TIR8 degradation. These results revealed that TIR8 safeguards PPARα-regulated lipid metabolism and mitigates inflammation induced by external factors during NASH progression. Our study highlights TIR8 as a promising target for NASH therapy, indicating the potential of TIR8 agonists in treatment strategies.
Collapse
Affiliation(s)
- Xu Shi
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, PR China
| | - Wenyan Jiang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, 2555 JingYue Street, Changchun, Jilin 130000, PR China
| | - Yanan Li
- Department of Pediatric, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaodan Zhong
- Department of Pediatric, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, Jilin 130021, PR China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, Jilin 130021, PR China.
| |
Collapse
|
33
|
Yao Q, Wang B, Yu J, Pan Q, Yu Y, Feng X, Chen W, Yang J, Gao C, Cao H. ROS-responsive nanoparticle delivery of obeticholic acid mitigate primary sclerosing cholangitis. J Control Release 2024; 374:112-126. [PMID: 39117112 DOI: 10.1016/j.jconrel.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a challenging cholestatic liver disease marked by progressive bile duct inflammation and fibrosis that has no FDA-approved therapy. Although obeticholic acid (OCA) has been sanctioned for PSC, its clinical utility in PSC is constrained by its potential hepatotoxicity. Here, we introduce a novel therapeutic construct consisting of OCA encapsulated within a reactive oxygen species (ROS)-responsive, biodegradable polymer, further cloaked with human placenta-derived mesenchymal stem cell (hP-MSC) membrane (MPPFTU@OCA). Using PSC patient-derived organoid models, we assessed its cellular uptake and cytotoxicity. Moreover, using a PSC mouse model induced by 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC), we demonstrated that intravenous administration of MPPFTU@OCA not only improved cholestasis via the FXR-SHP pathway but also reduced macrophage infiltration and the accumulation of intracellular ROS, and alleviated mitochondria-induced apoptosis. Finally, we verified the ability of MPPFTU@OCA to inhibit mitochondrial ROS thereby alleviating apoptosis by measuring the mitochondrial adenosine triphosphate (ATP) concentration, ROS levels, and membrane potential (ΔΨm) using H2O2-stimulated PSC-derived organoids. These results illuminate the synergistic benefits of integrating an ROS-responsive biomimetic platform with OCA, offering a promising therapeutic avenue for PSC.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou City 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou City 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou, China.
| |
Collapse
|
34
|
Tan Q, Chu H, Wei J, Yan S, Sun X, Wang J, Zhu L, Yang F. Astaxanthin Alleviates Hepatic Lipid Metabolic Dysregulation Induced by Microcystin-LR. Toxins (Basel) 2024; 16:401. [PMID: 39330859 PMCID: PMC11435617 DOI: 10.3390/toxins16090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Microcystin-LR (MC-LR), frequently generated by cyanobacteria, has been demonstrated to raise the likelihood of liver disease. Few previous studies have explored the potential antagonist against MC-LR. Astaxanthin (ASX) has been shown to possess various beneficial effects in regulating lipid metabolism in the liver. However, whether ASX could alleviate MC-LR-induced hepatic lipid metabolic dysregulation is as yet unclear. In this work, the important roles and mechanisms of ASX in countering MC-LR-induced liver damage and lipid metabolic dysregulation were explored for the first time. The findings revealed that ASX not only prevented weight loss but also enhanced liver health after MC-LR exposure. Moreover, ASX effectively decreased triglyceride, total cholesterol, aspartate transaminase, and alanine aminotransferase contents in mice that were elevated by MC-LR. Histological observation showed that ASX significantly alleviated lipid accumulation and inflammation induced by MC-LR. Mechanically, ASX could significantly diminish the expression of genes responsible for lipid generation (Srebp-1c, Fasn, Cd36, Scd1, Dgat1, and Pparg), which probably reduced lipid accumulation induced by MC-LR. Analogously, MC-LR increased intracellular lipid deposition in THLE-3 cells, while ASX decreased these symptoms by down-regulating the expression of key genes in the lipid synthesis pathway. Our results implied that ASX played a crucial part in lipid synthesis and effectively alleviated MC-LR-induced lipid metabolism dysregulation. ASX might be developed as a novel protectant against hepatic impairment and lipid metabolic dysregulation associated with MC-LR. This study offers new insights for further management of MC-LR-related metabolic diseases.
Collapse
Affiliation(s)
- Qinmei Tan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Hanyu Chu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, China;
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China;
| | - Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Xiaoya Sun
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
| | - Jiangping Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China;
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.T.); (S.Y.); (X.S.)
- Affiliated Nanhua Hospital University of South China, Hengyang 421000, China
| |
Collapse
|
35
|
Li T, Wei Y, Jiao B, Hao R, Zhou B, Bian X, Wang P, Zhou Y, Sun X, Zhang J. Bushen Huoxue formula attenuates lipid accumulation evoking excessive autophagy in premature ovarian insufficiency rats and palmitic acid-challenged KGN cells by modulating lipid metabolism. Front Pharmacol 2024; 15:1425844. [PMID: 39351088 PMCID: PMC11439644 DOI: 10.3389/fphar.2024.1425844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) has affected about 3.7% of women of reproductive age and is a major factor contributing to infertility. Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is clinically used to treat POI in China. This study aims to investigate the potential mechanisms of BHF in combating POI using corticosterone-induced rats and palmitic acid (PA)-challenged human ovarian granulosa cells (GCs). Methods Initially, ultra performance liquid chromatography tandem mass spectrometry was employed to analyze the components of BHF. The pharmacodynamic parameters evaluated included body weight, ovaries index, and serum hormone in rats. Follicle numbers were observed using H&E staining. Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and apoptosis, respectively. Lipid accumulation and ROS levels were examined using Oil Red O and ROS staining. Protein expressions were determined by western blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-stimulated GCs were determined using MTT and ELISA, respectively. Cell apoptosis and ROS levels were assessed using TUNEL and ROS staining. Proteins related to lipid metabolism and autophagy in PA-stimulated GCs were studied using agonists. Results Our results shown that BHF effectively normalized serum hormone levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also significantly reduced follicular atresia and promoted cell proliferation while inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid accumulation by modulating lipid metabolism, which included reducing lipid synthesis (expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of adipose triglyceride lipase), and enhancing lipid oxidation (expression of carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of BHF on POI were linked with alleviation of lipid deposition-induced reactive oxygen species (ROS) accumulation and excessive autophagy, corroborating the results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost counteracted under model conditions. Conclusion These findings suggest that BHF alleviates the symptoms of POI by altering lipid metabolism and reducing lipid accumulation-induced ROS and autophagy, offering evidence for BHF's efficacy in treating POI clinically.
Collapse
Affiliation(s)
- Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Yao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibie Jiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Tonglu Hospital of Traditional Chinese Medicine, Tonglu, China
| | - Rui Hao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibei Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlan Bian
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Peijuan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Sun
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
37
|
Zhao X, Zhu Y, Yao Q, Zhao B, Lin G, Zhang M, Guo C, Li Y. Lipidomics Investigation Reveals the Reversibility of Hepatic Injury by Silica Nanoparticles in Rats After a 6-Week Recovery Duration. SMALL METHODS 2024; 8:e2301430. [PMID: 38191992 DOI: 10.1002/smtd.202301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Given the inevitable human exposure owing to its increasing production and utilization, the comprehensive safety evaluation of silica nanoparticles (SiNPs) has sparked concerns. Substantial evidence indicated liver damage by inhaled SiNPs. Notwithstanding, few reports focused on the persistence or reversibility of hepatic injuries, and the intricate molecular mechanisms involved remain limited. Here, rats are intratracheally instilled with SiNPs in two regimens (a 3-month exposure and a subsequent 6-week recovery after terminating SiNPs administration) to assess the hepatic effects. Nontargeted lipidomics revealed alterations in lipid metabolites as a contributor to the hepatic response and recovery effects of SiNPs. In line with the functional analysis of differential lipid metabolites, SiNPs activated oxidative stress, and induced lipid peroxidation and lipid deposition in the liver, as evidenced by the elevated hepatic levels of ROS, MDA, TC, and TG. Of note, these indicators showed great improvements after a 6-week recovery, even returning to the control levels. According to the correlation, ROC curve, and SEM analysis, 11 lipids identified as potential regulatory molecules for ameliorating liver injury by SiNPs. Collectively, the work first revealed the reversibility of SiNP-elicited hepatotoxicity from the perspective of lipidomics and offered valuable laboratory evidence and therapeutic strategy to facilitate nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
38
|
Yang S, Yan C, Pang X, Shao W, Xu Z, Li D, Xu W, Zhang Z, Su B, Li Y, Wu J, Huang X, Luo W, Du X. Transcriptome analysis reveals high concentration of resveratrol promotes lipid synthesis and induces apoptosis in Siberian sturgeon (Acipenser baerii). BMC Genomics 2024; 25:821. [PMID: 39217297 PMCID: PMC11365271 DOI: 10.1186/s12864-024-10698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Resveratrol has been reported to promote immunity and decrease oxidative stress, but which demonstrates biphasic effects relied on the use concentration. In this study, the effects of diet supplement with a relative high concentration of resveratrol (0.32 mg/kg) on metabolism, antioxidation and apoptosis of liver were investigated in Siberian sturgeon. The results showed that resveratrol significantly increased the lipid synthesis and the apoptosis, but did not either activate the antioxidant NRF2/KEAP1 pathway or enhance the antioxidant enzyme activity. Transcriptome analysis revealed significant changes in regulatory pathways related to glycolipid, including PPAR signaling pathway, Insulin signaling pathway, Fatty acid biosynthesis, and Glycolysis/Gluconeogenesis. In addition, resveratrol significantly increased the lipid synthesis genes (accα and fas), fatty acid transport gene (fatp 6) and gluconeogenesis gene (gck), but decreased the survival-promoting genes (gadd45β and igf 1). These findings highlight a significant effect of resveratrol on glycolipid metabolism in Siberian sturgeon. Moreover, this study also demonstrated that 0.32 mg/kg resveratrol has physiological toxicity to the liver of Siberian sturgeon, indicating that this dose is too high for Siberian sturgeon. Thus, our study provides a valuable insight for future research and application of resveratrol in fish.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Chaozhan Yan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Xiaojian Pang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Wuyuntana Shao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Zihan Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Datian Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Wenqiang Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Zhehua Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Boru Su
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Jiayun Wu
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China.
| |
Collapse
|
39
|
Lv S, Li Y, Li X, Zhu L, Zhu Y, Guo C, Li Y. Silica nanoparticles triggered epithelial ferroptosis via miR-21-5p/GCLM signaling to contribute to fibrogenesis in the lungs. Chem Biol Interact 2024; 399:111121. [PMID: 38944326 DOI: 10.1016/j.cbi.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE), and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.
Collapse
Affiliation(s)
- Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
40
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
41
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
42
|
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2024; 17:895. [PMID: 39065745 PMCID: PMC11279973 DOI: 10.3390/ph17070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inulin may be a promising therapeutic molecule for treating non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its therapeutic activity remain unclear. To address this issue, a high-fat-diet-induced NAFLD mouse model was developed and treated with inulin. The NAFLD phenotype was evaluated via histopathological analysis and biochemical parameters, including serum levels of alanine aminotransferase, aspartate aminotransferase, liver triglycerides, etc. A serum metabolomics study was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The results revealed that inulin mitigated NAFLD symptoms such as histopathological changes and liver cholesterol levels. Through the serum metabolomics study, 347 differential metabolites were identified between the model and control groups, and 139 differential metabolites were identified between the inulin and model groups. Additionally, 48 differential metabolites (such as phosphatidylserine, dihomo-γ-linolenic acid, L-carnitine, and 13-HODE) were identified as candidate targets of inulin and subjected to pathway enrichment analysis. The results revealed that these 48 differential metabolites were enriched in several metabolic pathways such as fatty acid biosynthesis and cardiolipin biosynthesis. Taken together, our results suggest that inulin might attenuate NAFLD partially by modulating 48 differential metabolites and their correlated metabolic pathways, constituting information that might help us find novel therapies for NAFLD.
Collapse
Affiliation(s)
- Yunhong Sun
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| |
Collapse
|
43
|
Ruan F, Liu C, Zeng J, Zhang F, Jiang Y, Zuo Z, He C. Multi-omics integration identifies ferroptosis involved in black phosphorus quantum dots-induced renal injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174532. [PMID: 38972417 DOI: 10.1016/j.scitotenv.2024.174532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have recently emerged as a highly promising contender in biomedical applications ranging from drug delivery systems to cancer therapy modalities. Nevertheless, the potential toxicity and its effects on human health need to be thoroughly investigated. In this study, we utilized multi-omics integrated approaches to explore the complex mechanisms of BPQDs-induced kidney injury. First, histological examination showed severe kidney injury in male mice after subacute exposure to 1 mg/kg BPQDs for 28 days. Subsequently, transcriptomic and metabolomic analyses of kidney tissues exposed to BPQDs identified differentially expressed genes and metabolites associated with ferroptosis, an emerging facet of regulated cell death. Our findings highlight the utility of the multi-omics integrated approach in predicting and elucidating potential toxicological outcomes of nanomaterials. Furthermore, our study provides a comprehensive understanding of the mechanisms driving BPQDs-induced kidney injury, underscoring the importance of recognizing ferroptosis as a potential toxic mechanism associated with BPQDs.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Jiang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China; Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
44
|
He L, Zhang Y, Cao Q, Shan H, Zong J, Feng L, Jiang W, Wu P, Zhao J, Liu H, Jiang J. Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost. Antioxidants (Basel) 2024; 13:808. [PMID: 39061877 PMCID: PMC11273915 DOI: 10.3390/antiox13070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
45
|
Wang X, Zhang K, Ali W, Li J, Huang Q, Liu D, Liu G, Ran D, Liu Z. Luteolin alleviates cadmium-induced metabolism disorder through antioxidant and anti-inflammatory mechanisms in chicken kidney. Poult Sci 2024; 103:103817. [PMID: 38759568 PMCID: PMC11107462 DOI: 10.1016/j.psj.2024.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.
Collapse
Affiliation(s)
- Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dongdi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, P.R. China; College of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
| |
Collapse
|
46
|
Peivandi Z, Shirazi FH, Teimourian S, Farnam G, Babaei V, Mehrparvar N, Koohsari N, Ashtarinezhad A. Silica nanoparticles-induced cytotoxicity and genotoxicity in A549 cell lines. Sci Rep 2024; 14:14484. [PMID: 38914713 PMCID: PMC11196255 DOI: 10.1038/s41598-024-65333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Among the myriad of nanoparticles, silica nanoparticles (SiO2NPs) have gained significant attention since they are extensively produced and used across several kinds of industries. Because of its widespread usage, there has been increasing concern about the potential health effects. This study aims to evaluate the effects of SiO2NPs on Interleukin-6 (IL-6) gene expression in human lung epithelial cell lines (A549). In this study, A549 cells were exposed to SiO2NPs at concentrations of 0, 1, 10, 50, 100, and 200 µg/mL for 24 and 48 h. The IL-6 gene expression was assessed using Real-Time RT-PCR. Additionally, the impact of SiO2NPs on the viability of A549 cells was determined by MTT assay. Statistical analysis was performed using GraphPad Prism software 8.0. MTT assay results indicated a concentration-dependent impact on cell survival. After 24 h, survival decreased from 80 to 68% (1-100 µg/mL), rising to 77% at higher concentrations. After 48 h, survival dropped from 97 to 80%, decreasing to 90% at higher concentrations. RT-PCR showed a dose-response relationship in cellular toxicity up to 10 µg/mL. At higher concentrations, there was increased IL-6 gene expression, mitigating SiO2NP-induced cytotoxic effects. The study shows that the viability and proliferation of A549 cells are impacted by different SiO2NPs concentrations. There may be a potential correlation between IL-6 gene expression reduction and a mechanism linked to cellular toxicity. However, at higher concentrations, an unknown mechanism increases IL-6 gene expression, reducing SiO2NPs' cytotoxic effects. These effects are concentration-dependent and not influenced by exposure times. Further investigation is recommended to determine this mechanism's nature and implications, particularly in cancer research.
Collapse
Affiliation(s)
- Zahra Peivandi
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology/Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Babaei
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mehrparvar
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Koohsari
- Department of Pharmacology/Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Ashtarinezhad
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Julaiti M, Guo H, Cui T, Nijiati N, Huang P, Hu B. Application of stem cells in the study of developmental and functional toxicity of endodermal-derived organs caused by nanoparticles. Toxicol In Vitro 2024; 98:105836. [PMID: 38702034 DOI: 10.1016/j.tiv.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles have unique properties that make them useful in biomedicine. However, their extensive use raises concerns about potential hazards to the body. Therefore, it is crucial to establish effective and robust toxicology models to evaluate the developmental and functional toxicity of nanoparticles on the body. This article discusses the use of stem cells to study the developmental and functional toxicity of organs of endodermal origin due to nanoparticles. The study discovered that various types of nanoparticles have varying effects on stem cells. The application of stem cell models can provide a possibility for studying the effects of nanoparticles on organ development and function, as they can more accurately reflect the toxic mechanisms of different types of nanoparticles. However, stem cell toxicology systems currently cannot fully reflect the effects of nanoparticles on entire organs. Therefore, the establishment of organoid models and other advanced assessment models is expected to address this issue.
Collapse
Affiliation(s)
- Mulati Julaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Haoqiang Guo
- Human anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Tingting Cui
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Nadire Nijiati
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Pengfei Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Bowen Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
48
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
49
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
50
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|