1
|
Lai WY, Chuang CW, Huang YC, Huang CJ. Therapeutic Potential of Plant-Derived Small Extracellular Vesicles in Sepsis: A Network Meta-analysis. Pharmacol Res 2025:107795. [PMID: 40414583 DOI: 10.1016/j.phrs.2025.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/22/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Sepsis is a life-threatening condition characterized by systemic inflammation and multi-organ dysfunction. Plant-derived small extracellular vesicles (sEVs) have emerged as promising therapeutic agents due to their antioxidant, anti-inflammatory, and immunomodulatory properties. This study conducted a network meta-analysis to identify the most effective plant-derived sEVs for reducing sepsis-induced inflammation and oxidative stress. The analysis included 13 studies evaluating 10 plant-derived sEVs in sepsis-mimicking conditions, with primary outcomes focused on cytokine levels and reactive oxygen species (ROS) production in vitro and in vivo. Secondary outcomes included nuclear factor erythroid 2-related factor 2 (Nrf2) expression and cell viability. The study protocol was registered with PROSPERO (CRD420251011005). Ginger-derived sEVs were identified as the most effective, significantly reducing pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α), increasing the anti-inflammatory cytokine (interleukin-10), and suppressing ROS production. They also enhanced Nrf2 expression and improved cell viability, highlighting their role in antioxidant defense and cytoprotection. In conclusion, ginger-derived sEVs are the most effective plant-derived sEVs for mitigating sepsis-induced inflammation and oxidation in both in vitro and in vivo sepsis-mimicking models.
Collapse
Affiliation(s)
- Wen-Yi Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wei Chuang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Jen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2025; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Salman S, Paulet V, Hardonnière K, Kerdine‐Römer S. The role of NRF2 transcription factor in inflammatory skin diseases. Biofactors 2025; 51:e70013. [PMID: 40207460 PMCID: PMC11983367 DOI: 10.1002/biof.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.
Collapse
Affiliation(s)
- Sara Salman
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Virginie Paulet
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Kévin Hardonnière
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Saadia Kerdine‐Römer
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| |
Collapse
|
5
|
Xu W, Hua Z, Wang Y, Tang W, Ge W, Chen Y, Wang Z, Gu Y, Liu C, Du P. Redox-Induced Stabilization of AMBRA1 by USP7 Promotes Intestinal Oxidative Stress and Colitis Through Antagonizing DUB3-Mediated NRF2 Deubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411320. [PMID: 39887666 PMCID: PMC11948009 DOI: 10.1002/advs.202411320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Inflammatory bowel disease (IBD) is associated with oxidative stress and redox signaling disruption. It is recently reported that proautophagic autophagy/beclin-1 regulator 1 (AMBRA1) is a positive modulator of the NF-κB pathway that promotes intestinal inflammation. However, its effect on intestinal redox state and whether AMBRA1 is regulated by oxidative stress remain unknown. In this study, it is found that AMBRA1 functions as a pro-oxidative factor that increases oxidative stress in intestinal epithelial cells (IECs) in vitro and in vivo. Mechanistically, the N-terminal F1 domain is required for AMBRA1 to competitively interact with the N-terminal domain of NRF2, thereby antagonizing the interaction between deubiquitinating protein 3 (DUB3) and NRF2, suppressing DUB3-mediated NRF2 deubiquitination, and leading to NRF2 degradation. In response to H2O2 stimulation, the interaction between AMBRA1 and ubiquitin-specific protease 7 (USP7) is enhanced, facilitating USP7 to deubiquitinate AMBRA1 at K83 and K86 and stabilize AMBRA1. Notably, the USP7 inhibitor, P5091, inhibits oxidative stress and colitis in vivo. Elevated AMBRA1 expression in inflamed colon tissues from ulcerative colitis patients is negatively correlated with decreased NRF2 protein levels. Overall, this study identifies AMBRA1 as a pro-oxidative factor in IECs and provides a redox-modulating therapeutic strategy for targeting USP7/AMBRA1 in IBD.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Zhebin Hua
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yaosheng Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wenbo Tang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wensong Ge
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - YingWei Chen
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - Zhongchuan Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yubei Gu
- Department of GastroenterologyRui Jin HospitalAffiliate to Shanghai Jiao Tong Universityschool of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Chen‐Ying Liu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Peng Du
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| |
Collapse
|
6
|
Effah F, Sun Y, Friedman A, Rahman I. Emerging nicotine analog 6-methyl nicotine increases reactive oxygen species in aerosols and cytotoxicity in human bronchial epithelial cells. Toxicol Lett 2025; 405:9-15. [PMID: 39894318 PMCID: PMC11875870 DOI: 10.1016/j.toxlet.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Nicotine-contained e-cigarettes (E-cigs) generate reactive oxygen species (ROS), volatile organic compounds, and heavy metals. Inhalation toxicology studies suggest that exposure to these toxicants may adversely impact human health. These findings led to the U.S. Food and Drug Administration's (FDA) regulation of nicotine-containing E-cigs under the Tobacco Regulation Act (TRA) of 2020. Manufacturers aiming to sell nicotine products in the U.S. must submit a Premarket Tobacco Product Application (PMTA) and obtain FDA approval before marketing their products. However, due to the lengthy PMTA process, some companies have exploited a loophole in the TRA (2020) by introducing nicotine analogs, such as 6-methyl nicotine (6-MN) into E-cig products. 6-MN is marketed as a 'safer' alternative to nicotine, offering comparable satisfaction despite not being derived from tobacco or nicotine. Nonetheless, its safety profiles are unknown. Therefore, this study tested the toxicity of 6-MN compared to traditional nicotine in vitro. We observed that thermal degradation of 6-MN in e-liquids significantly generated more ROS in the aerosols than nicotine. We investigated the dose-response cytotoxicity of 6-MN vs nicotine when exposed to HBEC3-KT human bronchial epithelial cells. 6-MN-contained e-liquids significantly increased cytotoxicity and intracellular ROS induction in a dose-specific manner compared to nicotine. Further, we observed that 6-MN (pure compound) transiently increased metabolic activity significantly at all doses tested compared to nicotine. Given the potential risks associated with 6-MN, it cannot be deemed 'safer' than nicotine. Therefore, further primary toxicological research is urgently needed to provide regulatory agencies with more robust data to implement regulations.
Collapse
Affiliation(s)
- Felix Effah
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yehao Sun
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Alan Friedman
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, Buffalo, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
7
|
Han H, Zhang G, Yang Y, Li C, Li X, Zhong L, Chen Z, Xiong J, Cai T, Zhang L, Zhang X, Zhao Q. Therapeutic potential of monomethyl fumarate and aluminum ion combination in alleviating inflammation and oxidative stress in psoriasis. Redox Biol 2025; 79:103482. [PMID: 39736200 PMCID: PMC11750270 DOI: 10.1016/j.redox.2024.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025] Open
Abstract
Psoriasis is a chronic inflammatory skin condition characterized by erythematous plaques with white scales. Its pathogenesis is closely linked to oxidative stress and an imbalance in Th1/Th2 immune responses. Current treatments for psoriasis, such as topical agents, systemic therapies and phototherapy, frequently fail to achieve complete remission in clinical settings. Monomethyl fumarate (MMF), which has been approved by the US Food and Drug Administration in 2020 for multiple sclerosis, has demonstrated efficacy in psoriasis management. Additionally, our previous studies have identified aluminum ions as beneficial in psoriasis treatment. This present study investigates the combined therapeutic effects of MMF and aluminum ions and observed that the combination treatment achieves superior efficacy compared to either treatment alone in a psoriasis mouse model through the modulation of the Nrf2/NF-κB signaling pathway, as demonstrated in cellular models. The combination first activates Nrf2 nuclear translocation and induces antioxidant gene expression, followed by the inhibition of NF-κB nuclear translocation and phosphorylation, which reduces Th1 cytokine production and cellular chemotaxis. Concurrently, the treatment elevates Th2 cytokine secretion, thereby increasing the anti-inflammatory response in HaCaT cells. Overall, these findings support the MMF and aluminum ions combination (MMFAL) as a potential therapeutic strategy for psoriasis, effectively diminishing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chenxi Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zan Chen
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianxia Xiong
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Cai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Ma L, Li Y, Wu J, Gao Y. Bioinformatics approaches to multi-omics analysis of the potential of CDKN2A as a biomarker and therapeutic target for uterine corpus endometrial carcinoma. Sci Rep 2025; 15:895. [PMID: 39762354 PMCID: PMC11704072 DOI: 10.1038/s41598-025-85364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved in cell cycle regulation by controlling CDKs. In the present study, bioinformatics was used to analyze public datasets. The expression levels, signaling pathways, and copy number variations of CDKN2A in UCEC were explored, along with its immune cell subset associations. CDKN2A expression was found to be elevated in UCEC, particularly in the signaling pathways involved in cell proliferation and inflammation. Analysis of somatic copy number alterations in the TCGA (The Cancer Genome Atlas)-UCEC dataset revealed a connection between CDKN2A and drug metabolism in UCEC. Assessment of the relationship between CDKN2A and genes involved in immunotherapy for UCEC patients showed a negative correlation between CDKN2A and CD8+ T cell activity, as well as IL-2 and TP53. Collectively, these insights suggest that CDKN2A may be a potential biomarker for prognosis and treatment strategies in UCEC.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400000, China
| | - Yuling Li
- Biochemistry and Molecular Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400000, China
| | - Jingxian Wu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400000, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400000, China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
| | - Yanfei Gao
- Biochemistry and Molecular Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400000, China.
| |
Collapse
|
9
|
Bi T, Zhao Q, Wang T, Huang R, Liu B, Liu X, Wang Y, Sun Q, Yang Y, Liu Z. Disruption of Ferroptosis Inhibition and Immune Evasion with Tumor-Activatable Prodrug for Boosted Photodynamic/Chemotherapy Eradication of Drug-Resistant Tumors. Adv Healthc Mater 2025; 14:e2403473. [PMID: 39530628 DOI: 10.1002/adhm.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a malignant tumor that threatens the life and health of women worldwide. As the first-line chemotherapy drug for breast cancer, doxorubicin (DOX) can inhibit the synthesis of RNA and DNA, and it exhibits strong inhibitory activity against breast cancer. However, drug-induced systemic toxicity and drug resistance can occur with DOX treatment. In this work, TSPO protein is identified as a promising target for overcoming drug resistance and we designed a novel BT-DOX/PDP conjugate to solve these problems in drug chemotherapy. It is found that BT-DOX/PDP can effectively downregulate TSPO1 protein and sensitize MCF-7/Adr to DOX. Furthermore, due to its positive charge, BT-DOX/PDP is readily loaded into puerarin (PUE), the resulting BT-DOX/PDP@PUE exhibited minimal systemic toxicity but enhanced antitumor activity in animal models, as compared with BT-DOX/PDP. This study demonstrates the advantages of combined chemotherapy and photodynamic therapy in overcoming drug resistance, which may be applied in the design of other photodynamic therapy-based conjugates to enhance antitumor therapy.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Qixin Zhao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bangguo Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyue Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yihuan Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
10
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
11
|
Toader C, Tataru CP, Munteanu O, Covache-Busuioc RA, Serban M, Ciurea AV, Enyedi M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int J Mol Sci 2024; 25:13614. [PMID: 39769374 PMCID: PMC11728275 DOI: 10.3390/ijms252413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors. Novel insights into microglial priming, astrocytic cytokine networks, and meningeal lymphatics challenge the conventional paradigms of immune privilege, offering fresh perspectives on disease mechanisms. This work introduces groundbreaking therapeutic innovations, from precision immunotherapies to the controlled modulation of the BBB using nanotechnology and focused ultrasound. Moreover, we explore the fusion of immune modulation with neuromodulatory technologies, underscoring new frontiers for personalized medicine in previously intractable diseases. By synthesizing these advancements, we propose a transformative framework that integrates cutting-edge research with clinical translation, charting a bold path toward redefining CNS disease management in the era of precision neuroimmunology.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
12
|
Yin T, Feng S, Zhu H, Bai R, Gan X, He K, Du W, Cheng B, Liu X, Wang Z, Zhang H, Zheng Y, Liu D. Therapeutic potential of plasma-treated solutions in atopic dermatitis. Free Radic Biol Med 2024; 225:482-493. [PMID: 39426754 DOI: 10.1016/j.freeradbiomed.2024.10.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Atopic Dermatitis (AD) is a prevalent inflammatory skin disease that is currently incurable. Plasma-treated solutions (PTS) (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as novel therapy. Recently, PTS is gaining attention due to its advantages over non-thermal plasma (also known as cold atmospheric plasma). Thus, we explore the application of PTS in treating AD. In vivo experiments demonstrated that PTS significantly alleviated AD-like symptoms. It reduced mast cell and macrophage infiltration, decreased scratching times and serum IgE levels. These therapeutic effects of PTS on AD mice were associated with the activation of the antioxidant molecule Nrf2. In vitro experiments revealed that PTS could decrease ROS level and regulate cytokine expression (such as IL-6, IL-10, IL-13 and CCL17) in TNF-α/IFN-γ-stimulated keratinocytes and LPS-stimulated M1 macrophages. Additionally, PTS could upregulate the expression of antioxidant stress molecules such as Nrf2, HO-1, NQO1 and PPAR-γ in both cell types. Overall, PTS demonstrated potent therapeutic potential for AD without notable side effects. Our research provided a promising approach to AD treatment and may serve as a potential therapeutic strategy in other inflammatory skin diseases.
Collapse
Affiliation(s)
- Tingyi Yin
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - He Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Xinyi Gan
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Ke He
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Wenqian Du
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Baochen Cheng
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Xinyi Liu
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital, Xi'an Jiaotong University Xi'an, Shaanxi, 710061, China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
13
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
14
|
Li T, Xiong Z, Liu Y, Zhao H, Rong W, Chen Y, Chen G, Cao L, Liu Q, Song J, Wang W, Liu Y, Wang XZ, Liu SZ. Mechanism of vitamin C alleviating the immunotoxicity of 17α-methyltestosterone in Carassius auratus. BMC Genomics 2024; 25:1068. [PMID: 39528939 PMCID: PMC11552423 DOI: 10.1186/s12864-024-10967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, the use of endocrine-disrupting chemicals (EDCs) has become increasingly common, leading to severe environmental pollution and harm to aquatic organisms. 17α-Methyltestosterone (MT) is a synthetic androgen that can cause immunotoxicity in aquaculture, affecting fish health. To address this issue, this study aimed to investigate the effect of Vitamin C (VC) on MT-induced immunotoxicity and determine the optimal VC supplementation. RESULTS Carassius auratus was exposed to 50 ng/L MT and treated with 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Morphological indicators, histological characteristics, hepatic antioxidant capacity, and immune-related gene expression were analyzed. Additionally, RNA-seq was performed on the liver tissues of the control, MT, and MT + 25 mg/kg VC groups after 21 d. Results showed that, MT treatment significantly increased liver malondialdehyde content and inhibited immune-related gene expression (TNF-α, IL-8, INF-γ, IL-10, Caspase-9, and IGF-I), causing oxidative stress and immunotoxicity, leading to hepatic steatosis. However, supplementation with 25-50 mg/kg VC effectively alleviated the MT-induced damage to the hepatic structure and immune system. RNA-seq revealed significant enrichment of differentially expressed genes in multiple signaling pathways, including the mTOR, MAPK, and Wnt pathways. CONCLUSIONS In summary, 25-50 mg/kg VC alleviated inhibitory effect of MT on immune-related genes in C. auratus liver, reducing MT-induced tissue damage. VC not only alleviated inflammation, oxidative stress, and immunotoxicity induced by MT through the regulation of the mTOR, MAPK, and Wnt signaling pathways, but also indirectly enhanced cellular antioxidant defense mechanisms by regulating the NRF2 pathway. This provides a theoretical basis for VC application in aquaculture, improving fish health and increasing efficiency.
Collapse
Affiliation(s)
- Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Gen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Lu Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xian-Zong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
- Yangjiazhuang, Jinzhong City, Taigu County, Shanxi Province, China.
| | - Shao-Zhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
- Yangjiazhuang, Jinzhong City, Taigu County, Shanxi Province, China.
| |
Collapse
|
15
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
16
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, El-Sherbeeny AM, Al-Harbi MM, Al-Shabanah OA, Ibrahim KE, Alhazzani K, Alanazi AZ. DNMT inhibitor, 5-aza-2'-deoxycytidine mitigates di(2-ethylhexyl) phthalate-induced aggravation of psoriasiform inflammation in mice via reduction in global DNA methylation in dermal and peripheral compartments. Int Immunopharmacol 2024; 137:112503. [PMID: 38906008 DOI: 10.1016/j.intimp.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psoriasis is classified as an autoimmune disorder characterized by abnormal immune response leading to the development of chronic dermal inflammation. Most individuals have a genetic vulnerability that may be further influenced by epigenetic changes occurring due to multiple variables such as pollutant exposure. Epigenetic modifications such as DNA methylation possess a dynamic nature, enabling cellular differentiation and adaptation by controlling gene expression. Di(2-ethylhexyl) phthalate (DEHP) and psoriatic inflammation are known to cause modification of DNA methylation via DNA methyltransferase (DNMT). However, it is not known whether DEHP, a ubiquitous plasticizer affects psoriatic inflammation via DNMT modulation. Therefore, this study investigated the effect of DNMT inhibitor, 5-aza-2'-deoxycytidine (AZA) on DEHP-induced changes in the expression of DNMT1, global DNA methylation, and anti-/inflammatory parameters (p-STAT3, IL-17A, IL-6, iNOS, IL-10, Foxp3, Nrf2, HO-1) in the skin and the peripheral adaptive/ myeloid immune cells (CD4+ T cells/CD11b+ cells) in imiquimod (IMQ) model of psoriasiform inflammation. Further, psoriasis-associated clinical/histopathological features (ear thickness, ear weight, ear PASI score, MPO activity, and H&E staining of the ear and the back skin) were also analyzed in IMQ model. Our data show that IMQ-treated mice with DEHP exposure had increased DNMT1 expression and DNA methylation which was associated with elevated inflammatory (p-STAT3, IL-17A, IL-6, iNOS) and downregulated anti-inflammatory mediators (IL-10, Foxp3, Nrf2, HO-1) in the peripheral immune cells (CD4+ T cells/CD11b+ cells) and the skin as compared to IMQ-treated mice. Treatment with DNMT1 inhibitor caused reduction in inflammatory and elevation in anti-inflammatory parameters with significant improvement in clinical/histopathological symptoms in both IMQ-treated and DEHP-exposed IMQ-treated mice. In conclusion, our study shows strong evidence indicating that DNMT1 plays an important role in DEHP-induced exacerbation of psoriasiform inflammation in mice through hypermethylation of DNA.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
18
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
19
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|