1
|
Tran PV. Function of Amino Acids and Neuropeptides in Feeding Behavior in Chicks. J Poult Sci 2025; 62:2025013. [PMID: 40093301 PMCID: PMC11903097 DOI: 10.2141/jpsa.2025013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Regulation of food intake, especially during the neonatal period, is important to ensure optimal nutrition and meet the metabolic requirements of growing and healthy animals. However, many problems associated with neonatal chicks remain unsolved. Feeding behavior during the neonatal stage is characterized by short resting periods between very brief times spent taking up food. Accordingly, neuropeptides, which take time to synthesize and release, as well as nutrients that are taken up via feeding, may be involved in feeding regulation. The present review summarizes current knowledge about the role of amino acids and their interaction with neuropeptides on the regulation of food intake in neonatal chicks with special emphasis on L-arginine metabolism and neuropeptide Y. Fasting and subsequent short-term refeeding influence amino acid metabolism in the brain. Short-term refeeding induces a rapid increase in the concentrations of several amino acids, which may contribute to satiety signals in the neonatal chick brain. The function of L-arginine is related to its metabolite, L-ornithine, which acts as an innate satiety signal in the control of food intake. Co-injection with L-ornithine attenuates the orexigenic effect of neuropeptide Y in a dose-dependent manner. This implies a potent interaction in the brain between the regulation of food intake by neuropeptide Y and acute satiety signals by L-ornithine. The roles of other amino acids in feeding and their relationship with the stress response are also discussed in this review. In conclusion, endogenous neuropeptides and endogenous and/or exogenous nutrients such as amino acids are believed to coordinate the feeding behavior of neonatal chicks.
Collapse
Affiliation(s)
- Phuong V. Tran
- Laboratory of Regulation in Metabolism and Behavior,
Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka
819-0395, Japan
| |
Collapse
|
2
|
Nishimura H, Elhussiny MZ, Ouchi Y, Haraguchi S, Itoh TQ, Gilbert ER, Cline MA, Nishimura S, Hosaka YZ, Takahashi E, Cockrem JF, Bungo T, Chowdhury VS. Expression and localization of the neuropeptide Y-Y4 receptor in the chick spleen: mRNA upregulation by high ambient temperature. Neuropeptides 2024; 107:102459. [PMID: 39121580 DOI: 10.1016/j.npep.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
High ambient temperatures (HT) can increase diencephalic neuropeptide Y (NPY) expression, and central injection of NPY attenuates heat stress responses while inducing an antioxidative state in the chick spleen. However, there is a lack of knowledge about NPY receptor expression, and its regulation by HT, in the chick spleen. In the current study, male chicks were used to measure the expression of NPY receptors in the spleen and other immune organs under acute (30 vs. 40 ± 1°C for 3 h) or chronic (30 vs. 40 ± 1°C for 3 h/day for 3 days) exposure to HT and in response to central injection of NPY (47 pmol, 188 pmol, or 1 nmol). We found that NPY-Y4 receptor mRNA was expressed in the spleen, but not in other immune organs studied. Immunofluorescence staining revealed that NPY-Y4 receptors were localized in the splenic pulp. Furthermore, NPY-Y4 receptor mRNA increased in the chick spleen under both acute and chronic exposure to HT. Central NPY at two dose levels (47 and 188 pmol) and a higher dose (1 nmol) did not increase splenic NPY-Y4 receptor mRNA expression or splenic epinephrine under HT (35 ± 1°C), and significantly increased 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations under HT (40 ± 1°C). In conclusion, increased expression of NPY-Y4 receptor mRNA in the spleen under HT suggest that Y4 receptor may play physiological roles in response to HT in male chicks.
Collapse
Affiliation(s)
- Haruka Nishimura
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mohamed Z Elhussiny
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Animal & Poultry Behaviour and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Yoshimitsu Ouchi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Taichi Q Itoh
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA
| | - Shotaro Nishimura
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinao Z Hosaka
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Greene ES, Ardakani MA, Dridi S. Effects of an herbal adaptogen feed-additive on feeding-related hypothalamic neuropeptides in chronic cyclic heat-stressed chickens. Neuropeptides 2024; 106:102439. [PMID: 38788297 DOI: 10.1016/j.npep.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Heat stress (HS) is a global serious issue in the poultry industry with numerous adverse effects, including increased stress, depressed feed intake (FI), poor growth performance and higher mortality. Herbal adaptogens, plant extracts considered as stress response modifiers, are metabolic regulators that improve an organism's ability to adapt to and minimize damage from environmental stresses. Previously, we showed that herbal adaptogen supplementation increased FI and body weight (BW) of broiler (meat-type) chickens reared under HS conditions. Therefore, we hypothesized that these effects may be mediated through modulation of hypothalamic feeding-related neuropeptides. Male Cobb 500 chicks were reared in 12 environmental chambers with three diets: a corn-soybean-based diet (C) and two herbal adaptogen-supplemented diets at 500 g/1000 kg (NR-PHY-500) and 1 kg/1000 kg (NR-PHY-1000). Broilers in 9 chambers were exposed to chronic cyclic HS (35 °C for 8 h/day) from d29 to d42, while 3 chambers were maintained at 24 °C (thermoneutral, TN) for all 42 days. Hypothalamic samples were collected on d42 from each group, both before the onset of HS (Pre-HS) that day and after 3 h of HS (post-HS). Hypothalamic expressions of neuropeptide Y (NPY) receptors Y4 and Y7, Corticotropin-releasing hormone (CRH), orexin receptor 1 (ORXR1), melanocortin receptors (MC1R, MC4R, and MC5R), visfatin and neurosecretory protein GL (NPGL) genes were significantly upregulated by adaptogen supplementation. The hypothalamic expression of MC2R was affect by period, with a significant upregulation during post-HS phase. There was a significant period by treatment interaction for hypothalamic orexin and adiponectin expression. The hypothalamic expression of NPY, Y1, Y2, Y5, Y6, proopiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), agouti-related peptide (AgRP), ORXR2, AdipR1/2, MC3R, and ghrelin was not affected by diet supplementation nor by HS exposure. In conclusion, these findings suggest that in-feed supplementation of adaptogen might improve FI and growth via modulation of hypothalamic feeding-related neuropeptides in heat-stressed broilers.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Maryam Afkhami Ardakani
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
4
|
Volyanskaya AR, Akberdin IR, Kulyashov MA, Yevshin IS, Romanov MN, Shagimardanova EI, Gusev OA, Kolpakov FA. A bird's-eye overview of molecular mechanisms regulating feed intake in chickens-with mammalian comparisons. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:61-74. [PMID: 38737579 PMCID: PMC11087724 DOI: 10.1016/j.aninu.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, a lot of research has been conducted to explore poultry feeding behavior. However, up to now, the processes behind poultry feeding behavior remain poorly understood. The review generalizes modern expertise about the hormonal regulation of feeding behavior in chickens, focusing on signaling pathways mediated by insulin, leptin, and ghrelin and regulatory pathways with a cross-reference to mammals. This overview also summarizes state-of-the-art research devoted to hypothalamic neuropeptides that control feed intake and are prime candidates for predictors of feeding efficiency. Comparative analysis of the signaling pathways that mediate the feed intake regulation allowed us to conclude that there are major differences in the processes by which hormones influence specific neuropeptides and their contrasting roles in feed intake control between two vertebrate clades.
Collapse
Affiliation(s)
- Anastasiia R. Volyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Mikhail A. Kulyashov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Ivan S. Yevshin
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury, UK
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg A. Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement By Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Fedor A. Kolpakov
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
5
|
Takahashi M, Khan S, Cline MA, Tachibana T. Possible role of neuropeptide Y on zymosan- and lipopolysaccharide-induced change in gastrointestinal feed passage via the medulla oblongata in chicks. Comp Biochem Physiol A Mol Integr Physiol 2024; 289:111565. [PMID: 38147959 DOI: 10.1016/j.cbpa.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|
6
|
Intracerebroventricular injection taurine changes free amino acid concentrations in the brain and plasma in chicks. Amino Acids 2023; 55:183-192. [PMID: 36436082 DOI: 10.1007/s00726-022-03216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Brain amino acid metabolism has been reported to regulate body temperature, feeding behavior and stress response. Central injection of taurine induced hypothermic and anorexigenic effects in chicks. However, it is still unknown how the amino acid metabolism is influenced by the central injection of taurine. Therefore, the objective of this study was to investigate the changes in brain and plasma free amino acids following central injection of taurine. Five-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). Central taurine increased tryptophan concentrations in the diencephalon, and decreased tyrosine in the diencephalon, brainstem, cerebellum, telencephalon and plasma at 30 min post-injection. Taurine was increased in all the brain parts after ICV taurine. Although histidine and cystathionine concentrations were increased in the diencephalon and brainstem, several amino acids such as isoleucine, arginine, methionine, phenylalanine, glutamic acid, asparagine, proline, and alanine were reduced following central injection of taurine. All amino acid concentrations were decreased in the plasma after ICV taurine. In conclusion, central taurine quickly changes free amino acid concentrations in the brain and plasma, which may have a role in thermoregulation, food intake and stress response in chicks.
Collapse
|
7
|
Central Interaction Between L-Ornithine and Neuropeptide Y in the Regulation of Feeding Behavior of Neonatal Chicks. J Poult Sci 2023; 60:2023004. [PMID: 36756047 PMCID: PMC9884638 DOI: 10.2141/jpsa.2023004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Ornithine has been identified as a potential satiety signal in the brains of neonatal chicks. We hypothesized that brain nutrient signals such as amino acids and appetite-related neuropeptides synergistically regulate food intake. To test this hypothesis, we investigated the interaction between neuropeptide Y (NPY) and ornithine in the control of feeding behavior in chicks and the associated central and peripheral amino acid metabolic processes. Five-day-old chicks were intracerebroventricularly injected with saline, NPY (375 pmol), or NPY plus ornithine (2 or 4 μmol) at 10 μl per chick, and then subjected to ad libitum feeding conditions; food intake was monitored for 30 min after injection. Brain and plasma samples were collected after the experiment to determine free amino acid concentrations. Co-injection of NPY and ornithine significantly attenuated the orexigenic effect induced by NPY in a dose-dependent manner. Central NPY significantly decreased amino adipic acid, asparagine, γ-aminobutyric acid, leucine, phenylalanine, tyrosine, and isoleucine levels, but significantly increased lysine levels in the brain. Co-injection of NPY and ornithine significantly increased ornithine and proline levels in all examined brain regions, but decreased diencephalic tryptophan and glycine levels compared with those of the control and NPY-alone groups. Co-injection of NPY and high-dose ornithine significantly decreased methionine levels in all brain regions. Central NPY significantly suppressed the plasma concentrations of amino acids, including proline, asparagine, methionine, phenylalanine, tyrosine, leucine, isoleucine, glycine, glutamine, alanine, arginine, and valine, and this reduction was greater when NPY was co-injected with ornithine. These results suggest that brain ornithine interacts with NPY to regulate food intake in neonatal chicks. Furthermore, central NPY may induce an anabolic effect that is modified by co-injection with ornithine.
Collapse
|
8
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
9
|
Nishimura H, Wang Y, Elhussiny MZ, Tran PV, Haraguchi S, Cockrem JF, Bungo T, Furuse M, Chowdhury VS. Central administration of neuropeptide Y reduces the cellular heat stress response and may enhance spleen antioxidative functions in heat-exposed chicks. Neurosci Lett 2022; 784:136749. [PMID: 35728682 DOI: 10.1016/j.neulet.2022.136749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Previously it was found that mRNA expression of neuropeptide Y (NPY) was increased in the chicken brain under heat stress. NPY has also been reported as an anti-stress factor to regulate brain functions in heat-exposed chicks. However, to the best of our knowledge, there is no report on the action of central NPY in the immune organs under heat stress. The aim of this study was to examine whether central injection of NPY can regulate heat stress response in the spleen and liver. After intracerebroventricular (ICV) injection of NPY, chicks were exposed to control thermoneutral temperature (CT: 30 ± 1 °C) or high ambient temperature (HT: 35 ± 1 °C) chambers for 60 min. Central injection of NPY caused lowering in rectal temperature under CT, but not under HT. Moreover, ICV injection of NPY caused a significant lower mRNA expression of heat-shock protein-70 and higher expression of glutathione synthase in the spleen, but not liver. Furthermore, plasma uric acid concentrations were significantly increased by the ICV injection of NPY in chicks under HT. These results indicate that brain NPY may contribute to attenuate the intracellular heat stress response and enhance antioxidative status in the immune organ, spleen in chicks.
Collapse
Affiliation(s)
- Haruka Nishimura
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ying Wang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Elhussiny MZ, Nishimura H, Tran PV, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Intracerebroventricular injection of taurine induces hypothermia through modifying monoaminergic pathways in chicks. Eur J Pharmacol 2022; 928:175092. [PMID: 35697149 DOI: 10.1016/j.ejphar.2022.175092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Brain monoamines are reported to regulate body temperature and food intake. The objective of this study was to investigate the mechanism of brain monoamine metabolism in taurine-induced hypothermia and appetite suppression. In Experiment 1, 5-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 μmol/10 μL). In Experiment 2, the chicks were ICV injected with saline, taurine, fusaric acid (dopamine-β-hydroxylase inhibitor: 558 nmol), or taurine with fusaric acid. In Experiment 3, the chicks were ICV injected with saline, taurine, para-chlorophenylalanine (PCPA, tryptophan hydroxylase inhibitor: 400 nmol), or taurine with PCPA. In Experiment 4, the chicks were ICV injected with saline, taurine, clorgyline (monoamine oxidase inhibitor: 81 nmol), or taurine with clorgyline. Central taurine lowered rectal temperature at 30 min post-injection and increased norepinephrine in the brainstem and its metabolite 3-methoxy-4-hydroxyphenylglycol in both the diencephalon and brainstem. Similarly, taurine treatment induced increases in serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid in the diencephalon. Fusaric acid completely and PCPA partially, but not clorgyline, attenuated taurine-induced hypothermia. The anorexigenic effect of taurine was partially attenuated by PCPA, but not fusaric acid nor clorgyline. In conclusion, central taurine activates dopamine-β-hydroxylase and tryptophan hydroxylase to produce norepinephrine and 5-HT, and then induces hypothermia, but 5-HT alone may be linked with taurine-induced anorexia in chicks.
Collapse
Affiliation(s)
- Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Haruka Nishimura
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0306, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0306, USA
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, 794-8555, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
11
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
12
|
Elhussiny MZ, Tran PV, Tsuru Y, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Central Taurine Attenuates Hyperthermia and Isolation Stress Behaviors Augmented by Corticotropin-Releasing Factor with Modifying Brain Amino Acid Metabolism in Neonatal Chicks. Metabolites 2022; 12:metabo12010083. [PMID: 35050205 PMCID: PMC8781603 DOI: 10.3390/metabo12010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 μmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, β-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.
Collapse
Affiliation(s)
- Mohamed Z. Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Phuong V. Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Yuriko Tsuru
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan;
| | - Elizabeth R. Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Mark A. Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan;
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Vishwajit S. Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Division of Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|
13
|
Tran PV, Tamura Y, Pham CV, Elhussiny MZ, Han G, Chowdhury VS, Furuse M. Neuropeptide Y modifies a part of diencephalic catecholamine but not indolamine metabolism in chicks depending on feeding status. Neuropeptides 2021; 89:102169. [PMID: 34229214 DOI: 10.1016/j.npep.2021.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The role of the monoaminergic system in the feeding behavior of neonatal chicks has been reported, but the functional relationship between the metabolism of monoamines and appetite-related neuropeptides is still unclear. This study aimed to investigate the changes in catecholamine and indolamine metabolism in response to the central action of neuropeptide Y (NPY) in different feeding statuses and the underlying mechanisms. In Experiment 1, the diencephalic concentrations of amino acids and monoamines following the intracerebroventricular (ICV) injection of NPY (375 pmol/10 μl/chick), saline solution under ad libitum, and fasting conditions for 30 min were determined. Central NPY significantly decreased L-tyrosine concentration, the precursor of catecholamines under feeding condition, but not under fasting condition. Central NPY significantly increased dopamine metabolites, including 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). The concentration of 3-methoxy-4-hydroxyphenylglycol was significantly reduced under feeding condition, but did not change under fasting condition by NPY. However, no effects of NPY on indolamine metabolism were found in either feeding status. Therefore, the mechanism of action of catecholamines with central NPY under feeding condition was elucidated in Experiment 2. Central NPY significantly attenuated diencephalic gene expression of catecholaminergic synthetic enzymes, such as tyrosine hydroxylase, L-aromatic amino acid decarboxylase, and GTP cyclohydrolase I after 30 min of feeding. In Experiment 3, co-injection of α-methyl-L-tyrosine, an inhibitor of tyrosine hydroxylase with NPY, moderately attenuated the orexigenic effect of NPY, accompanied by a significant positive correlation between food intake and HVA levels. In Experiment 4, there was a significant interaction between NPY and clorgyline, an inhibitor of monoamine oxidase A with ICV co-injection which implies that co-existence of NPY and clorgyline enhances the orexigenic effect of NPY. In conclusion, central NPY modifies a part of catecholamine metabolism, which is illustrated by the involvement of dopamine transmission and metabolism under feeding but not fasting conditions.
Collapse
Affiliation(s)
- Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yui Tamura
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Cuong V Pham
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Division of Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Kamkrathok B, Sartsoongnoen N, Chaiseha Y. Neuropeptide Y and maternal behavior in the female native Thai chicken. Acta Histochem 2021; 123:151698. [PMID: 33711725 DOI: 10.1016/j.acthis.2021.151698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
Maternal care behaviors in birds include incubation and rearing behaviors. During incubating period, the hens stop laying and eating less due to food restriction as a natural fasting when compared with the rearing hens, resulting in low production of eggs and chicks. Neuropeptide Y (NPY), a neurotransmitter/neuromodulator, is very well known to be involved in food intake regulation in birds and mammals. The objective of this study is to elucidate the association between NPY and maternal behaviors in the female native Thai chicken. The distributions of NPY-immunoreactive (-ir) neurons and fibers in the brain of the incubating (INC), nest-deprived (ND), and replaced-egg-with-chicks (REC) hens at day 6 were determined utilizing immunohistochemistry technique. The results revealed that the distributions of NPY-ir neurons and fibers were observed within the septalis lateralis, nucleus rotundus, and nucleus dorsolateralis anterior thalami, with predominantly located within the the nucleus paraventricularis magnocellularis (PVN). NPY-ir fibers were located throughout the brain and the densest NPY-ir fibers were distributed in a discrete region lying close to the ventriculus tertius (third ventricle) through the hypothalamus. Changes in the number of NPY-ir neurons within the PVN of the INC, ND, and REC hens were compared at different time points (at days 6 and 14). Interestingly, the number of NPY-ir neurons within the PVN was significantly higher (P < 0.05) in the INC hens when compared with those of the ND and REC hens at day 14 but not day 6. In addition, the number of NPY-ir neurons within the PVN of the INC hens was significantly increased (P < 0.05) from day 6 to day 14 but not the ND and REC hens. These results indicated, for the first time, the asscociation between NPY and maternal behaviors in the femle native Thai chicken. Change in the number of NPY-ir neurons within the PVN during the transition from incubating to rearing behavior suggested the possible role of NPY in the regulation of the maternal behaviors in this equatorial species. In addition, the native Thai chicken might be an excellent animal model for the study of this phenomenon.
Collapse
Affiliation(s)
- Boonyarit Kamkrathok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natagarn Sartsoongnoen
- Program of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
15
|
Elhussiny MZ, Tran PV, Pham CV, Nguyen LTN, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Central GABA A receptor mediates taurine-induced hypothermia and possibly reduces food intake in thermo-neutral chicks and regulates plasma metabolites in heat-exposed chicks. J Therm Biol 2021; 98:102905. [PMID: 34016332 DOI: 10.1016/j.jtherbio.2021.102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.
Collapse
Affiliation(s)
- Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Department of Animal & Poultry Behaviour and Management, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Cuong V Pham
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Linh T N Nguyen
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Laboratory of Stress Physiology and Metabolism, Division of Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Ouchi Y, Tanizawa H, Shiraishi JI, Cockrem JF, Chowdhury VS, Bungo T. Repeated thermal conditioning during the neonatal period affects behavioral and physiological responses to acute heat stress in chicks. J Therm Biol 2020; 94:102759. [PMID: 33293000 DOI: 10.1016/j.jtherbio.2020.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of repeated thermal conditioning (RTC) at an early age on physiological and behavioral responses in chicks. METHODS Birds were assigned to one of the four treatments in which the RTC was exposure to 40 °C for 15 min daily. The treatments were 1) no thermal conditioning (control); 2) early exposure group (EE; RTC from 2 to 4 days of age); 3) later exposure group (LE; RTC from 5 to 7 days of age); or 4) both early and later exposure (BE; RTC from 2 to 7 days of age). All groups of chicks were challenged with high ambient temperature (40 °C for 15 min) at two weeks of age. RESULTS During heat challenge, initiation times of dissipation behaviors (panting and wing-drooping) were measured. Rectal temperature and respiration rate were measured after and before heat challenge. Hypothalamic samples and blood were collected at the end of heat challenges. Initiation times of dissipation behaviors and rectal temperature were not affected by the treatments. Increases in respiration rate in response to heat challenge were suppressed by early RTC treatment. There was no clear pattern of glucose levels in relation to thermal conditioning, whereas plasma corticosterone levels were decreased by early treatment (EE and BE groups). Hypothalamic thyrotropin releasing hormone gene expression was suppressed by early and later thermal conditioning and suppressed further by both early and later exposure. Neuropeptide Y gene expression in the BE group was lower than in the other groups, with a similar trend for corticotropin releasing hormone expression. CONCLUSION Our results suggest that the effect of repeated thermal conditioning on the central thermoregulatory system depends on the number of times that chicks experienced conditioning. In addition, repeated thermal conditioning has greater effects on the acquisition of thermotolerance when conditioning occurs in chicks of two to four days of age in comparison with chicks of five to seven days of age.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Laboratory of Animal Behavior and Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroshi Tanizawa
- Laboratory of Animal Behavior and Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Jun-Ichi Shiraishi
- Department of Animal Science, Nippon Veterinary and Life Science University, Musashino, 180-8602, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| | - Vishwajit S Chowdhury
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
17
|
Hypothermia induced by central injection of sucralose potentially occurs via monoaminergic pathways in the hypothalamus of chicks. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110752. [DOI: 10.1016/j.cbpa.2020.110752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/03/2023]
|
18
|
Shiraishi JI, Yanagita K, Tanizawa H, Bungo T. Glycyl-l-glutamine attenuates NPY-induced hyperphagia via the melanocortin system. Neurosci Lett 2020; 736:135303. [PMID: 32800923 DOI: 10.1016/j.neulet.2020.135303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
This study aimed to determine whether glycyl-l-glutamine (Gly-Gln; β-endorphin (30-31)), a non-opioid peptide derived from β-endorphin processing, modulates neuropeptide Y (NPY)-induced feeding and hypothalamic mRNA expression of peptide hormones in male broiler chicks. Intracerebroventricular injection of NPY (235 pmol) generated a hyperphagic response in ad libitum chicks within 30 min. Co-administration of Gly-Gln (100 nmol) attenuated this response, inducing a 30 % decrease. This was not attributable to Gly-Gln hydrolysis because co-administration of glycine (Gly) and glutamine (Gln) had no effect on NPY-induced hyperphagia. Gly-Gln injected alone also showed no effect. The hypothalamic pro-opiomelanocortin mRNA expression in the co-injection group was significantly higher than that in the NPY alone group. These data indicate that endogenous Gly-Gln may contribute to regulate feeding behavior via the central melanocortin system in chicks and acts as a counter regulator of the neural activity in energy metabolism.
Collapse
Affiliation(s)
- Jun-Ichi Shiraishi
- Laboratory of Applied Animal Biochemistry, Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan.
| | - Kouichi Yanagita
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroshi Tanizawa
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
19
|
Chowdhury VS. Heat Stress Biomarker Amino Acids and Neuropeptide Afford Thermotolerance in Chicks. J Poult Sci 2019; 56:1-11. [PMID: 32055190 PMCID: PMC6993887 DOI: 10.2141/jpsa.0180024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
With global warming, heat stress is becoming a pressing concern worldwide. In chickens, heat stress reduces food intake and growth, and increases body temperature and stress responses. Although it is believed that young chicks do not experience heat stress as they need a higher ambient temperature to survive, our series of studies in young chicks showed that they are sensitive to heat stress. This review summarizes current knowledge on amino acid metabolisms during heat stress, with special emphasis on the hypothermic functions of l-citrulline (l-Cit) and l-leucine (l-Leu), and the functions of neuropeptide Y (NPY) in terms of body temperature and heat stress regulation in chicks. Amino acid metabolism is severely affected by heat stress. For example, prolonged heat stress reduces plasma l-Cit in chicks and l-Leu in the brain and liver of embryos. l-Cit and l-Leu supplementation affords thermotolerance in young chicks. NPY expression is increased in the brains of heat-exposed chicks. NPY has a hypothermic action under control thermoneutral temperature and heat stress in chicks. The NPY-sub-receptor Y5 is a partial mediator of the hypothermic action of NPY. Further, NPY stimulates brain dopamine concentrations and acts as an anti-stress agent in heat-exposed fasted, but not fed chicks. In conclusion, young chicks can serve as a model animal for the study of heat stress in chickens. l-Cit, l-Leu, and NPY were identified as biomarkers of heat stress, with the potential to afford thermotolerance in chicks.
Collapse
Affiliation(s)
- Vishwajit S. Chowdhury
- Lab of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Bahry MA, Yang H, Tran PV, Do PH, Han G, Eltahan HM, Chowdhury VS, Furuse M. Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 2018; 71:90-96. [PMID: 30220422 DOI: 10.1016/j.npep.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/01/2018] [Accepted: 09/02/2018] [Indexed: 01/19/2023]
Abstract
Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ± 1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ± 1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Visiting Researcher from Animal Production Research Institute, Agriculture Research Center, Agriculture Ministry, and Division for Poultry Production, Faculty of Agriculture, Kafr-Elsheikh University, Egypt
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Eltahan HM, Bahry MA, Yang H, Han G, Nguyen LTN, Ikeda H, Ali MN, Amber KA, Furuse M, Chowdhury VS. Central NPY-Y5 sub-receptor partially functions as a mediator of NPY-induced hypothermia and affords thermotolerance in heat-exposed fasted chicks. Physiol Rep 2018; 5. [PMID: 29208684 PMCID: PMC5727273 DOI: 10.14814/phy2.13511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
Exposure of chicks to a high ambient temperature (HT) has previously been shown to increase neuropeptide Y (NPY) mRNA expression in the brain. Furthermore, it was found that NPY has anti‐stress functions in heat‐exposed fasted chicks. The aim of the study was to reveal the role of central administration of NPY on thermotolerance ability and the induction of heat‐shock protein (HSP) and NPY sub‐receptors (NPYSRs) in fasted chicks with the contribution of plasma metabolite changes. Six‐ or seven‐day‐old chicks were centrally injected with 0 or 375 pmol of NPY and exposed to either HT (35 ± 1°C) or control thermoneutral temperature (CT: 30 ± 1°C) for 60 min while fasted. NPY reduced body temperature under both CT and HT. NPY enhanced the brain mRNA expression of HSP‐70 and ‐90, as well as of NPYSRs‐Y5, ‐Y6, and ‐Y7, but not ‐Y1, ‐Y2, and ‐Y4, under CT and HT. A coinjection of an NPYSR‐Y5 antagonist (CGP71683) and NPY (375 pmol) attenuated the NPY‐induced hypothermia. Furthermore, central NPY decreased plasma glucose and triacylglycerol under CT and HT and kept plasma corticosterone and epinephrine lower under HT. NPY increased plasma taurine and anserine concentrations. In conclusion, brain NPYSR‐Y5 partially afforded protective thermotolerance in heat‐exposed fasted chicks. The NPY‐mediated reduction in plasma glucose and stress hormone levels and the increase in free amino acids in plasma further suggest that NPY might potentially play a role in minimizing heat stress in fasted chicks.
Collapse
Affiliation(s)
- Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Linh T N Nguyen
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mohamed N Ali
- Agriculture Research Center, Animal Production Research Institute, Agriculture Ministry, Cairo, Egypt
| | - Khairy A Amber
- Division for Poultry Production, Faculty of Agriculture, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Bahry MA, Chowdhury VS, Yang H, Tran PV, Do PH, Han G, Ikeda H, Cockrem JF, Furuse M. Central administration of neuropeptide Y differentially regulates monoamines and corticosterone in heat-exposed fed and fasted chicks. Neuropeptides 2017; 62:93-100. [PMID: 27979380 DOI: 10.1016/j.npep.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/17/2016] [Accepted: 11/27/2016] [Indexed: 12/23/2022]
Abstract
Recently, we demonstrated that brain neuropeptide Y (NPY) mRNA expression was increased in heat exposed chicks. However, the functions of brain NPY during heat stress are unknown. This study was conducted to investigate whether centrally administered NPY affects food intake, rectal temperature, monoamines, stress hormones and plasma metabolites in chicks under high ambient temperatures (HT). Five or six-day-old chicks were centrally injected with 0, 188 or 375pmol of NPY and exposed to either HT (35±1°C) or a control thermoneutral temperature (CT; 30±1°C) for 3h whilst fed or fasted. NPY increased food intake under both CT and HT. NPY reduced rectal temperature 1 and 2h after central administration under CT, but not under HT. Interestingly, NPY decreased brain serotonin and norepinephrine concentrations in fed chicks, but increased concentrations of brain dopamine and its metabolites in fasted and fed chicks, respectively. Plasma epinephrine was decreased by NPY in fed chicks, but plasma concentrations of norepinephrine and epinephrine were increased significantly by NPY in fasted-heat exposed chicks. Furthermore, NPY significantly reduced plasma corticosterone concentrations in fasted chicks. Plasma glucose and triacylglycerol were increased by NPY in fed chicks, but triacylglycerol declined in fasted NPY-injected chicks. In conclusion, brain NPY may attenuate the reduction of food intake during heat stress and the increased brain NPY might be a potential regulator of the monoamines and corticosterone to modulate stress response in heat-exposed chicks.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
23
|
Gao S, Zhang J, He C, Meng F, Bu G, Zhu G, Li J, Wang Y. Molecular characterization of neuropeptide Y (NPY) receptors (Y1, Y4 and Y6) and investigation of the tissue expression of their ligands (NPY, PYY and PP) in chickens. Gen Comp Endocrinol 2017; 240:46-60. [PMID: 27641685 DOI: 10.1016/j.ygcen.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY) receptors and its ligands, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are suggested to regulate many physiological processes including food intake in birds. However, our knowledge regarding this avian NPY system remains rather limited. Here, we examined the tissue expression of NPY, PYY and PP and the gene structure, expression and signaling of three NPY receptors (cY1, cY4 and cY6) in chickens. The results showed that 1) NPY is widely expressed in chicken tissues with abundance noted in the hypothalamus via quantitative real-time PCR, whereas PYY is highly expressed in the pancreas, gastrointestinal tract and various brain regions, and PP is expressed almost exclusively in the pancreas; 2) cY1, cY4 and cY6 contain novel non-coding exon(s) at their 5'-UTR; 3) The wide tissue distribution of cY1 and cY4 and cY6 were detected in chickens by quantitative real-time PCR and their expression is controlled by the promoter near exon 1, which displays strong promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 4) Monitored by luciferase reporter assays, activation of cY1 and cY4 expressed in HEK293 cells by chicken NPY1-36, PYY1-37, and PP1-36 treatment inhibits cAMP/PKA and activates MAPK/ERK signaling pathways, while cY6-expressing cells show little response to peptide treatment, indicating that cY1 and cY4, and not cY6, can transmit signals in vitro. Taken together, our study offers novel information about the expression and functionality of cY1, cY4, cY6 and their ligands in birds, and helps to decipher their conserved roles in vertebrates.
Collapse
Affiliation(s)
- Shunyu Gao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; College of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Chen He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Fengyan Meng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guoqiang Zhu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
24
|
He C, Zhang J, Gao S, Meng F, Bu G, Li J, Wang Y. Molecular characterization of three NPY receptors (Y2, Y5 and Y7) in chickens: Gene structure, tissue expression, promoter identification, and functional analysis. Gen Comp Endocrinol 2016; 236:24-34. [PMID: 27142335 DOI: 10.1016/j.ygcen.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Six neuropeptide Y (NPY) receptors are suggested to mediate the biological actions of NPY, peptide YY (PYY), and pancreatic polypeptide (PP), such as food intake in birds, however, information regarding the structure and signaling of avian NPY receptors are rather limited. In this study, we investigated the gene structure, tissue expression and signaling property of three NPY receptors (cY2, cY5 and cY7) in chickens. The results showed that 1) cY2, cY5 and cY7 contain novel non-coding exons upstream of their start codon and alternative mRNA splicing in their 5'-UTR results in the formation of multiple transcript variants; 2) cY2, cY5 and cY7 transcripts were detected to be widely expressed in adult chicken tissues including various brain regions by RT-PCR, and their expression is controlled by a promoter(s) near exon 1, which display promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 3) cY2, cY5 and cY7 expressed in HEK293 cells were preferentially (or potently) activated by cNPY1-36 and cPYY1-37, but not by cPP1-36, and their activation led to the inhibition of cAMP/PKA signaling pathway and activation of MAPK/ERK signaling pathway, monitored by the cell-based luciferase reporter systems or western blots, indicating that the three NPY receptors are functional and capable of transmitting signals effectively. On the whole, our data establishes a molecular basis to elucidate the actions of three functional NPY receptors (cY2, cY5 and cY7) and their ligands in birds, which helps to uncover the conserved roles of these ligand-receptor pairs in vertebrates.
Collapse
Affiliation(s)
- Chen He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Shunyu Gao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; College of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Fengyan Meng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
25
|
Buzala M, Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016; 95:2151-9. [PMID: 27194733 DOI: 10.3382/ps/pew173] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic selection that has been carried out for several dozen years has led to significant progress in poultry production by improving productive traits and increasing the profitability of broiler breeder and layer hen production. After hatching, broilers and layers differ mainly in feed intake, growth rate, efficiency of nutrient utilization, and development of muscles and adipose tissue. A key role can be played by hormonal mechanisms of appetite control in broilers and layers. The paper discusses the consequences of different growth rates resulting from long-term genetic selection on feed intake, efficiency of nutrient utilization, and development of muscles and adipose tissue, with particular consideration of the hormonal mechanisms of appetite control in broilers and layers. The information presented in this review paper shows that it would be worth comparing these issues in a meta-analysis.
Collapse
Affiliation(s)
- M Buzala
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - B Janicki
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
26
|
Ito K, Bahry MA, Hui Y, Furuse M, Chowdhury VS. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:13-9. [PMID: 25933935 DOI: 10.1016/j.cbpa.2015.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 01/03/2023]
Abstract
Heat stress causes an increase in body temperature and reduced food intake in chickens. Several neuropeptides and amino acids play a vital role in the regulation of food intake. However, the responses of neuropeptides and amino acids to heat-stress-induced food-intake regulation are poorly understood. In the current study, the hypothalamic mRNA expression of some neuropeptides related to food intake and the content of free amino acids in the brain and plasma was examined in 14-day-old chicks exposed to a high ambient temperature (HT; 40±1 °C for 2 or 5 h) or to a control thermoneutral temperature (CT; 30±1 °C). HT significantly increased rectal temperature and plasma corticosterone level and suppressed food intake. HT also increased the expression of neuropeptide Y (NPY) and agouti-signaling protein (ASIP) precursor mRNA, while no change was observed in pro-opiomelanocortin, cholecystokinin, ghrelin, or corticotropin-releasing hormone precursor mRNA. It was further found that the diencephalic content of free amino acids - namely, tryptophan, leucine, isoleucine, valine and serine - was significantly higher in HT chicks with some alterations in their plasma amino acids in comparison with CT chicks. The induction of NPY and ASIP expression and the alteration of some free amino acids during HT suggest that these changes can be the results or causes the suppression of food intake.
Collapse
Affiliation(s)
- Kentaro Ito
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yang Hui
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
27
|
Tachibana T, Moriyama S, Khan MSI, Sakamoto T. Central administration of prolactin-releasing peptide shifts the utilities of metabolic fuels from carbohydrate to lipids in chicks. Physiol Behav 2013; 120:40-5. [PMID: 23816984 DOI: 10.1016/j.physbeh.2013.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
We have recently identified prolactin (PRL)-releasing peptides (PrRPs) and their stimulating effects on feeding behavior in chicks. To investigate further metabolic functions of PrRP, the present study was performed to clarify whether intracerebroventricular (ICV) injection of PrRP31, an active form of PrRP in chicks, affects heat production (HP), respiratory quotient (RQ) and plasma concentrations of metabolic fuels in chicks. The ICV injection of PrRP31 (94 and 375 pmol) did not affect HP but significantly lowered RQ. The change in RQ implies that PrRP31 shifted the utility of metabolic fuels in the body. This idea was confirmed by subsequent results in which ICV injection of PrRP31 significantly reduced glucose but increased non-esterified fatty acid concentrations in plasma. These shifts in blood metabolic fuels would not be through the increased plasma insulin, because the ICV injection of PrRP31 significantly decreased plasma insulin concentration. On the other hand, ICV injection of another orexigenic peptide, neuropeptide Y (NPY) also induced the insulin release and the metabolic effects were similar to those of PrRP31. Because ICV injection of PrRP31 increased NPY mRNA in the diencephalon, the NPY may mediate the metabolic functions of PrRP31. In summary, the present study suggests that central PrRP31 shifts the utilities of peripheral energy sources, which is not via hyperinsulinemia but via the diencephalon.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan.
| | | | | | | |
Collapse
|
28
|
Saneyasu T, Honda K, Kamisoyama H, Ikura A, Nakayama Y, Hasegawa S. Neuropeptide Y effect on food intake in broiler and layer chicks. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:422-6. [DOI: 10.1016/j.cbpa.2011.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
29
|
Sundström G, Larsson TA, Brenner S, Venkatesh B, Larhammar D. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. Gen Comp Endocrinol 2008; 155:705-16. [PMID: 17950734 DOI: 10.1016/j.ygcen.2007.08.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 11/16/2022]
Abstract
Despite sequence information from many vertebrates the evolution of the neuropeptide Y (NPY) family of peptides has been difficult to resolve, particularly among ray-finned fishes. We have used chromosomal location and sequence analyses to identify orthologs and gene duplicates in teleost fish genomes. Our analyses support origin of NPY and peptide YY (PYY) from a common ancestor in early vertebrate evolution through a chromosome duplication. We report here that the teleost tetraploidization generated duplicates of both NPY and PYY and that all four genes are still present in the two sequenced pufferfish genomes Tetraodon nigroviridis and Takifugu rubripes as well as three-spined stickleback, Gasterosteus aculeatus. The zebrafish Danio rerio NPYb gene has probably been lost whereas medaka, Oryzias latipes seems to lack PYYb. Some of the previously published PYY sequences were misidentified and actually constitute NPYb. Our analyses confirm that the peptide previously named PY in some fish species is a duplicate of the PYY gene and hence should be called PYYb. The NPYa and NPYb genes in Takifugu rubripes are predominantly expressed in brain, as detected by RT-PCR, whereas PYYa and PYYb are expressed in several organs including brain, intestine and gonads. Thus, also the resemblance in expression pattern supports the fish gene duplication scenario. Our study shows that when sequence comparisons give ambiguous results, chromosomal location can serve as a useful criterion to identify orthologs. This strategy may help to resolve relationships in several families of short peptides.
Collapse
Affiliation(s)
- Görel Sundström
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M. Central administration of alpha-melanocyte-stimulating hormone changes lipid metabolism in chicks. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:408-12. [PMID: 17600745 DOI: 10.1016/j.cbpa.2007.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 11/27/2022]
Abstract
Alpha-melanocyte-stimulating hormone (MSH) is well known as an anorexigenic peptide in the brain of mammals. In addition to this, brain alpha-MSH enhances heat production (HP), indicating that the peptide acts as a catabolic factor in the regulation of energy metabolism. The anorexigenic effect of alpha-MSH is also observed in chicks (Gallus gallus), but no information has been available for its effect on HP. The present study was performed to examine whether intracerebroventricular (ICV) injection of alpha-MSH increases HP in chicks. The injection of alpha-MSH (10 and 100 pmol) did not affect oxygen consumption, carbon dioxide production and HP during the 1 h post-injection period. This result was supported by another result that ICV injection of alpha-MSH did not affect locomotion activity in chicks. In contrast, the respiratory quotient was significantly lowered by the ICV injection of MSH. We also found that alpha-MSH significantly increased plasma non-esterified fatty acid concentrations. In summary, brain alpha-MSH appears to exert generally catabolic effects on lipid metabolism in the chick, but does not appear to be involved in the regulation of HP.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
31
|
Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M. Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:1104-8. [PMID: 17466552 DOI: 10.1016/j.cbpa.2007.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 (GLP-1), derived from proglucagon, is thought to act as a negative regulator of energy homeostasis in mammals, since intracerebroventricular (ICV) injection of GLP-1 inhibits feeding behavior and enhances energy expenditure. The anorexigenic effect of GLP-1 is also observed in chicks, but whether brain GLP-1 enhances energy expenditure has not been investigated. The aim of the present study was to clarify the effect of ICV injection of GLP-1 on energy expenditure as well as metabolic changes in chicks. The injection of GLP-1 did not affect energy expenditure calculated from oxygen consumption and carbon dioxide production. On the other hand, the injection of GLP-1 significantly decreased respiratory quotient, suggesting that brain GLP-1 shifted the use of energy sources from carbohydrates to lipids. In support of this, ICV injection of GLP-1 increased plasma non-esterified fatty acid concentration while plasma glucose concentration was decreased. In conclusion, GLP-1 appears to act in the brain as a metabolic modulator rather than as a regulator of total energy expenditure in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|