1
|
Li CY, Zhang SJ, Xu JL, Yang Y, Zeng ZX, Ma DL. Inhibition of the microglial voltage-gated proton channel 1 channel ameliorates diabetes-associated cognitive dysfunction by regulating axon demyelination. World J Psychiatry 2025; 15:101178. [PMID: 40110018 PMCID: PMC11886324 DOI: 10.5498/wjp.v15.i3.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Diabetes is associated with increased cognitive decline and dementia due to the loss of myelinated nerve fiber function, which is linked to oligodendrocyte dysfunction. The voltage-gated proton channel 1 (Hv1) is important for the cellular proton extrusion machinery. However, its role in regulating diabetes-induced cognitive dysfunction is unclear. AIM To investigate the role of Hv1 in cognitive impairment induced by diabetes and its potential mechanisms, focusing on neuroinflammation, oligodendrocyte apoptosis, and axonal demyelination. METHODS A diabetes model was established by administering a high-fat diet and streptozotocin injections in mice. Hv1 knockout (KO) and wild-type mice were used to evaluate cognitive function via behavioral tests and neuroinflammation using immunofluorescence. Oligodendrocyte apoptosis was assessed with the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay, and axonal demyelination was analyzed using electron microscopy. RESULTS Hv1 expression was significantly increased in the corpus callosum of diabetic mice. Hv1 KO alleviated cognitive impairment, reduced oligodendrocyte apoptosis, and decreased the expression of inflammatory factors, including interleukin-1 and tumor necrosis factor-α, in diabetic mice. Electron microscopy revealed a reduction in myelin thickness and an increased g-ratio in diabetic mice, which were reversed by Hv1 KO. CONCLUSION Hv1 plays a role in diabetes-induced cognitive dysfunction by modulating neuroinflammation and myelin integrity. Hv1 KO demonstrates therapeutic potential in mitigating diabetes-related cognitive decline and associated complications.
Collapse
Affiliation(s)
- Chun-Yu Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Shu-Jun Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Jia-Lu Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Zhi-Xuan Zeng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - De-Lin Ma
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| |
Collapse
|
2
|
Gan Y, Zhang X, Cai P, Zhao L, Liu K, Wang H, Xu D. The Role of Oxidative Stress and DNA Hydroxymethylation in the Pathogenesis of Benzo[a]pyrene-Impaired Reproductive Function in Male Mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:5039-5047. [PMID: 39037180 DOI: 10.1002/tox.24384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is known to cause teratogenesis. Environmental exposure of BaP has led to wide public concerns due to their potential risk of reproductive toxicity. However, the exact mechanism is still not clear. We aimed to explore the alterations of oxidative stress and DNA hydroxymethylation during BaP-impaired reproductive function. BALB/c mice were intragastrically administered with different doses of BaP (0.01, 0.1, and 1 mg/kg/day, once a day), while control mice were administered with corn coil. Then, the reproductive function, alterations of oxidative stress, DNA methylation, and DNA hydroxymethylation of testis tissues were evaluated. We found that BaP caused obvious histopathological damages of testis tissues. As for sperm parameters after BaP administration, testis weight and the rate of teratosperm were increased, as well as sperm count and motility were decreased. In mechanism, BaP upregulated HO-1 and MDA levels and downregulated SOD and CAT activity and GSH content in testis tissues, indicating that oxidative stress was induced by BaP. Furthermore, a significant induction of hydroxymethylation and inhibition of methylation were observed in testis tissues after BaP exposure. Collectively, BaP-induced oxidative stress and hydroxymethylation were involved in impairing reproductive function, which may be the mechanism of the male infertility.
Collapse
Affiliation(s)
- Yu Gan
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Panyuan Cai
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Long Zhao
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Kaiyong Liu
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Zhang XY, Zhang YH, Guo YY, Luo Y, Xu SS, Lu X, Liang NN, Wu HY, Huang YC, Xu DX. Arsenic exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124060. [PMID: 38685555 DOI: 10.1016/j.envpol.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Hao Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yue-Yue Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shan-Shan Xu
- Department of Public Health and General Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan-Nan Liang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hong-Yan Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Tian P, Yang Z, Qu C, Qi X, Zhu L, Hao G, Zhang Y. Exploration of tissue fixation methods suitable for digital pathological studies of the testis. Eur J Med Res 2024; 29:319. [PMID: 38858777 PMCID: PMC11163764 DOI: 10.1186/s40001-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The way of testicular tissue fixation directly affects the correlation and structural integrity between connective tissue and seminiferous tubules, which is essential for the study of male reproductive development. This study aimed to find the optimal fixative and fixation time to produce high-quality testicular histopathological sections, and provided a suitable foundation for in-depth study of male reproductive development with digital pathology technology. METHODS Testes were removed from both sides of 25 male C57BL/6 mice. Samples were fixed in three different fixatives, 10% neutral buffered formalin (10% NBF), modified Davidson's fluid (mDF), and Bouin's Fluid (BF), for 8, 12, and 24 h, respectively. Hematoxylin and eosin (H&E) staining, periodic acid Schiff-hematoxylin (PAS-h) staining, and immunohistochemistry (IHC) were used to evaluate the testicle morphology, staging of mouse seminiferous tubules, and protein preservation. Aperio ScanScope CS2 panoramic scanning was used to perform quantitative analyses. RESULTS H&E staining showed 10% NBF resulted in an approximately 15-17% reduction in the thickness of seminiferous epithelium. BF and mDF provided excellent results when staining acrosomes with PAS-h. IHC staining of synaptonemal complexes 3 (Sycp3) was superior in mDF compared to BF-fixed samples. Fixation in mDF and BF improved testis tissue morphology compared to 10% NBF. CONCLUSIONS Quantitative analysis showed that BF exhibited a very low IHC staining efficiency and revealed that mouse testes fixed for 12 h with mDF, exhibited morphological details, excellent efficiency of PAS-h staining for seminiferous tubule staging, and IHC results. In addition, the morphological damage of testis was prolonged with the duration of fixation time.
Collapse
Affiliation(s)
- Pengxiang Tian
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xin Qi
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linlin Zhu
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, 065001, Hebei, China.
| |
Collapse
|
5
|
Li YF, Chen T, Chen LH, Zhao RN, Wang XC, Wu D, Hu JN. Construction of diallyltrisulfide nanoparticles for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2024; 657:124143. [PMID: 38663641 DOI: 10.1016/j.ijpharm.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ru-Nan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Liu YL, Liu JY, Zhu XX, Wei JH, Mi SL, Liu SY, Li XL, Zhang WW, Zhao LL, Wang H, Xu DX, Gao L. Pubertal exposure to Microcystin-LR arrests spermatogonia proliferation by inducing DSB and inhibiting SIRT6 dependent DNA repair in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116191. [PMID: 38460408 DOI: 10.1016/j.ecoenv.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 μg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia-Yu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xin-Xin Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jian-Hua Wei
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Shuang-Ling Mi
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Su-Ya Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiu-Liang Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
7
|
Wu J, Wei X, Li Z, Chen H, Gao R, Ning P, Li Y, Cheng Y. Arresting the G2/M phase empowers synergy in magnetic nanomanipulator-based cancer mechanotherapy and chemotherapy. J Control Release 2024; 366:535-547. [PMID: 38185334 DOI: 10.1016/j.jconrel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Using mechanical cues for cancer cells can realize precise control and efficient therapeutic effects. However, the cell cycle-specific response for dynamic mechanical manipulation is barely investigated. Here, RGD-modified iron oxide nanomanipulators were utilized as the intracellular magneto-mechanical transducers to investigate the mechanical impacts on the cell cycle under a dynamic magnetic field for cancer treatment. The G2/M phase was identified to be sensitive to the intracellular magneto-mechanical modulation with a synergistic treatment effect between the pretreatment of cell cycle-specific drugs and the magneto-mechanical destruction, and thus could be an important mechanical-targeted phase for regulation of cancer cell death. Finally, combining the cell cycle-specific drugs with magneto-mechanical manipulation could significantly inhibit glioma and breast cancer growth in vivo. This intracellular mechanical stimulus showed cell cycle-dependent cytotoxicity and could be developed as a spatiotemporal therapeutic modality in combination with chemotherapy drugs for treating deep-seated tumors.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xueyan Wei
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Haotian Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Rui Gao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Peng Ning
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
8
|
Mirzaei M, Eshaghi-Gorji R, Fani F, Karimpour Malekshah A, Talebpour Amiri F. Comparative evaluation of the effect of three types of fixatives (formalin, Bouin and Carnoy) on histomorphological features of various viscera. Anat Histol Embryol 2023; 52:882-889. [PMID: 37392057 DOI: 10.1111/ahe.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Tissue shrinkage is one of the problems in preparing tissue sections. This study compares the use of 10% formalin, Bouin and Carnoy as fixatives on several mouse tissues to determine histomorphological features. In this experimental study, liver, kidney, heart, lung, testicle, spleen, brain and cartilage tissues were isolated from five BALB/c mice. Then, they were fixed with three types of fixatives. After dehydrating, clarifying and embedding, all samples were stained with haematoxylin and eosin. Then, the tissue structure of the viscera was evaluated qualitatively. The results showed that each fixative is more suitable for evaluating a specific part of the tissue. However, relative shrinkage appeared in the tissue sections fixed with 10% Formalin, (1) in the heart as spaces between muscle fibre bundles, (2) in the liver as the dilation of the liver sinusoidal spaces, (3) in the kidney tissue as the expansion of the lumens of the convoluted proximal and distal tubules, (4) in the spleen as open spaces inside the red and white pulps and (5) in the brain as an increase in the space between the cells of the granular and pyramidal cell layers of the cortex. In tissues that were soft and fragile, such as testis, liver and brain, Bouin's fixative was more suitable. Carnoy's fixative was more suitable for the spleen and kidney tissue. Based on the study results, formalin and Bouin were more suitable for heart and cartilage tissue. Considering that in the histopathological evaluation both the cytoplasm and the nucleus are evaluated, it is suggested to choose the fixative suitable for the type of tissue.
Collapse
Affiliation(s)
- Mansoureh Mirzaei
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Fani
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Annie L, Nicy V, Rempuia V, Marak CC, Gurusubramanian G, Roy VK. Morin mitigates cadmium-induced testicular impairment by stimulating testosterone secretion and germ cell proliferation in mice. J Biochem Mol Toxicol 2023; 37:e23400. [PMID: 37335250 DOI: 10.1002/jbt.23400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Cadmium (Cd) is one of the heavy metal pollutants present in the environment due to human intervention. It is well known that Cd causes toxicological effects on various organs, including the testes. Morin hydrate is a plant-derived bioflavonoid with antioxidant, anti-inflammatory, and anti-stress properties. Thus, the question can be raised as to whether Morin has an effect on Cd-intoxication-induced testicular impairment. Therefore, the aim of this study was to investigate the role of Morin on Cd-mediated disruption of testicular activity. Mice were divided into three groups: group 1 served as the control group, group 2 was given Cd (10 mg/kg) orally for 35 days, and group 3 was given Cd and Morin hydrate (100 mg/kg) for 35 days. To validate the in vivo findings, an in vitro study on testicular explants was also performed. The results of the in vivo study showed that Cd-intoxicated mice had testicular disorganization, reduced circulating testosterone levels, decreased sperm density, and elevated oxidative stress and sperm abnormality. The expression of the germ cell proliferation marker, germ cell nuclear acidic protein (GCNA), and adipocytokine visfatin were also downregulated. It was observed that Morin hydrate upregulated testicular visfatin and GCNA expression in Cd-intoxicated mice, along with improvement in circulating testosterone, testicular histology, and sperm parameters. Furthermore, the in vitro study showed that Cd-mediated downregulation of testicular visfatin and GCNA expression, along with the suppressed secretion of testosterone from testicular explants, was normalized by Morin treatment, whereas visfatin expression was not. Overall, these data indicate that environmental cadmium exposure impairs testicular activity through downregulation of visfatin and GCNA expression, and Morin might play a protective role against Cd-induced testicular toxicity.
Collapse
Affiliation(s)
| | - Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Vanlal Rempuia
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | - Vikas K Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
10
|
Li W, Liu J, Wu W, Yao T, Weng X, Yue X, Li F. Effect of corn straw or corncobs in total mixed ration during peri-puberty on testis development in Hu lambs. Theriogenology 2023; 201:106-115. [PMID: 36868048 DOI: 10.1016/j.theriogenology.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Corn straw and corncobs contain large amounts of crude fibers and are widely used in mutton sheep husbandry in northwest China. The aim of this study was to determine whether feeding with corn straw or corncobs affects lamb testis development. A total of 50 healthy Hu lamb at two-month-old (average body weight of 22.3 ± 0.1 kg) were randomly and equally divided into two groups, and the lambs were equally allocated to five pens in each group. The corn straw group (CS) received a diet containing 20% corn straw, whereas the corncobs group (CC) received a diet containing 20% corncobs. After a 77-day feeding trial, the lambs, except the heaviest and lightest in each pen, were humanely slaughtered and investigated. Results revealed no differences in body weight (40.38 ± 0.45 kg vs. 39.08 ± 0.52 kg) between the CS and CC groups. Feeding diet containing corn straw significantly (P < 0.05) increased testis weight (243.24 ± 18.78 g vs. 167.00 ± 15.20 g), testis index (0.60 ± 0.05 vs. 0.43 ± 0.04), testis volume (247.08 ± 19.99 mL vs. 162.31 ± 14.15 mL), diameter of seminiferous tubule (213.90 ± 4.91 μm vs. 173.11 ± 5.93 μm), and the number of sperm in the epididymis (49.91 ± 13.53 × 108/g vs. 19.34 ± 6.79 × 108/g) compared with those in the CC group. The RNA sequencing results showed 286 differentially expressed genes, and 116 upregulated and 170 downregulated genes were found in the CS group compared with the CC group. The genes affecting immune functions and fertility were screened out. Corn straw decreased the mtDNA relative copy number in the testis (P < 0.05). These results suggest that compared with corncobs, feeding corn straw in the early reproductive development stage of lambs increased the testis weight, diameter of seminiferous tubule and the number of cauda sperm.
Collapse
Affiliation(s)
- Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Jiamei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weiwei Wu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep & Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Ting Yao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiuxiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Gansu Runmu Biological Engineering Co., Ltd., Yongchang, 737200, China
| |
Collapse
|
11
|
LncRNA H19 Regulates P-glycoprotein Expression Through the NF-κB Signaling Pathway in the Model of Status Epilepticus. Neurochem Res 2023; 48:929-941. [PMID: 36394706 DOI: 10.1007/s11064-022-03803-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
Pharmaco-resistance is a challenging problem for treatment of status epilepticus (SE) in the clinic. P-glycoprotein (P-gp) is one of the most important multi-drug transporters that contribute to drug resistance of SE. Long noncoding RNAs (lncRNAs) have been increasingly recognized as versatile regulators of P-gp in tumors and epilepsy. However, the function of lncRNAs in drug resistance of SE remains largely unknown. In the present study, pilocarpine-induced rat model is used to explore the expression profiles of lncRNAs in the hippocampus of SE using RNA sequencing. Our results implied that the level of lncRNA H19 was significantly increased in the hippocampus of SE rats, which was positively correlated with the level of P-gp. While downregulation of H19 could inhibit the expression of P-gp and alleviate neural damage in the hippocampus of SE rats. Furthermore, it was revealed that H19 regulates P-gp expression through the nuclear factor-kappaB (NF-κB) signaling pathway by functioning as a competing endogenous RNA against microRNA-29a-3p. Overall, our study indicated that H19 regulates P-gp expression and neural damage induced by SE through the NF-κB signaling pathway, which provides a promising target to overcome drug resistance and alleviate brain damage for SE.
Collapse
|
12
|
Cao L, Wei L, Du Q, Su Y, Ye S, Liu K. Spleen Toxicity of Organophosphorus Flame Retardant TDCPP in Mice and the Related Mechanisms. TOXICS 2023; 11:231. [PMID: 36976996 PMCID: PMC10051780 DOI: 10.3390/toxics11030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphorus flame retardant that has been utilized in recent years as a primary replacement for polybrominated diphenyl ethers (PBDEs) in a wide variety of fire-sensitive applications. However, the impact of TDCPP on the immune system has not been fully determined. As the largest secondary immune organ in the body, the spleen is considered to be an important study endpoint for determining immune defects in the body. The aim of this study is to investigate the effect of TDCPP toxicity on the spleen and its possible molecular mechanisms. In this study, for 28 consecutive days, TDCPP was administered intragastrically (i.g), and we assessed the general condition of mice by evaluating their 24 h water and food intake. Pathological changes in spleen tissues were also evaluated at the end of the 28-day exposure. To measure the TDCPP-induced inflammatory response in the spleen and its consequences, the expression of the critical players in the NF-κB pathway and mitochondrial apoptosis were detected. Lastly, RNA-seq was performed to identify the crucial signaling pathways of TDCPP-induced splenic injury. The results showed that TDCPP intragastric exposure triggered an inflammatory response in the spleen, likely through activating the NF-κB/IFN-γ/TNF-α/IL-1β pathway. TDCPP also led to mitochondrial-related apoptosis in the spleen. Further RNA-seq analysis suggested that the TDCPP-mediated immunosuppressive effect is associated with the inhibition of chemokines and the expression of their receptor genes in the cytokine-cytokine receptor interaction pathway, including four genes of the CC subfamily, four genes of the CXC subfamily, and one gene of the C subfamily. Taken together, the present study identifies the sub-chronic splenic toxicity of TDCPP and provides insights on the potential mechanisms of TDCPP-induced splenic injury and immune suppression.
Collapse
Affiliation(s)
- Lanqin Cao
- Xiangya Hospital, Central South University, Changsha 410078, China
| | - Lai Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qiaoyun Du
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Ying Su
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Kaihua Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Ji Y, Sun Y, Hei M, Cheng D, Wang B, Tang Y, Fu Y, Zhu W, Xu Y, Qian X. NIR Activated Upper Critical Solution Temperature Polymeric Micelles for Trimodal Combinational Cancer Therapy. Biomacromolecules 2022; 23:937-947. [PMID: 35195416 DOI: 10.1021/acs.biomac.1c01356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The balance between drug efficiency and its side effects on normal tissues is still a challenging problem to be solved in current cancer therapies. Among different strategies, cancer therapeutic methods based on nanomedicine delivery systems have received extensive attention due to their unique advantages such as improved circulation and reduced toxicity of drugs in the body. Herein, we constructed dual-responsive polymeric micelles DOX&ALS@MFM based on an upper critical solution temperature (UCST) polymer to simultaneously combine chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT). Amphiphilic block copolymer P(AAm-co-AN)-b-PEI-ss-PEG-FA with a critical point of 42 °C was able to self-assemble into polymeric micelles under physiological conditions, which further encapsulated anticancer drug doxorubicin (DOX) and photosensitizer ALS to obtain drug-loaded micelles DOX&ALS@MFM. Micelles aggregated at tumor sites due to folate targeting and an enhanced permeability retention (EPR) effect. After that, the high intracellular concentration of glutathione (GSH) and near-infrared (NIR) light prompted disassembly of the polymer to release DOX and ALS. ALS not only plays a role in PTT but also produces singlet oxygen, therefore killing tumor cells by PDT. Both in vitro and in vivo studies demonstrated the photothermal conversion and reactive oxygen species generation ability of DOX&ALS@MFM micelles, at the same time as the excellent inhibitory effect on tumor growth with NIR light irradiation. Thus, our research substantiated a new strategy for the biomedical application of UCST polymers in the cited triple modal tumor therapy.
Collapse
Affiliation(s)
- Yuejia Ji
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyang Hei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Di Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yao Tang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Different fixatives influence morphology, antigen preservation, and TUNEL staining in chicken (Gallus gallus) testis. Acta Histochem 2021; 123:151822. [PMID: 34861475 DOI: 10.1016/j.acthis.2021.151822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
The optimized fixative for testis is still controversial. This study investigated the effects of Modified Davidson's Fluid (mDF), 4% Paraformaldehyde (4% PFA), and Bouin's Fluid (BF) fixatives on chicken testes in normal/cadmium (Cd) feeding groups using hematoxylin and eosin (HE), immunohistochemistry (IHC), and Terminal Transferase dUTP Nick End Labeling (TUNEL) staining. Compared to the mDF, we established that the testes fixed with 4% PFA and BF in the normal group had severe shrinkage in tubular and interstitial compartments. Moreover, compared with 4% PFA, the number of GATA4-positive Sertoli cells/mm2 reduced by 67.61% in mDF and 80.57% in BF for one seminiferous tubule. The TUNEL assay illustrated that more positive cells/mm2 in mDF group (28.47 ± 11.38) than in 4% PFA (10.49 ± 7.89). In Cd-treated testes, mDF showed more morphological details than 4% PFA and BF. In contrast, the number of GATA4-positive Sertoli cells/mm2 of 4% PFA was higher than that of mDF by 65.78% and BF by 64.80% in a seminiferous tubule. The number of TUNEL positive cells/mm2 in mDF (272.60 ± 34.41) were higher than in 4% PFA (175.91 ± 19.87). These results suggest that mDF fixative is suitable for normal and Cd-treated testis fixation for HE and TUNEL staining in chicken, whereas 4% PFA fixative is better for IHC examination.
Collapse
|
15
|
Voluntary Exercise Attenuates Hyperhomocysteinemia, But Does not Protect Against Hyperhomocysteinemia-Induced Testicular and Epididymal Disturbances. Reprod Sci 2021; 29:277-290. [PMID: 34494235 DOI: 10.1007/s43032-021-00704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The hyperhomocysteinemia (HHcy) is toxic to the cells and associated with several diseases. Clinical studies have shown changes in plasma concentrations of Hcy after physical exercise. This study aimed to assess the effect of HHcy on testis, epididymis and sperm quality and to investigate whether voluntary exercise training protects this system against damage caused by HHcy in Swiss mice. In this study, 48 mice were randomly distributed in the control, HHcy, physical exercise, and HHcy combined with physical exercise groups. HHcy was induced by daily administration of dl-homocysteine thiolactone via gavage throughout the experimental period. Physical exercise was performed through voluntary running on the exercise wheels. The plasma concentrations of homocysteine (Hcy) and testosterone were determined. The testes and epididymis were used to assess the sperm count, histopathology, lipoperoxidation, cytokine levels, testicular cholesterol, myeloperoxidase, and catalase activity. Spermatozoa were analyzed for morphology, acrosome integrity, mitochondrial activity, and motility. In the testes, HHcy increased the number of abnormal seminiferous tubules, reduced the tubular diameter and the height of the germinal epithelium. In the epididymis, there was tissue remodeling in the head region. Ultimately, voluntary physical exercise training reduced plasma Hcy concentration but did not attenuate HHcy-induced testicular and epididymal disturbances.
Collapse
|
16
|
Zhu BB, Zhang ZC, Li J, Gao XX, Chen YH, Wang H, Gao L, Xu DX. Di-(2-ethylhexyl) phthalate induces testicular endoplasmic reticulum stress and germ cell apoptosis in adolescent mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21696-21705. [PMID: 33411269 DOI: 10.1007/s11356-020-12210-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a male reproductive toxicant. This research is aimed at investigating the effect of pubertal DEHP exposure on testicular endoplasmic reticulum (ER) stress and germ cell apoptosis. Five-week-old male mice were orally administered with DEHP (0, 0.5, 50, or 500 mg/kg/day) for 35 days. Testis weight and sperm count were reduced in mice exposed to 500 mg/kg/day DEHP. The number of seminiferous tubules in stages VII-VIII, mature seminiferous tubules, was reduced and the number of seminiferous tubules in stages IX-XII, immature seminiferous tubules, was elevated in mice treated with 500 mg/kg/day DEHP. Numerous apoptotic germ cells were observed in mouse seminiferous tubules exposed to 50 and 500 mg/kg/day DEHP. Moreover, cleaved caspase-3 was elevated in mouse testes exposed to 500 mg/kg/day DEHP. In addition, Bcl-2 was reduced and Bax/Bcl-2 was elevated in mouse testes exposed to 500 mg/kg/day DEHP. Additional experiment showed that GRP78, an ER molecular chaperone, was downregulated in mouse testes exposed to 500 mg/kg/day DEHP. Testicular p-IRE-1α, p-JNK, and CHOP, three markers of ER stress, were upregulated in mice exposed to 500 mg/kg/day DEHP. These results suggest that pubertal exposure to high doses of DEHP induces germ cell apoptosis partially through initiating ER stress in testes.
Collapse
Affiliation(s)
- Bin-Bin Zhu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xing-Xing Gao
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
17
|
Zhang XY, Wang B, Xu S, Wang J, Gao L, Song YP, Lv JW, Xu FX, Li J, Chen J, Cui AQ, Zhang C, Wang H, Xu DX. Reactive oxygen species-evoked genotoxic stress mediates arsenic-induced suppression of male germ cell proliferation and decline in sperm quality. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124768. [PMID: 33310327 DOI: 10.1016/j.jhazmat.2020.124768] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/25/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate whether genotoxic stress mediates arsenic (As)-induced decline in sperm quality. Mice drank ultrapure water containing NaAsO2 (15 mg/L) for 70 days. The mature seminiferous tubules and epididymal sperm count were reduced in As-exposed mice. Cell proliferation, determined by immunostaining with Ki67, was suppressed in As-exposed seminiferous tubules and GC-1 cells. PCNA, a proliferation marker, was reduced in As-exposed mouse testes. Cell growth index was decreased in As-exposed GC-1 cells. Flow analysis showed that As-exposed GC-1 cells were retarded at G2/M phase. CDK1 and cyclin B1 were reduced in As-exposed GC-1 cells and mouse testes. Additional experiment revealed that p-ATR, a marker of genotoxic stress, was elevated in As-exposed mouse testes and GC-1 cells. Accordingly, p-p53 and p21, two downstream molecules of ATR, were increased in As-exposed GC-1 cells. Excess reactive oxygen species (ROS), measured by immunofluorescence, and DNA-strand break, determined by Comet assay, were observed in As-exposed GC-1 cells. γH2AX, a marker of DNA-strand break, was elevated in As-exposed seminiferous tubules and GC-1 cells. NAC alleviated As-evoked DNA damage, genotoxic stress, cell proliferation inhibition and sperm count reduction. In conclusion, ROS-evoked genotoxic stress mediates As-induced germ cell proliferation inhibition and decline in sperm quality.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Bo Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jing Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - An-Qi Cui
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
18
|
Guo Y, Zhang T, Gao J, Jiang X, Tao M, Zeng X, Wu Z, Pan D. Lactobacillus acidophilus CICC 6074 inhibits growth and induces apoptosis in colorectal cancer cells in vitro and in HT-29 cells induced-mouse model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Li J, Gao L, Zhu BB, Lin ZJ, Chen J, Lu X, Wang H, Zhang C, Chen YH, Xu DX. Long-term 1-nitropyrene exposure induces endoplasmic reticulum stress and inhibits steroidogenesis in mice testes. CHEMOSPHERE 2020; 251:126336. [PMID: 32145574 DOI: 10.1016/j.chemosphere.2020.126336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
1-Nitropyrene (1-NP) is a representative nitro-polycyclic aromatic hydrocarbon from diesel exhaust. Recently, we found that maternal 1-NP exposure caused fetal growth retardation and disturbed cognitive development in adolescent female offspring. To investigate long-term 1-NP exposure on spermatogenesis and steroidogenesis, male mice were exposed to 1-NP (1.0 mg/kg/day) by gavage for 70 days. There was no significant difference on relative testicular weight, number of testicular apoptotic cells and epididymal sperm count between 1-NP-exposed mice and controls. Although long-term 1-NP exposure did not influence number of Leydig cells, steroidogenic genes and enzymes, including STAR, P450scc, P45017α and 17β-HD, were downregulated in 1-NP-expoed mouse testes. Correspondingly, serum and testicular testosterone (T) levels were reduced in 1-NP-exposed mice. Additional experiment showed that testicular GRP78 mRNA and protein were upregulated by 1-NP. Testicular phospho-IRE1α and sliced xbp-1 mRNA, a downstream molecule of IRE1α, were elevated in 1-NP-exposed mice. Testicular phospho-PERK and phospho-eIF2α, a downstream molecule of PERK pathway, were increased in 1-NP-exposed mice. Testicular NOX4, a subunit of NAPDH oxidase, and HO-1, MDA, two oxidative stress markers, were increased in 1-NP-exposed mice. Testicular GSH and GSH/GSSG were decreased in 1-NP-exposed mice. These results suggest that long-term 1-NP exposure induces reactive oxygen species-evoked ER stress and disrupts steroidogenesis in mouse testes.
Collapse
Affiliation(s)
- Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Bin-Bin Zhu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Nan Y, Yi SJ, Zhu HL, Xiong YW, Shi XT, Cao XL, Zhang C, Gao L, Zhao LL, Zhang J, Xu DX, Wang H. Paternal cadmium exposure increases the susceptibility to diet-induced testicular injury and spermatogenic disorders in mouse offspring. CHEMOSPHERE 2020; 246:125776. [PMID: 31918093 DOI: 10.1016/j.chemosphere.2019.125776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The impairments of gestational cadmium (Cd) exposure on testicular development and male fertility in offspring have been reported. Here, we investigated the effect of paternal low-concentration cadmium exposure on testicular development and spermatogenesis in offspring. Five-week-old male mice were exposed to cadmium chloride (100 mg/L) in drinking water for 20 weeks. Results presented that Cd did not affect the testicular histology and sperm count in mice. After mating with untreated females, pregnant mice and pups were then evaluated. No significant difference in the rate for successful pregnancy and the body weight of pups was observed in Cd-exposed mice compared to the controls. Male offspring were given with a chow and high-fat diet from postnatal day (PND) 35 to PND70. Our data indicated that high-fat diet obviously decreased No. of sperm in epididymides of adult offspring due to paternal Cd exposure. Testicular histology revealed that the percentage of seminiferous tubules in stages IX-XII and the atypical residual bodies positive tubules in CdH (paternal cadmium exposure and pubertal high-fat diet) group were higher than these in CdC (paternal cadmium exposure and pubertal chow diet) group. Further analysis demonstrated that high-fat diet markedly accelerated testicular apoptosis, as determined by TUNEL assay and immunostaining for cleaved caspase-3, in male offspring due to paternal Cd exposure. Collectively, high-fat diet exacerbates the damage of testicular development and spermatogenesis in offspring due to paternal cadmium exposure.
Collapse
Affiliation(s)
- Yuan Nan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
21
|
Shen Y, He D, He L, Bai Y, Wang B, Xue Y, Hou G. Chronic Psychological Stress, but Not Chronic Pain Stress, Influences Sexual Motivation and Induces Testicular Autophagy in Male Rats. Front Psychol 2020; 11:826. [PMID: 32425863 PMCID: PMC7203493 DOI: 10.3389/fpsyg.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 01/31/2023] Open
Abstract
Spermiogenesis is an important physiological process of mammalian fertilization. The germ cells are susceptible to the harmful effects of either psychological or physiological stress, which could induce male infertility. Our previous studies have found that chronic psychological stress could decrease sexual motivation. However, molecular mechanisms underlying male reproductive toxicity induced by chronic stress remain elusive. Recently, autophagy is proven to be involved in regulating the survival of germ cells, which is related to apoptosis. Herein, we established a chronic psychological stress model and a chronic pain model (physiological stressor) to explore the roles of autophagy in germ cells. Thirty-two male Sprague-Dawley rats were randomly divided into four groups, including the control group, the chronic psychological stress group, the SNI-sham group, and the chronic pain stress group. After exposure to stress for 35 days, open field test and the unconditioned sexual motivation test were performed. Following the behavioral experiment, autophagy in the rat testis was detected by Western blot and immunohistochemistry. We found both chronic psychological stress and chronic pain stress reduced total travel distance, the frequency of central crossing and increased the sensitivity to mechanical pain. While chronic psychological stress, but not the chronic pain stress declined sexual motivation. Chronic psychological stress prompt the expression of LC3-II with the decreased expression of p62, indicating that chronic psychological stress induced autophagy in rat testis. However, there was no significant difference between the expression of LC3-II and p62 in male rats under chronic pain stress. Therefore, chronic psychological stress and chronic pain stress have common behavior changes, but due to its unpredictability, chronic psychological stress leads to a decline in sexual motivation in male rats and induced the autophagy in testicular tissues.
Collapse
Affiliation(s)
- Yunyun Shen
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Danni He
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Luhong He
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu Bai
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bo Wang
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Xue
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gonglin Hou
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
22
|
Ulfanov O, Cil N, Adiguzel E. Protective effects of vitamin E on aluminium sulphate-induced testicular damage. Toxicol Ind Health 2020; 36:215-227. [PMID: 32330100 DOI: 10.1177/0748233720919663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Male infertility can be caused by environmental factors, genetic defects, physiological and endocrine deficiencies and testicular pathologies. Aluminium (Al) can cause male infertility through a number of mechanisms. The aim of our study was thus to determine whether vitamin E (VitE) has protective effects on Al-induced testicular damage, which was determined according to sperm counts and morphology and using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Thirty-four male Wistar rats (250-300 g) were randomly assigned to control (no procedures performed; n = 6) or 0.2 mL intraperitoneal injection group (n = 7 each; three times per week for 4 weeks): sham (distilled water), 10 mg/kg Al, 500 mg/kg VitE and 10 mg/kg Al plus 500 mg/kg VitE (Al + VitE). Sperm samples were evaluated for andrological parameters. The testes were examined by haematoxylin/eosin. The epithelial thickness and areas were calculated and Johnsen scores were determined for the germinal epithelium; the apoptotic indices were determined from TUNEL staining. For Al, the bonds between the germinal epithelial cells were broken in some tubules, and there were unidentified cells in the lumen of some tubules. For control, sham and VitE, normal morphology of the germinal epithelium was generally preserved. With Al + VitE, the full germinal epithelium cell series was maintained, with only mature sperm in the lumen. TUNEL-positive cells were significantly higher with Al compared to control and sham (p < 0.05). For Al + VitE, the number of apoptotic cells was reduced compared to Al alone and was therefore similar to control, sham and VitE (p > 0.05). Our findings show that Al caused testicular damage. VitE reduced the number of apoptotic cells during the damage caused by Al.
Collapse
Affiliation(s)
- Ozal Ulfanov
- Department of Histology and Embryology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Nazli Cil
- Department of Histology and Embryology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Esat Adiguzel
- Department of Anatomy, School of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
23
|
Yokota S, Nakamura K, Kamata R. A comparative study of nickel nanoparticle and ionic nickel toxicities in zebrafish: histopathological changes and oxidative stress. J Toxicol Sci 2020; 44:737-751. [PMID: 31708531 DOI: 10.2131/jts.44.737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Industry demand for nanomaterials is growing, but metal nanoparticle toxicity is not fully understood. For example, nickel nanoparticles (NiNPs) are used in electric capacitors, and their consumption is increasing, but there have been few reports of their toxicity and environmental effects. To elucidate the toxicological characteristics of NiNPs, we investigated their effects on the histopathology and oxidative states of zebrafish (Danio rerio) and compared the results with those of ionic nickel. Zebrafish exposed to four different concentrations of NiNPs or NiCl2 for 72 hr or 7 days were subjected to histopathological analysis, and tissue samples were subjected to analyses for oxidative stress and gene expression. High concentrations of both NiNPs and NiCl2 caused tissue damage in the gills, digestive tract, and liver. The damage was typically characterized by epithelial degeneration and necrosis in the gills, esophagus, and intestines, as well as by lipid loss and palisade pattern degradation in the liver. The damages to the gills, esophagus, and intestines were more severe after exposure to NiNPs, but exposure to NiCl2 led to more severe liver damage. Exposure to NiNPs increased lipid peroxidation in the skin but decreased it in the liver and intestines; exposure to NiCl2 increased lipid peroxidation in the intestines. Only exposure to NiCl2 changed antioxidative responses, enzymatic antioxidant activities, and metallothionein gene expression. These results indicate that NiNPs, which are highly adsorptive, cause severe damage to the epithelium by physical contact with the cell surface and production of reactive oxygen spices, whereas ionic nickel, which is absorptive, affects cellular antioxidative responses by absorption into the body and delivery to the liver.
Collapse
Affiliation(s)
- Shohei Yokota
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Kazuichi Nakamura
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
24
|
Wang WY, Meng LJ, Xu YJ, Gong T, Yang Y. Effects of 4% paraformaldehyde and modified Davidson's fluid on the morphology and immunohistochemistry of Xiang pig testes. J Toxicol Pathol 2020; 33:97-104. [PMID: 32425342 PMCID: PMC7218235 DOI: 10.1293/tox.2019-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023] Open
Abstract
Modified Davidson’s fluid (mDF) is a good fixative for morphological and antigen
preservation. However, recent studies have shown that 4% paraformaldehyde (PFA) can better
preserve the actin structure in rodent testes. It remains controversial which of these
fixatives is best for testicular tissue. This study investigated the effects of both mDF
and 4% PFA on the morphology and antigen preservation of Xiang pig testes using
hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). The stronger testis
penetration of mDF compared with that of 4% PFA was primarily manifested as testicular
color change and decrease in tissue weight loss. Testes fixed with 4% PFA displayed a
severe shrinkage of both the tubular and interstitial compartments and the seminiferous
tubule area decreased by 12.02% compared with that in mDF-fixed tissues. In contrast, IHC
results showed that 4% PFA fixation achieved better IHC-positive performance than mDF
fixation for antigens specifically expressed in germ cells, Leydig cells and Sertoli
cells. Due to this improved antigen preservation by 4% PFA fixation, the relative
immunoreactions intensity significantly increased by 39.8%, 27.8%, and 76.4%,
respectively, compared with that in mDF fixation. In summary, fixation of Xiang pig testes
with mDF was suitable for HE staining, while fixation with 4% PFA was more suitable for
IHC.
Collapse
Affiliation(s)
- Wei-Yong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Li-Jie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yong-Jian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| |
Collapse
|
25
|
Ding X, Ge B, Wang M, Zhou H, Sang R, Yu Y, Xu L, Zhang X. Inonotus obliquus polysaccharide ameliorates impaired reproductive function caused by Toxoplasma gondii infection in male mice via regulating Nrf2-PI3K/AKT pathway. Int J Biol Macromol 2020; 151:449-458. [PMID: 32084465 DOI: 10.1016/j.ijbiomac.2020.02.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
This study was carried out to investigate the effects of Inonotus obliquus polysaccharide (IOP) on impaired reproductive function and its mechanisms in Toxoplasma gondii (T. gondii)-infected male mice. Results showed that IOP significantly improved the spermatogenic capacity and ameliorated pathological damage of testis, increased serum testosterone (T), luteinizing hormone (LH) and follicular-stimulating hormone (FSH) levels in T. gondii-infected male mice. IOP effectively up-regulated testicular steroidogenic acute regulatory protein (StAR), P450scc and 17β-HSD expressions. IOP also significantly decreased the levels of malondialdehyde (MDA) and nitric oxide (NO), but increased the activities of antioxidant enzyme superoxide dismutase (SOD) and glutathione (GSH). Furthermore, IOP up-regulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NADPH quinoneoxidoreductase-1 (NQO-1), and suppressed the apoptosis of testicular cells by decreasing Bcl-2 associated x protein (Bax) and cleaved caspase-3 expressions. IOP further enhanced testicular phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) expression levels. It demonstrates the beneficial effects of IOP on impaired reproductive function in T. gondii-infected male mice due to its anti-oxidative stress and anti-apoptosis via regulating Nrf2-PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiao Ding
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Bingjie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Meng Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Hongyuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Lu Xu
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi, Shandong 276005, China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
26
|
Glu-mGluR2/3-ERK Signaling Regulates Apoptosis of Hippocampal Neurons in Diabetic-Depression Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3710363. [PMID: 31281399 PMCID: PMC6590571 DOI: 10.1155/2019/3710363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022]
Abstract
Objectives Diabetes mellitus is frequently accompanied by depression (diabetes−depression, DD), and DD patients are at higher risk of diabetes-related disability and mortality than diabetes patients without depression. Hippocampal degeneration is a major pathological feature of DD. Here, we investigated the contribution of the Glu−mGluR2/3−ERK signaling pathway to apoptosis of hippocampal neurons in DD model rats. Methods The DD model was established by high-fat diet (HFD) feeding and streptozotocin (STZ) injection followed by chronic unpredictable mild stress (CUMS). Other groups were subjected to HFD + STZ only (diabetes alone) or CUMS only (depression alone). Deficits in hippocampus-dependent memory were assessed in the Morris water maze (MWM), motor activity in the open field test (OFT), and depression-like behavior in the forced swim test (FST). Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) was used to estimate the rate of hippocampal neuron apoptosis. Hippocampal glutamate (Glu) content was measured by high performance liquid chromatography. Hippocampal expression levels of mGluR2/3, ERK, and the apoptosis effector caspase-3 were estimated by immunohistochemistry and Western blotting. Results DD model rats demonstrated more severe depression-like behavior in the FST, greater spatial learning and memory deficits in the MWM, and reduced horizontal and vertical activity in the OFT compared to control, depression alone, and diabetes alone groups. All of these abnormalities were reversed by treatment with the mGluR2/3 antagonist LY341495. The DD group also exhibited greater numbers of TUNEL-positive hippocampal neurons than all other groups, and this increased apoptosis rate was reversed by LY341495. In addition, hippocampal expression levels of caspase-3 and mGluR2/3 were significantly higher, ERK expression was lower, and Glu was elevated in the DD group. The mGluR2//3 antagonist significantly altered all these features of DD. Conclusions Comorbid diabetes and depression are associated with enhanced hippocampal neuronal apoptosis and concomitantly greater hippocampal dysfunction. These pathogenic effects are regulated by the Glu−mGluR2/3−ERK signaling pathway.
Collapse
|
27
|
Prevention of necrotizing enterocolitis through surface layer protein of Lactobacillus acidophilus CICC6074 reducing intestinal epithelial apoptosis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Çelik Uzuner S. Development of a Direct Trypan Blue Exclusion Method to Detect Cell Viability of Adherent Cells into ELISA Plates. ACTA ACUST UNITED AC 2018. [DOI: 10.18466/cbayarfbe.372192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Vitamin D deficiency impairs testicular development and spermatogenesis in mice. Reprod Toxicol 2017; 73:241-249. [DOI: 10.1016/j.reprotox.2017.06.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 11/23/2022]
|
30
|
Islam R, Yoon H, Kim BS, Bae HS, Shin HR, Kim WJ, Yoon WJ, Lee YS, Woo KM, Baek JH, Ryoo HM. Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells. Sci Rep 2017; 7:6977. [PMID: 28765625 PMCID: PMC5539286 DOI: 10.1038/s41598-017-07229-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/15/2023] Open
Abstract
The conformation and function of a subset of serine and threonine-phosphorylated proteins are regulated by the prolyl isomerase Pin1 through isomerization of phosphorylated Ser/Thr-Pro bonds. Pin1 is intensely expressed in Sertoli cells, but its function in this post mitotic cell remains unclear. Our aim was to investigate the role of Pin1 in the Sertoli cells. Lack of Pin1 caused disruption of the blood-testis barrier. We next investigated if the activin pathways in the Sertoli cells were affected by lack of Pin1 through immunostaining for Smad3 protein in testis tissue. Indeed, lack of Pin1 caused reduced Smad3 expression in the testis tissue, as well as a reduction in the level of N-Cadherin, a known target of Smad3. Pin1-/- testes express Sertoli cell marker mRNAs in a pattern similar to that seen in Smad3+/- mice, except for an increase in Wt1 expression. The resulting dysregulation of N-Cadherin, connexin 43, and Wt1 targets caused by lack of Pin1 might affect the mesenchymal-epithelial balance in the Sertoli cells and perturb the blood-testis barrier. The effect of Pin1 dosage in Sertoli cells might be useful in the study of toxicant-mediated infertility, gonadal cancer, and for designing male contraceptives.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea.
| |
Collapse
|
31
|
Wang H, Liu L, Hu YF, Hao JH, Chen YH, Su PY, Yu Z, Fu L, Tao FB, Xu DX. Association of maternal serum cadmium level during pregnancy with risk of preterm birth in a Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:851-857. [PMID: 27381872 DOI: 10.1016/j.envpol.2016.06.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) was a developmental toxicant that induces fetal malformation and growth restriction in mice. However, epidemiological studies about the association of maternal serum Cd level with risk of preterm birth were limited. This study was to investigate whether maternal serum Cd level during pregnancy is associated with risk of preterm birth in a Chinese population. Total 3254 eligible mother-and-singleton-offspring pairs were recruited. Maternal serum Cd level was measured by GFAAS. Based on tertiles, maternal serum Cd concentration was classified as low (LCd, <0.65 μg/L), medium (MCd, 0.65-0.94 μg/L) and high (HCd, ≥0.95 μg/L). Odds ratio (OR) for preterm birth was estimated using multiple logistic regression models. Results showed the rate of preterm birth among LCd, M-Cd and HCd was 3.5%, 3.8%, and 9.4%, respectively. Subjects with HCd had a significantly higher risk for preterm birth (OR: 2.86; 95%CI: 1.95, 4.19; P < 0.001) than did those with LCd. Adjusted OR for preterm birth was 3.02 (95%CI: 2.02, 4.50; P < 0.001) among subjects with HCd compared to subjects with LCd. Taken together, the above results suggest that maternal serum Cd level during pregnancy is positively associated with risk of preterm birth.
Collapse
Affiliation(s)
- Hua Wang
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Lu Liu
- School of Public Health, Anhui Medical University, China
| | - Yong-Fang Hu
- School of Public Health, Anhui Medical University, China
| | - Jia-Hu Hao
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Yuan-Hua Chen
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Pu-Yu Su
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Zhen Yu
- School of Public Health, Anhui Medical University, China
| | - Lin Fu
- School of Public Health, Anhui Medical University, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|
32
|
Wang G, Zhang JN, Guo JK, Cai Y, Sun HS, Dong K, Wu CG. Neuroprotective effects of cold-inducible RNA-binding protein during mild hypothermia on traumatic brain injury. Neural Regen Res 2016; 11:771-8. [PMID: 27335561 PMCID: PMC4904468 DOI: 10.4103/1673-5374.182704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5°C on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP mRNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
Collapse
Affiliation(s)
- Guan Wang
- Postgraduate Institution, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jia-Kui Guo
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Cai
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hong-Sheng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Kun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cheng-Gang Wu
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|