1
|
Pries R, Kosyna FK, Depping R, Plötze-Martin K, Lange C, Meyhöfer S, Meyhöfer SM, Marquardt JU, Bruchhage KL, Steffen A. Distinguishing the impact of distinct obstructive sleep apnea syndrome (OSAS) and obesity related factors on human monocyte subsets. Sci Rep 2024; 14:340. [PMID: 38172514 PMCID: PMC10764945 DOI: 10.1038/s41598-023-49921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) and obesity go hand in hand in the majority of patients and both are associated with a systemic inflammation, immune disturbance and comorbidities such as cardiovascular disease. However, the unambiguous impact of OSAS and obesity on the individual inflammatory microenvironment and the immunological consequences of human monocytes has not been distinguished yet. Therefore, aim of this study was to investigate the impact of OSAS and obesity related factors on the inflammatory microenvironment by performing flow cytometric whole blood measurements of CD14/CD16 monocyte subsets in normal weight OSAS patients, patients with obesity but without OSAS, and patients with OSAS and obesity, compared to healthy donors. Moreover, explicitly OSAS and obesity related plasma levels of inflammatory mediators adiponectin, leptin, lipocalin and metalloproteinase-9 were determined and the influence of different OSAS and obesity related factors on cytokine secretion and expression of different adhesion molecules by THP-1 monocytes was analysed. Our data revealed a significant redistribution of circulating classical and intermediate monocytes in all three patient cohorts, but differential effects in terms of monocytic adhesion molecules CD11a, CD11b, CD11c, CX3CR1, CD29, CD49d, and plasma cytokine levels. These data were reflected by differential effects of OSAS and obesity related factors leptin, TNFα and hypoxia on THP-1 cytokine secretion patterns and expression of adhesion molecules CD11b and CD49d. In summary, our data revealed differential effects of OSAS and obesity, which underlines the need for a customized therapeutic regimen with respect to the individual weighting of these overlapping diseases.
Collapse
Affiliation(s)
- Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | - Friederike Katharina Kosyna
- Institute of Physiology, Working Group Hypoxia, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Reinhard Depping
- Institute of Physiology, Working Group Hypoxia, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Christian Lange
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Institute for Endocrinology & Diabetes, University Hospital of Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, University Hospital of Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jens U Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| |
Collapse
|
2
|
Franken LG, Francke MI, Andrews LM, van Schaik RHN, Li Y, de Wit LEA, Baan CC, Hesselink DA, de Winter BCM. A Population Pharmacokinetic Model of Whole-Blood and Intracellular Tacrolimus in Kidney Transplant Recipients. Eur J Drug Metab Pharmacokinet 2022; 47:523-535. [PMID: 35442010 PMCID: PMC9232416 DOI: 10.1007/s13318-022-00767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The tacrolimus concentration within peripheral blood mononuclear cells may correlate better with clinical outcomes after transplantation compared to concentrations measured in whole blood. However, intracellular tacrolimus measurements are not easily implemented in clinical practice. The prediction of intracellular concentrations based on whole-blood concentrations would be a solution for this. Therefore, the aim of this study was to describe the relationship between intracellular and whole-blood tacrolimus concentrations in a population pharmacokinetic (popPK) model. METHODS Pharmacokinetic analysis was performed using non-linear mixed effects modelling software (NONMEM). The final model was evaluated using goodness-of-fit plots, visual predictive checks, and a bootstrap analysis. RESULTS A total of 590 tacrolimus concentrations from 184 kidney transplant recipients were included in the study. All tacrolimus concentrations were measured in the first three months after transplantation. The intracellular tacrolimus concentrations (n = 184) were best described with an effect compartment. The distribution into the effect compartment was described by the steady-state whole-blood to intracellular ratio (RWB:IC) and the intracellular distribution rate constant between the whole-blood and intracellular compartments. Lean body weight was negatively correlated [delta objective function value (ΔOFV) -8.395] and haematocrit was positively correlated (ΔOFV = - 6.752) with RWB:IC, and both lean body weight and haematocrit were included in the final model. CONCLUSION We were able to accurately describe intracellular tacrolimus concentrations using whole-blood concentrations, lean body weight, and haematocrit values in a popPK model. This model may be used in the future to more accurately predict clinical outcomes after transplantation and to identify patients at risk for under- and overexposure. Dutch National Trial Registry number NTR2226.
Collapse
Affiliation(s)
- Linda G Franken
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands. .,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yi Li
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
4
|
Elaraby E, Malek AI, Abdullah HW, Elemam NM, Saber-Ayad M, Talaat IM. Natural Killer Cell Dysfunction in Obese Patients with Breast Cancer: A Review of a Triad and Its Implications. J Immunol Res 2021; 2021:9972927. [PMID: 34212054 PMCID: PMC8205589 DOI: 10.1155/2021/9972927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Natural killer cells (NK cells) are a crucial constituent of the innate immune system as they mediate immunity against viruses, bacteria, parasites, and most importantly, tumor cells. The exact mechanism of how the innate immune system and specifically NK cells interact with cancer cells is complex and is yet to be understood. Several factors that constitute the tumor microenvironment (TME) such as hypoxia and TGF-β are believed to play a role in the complex physiological reaction of NK cells to tumor cells. On the other hand, several risk factors are implicated in the development and progression of breast cancer, most importantly: obesity. Cytokines released from adipose tissue such as adipokines, leptin, and resistin, among others, are also believed to facilitate tumor progression. In this study, we aimed to build a triad of breast cancer, obesity, and NK cell dysfunction to elucidate a link between these pillars on a cellular level. Directing efforts towards solidifying the link between these factors will help in designing a targeted immunotherapy with a low side-effect profile that can revolutionize breast cancer treatment and improve survival in obese patients.
Collapse
Affiliation(s)
- Esraa Elaraby
- College of Medicine, University of Sharjah, Sharjah, UAE
| | | | | | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Souza-Almeida G, Palhinha L, Liechocki S, da Silva Pereira JA, Reis PA, Dib PRB, Hottz ED, Gameiro J, Vallochi AL, de Almeida CJ, Castro-Faria-Neto H, Bozza PT, Maya-Monteiro CM. Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. J Leukoc Biol 2021; 109:1131-1138. [PMID: 33070353 DOI: 10.1002/jlb.3ab0820-092rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Leptin is a pleiotropic adipokine that regulates immunometabolism centrally and peripherally. Obese individuals present increased levels of leptin in the blood and develop hypothalamic resistance to this adipokine. Here we investigated whether leptin effects on the periphery are maintained despite the hypothalamic resistance. We previously reported that leptin injection induces in vivo neutrophil migration and peritoneal macrophage activation in lean mice through TNF-α- and CXCL1-dependent mechanisms. However, leptin effects on leukocyte biology during obesity remain unclear. In this study, we investigated the in vivo responsiveness of leukocytes to i.p. injected leptin in mice with diet-induced obesity (DIO). After 14-16 wk, high-sucrose, high-fat diet (HFD)-fed mice showed hyperglycemia, hyperleptinemia, and dyslipidemia compared to normal-sucrose, normal-fat diet (ND). Exogenous leptin did not reduce food intake in DIO mice in contrast to control mice, indicating that DIO mice were centrally resistant to leptin. Regardless of the diet, we found increased levels of TNF-α and CXCL1 in the animals injected with leptin, alongside a pronounced neutrophil migration to the peritoneal cavity and enhanced biogenesis of lipid droplets in peritoneal macrophages. Supporting our in vivo results, data from ex vivo leptin stimulation experiments confirmed hypothalamic resistance in DIO mice, whereas bone marrow cells responded to leptin stimulation through mTOR signaling despite obesity. Altogether, our results show that leukocytes responded equally to leptin in ND- or HFD-fed mice. These results support a role for leptin in the innate immune response also in obesity, contributing to the inflammatory status that leads to the development of metabolic disease.
Collapse
Affiliation(s)
- Glaucia Souza-Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Current address: Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adriana Lima Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Jacques de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
7
|
Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol 2020; 11:245. [PMID: 32231659 PMCID: PMC7082404 DOI: 10.3389/fimmu.2020.00245] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is accompanied by a systemic chronic low-grade inflammation as well as dysfunctions of several innate and adaptive immune cells. Recent findings emphasize an impaired functionality and phenotype of natural killer (NK) cells under obese conditions. This review provides a detailed overview on research related to overweight and obesity with a particular focus on NK cells. We discuss obesity-associated alterations in subsets, distribution, phenotype, cytotoxicity, cytokine secretion, and signaling cascades of NK cells investigated in vitro as well as in animal and human studies. In addition, we provide recent insights into the effects of physical activity and obesity-associated nutritional factors as well as the reduction of body weight and fat mass on NK cell functions of obese individuals. Finally, we highlight the impact of impaired NK cell physiology on obesity-associated diseases, focusing on the elevated susceptibility for viral infections and increased risk for cancer development and impaired treatment response.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Alipoor E, Mohammad Hosseinzadeh F, Hosseinzadeh-Attar MJ. Adipokines in critical illness: A review of the evidence and knowledge gaps. Biomed Pharmacother 2018; 108:1739-1750. [PMID: 30372877 DOI: 10.1016/j.biopha.2018.09.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Adipose tissue products or adipokines play a major role in chronic endocrine and metabolic disorders; however, little is known about critical conditions. In this article, the experimental and clinical evidence of alterations of adipokines, adiponectin, leptin, resistin, visfatin, asymmetric dimethylarginine (ADMA), and ghrelin in critical illness, their potential metabolic, diagnostic, and prognostic value, and the gaps in the field have been reviewed. The results showed considerable changes in the concentration of the adipokines; while the impact of adipokines on metabolic disorders such as insulin resistance and inflammation has not been well documented in critically ill patients. There is no consensus about the circulatory and functional changes of leptin and adiponectin. However, it seems that lower concentrations of adiponectin at admission with gradual consequent increase might be a useful pattern in determining better outcomes of critical illness. Some evidence has suggested the adverse effects of elevated resistin concentration, potential prognostic importance of visfatin, and therapeutic value of ghrelin. High ADMA levels and low arginine:ADMA ratio were also proposed as predictors of ICU mortality and morbidities. However, there is no consensus on these findings. Although primary data indicated the role of adipokines in critical illness, further studies are required to clarify whether the reason of these changes is pathophysiological or compensatory. The relationship of pathophysiological background, disease severity, baseline nutritional status and nutrition support during hospitalization, and variations in body fat percentage and distribution with adipokines, as well as the potential prognostic or therapeutic role of these peptides should be further investigated in critically ill patients.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammad Hosseinzadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
9
|
|
10
|
Humeres C, Vivar R, Boza P, Muñoz C, Bolivar S, Anfossi R, Osorio JM, Olivares-Silva F, García L, Díaz-Araya G. Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro. J Mol Cell Cardiol 2016; 101:S0022-2828(16)30392-3. [PMID: 27983968 DOI: 10.1016/j.yjmcc.2016.10.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing. Adult rat CF, were treated with lipopolysaccharide (LPS) or TGF-β1, to evaluate ICAM-1 and VCAM-1 expression using Western blot and proinflammatory/profibrotic cytokine secretion using LUMINEX. We performed in vitro migration and adhesion assays of rat spleen monocytes to layers of TGF-β1- or LPS-pretreated CF. Finally, TGF-β1- or LPS-pretreated CF were co-cultured with monocyte, to evaluate their effects on macrophage polarization, using flow cytometry and cytokine secretion. There was a significant increase in monocyte adhesion to LPS- or TGF-β1-stimulated CF, associated with increased CF expression of ICAM-1 and VCAM-1. siRNA silencing of either ICAM-1 or VCAM-1 inhibited monocyte adhesion to LPS-pretreated CF; however, monocyte adhesion to TGF-β1-treated CF was dependent on only VCAM-1 expression. Pretreatment of CF with LPS or TGF-β1 increased monocyte migration to CF, and this effect was completely abolished with an MCP-1 antibody blockade. LPS-treated CF secreted elevated levels of TNF-α and MCP-1, and when co-cultured with monocyte, LPS-treated CF stimulated increased macrophage M1 polarization and secretion of proinflammatory cytokines (TNF-α, IL-12 and MCP-1). On the other hand, CF stimulated with TGF-β1 produced an anti-inflammatory cytokine profile (high IL-10 and IL-5, low TNF-α). When co-cultured with monocytes, the TGF-β1 stimulated fibroblasts skewed monocyte differentiation towards M2 macrophages accompanied by increased IL-10 and decreased IL-12 levels. Taken together, our results show for the first time that CF can recruit monocytes (via MCP-1-mediated chemotaxis and adhesion to ICAM-1/VCAM-1) and induce their differentiation to M1 or M2 macrophages (through the CF cytokine profile induced by proinflammatory or profibrotic stimuli).
Collapse
Affiliation(s)
- Claudio Humeres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile; Centro Avanzado de Enfermedades Crónicas (ACCDis), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Pia Boza
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Claudia Muñoz
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Samir Bolivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Renatto Anfossi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Jose Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Francisco Olivares-Silva
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Lorena García
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile; Centro Avanzado de Enfermedades Crónicas (ACCDis), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile; Centro Avanzado de Enfermedades Crónicas (ACCDis), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile,Chile.
| |
Collapse
|
11
|
Spradley FT, Palei AC, Granger JP. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015; 5:3142-76. [PMID: 26569331 PMCID: PMC4693273 DOI: 10.3390/biom5043142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is characterized by hypertension occurring after the twentieth week of pregnancy. It is a significant contributor to maternal and perinatal morbidity and mortality in developing countries and its pervasiveness is increasing within developed countries including the USA. However, the mechanisms mediating the pathogenesis of this maternal disorder and its rising prevalence are far from clear. A major theory with strong experimental evidence is that placental ischemia, resulting from inappropriate remodeling and widening of the maternal spiral arteries, stimulates the release of soluble factors from the ischemic placenta causing maternal endothelial dysfunction and hypertension. Aberrant maternal immune responses and inflammation have been implicated in each of these stages in the cascade leading to PE. Regarding the increased prevalence of this disease, it is becoming increasingly evident from epidemiological data that obesity, which is a state of chronic inflammation in itself, increases the risk for PE. Although the specific mechanisms whereby obesity increases the rate of PE are unclear, there are strong candidates including activated macrophages and natural killer cells within the uterus and placenta and activation in the periphery of T helper cells producing cytokines including TNF-α, IL-6 and IL-17 and the anti-angiogenic factor sFlt-1 and B cells producing the agonistic autoantibodies to the angiotensin type 1 receptor (AT1-aa). This review will focus on the immune mechanisms that have been implicated in the pathogenesis of hypertension in PE with an emphasis on the potential importance of inflammatory factors in the increased risk of developing PE in obese pregnancies.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Ana C Palei
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
12
|
Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol 2015. [DOI: 10.1002/eji.201545502] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Felix M. Wensveen
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
- Department of Experimental Immunology; Amsterdam Medical Centre; Amsterdam The Netherlands
| | - Sonja Valentić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Marko Šestan
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | | | - Bojan Polić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| |
Collapse
|
13
|
Conde J, Scotece M, Abella V, López V, Pino J, Gómez-Reino JJ, Gualillo O. An update on leptin as immunomodulator. Expert Rev Clin Immunol 2014; 10:1165-70. [DOI: 10.1586/1744666x.2014.942289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
AL-Suhaimi EA, Shehzad A. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur J Med Res 2013; 18:12. [PMID: 23634778 PMCID: PMC3655867 DOI: 10.1186/2047-783x-18-12] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin, omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2 diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample evidence exists to support the recognition of the adipocyte's role in various tissues and pathologies. New integral insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a functional part of the endocrine system but also as a new part of the immune system.
Collapse
Affiliation(s)
- Ebtesam A AL-Suhaimi
- Department of Biology, Sciences College, University of Dammam, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
15
|
Ghrelin-leptin network influences serum chitinase 3-like protein 1 (YKL-40) levels in obese prepubertal children. ACTA ACUST UNITED AC 2013; 183:69-73. [PMID: 23501042 DOI: 10.1016/j.regpep.2013.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/27/2012] [Accepted: 03/03/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate any possible interactions between hormonal regulators of weight gain and markers of subclinical inflammation in childhood obesity. Forty-one obese prepubertal children and 41 age- and gender-matched lean controls were included. Children were classified as obese or non-obese according to international age- and gender-specific body mass index (BMI) cutoff points defined by the International Obesity Task Force to define childhood obesity. Anthropometric measurements, serum insulin, chitinase 3-like protein (YKL-40), ghrelin and leptin levels as well as plasma glucose in the fasting state were determined. RESULTS Obese children as compared with controls had higher YKL-40 (50.7±15.2 vs 41.0±10.5 ng/ml, p=0.003), higher leptin (33.8±16.0 vs 9.7±7.5 ng/ml, p<0.001) and lower ghrelin serum levels (871.4±368.0 vs 1417.6±387.3 pg/ml, p<0.001). The obese children with ghrelin levels above median (43.8±10.2 ng/ml) as compared to those with ghrelin below median (57.2±16.6 ng/ml) presented lower serum YKL-40 levels (p=0.009), indicating more severe inflammation with lower levels of ghrelin. By contrast, although the obese children with leptin levels above median (49.7±16.3 ng/ml) presented lower serum YKL-40 levels as compared to those with leptin levels below median (51.6±14.6 ng/ml), this difference did not reach the level of statistical significance (p=0.726). Moreover, serum YKL-40 levels were significantly correlated with ghrelin (r=-0.359, p=0.014) but not with leptin levels (r=0.169, p=0.261). A significant negative correlation between ghrelin and leptin levels was also found (r=-0.276, p=0.041). These findings remained unchanged for obese, when analyses were done separately, whereas the significance of correlations was lost for non-obese subjects. CONCLUSIONS Ghrelin-leptin network had an impact on serum YKL-40 levels in obese prepubertal children; upregulation of YKL-40 secretion seems to be a consequence of reduced ghrelin rather than elevated leptin concentrations.
Collapse
|
16
|
Sarsu SB, Ozokutan BH, Tarakcioglu M, Sarı I, Bağcı C. Effects of Leptin on Intestinal Ischemia-Reperfusion Injury. Indian J Surg 2013; 77:351-5. [PMID: 26730024 DOI: 10.1007/s12262-013-0836-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022] Open
Abstract
Many clinical conditions such as shock, sepsis, mesenteric thrombosis, necrotizing enterocolitis, and bowel transplantation can cause intestinal ischemia-reperfusion (IR) injury. This study was designed to determine the effects of leptin on intestinal IR injury. Thirty rats were divided into three groups, each containing ten rats: group A (IR group), group B (treatment group), and group C (sham group). After 1 h of intestinal ischemia, the clamp was removed in order to perform reperfusion. In group B, 100 mg/kg leptin was administered subcutaneously 30 min before reperfusion. In groups A and C, 0.1 ml physiologic saline was injected. In group A, serum and tissue nitric oxide (NO) levels were significantly decreased, and malondialdehyde levels were significantly increased compared to sham group (p < 0.05). Histopathologic injury was significantly lower in sham group compared to group A. In group B, serum and tissue malondialdehyde levels were significantly decreased (p < 0.05), but serum and tissue NO levels were significantly increased compared to group A (p < 0.05). Histopathologic injury was significantly lower in group B compared to group A (p < 0.05). The results of the present study demonstrated that leptin decreases intestinal IR injury by increasing NO production, rearranging mucosal blood flow, and inhibiting polymorphonuclear leukocyte infiltration.
Collapse
Affiliation(s)
- Sevgi Buyukbese Sarsu
- Department of Pediatric Surgery, Gaziantep Children's Hospital, 27060 Gaziantep, Turkey ; Ataturk mah. Adnan Inanıcı cad. 1107 nolu sok. Buyukbese Apt. Kat 4. Daire No.8 Sehitkamil, Gaziantep, Turkey
| | - Bulent Hayri Ozokutan
- Department of Pediatric Surgery, Faculty of Medicine, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Mehmet Tarakcioglu
- Department of Biochemistry, Faculty of Medicine, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Ibrahim Sarı
- Department of Pathology, Faculty of Medicine, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Cahit Bağcı
- Department of Physiology, Faculty of Medicine, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
17
|
Yang YY, Tsai TH, Huang YT, Lee TY, Chan CC, Lee KC, Lin HC. Hepatic endothelin-1 and endocannabinoids-dependent effects of hyperleptinemia in nonalcoholic steatohepatitis-cirrhotic rats. Hepatology 2012; 55:1540-50. [PMID: 22183953 DOI: 10.1002/hep.25534] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Leptin, the ob gene product, is a protein released from adipocytes and has been detected in fibrotic and cirrhotic livers. Leptin in brain has an inhibitory effect on food intake. Nonalcoholic steatohepatitis (NASH) is characterized by hyperleptinemia. This study explores the possible mechanisms of hyperleptinemia in relation to increased intrahepatic resistance (IHR) and portal hypertension in NASH cirrhotic rats. NASH cirrhotic rats with hyperleptinemia were induced in Zucker (fa/fa) and lean rats by feeding the animals a high fat/methionine-choline-deficient (HF/MCD) diet with and without exogenous administration of recombinant leptin. Portal venous pressure (PVP), IHR, plasma and hepatic levels of various substances, histopathology of the liver, the hepatic hydroxyproline content, and the expression of various hepatic protein and messenger RNA (mRNA) were measured. Hepatic microcirculatory dysfunction and the vasoconstrictive response to endothelin-1 were also observed using a liver perfusion system and intravital microscopy. Finally, the effect of leptin on hepatic stellate cells (HSCs) was evaluated. Both in HF/MCD-Zucker and HF/MCD+leptin lean rats, significant hepatic fibrogenesis and cirrhosis, marked portal hypertension, microcirculatory dysfunction, an enhanced vasoconstrictive response to endothelin-1, and an increased IHR were found to be associated with higher levels of hepatic endothelin-1 and endocannabinoids, expression levels of the cannabinoid type 1 receptor, endothelin-1 type A receptor (ET(A) R), activator protein-1, transforming growth factor beta (TGF-β)(1), osteopontin, tumor necrosis factor alpha (TNF-α), leptin, and the leptin receptor (OBRb). Interestingly, acute incubation of leptin directly increases the expression of ET(A) R, OBRb and activator protein-1 in HSCs. CONCLUSION An HF/MCD diet and hyperleptinemia increase hepatic endocannabinoids production, promote hepatic fibrogenesis, enhance the hepatic vasoconstrictive response to endothelin-1, and aggravate hepatic microcirculatory dysfunction; these events subsequently increase IHR and portal hypertension in NASH cirrhotic rats.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Uner AG, Sulu N. In vivo effects of leptin on lymphocyte subpopulations in mice. Immunobiology 2012; 217:882-8. [PMID: 22317748 DOI: 10.1016/j.imbio.2011.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022]
Abstract
Leptin, a hormone-cytokine mainly produced by the adipose tissue, has pleitropic effects on many biological system including metabolic, endocrine, and immune system. Although it is well known that leptin controls food intake on hypothalamic regions of brain, the role of leptin in hematopoietic and immune processes has been mainly investigated with in vitro and transgenic mouse studies. The aim of this study was to investigate the effects of peripheral leptin on lymphocyte subpopulation. Initially forty male Swiss albino mice were divided into five groups. Mice in group I (Control) were given serum physiologic (SP) and group L100, group L250, group L500, and group L1000 were given 100, 250, 500 and 1000 μg/kg/day recombinant mouse leptin, respectively. Leptin or SP was injected subcutaneously for the next 6 days. Daily food/water intake was recorded for each group. At the end of the study, whole blood samples (500 μl) were obtained via intracardiac punction in anesthetized mice. Leptin levels and lymphocyte subpopulations in blood samples were analyzed. We show that no in vivo dose-dependent effect of leptin is existed on lymphocyte subpopulations count in mice. Treatment of mice with high-dose leptin led to increase only CD4+ cells (P<0.05). In addition, high-dose leptin slightly increased CD3+ cells but this was not statistically confirmed (P=0.08). Notably, it was found that leptin caused insignificant changes on body weight and food intake in normal body weight mice. The data support that high-dose leptin has proliferative effect on CD4+ cells in vivo. However, more in vivo study needs to be examined to clarify how leptin affect lymphocyte subpopulations.
Collapse
Affiliation(s)
- Aykut G Uner
- Department of Physiology, Adnan Menderes University, Aydin, Turkey.
| | | |
Collapse
|
19
|
Stadler J, Le TP, Haas P, Nave H. Distinct effects of NPY13-36, a specific NPY Y2 agonist, in a model of rodent endotoxemia on leukocyte subsets and cytokine levels. Ann Anat 2011; 193:486-93. [PMID: 22074679 DOI: 10.1016/j.aanat.2011.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
Even now, sepsis remains a major problem in modern clinical medicine, leading to systemic inflammatory response including altered leukocyte subset distribution and increased cytokine release. As immune cells are known to express NPY receptors, we investigated the effects of a specific NPY Y(2) receptor agonist (NPY(13-36)) and/or the corresponding Y(2) receptor antagonist BIIE0246 treatment on blood (by FACS analyses) and tissue (by immunohistochemistry) leukocyte subsets as well as on levels of IL-4, IL-6, IL-10, TNF-α, INF-γ (by Cytometric Bead Array) in healthy and acutely endotoxemic rats. Results show a significant decrease in blood monocytes after LPS challenge in endotoxemic control animals (by 93%), in endotoxemic NPY(13-36) treated animals (by 83%) and in endotoxemic BIIE0246 treated animals (by 88%) as compared to the corresponding healthy controls. Endotoxemic control animals showed a significant increase of TNF-α (by 98%) as compared to the healthy control group. A treatment with NPY(13-36) significantly stabilized TNF-α level in endotoxemic animals. This study indicates distinct subset- and cytokine-specific in vivo effects induced by an NPY Y(2) receptor specific treatment after a short-term LPS challenge.
Collapse
Affiliation(s)
- Jan Stadler
- Institute for Functional and Applied Anatomy, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
20
|
Lemos MP, Rhee KY, McKinney JD. Expression of the leptin receptor outside of bone marrow-derived cells regulates tuberculosis control and lung macrophage MHC expression. THE JOURNAL OF IMMUNOLOGY 2011; 187:3776-84. [PMID: 21859958 DOI: 10.4049/jimmunol.1003226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leptin is a pleiotropic hormone proposed to link nutritional status to the development of strong Th1 immunity. Because Mycobacterium tuberculosis control is affected by starvation and diabetes, we studied the role of the leptin receptor in regulating distinct immune cells during chronic infection. Infected db/db mice, bearing a natural mutation in the leptin receptor, have a markedly increased bacterial load in their lungs when compared with that of their wild-type counterparts. In response to M. tuberculosis infection, db/db mice exhibited disorganized granulomas, neutrophilia, and reduced B cell migration to the lungs, correlating with dysfunctional lung chemokine responses that include XCL1, CCL2, CXCL1, CXCL2, and CXCL13. In a db/db lung, myeloid cells were delayed in their production of inducible NO synthase and had reduced expression of MHC I and II. Although the Th1 cell response developed normally in the absence of leptin signaling, production of pulmonary IFN-γ was delayed and ineffective. Surprisingly, a proper immune response took place in bone marrow (BM) chimeras lacking leptin receptor exclusively in BM-derived cells, indicating that leptin acts indirectly on immune cells to modulate the antituberculosis response and bacterial control. Together, these findings suggest that the pulmonary response to M. tuberculosis is affected by the host's nutritional status via the regulation of non-BM-derived cells, not through direct action of leptin on Th1 immunity.
Collapse
Affiliation(s)
- Maria P Lemos
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
21
|
Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr 2010; 140:1495-501. [PMID: 20534876 PMCID: PMC2903303 DOI: 10.3945/jn.110.122408] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/03/2010] [Accepted: 05/13/2010] [Indexed: 12/17/2022] Open
Abstract
A hallmark of energy restriction (ER) is a decrease in total body fat, which is thought to increase lifespan and maintain immune function. However, we have shown that during primary influenza infection, ER induces rapid weight loss, impairs natural killer (NK) cell function, and increases mortality in young and aged mice. To determine whether influenza-induced NK cell function could be restored in ER mice, young adult (6 mo) male C57BL/6 mice were fed an ER diet or re-fed (RF) control diet ad libitum for 2 wk before infection with PR8 influenza A. An initial hyperphagic response was observed in RF mice, characterized by increased food intake, rapid weight gain, and restoration of body fat and fat depots by 5-7 d of re-feeding to levels comparable to control ad libitum (AL) mice. Re-feeding improved survival and attenuated the decline in NK cell function during infection, evidenced by increased numbers, percentages, and CD69 expression by d 3 postinfection in RF mice. Interestingly, an altered metabolic phenotype was observed during infection of RF mice, with plasma leptin concentrations greater than in ER mice but less than in AL mice. In contrast, adiponectin concentrations of RF mice were lower than those of both ER and AL mice. These data suggest that re-feeding for a defined period before, and perhaps throughout, influenza season may provide the energy needed to counter the deleterious effects of ER on NK cell function, especially during exposure to newly emerging strains of influenza, for which vaccines are limited or unavailable.
Collapse
Affiliation(s)
- Jonathan F. Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06034-4037; College of Nursing, Michigan State University, East Lansing, MI 48824; and Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Douglas J. Adams
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06034-4037; College of Nursing, Michigan State University, East Lansing, MI 48824; and Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06034-4037; College of Nursing, Michigan State University, East Lansing, MI 48824; and Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Barry W. Ritz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06034-4037; College of Nursing, Michigan State University, East Lansing, MI 48824; and Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Elizabeth M. Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06034-4037; College of Nursing, Michigan State University, East Lansing, MI 48824; and Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
22
|
Bracho-Riquelme RL, Reyes-Romero MA. Leptin in sepsis: a well-suited biomarker in critically ill patients? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:138. [PMID: 20392294 PMCID: PMC2887146 DOI: 10.1186/cc8917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The value of monitoring serum leptin in critically ill patients is important for early diagnosis and differentiation between sepsis and non-infectious systemic inflammatory response syndrome (SIRS). The early diagnosis of sepsis, the identification of its origin, and an adequate therapeutic management are crucial to overcome sepsis-associated mortality. Cytokine levels are an obvious choice as sepsis markers, since cytokines are key mediators of the inflammatory response to sepsis. Leptin, a hormone mainly generated by adipocytes, acts centrally in the hypothalamus to regulate body weight and energy expenditure. There is, however, strong evidence that leptin is also involved in cell-mediated immunity and cytokine crosstalk. The finding that a serum leptin threshold of 38 microg/l can distinguish between sepsis and non-infectious SIRS (sensitivity 91.2%, specificity 85%) is the major finding in the article by Yousef and colleagues (in this issue). Much remains to be learned about the precise mechanisms by which leptin signaling participates in sepsis and non-infectious SIRS. This knowledge will potentially contribute to new therapeutic approaches.
Collapse
Affiliation(s)
- Rodolfo Leonel Bracho-Riquelme
- Universidad Juárez del Estado de Durango, Facultad de Medicina, División de Estudios de Posgrado e Investigación, Azucenas 157, Fracc, Jardines de Durango, Durango, Dgo. CP., México.
| | | |
Collapse
|
23
|
Current Opinion in Lipidology. Current world literature. Curr Opin Lipidol 2010; 21:84-8. [PMID: 20101119 DOI: 10.1097/mol.0b013e32833592e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|