1
|
Chandler LC, Gardner A, Cepko CL. RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2025; 122:e2421978122. [PMID: 40178895 PMCID: PMC12002273 DOI: 10.1073/pnas.2421978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration worldwide. It is characterized by the sequential death of rod and cone photoreceptors, the cells responsible for night and daylight vision, respectively. Although the expression of most RP genes occurs only in rods, there is a secondary degeneration of cones. One possible mechanism of cone death is metabolic dysregulation. Photoreceptors are highly metabolically active, consuming large quantities of glucose and producing substantial amounts of lactate. The retinal pigment epithelium (RPE) mediates the transport of glucose from the blood to photoreceptors and, in turn, removes lactate, which can influence the rate of consumption of glucose by the RPE. One model for metabolic dysregulation in RP suggests that following the death of rods, lactate levels are substantially diminished causing the RPE to withhold glucose, resulting in nutrient deprivation for cones. Here, we present adeno-associated viral vector-mediated delivery of monocarboxylate transporter 2 (MCT2, Slc16a7) into the eye, with expression limited to RPE cells, with the aim of promoting lactate uptake from the blood and encouraging the passage of glucose to cones. We demonstrate prolonged survival and function of cones in rat and mouse RP models, revealing a possible gene-agnostic therapy for preserving vision in RP. We also present the use of fluorescence lifetime imaging-based biosensors for lactate and glucose within the eye. Using this technology, we show changes to lactate and glucose levels within MCT2-expressing RPE, suggesting that cone survival is impacted by changes in RPE metabolism.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Apolonia Gardner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
- Virology Program, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
2
|
Wen X, Shang P, Chen H, Guo L, Rong N, Jiang X, Li X, Liu J, Yang G, Zhang J, Zhu K, Meng Q, He X, Wang Z, Liu Z, Cheng H, Zheng Y, Zhang B, Pang J, Liu Z, Xiao P, Chen Y, Liu L, Luo F, Yu X, Yi F, Zhang P, Yang F, Deng C, Sun JP. Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4. Cell 2025; 188:653-670.e24. [PMID: 39753131 DOI: 10.1016/j.cell.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025]
Abstract
Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species. By solving 7-cryoelectron microscopy (cryo-EM) structures of Xenopus tropicalis GPR4 (xtGPR4) and Mus musculus GPR4 (mmGPR4) under varying pH conditions, we identified that protonation of HECL2-45.47 and H7.36 enabled polar network establishment and tighter association between the extracellular loop 2 (ECL2) and 7 transmembrane (7TM) domain, as well as a conserved propagating path, which are common mechanisms underlying protonation-induced GPR4 activation across different species. Moreover, protonation of distinct extracellular HECL2-45.41 contributed to the more acidic optimal pH range of xtGPR4. Overall, our study revealed common and distinct mechanisms of proton sensing by GPR4, from a structural, functional, and evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Pan Shang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haidi Chen
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lulu Guo
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Naikang Rong
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyu Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Junyan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gongming Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jiacheng Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kongkai Zhu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qingbiao Meng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuefei He
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihai Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zili Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haoran Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yilin Zheng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Bifei Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jiaojiao Pang
- Emergency Department, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuguo Chen
- Emergency Department, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Pengju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
3
|
Zhou H, Neudecker V, Perez-Zoghbi JF, Brambrink AM, Yang G. Age-dependent cerebral vasodilation induced by volatile anesthetics is mediated by NG2 + vascular mural cells. Commun Biol 2024; 7:1519. [PMID: 39548262 PMCID: PMC11568297 DOI: 10.1038/s42003-024-07200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Anesthesia can influence cerebral blood flow by altering vessel diameter. Using in vivo two-photon imaging, we examined the effects of volatile anesthetics, sevoflurane and isoflurane, on vessel diameter in young and adult mice. Our results show that these anesthetics induce robust dilation of cortical arterioles and arteriole-proximate capillaries in adult mice, with milder effects in juveniles and no dilation in infants. This anesthesia-induced vasodilation correlates with decreased cytosolic Ca2+ levels in NG2+ vascular mural cells. Optogenetic manipulation of these cells bidirectionally regulates vessel diameter, and their ablation abolishes the vasodilatory response to anesthetics. In immature brains, NG2+ mural cells are fewer in number and express lower levels of Kir6.1, a subunit of ATP-sensitive potassium channels. This likely contributes to the age-dependent differences in vasodilation, as Kir6.1 activation promotes, while its inhibition reduces, anesthesia-induced vasodilation. These findings highlight the essential role of NG2+ mural cells in mediating anesthesia-induced cerebral vasodilation.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, Guangdong Province, 518107, China
| | - Viola Neudecker
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| |
Collapse
|
4
|
Dandavate V, Bolshette N, Van Drunen R, Manella G, Bueno-Levy H, Zerbib M, Kawano I, Golik M, Adamovich Y, Asher G. Hepatic BMAL1 and HIF1α regulate a time-dependent hypoxic response and prevent hepatopulmonary-like syndrome. Cell Metab 2024; 36:2038-2053.e5. [PMID: 39106859 DOI: 10.1016/j.cmet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic Bmal1 and Hif1α in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either Bmal1 or Hif1α, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and Bmal1 dependent. Unexpectedly, mice lacking both hepatic Bmal1 and Hif1α are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rachel Van Drunen
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mirie Zerbib
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ippei Kawano
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
5
|
McClintic WT, Chandler ZD, Karchalla LM, Ondeck CA, O'Brien SW, Campbell CJ, Jacobson AR, McNutt PM. Aminopyridines Restore Ventilation and Reverse Respiratory Acidosis at Late Stages of Botulism in Mice. J Pharmacol Exp Ther 2024; 388:637-646. [PMID: 37977816 PMCID: PMC10801772 DOI: 10.1124/jpet.123.001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Botulinum neurotoxin (BoNT) is a potent protein toxin that causes muscle paralysis and death by asphyxiation. Treatments for symptomatic botulism are intubation and supportive care until respiratory function recovers. Aminopyridines have recently emerged as potential treatments for botulism. The clinically approved drug 3,4-diaminopyridine (3,4-DAP) rapidly reverses toxic signs of botulism and has antidotal effects when continuously administered in rodent models of lethal botulism. Although the therapeutic effects of 3,4-DAP likely result from the reversal of diaphragm paralysis, the corresponding effects on respiratory physiology are not understood. Here, we combined unrestrained whole-body plethysmography (UWBP) with arterial blood gas measurements to study the effects of 3,4-DAP, and other aminopyridines, on ventilation and respiration at terminal stages of botulism in mice. Treatment with clinically relevant doses of 3,4-DAP restored ventilation in a dose-dependent manner, producing significant improvements in ventilatory parameters within 10 minutes. Concomitant with improved ventilation, 3,4-DAP treatment reversed botulism-induced respiratory acidosis, restoring blood levels of CO2, pH, and lactate to normal physiologic levels. Having established that 3,4-DAP-mediated improvements in ventilation were directly correlated with improved respiration, we used UWBP to quantitatively evaluate nine additional aminopyridines in BoNT/A-intoxicated mice. Multiple aminopyridines were identified with comparable or enhanced therapeutic efficacies compared with 3,4-DAP, including aminopyridines that selectively improved tidal volume versus respiratory rate and vice versa. In addition to contributing to a growing body of evidence supporting the use of aminopyridines to treat clinical botulism, these data lay the groundwork for the development of aminopyridine derivatives with improved pharmacological properties. SIGNIFICANCE STATEMENT: There is a critical need for fast-acting treatments to reverse respiratory paralysis in patients with botulism. This study used unrestrained, whole-body plethysmography and arterial blood gas analysis to show that aminopyridines rapidly restore ventilation and respiration and reverse respiratory acidosis when administered to mice at terminal stages of botulism. In addition to supporting the use of aminopyridines as first-line treatments for botulism symptoms, these data are expected to contribute to the development of new aminopyridine derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- William T McClintic
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Zachary D Chandler
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Lalitha M Karchalla
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Celinia A Ondeck
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Sean W O'Brien
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Charity J Campbell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Alan R Jacobson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Patrick M McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Hricisák L, Pál É, Nagy D, Delank M, Polycarpou A, Fülöp Á, Sándor P, Sótonyi P, Ungvári Z, Benyó Z. NO Deficiency Compromises Inter- and Intrahemispheric Blood Flow Adaptation to Unilateral Carotid Artery Occlusion. Int J Mol Sci 2024; 25:697. [PMID: 38255769 PMCID: PMC10815552 DOI: 10.3390/ijms25020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.
Collapse
Affiliation(s)
- László Hricisák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Max Delank
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
| | - Andreas Polycarpou
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- Mayo Clinic, College of Medicine and Science, Rochester, MN 55905, USA
- Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sándor
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, 1122 Budapest, Hungary;
| | - Zoltán Ungvári
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Malte H, Wang T. Climate change: The rise in atmospheric CO 2 poses no risk for acid-base balance in humans. Acta Physiol (Oxf) 2024; 240:e14066. [PMID: 38037856 DOI: 10.1111/apha.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Hans Malte
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
8
|
Saleh MAA, Gülave B, Campagne O, Stewart CF, Elassaiss-Schaap J, de Lange ECM. Using the LeiCNS-PK3.0 Physiologically-Based Pharmacokinetic Model to Predict Brain Extracellular Fluid Pharmacokinetics in Mice. Pharm Res 2023; 40:2555-2566. [PMID: 37442882 PMCID: PMC10733198 DOI: 10.1007/s11095-023-03554-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION The unbound brain extracelullar fluid (brainECF) to plasma steady state partition coefficient, Kp,uu,BBB, values provide steady-state information on the extent of blood-brain barrier (BBB) transport equilibration, but not on pharmacokinetic (PK) profiles seen by the brain targets. Mouse models are frequently used to study brain PK, but this information cannot directly be used to inform on human brain PK, given the different CNS physiology of mouse and human. Physiologically based PK (PBPK) models are useful to translate PK information across species. AIM Use the LeiCNS-PK3.0 PBPK model, to predict brain extracellular fluid PK in mice. METHODS Information on mouse brain physiology was collected from literature. All available connected data on unbound plasma, brainECF PK of 10 drugs (cyclophosphamide, quinidine, erlotonib, phenobarbital, colchicine, ribociclib, topotecan, cefradroxil, prexasertib, and methotrexate) from different mouse strains were used. Dosing regimen dependent plasma PK was modelled, and Kpuu,BBB values were estimated, and provided as input into the LeiCNS-PK3.0 model to result in prediction of PK profiles in brainECF. RESULTS Overall, the model gave an adequate prediction of the brainECF PK profile for 7 out of the 10 drugs. For 7 drugs, the predicted versus observed brainECF data was within two-fold error limit and the other 2 drugs were within five-fold error limit. CONCLUSION The current version of the mouse LeiCNS-PK3.0 model seems to reasonably predict available information on brainECF from healthy mice for most drugs. This brings the translation between mouse and human brain PK one step further.
Collapse
Affiliation(s)
- Mohammed A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | | | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Mačianskienė R, Zigmantaitė V, Andriulė I, Pangonytė D, Sadauskienė I, Arandarčikaitė O, Stankevičius A, Grigas J, Pautienius A, Treinys R, Navalinskas A, Grigalevičiūtė R, Kučinskas A, Pudžiuvelytė L, Bernatonienė J, Jurevičius J. Acute and Sub-Chronic Intraperitoneal Toxicity Studies of the Elsholtzia ciliata Herbal Extract in Balb/c Mice. Pharmaceutics 2023; 15:2417. [PMID: 37896177 PMCID: PMC10610345 DOI: 10.3390/pharmaceutics15102417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Elsholtzia ciliata essential oil (E. ciliata) has been reported to have an impact on the cardiovascular system. However, its toxicity remains unknown. Therefore, the objective of this investigation was to evaluate the toxicological aspects of the E. ciliata extract. Male Balb/c mice were subjected to either acute (a single dose administered for 24 h) or sub-chronic (daily dose for 60 days) intraperitoneal injections of the E. ciliata extract. The mice were assessed for blood hematological/biochemical profiles, mitochondrial functions, and histopathological changes. Additionally, in vitro cytotoxicity assessments of the E. ciliata extract were performed on immobilized primate kidney cells (MARC-145, Vero) and rat liver cells (WBF344) to evaluate cell viability. The control groups received an equivalent volume of olive oil or saline. Our results demonstrated no significant detrimental effects on hematological and biochemical parameters, mitochondrial functions, cellular cytotoxicity, or pathological alterations in vital organs following the intraperitoneal administration of the E. ciliata extract over the 60-day sub-chronic toxicity study. In general, E. ciliata displayed no indications of toxicity, suggesting that the E. ciliata extract is a safe natural product with a well-defined therapeutic and protective index (found to be 90 and 54, respectively) in Balb/c mice.
Collapse
Affiliation(s)
- Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Vilma Zigmantaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Inga Andriulė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Dalia Pangonytė
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Ilona Sadauskienė
- Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.S.); (O.A.)
| | - Odeta Arandarčikaitė
- Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.S.); (O.A.)
| | - Arūnas Stankevičius
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (A.S.); (J.G.); (A.P.)
| | - Juozas Grigas
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (A.S.); (J.G.); (A.P.)
| | - Arnoldas Pautienius
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (A.S.); (J.G.); (A.P.)
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Antanas Navalinskas
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (R.G.); (A.K.)
| | - Audrius Kučinskas
- Biological Research Center, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (R.G.); (A.K.)
| | - Lauryna Pudžiuvelytė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.P.); (J.B.)
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurga Bernatonienė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.P.); (J.B.)
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (V.Z.); (I.A.); (D.P.); (R.T.); (A.N.); (J.J.)
| |
Collapse
|
10
|
Videsen SKA, Simon M, Christiansen F, Friedlaender A, Goldbogen J, Malte H, Segre P, Wang T, Johnson M, Madsen PT. Cheap gulp foraging of a giga-predator enables efficient exploitation of sparse prey. SCIENCE ADVANCES 2023; 9:eade3889. [PMID: 37352356 PMCID: PMC10289661 DOI: 10.1126/sciadv.ade3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The giant rorqual whales are believed to have a massive food turnover driven by a high-intake lunge feeding style aptly described as the world's largest biomechanical action. This high-drag feeding behavior is thought to limit dive times and constrain rorquals to target only the densest prey patches, making them vulnerable to disturbance and habitat change. Using biologging tags to estimate energy expenditure as a function of feeding rates on 23 humpback whales, we show that lunge feeding is energetically cheap. Such inexpensive foraging means that rorquals are flexible in the quality of prey patches they exploit and therefore more resilient to environmental fluctuations and disturbance. As a consequence, the food turnover and hence the ecological role of these marine giants have likely been overestimated.
Collapse
Affiliation(s)
- Simone K. A. Videsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
- Marine Mammal Research, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ari Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jeremy Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Paolo Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Mark Johnson
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
11
|
Watson MA, Brar H, Gibbs ET, Wong HS, Dighe PA, McKibben B, Riedmaier S, Siu A, Polakowski JS, Segreti JA, Liu X, Chung S, Pliushchev YM, Gesmundo N, Wang Z, Vortherms TA, Brand MD. Suppression of superoxide/hydrogen peroxide production at mitochondrial site I Q decreases fat accumulation, improves glucose tolerance and normalizes fasting insulin concentration in mice fed a high-fat diet. Free Radic Biol Med 2023; 204:276-286. [PMID: 37217089 DOI: 10.1016/j.freeradbiomed.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
We developed S1QEL1.719, a novel bioavailable S1QEL (suppressor of site IQ electron leak). S1QEL1.719 prevented superoxide/hydrogen peroxide production at site IQ of mitochondrial complex I in vitro. The free concentration giving half-maximal suppression (IC50) was 52 nM. Even at 50-fold higher concentrations S1QEL1.719 did not inhibit superoxide/hydrogen peroxide production from other sites. The IC50 for inhibition of complex I electron flow was 500-fold higher than the IC50 for suppression of superoxide/hydrogen peroxide production from site IQ. S1QEL1.719 was used to test the metabolic effects of suppressing superoxide/hydrogen peroxide production from site IQin vivo. C57BL/6J male mice fed a high-fat chow for one, two or eight weeks had increased body fat, decreased glucose tolerance, and increased fasting insulin concentrations, classic symptoms of metabolic syndrome. Daily prophylactic or therapeutic oral treatment of high-fat-fed animals with S1QEL1.719 decreased fat accumulation, strongly protected against decreased glucose tolerance and prevented or reversed the increase in fasting insulin level. Free exposures in plasma and liver at Cmax were 1-4 fold the IC50 for suppression of superoxide/hydrogen peroxide production at site IQ and substantially below levels that inhibit electron flow through complex I. These results show that the production of superoxide/hydrogen peroxide from mitochondrial site IQin vivo is necessary for the induction and maintenance of glucose intolerance caused by a high-fat diet in mice. They raise the possibility that oral administration of S1QELs may be beneficial in metabolic syndrome.
Collapse
Affiliation(s)
- Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Harmanmeet Brar
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Edwin T Gibbs
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Pratiksha A Dighe
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Bryan McKibben
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | | | - Amy Siu
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | | | - Jason A Segreti
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | - Xiaoqin Liu
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | - SeungWon Chung
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | | | - Nathan Gesmundo
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | - Zhi Wang
- AbbVie Inc, 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
12
|
Song SH, Ghosh T, You DG, Joo H, Lee J, Lee J, Kim CH, Jeon J, Shin S, Park JH. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS NANO 2023. [PMID: 37184643 DOI: 10.1021/acsnano.2c12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jaeah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
A Murine Model of Veno-Arterial Extracorporeal Membrane Oxygenation. ASAIO J 2022; 68:e243-e250. [PMID: 36229020 DOI: 10.1097/mat.0000000000001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms driving the pathologic state created by extracorporeal membrane oxygenation (ECMO) remain poorly defined. We developed the first complete blood-primed murine model of veno-arterial ECMO capable of maintaining oxygenation and perfusion, allowing molecular studies that are unavailable in larger animal models. Fifteen C57BL/6 mice underwent ECMO by cannulating the left common carotid artery and the right external jugular vein. The mean arterial pressure was measured through cannulation of the femoral artery. The blood-primed circuit functioned well. Hemodynamic parameters remained stable and blood gas analyses showed adequate oxygenation of the animals during ECMO over a 1-hour timeframe. A significant increase in plasma-free hemoglobin was observed following ECMO, likely secondary to hemolysis within the miniaturized circuit components. Paralleling clinical data, ECMO resulted in a significant increase in plasma levels of multiple proinflammatory cytokines as well as evidence of early signs of kidney and liver dysfunction. These results demonstrate that this novel, miniature blood-primed ECMO circuit represents a functional murine model of ECMO that will provide unique opportunities for further studies to expand our knowledge of ECMO-related pathologies using the wealth of available genetic, pharmacological, and biochemical murine reagents not available for other species.
Collapse
|
14
|
Alkalosis-induced hypoventilation in cystic fibrosis: The importance of efficient renal adaptation. Proc Natl Acad Sci U S A 2022; 119:2116836119. [PMID: 35173044 PMCID: PMC8872776 DOI: 10.1073/pnas.2116836119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
The lungs and kidneys are pivotal organs in the regulation of body acid-base homeostasis. In cystic fibrosis (CF), the impaired renal ability to excrete an excess amount of HCO3 - into the urine leads to metabolic alkalosis [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020); F. Al-Ghimlas, M. E. Faughnan, E. Tullis, Open Respir. Med. J. 6, 59-62 (2012)]. This is caused by defective HCO3 - secretion in the β-intercalated cells of the collecting duct that requires both the cystic fibrosis transmembrane conductance regulator (CFTR) and pendrin for normal function [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020)]. We studied the ventilatory consequences of acute oral base loading in normal, pendrin knockout (KO), and CFTR KO mice. In wild-type mice, oral base loading induced a dose-dependent metabolic alkalosis, fast urinary removal of base, and a moderate base load did not perturb ventilation. In contrast, CFTR and pendrin KO mice, which are unable to rapidly excrete excess base into the urine, developed a marked and transient depression of ventilation when subjected to the same base load. Therefore, swift renal base elimination in response to an acute oral base load is a necessary physiological function to avoid ventilatory depression. The transient urinary alkalization in the postprandial state is suggested to have evolved for proactive avoidance of hypoventilation. In CF, metabolic alkalosis may contribute to the commonly reduced lung function via a suppression of ventilatory drive.
Collapse
|
15
|
Thapa M, Sung R, Heo YS. A Dual Electrode Biosensor for Glucose and Lactate Measurement in Normal and Prolonged Obese Mice Using Single Drop of Whole Blood. BIOSENSORS 2021; 11:bios11120507. [PMID: 34940264 PMCID: PMC8699454 DOI: 10.3390/bios11120507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Understanding the levels of glucose (G) and lactate (L) in blood can help us regulate various chronic health conditions such as obesity. In this paper, we introduced an enzyme-based electrochemical biosensor adopting glucose oxidase and lactate oxidase on two working screen-printed carbon electrodes (SPCEs) to sequentially determine glucose and lactate concentrations in a single drop (~30 µL) of whole blood. We developed a diet-induced obesity (DIO) mouse model for 28 weeks and monitored the changes in blood glucose and lactate levels. A linear calibration curve for glucose and lactate concentrations in ranges from 0.5 to 35 mM and 0.5 to 25 mM was obtained with R-values of 0.99 and 0.97, respectively. A drastic increase in blood glucose and a small but significant increase in blood lactate were seen only in prolonged obese cases. The ratio of lactate concentration to glucose concentration (L/G) was calculated as the mouse’s gained weight. The results demonstrated that an L/G value of 0.59 could be used as a criterion to differentiate between normal and obesity conditions. With L/G and weight gain, we constructed a diagnostic plot that could categorize normal and obese health conditions into four different zones. The proposed dual electrode biosensor for glucose and lactate in mouse whole blood showed good stability, selectivity, sensitivity, and efficiency. Thus, we believe that this dual electrode biosensor and the diagnostic plot could be used as a sensitive analytical tool for diagnosing glucose and lactate biomarkers in clinics and for monitoring obesity.
Collapse
|
16
|
Kimlinger MJ, Mace EH, Harris RC, Zhang MZ, Barajas MB, Hernandez A, Billings FT. Impact of Inhaled Oxygen on Reactive Oxygen Species Production and Oxidative Damage during Spontaneous Ventilation in a Murine Model of Acute Renal Ischemia and Reperfusion. MEDICAL RESEARCH ARCHIVES 2021; 9:2575. [PMID: 35419490 PMCID: PMC9005066 DOI: 10.18103/mra.v9i10.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Introduction Acute kidney injury (AKI) affects 10% of patients following major surgery and is independently associated with extra-renal organ injury, development of chronic kidney disease, and death. Perioperative renal ischemia and reperfusion (IR) contributes to AKI by, in part, increasing production of reactive oxygen species (ROS) and leading to oxidative damage. Variations in inhaled oxygen may mediate some aspects of IR injury by affecting tissue oxygenation, ROS production, and oxidative damage. We tested the hypothesis that provision of air (normoxia) compared to 100% oxygen (hyperoxia) during murine renal IR affects renal ROS production and oxidative damage. Methods We administered 100% oxygen or 21% oxygen (air) to 8-9 week-old FVB/N mice and performed dorsal unilateral nephrectomy with contralateral renal ischemia/reperfusion surgery while mice spontaneously ventilated. We subjected mice to 30 minutes of ischemia and 30 minutes of reperfusion prior to sacrifice. We obtained an arterial blood gas (ABG) by performing sternotomy and left cardiac puncture. We stained the kidney with pimonidazole, a marker of tissue hypoxia; 4-HNE, a marker of ROS-production; and we measured F2-isoprostanes in homogenized tissue to quantify oxidative damage. Results Hyperoxia during IR increased arterial oxygen content compared to normoxia, but both groups of mice were hypoventilating at the time of ABG sampling. Renal tissue hypoxia following reperfusion was similar in both treatment groups. ROS production was similar in the cortex of mice (3.8% area in hyperoxia vs. 3.1% in normoxia, P=0.19) but increased in the medulla of hyperoxia-treated animals (6.3% area in hyperoxia vs. 4.5% in nomoxia, P=0.02). Renal F2-isoprostanes were similar in treatment groups (2.2 pg/mg kidney in hyperoxia vs. 2.1 pg/mg in normoxia, P=0.40). Conclusions Hyperoxia during spontaneous ventilation in murine renal IR did not appear to affect renal hypoxia following reperfusion, but hyperoxia increased medullary ROS production compared to normoxia.
Collapse
Affiliation(s)
- Melissa J Kimlinger
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Eric H Mace
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Raymond C Harris
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Ming-Zhi Zhang
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Matthew B Barajas
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Antonio Hernandez
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| | - Frederic T Billings
- Vanderbilt University School of Medicine (MJK), the Department Surgery (EM), the Department of Medicine (RCH, MZ), and the Department of Anesthesiology (MBB, AH, FTB), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Chen X, Zhang K, Yin Z, Fang M, Pu W, Liu Z, Li L, Sinues P, Dallmann R, Zhou Z, Li X. Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath. Anal Chem 2021; 93:5005-5008. [DOI: 10.1021/acs.analchem.1c00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xing Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhihong Yin
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weidan Pu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhening Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Pablo Sinues
- University of Basel Children’s Hospital, Basel 4056, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Wallace NK, Pollard F, Savenkova M, Karatsoreos IN. Effect of Aging on Daily Rhythms of Lactate Metabolism in the Medial Prefrontal Cortex of Male Mice. Neuroscience 2020; 448:300-310. [PMID: 32717298 DOI: 10.1016/j.neuroscience.2020.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 01/24/2023]
Abstract
Aging is associated with reduced amplitude and earlier timing of circadian (daily) rhythms in sleep, brain function, and behavior. We examined whether age-related circadian dysfunction extends to the metabolic function of the brain, particularly in the prefrontal cortex (PFC). Using enzymatic amperometric biosensors, we recorded lactate concentration changes in the PFC in Young (7 mos) and Aged (19 mos) freely-behaving C57BL/6N male mice. Both Young and Aged mice displayed diurnal and circadian rhythms of lactate, with the Aged rhythm slightly phase advanced. Under constant conditions, the Aged rhythm showed a reduced amplitude not seen in the Young mice. We simultaneously observed a relationship between arousal state and PFC lactate rhythm via electroencephalography, which was modified by aging. Finally, using RT-qPCR, we found that aging affects the daily expression pattern of Glucose Transporter 1 (GLUT-1).
Collapse
Affiliation(s)
- Naomi K Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Felicity Pollard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
19
|
Awasthi S, Rahman N, Rui B, Kumar G, Awasthi V, Breshears M, Kosanke S. Lung and general health effects of Toll-like receptor-4 (TLR4)-interacting SPA4 peptide. BMC Pulm Med 2020; 20:179. [PMID: 32576172 PMCID: PMC7310322 DOI: 10.1186/s12890-020-01187-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background A surfactant protein-A-derived peptide, which we call SPA4 peptide (amino acids: GDFRYSDGTPVNYTNWYRGE), alleviates lung infection and inflammation. This study investigated the effects of intratracheally administered SPA4 peptide on systemic, lung, and health parameters in an outbred mouse strain, and in an intratracheal lipopolysaccharide (LPS) challenge model. Methods The outbred CD-1 mice were intratracheally administered with incremental doses of SPA4 peptide (0.625–10 μg/g body weight) once every 24 h, for 3 days. Mice left untreated and those treated with vehicle were included as controls. Mice were euthanized after 24 h of last administration of SPA4 peptide. In order to assess the biological activity of SPA4 peptide, C57BL6 mice were intratracheally challenged with 5 μg LPS/g body weight and treated with 50 μg SPA4 peptide via intratracheal route 1 h post LPS-challenge. Mice were euthanized after 4 h of LPS challenge. Signs of sickness and body weights were regularly monitored. At the time of necropsy, blood and major organs were harvested. Blood gas and electrolytes, serum biochemical profiles and SPA4 peptide-specific immunoglobulin G (IgG) antibody levels, and common lung injury markers (levels of total protein, albumin, and lactate, lactate dehydrogenase activity, and lung wet/dry weight ratios) were determined. Lung, liver, spleen, kidney, heart, and intestine were examined histologically. Differences in measured parameters were analyzed among study groups by analysis of variance test. Results The results demonstrated no signs of sickness or changes in body weight over 3 days of treatment with various doses of SPA4 peptide. It did not induce any major toxicity or IgG antibody response to SPA4 peptide. The SPA4 peptide treatment also did not affect blood gas, electrolytes, or serum biochemistry. There was no evidence of injury to the tissues and organs. However, the SPA4 peptide suppressed the LPS-induced lung inflammation. Conclusions These findings provide an initial toxicity profile of SPA4 peptide. Intratracheal administration of escalating doses of SPA4 peptide does not induce any significant toxicity at tissue and organ levels. However, treatment with a dose of 50 μg SPA4 peptide, comparable to 2.5 μg/g body weight, alleviates LPS-induced lung inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Negar Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Bin Rui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Gaurav Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, and Research Imaging Facility, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Melanie Breshears
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stanley Kosanke
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
20
|
Targeting the Acidic Tumor Microenvironment: Unexpected Pro-Neoplastic Effects of Oral NaHCO 3 Therapy in Murine Breast Tissue. Cancers (Basel) 2020; 12:cancers12040891. [PMID: 32268614 PMCID: PMC7226235 DOI: 10.3390/cancers12040891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
The acidic tumor microenvironment modifies malignant cell behavior. Here, we study consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ± 0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3 therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast carcinomas. Changes in protein expression patterns-observed by high-throughput proteomics analyses-between cancer and normal breast tissue and in response to oral NaHCO3 therapy reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation without net effect on breast cancer development or tumor growth. We demonstrate unexpected pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously reported anti-neoplastic effects.
Collapse
|
21
|
Haugen ØP, Vallenari EM, Belhaj I, Småstuen MC, Storm-Mathisen J, Bergersen LH, Åmellem I. Blood lactate dynamics in awake and anaesthetized mice after intraperitoneal and subcutaneous injections of lactate-sex matters. PeerJ 2020; 8:e8328. [PMID: 31934509 PMCID: PMC6951280 DOI: 10.7717/peerj.8328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Lactate treatment has shown a therapeutic potential for several neurological diseases, including Alzheimer's disease. In order to optimize the administration of lactate for studies in mouse models, we compared blood lactate dynamics after intraperitoneal (IP) and subcutaneous (SC) injections. We used the 5xFAD mouse model for familial Alzheimer's disease and performed the experiments in both awake and anaesthetized mice. Blood glucose was used as an indication of the hepatic conversion of lactate. In awake mice, both injection routes resulted in high blood lactate levels, mimicking levels reached during high-intensity training. In anaesthetized mice, SC injections resulted in significantly lower lactate levels compared to IP injections. Interestingly, we observed that awake males had significantly higher lactate levels than awake females, while the opposite sex difference was observed during anaesthesia. We did not find any significant difference between transgenic and wild-type mice and therefore believe that our results can be generalized to other mouse models. These results should be considered when planning experiments using lactate treatment in mice.
Collapse
Affiliation(s)
- Øyvind P Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Evan M Vallenari
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Imen Belhaj
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway.,Amino Acid Transporter Laboratory, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, SERTA: Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Milada Cvancarova Småstuen
- Department of Nursing and Health Promotion, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - Jon Storm-Mathisen
- Amino Acid Transporter Laboratory, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, SERTA: Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Ingrid Åmellem
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Szabari MV, Takahashi K, Feng Y, Locascio JJ, Chao W, Carter EA, Vidal Melo MF, Musch G. Relation between Respiratory Mechanics, Inflammation, and Survival in Experimental Mechanical Ventilation. Am J Respir Cell Mol Biol 2019; 60:179-188. [PMID: 30199644 DOI: 10.1165/rcmb.2018-0100oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low-tidal volume (Vt) ventilation might protect healthy lungs from volutrauma but lead to inflammation resulting from other mechanisms, namely alveolar derecruitment and the ensuing alveolar collapse and tidal reexpansion. We hypothesized that the different mechanisms of low- and high-volume injury would be reflected in different mechanical properties being associated with development of pulmonary inflammation and mortality: an increase of hysteresis, reflecting progressive alveolar derecruitment, at low Vt; an increase of elastance, as a result of overdistension, at higher Vt. Mice were allocated to "protective" (6 ml/kg) or "injurious" (15-20 ml/kg) Vt groups and ventilated for 16 hours or until death. We measured elastance and hysteresis; pulmonary IL-6, IL-1β, and MIP-2 (macrophage inflammatory protein 2); wet-to-dry ratio; and blood gases. Survival was greater in the protective group (60%) than in the injurious group (25%). Nonsurvivors showed increased pulmonary cytokines, particularly in the injurious group, with the increase of elastance reflecting IL-6 concentration. Survivors instead showed only modest increases of cytokines, independent of Vt and unrelated to the increase of elastance. No single lung strain threshold could discriminate survivors from nonsurvivors. Hysteresis increased faster in the protective group, but, contrary to our hypothesis, its change was inversely related to the concentration of cytokines. In this model, significant mortality associated with pulmonary inflammation occurred even for strain values as low as about 0.8. Low Vt improved survival. The accompanying increase of hysteresis was not associated with greater inflammation.
Collapse
Affiliation(s)
- Margit V Szabari
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,2 Department of Medicine
| | | | - Yan Feng
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,4 Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | | - Wei Chao
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,4 Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Edward A Carter
- 6 Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Guido Musch
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,7 Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
23
|
Bordoni L, Jiménez EG, Nielsen S, Østergaard L, Frische S. A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics. Exp Anim 2019; 69:92-103. [PMID: 31534063 PMCID: PMC7004811 DOI: 10.1538/expanim.19-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg-1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.
Collapse
Affiliation(s)
- Luca Bordoni
- Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark
| | - Eugenio Gutiérrez Jiménez
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Søren Nielsen
- Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark.,Department of Neuroradiology, Nørrebrogade 44, Aarhus University Hospital, 8000, Aarhus, Denmark
| | - Sebastian Frische
- Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
24
|
Martakov IS, Shevchenko OG, Torlopov MA, Gerasimov EY, Sitnikov PA. Formation of gallic acid layer on γ-AlOOH nanoparticles surface and their antioxidant and membrane-protective activity. J Inorg Biochem 2019; 199:110782. [PMID: 31362175 DOI: 10.1016/j.jinorgbio.2019.110782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
Abstract
In the reported study we prepared gallic acid modified γ-AlOOH nanoparticles. We proposed mechanism of phenolic compounds binding on the alumina, suggesting covalent and electrostatic interactions. Most of the properties of alumina nanoparticles (NPs) are unchanged, but there is partial reduction of surface charge. Prepared samples are colloidally stable hydrosols. It allowed us to perform biological studies on cellular and non-cellular models, which showed nontoxicity of both pure and hybrid γ-AlOOH nanoparticles. Furthermore, pure alumina NPs exhibit antioxidant properties, which are enhanced after gallic acid immobilization on their surface. Also, hybrid alumina-gallic acid NPs showed membrane-protective activity.
Collapse
Affiliation(s)
- I S Martakov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167000, Syktyvkar, 48 Pervomayskaya St., Russian Federation.
| | - O G Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, 28 Kommunisticheskaya St., Russian Federation
| | - M A Torlopov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167000, Syktyvkar, 48 Pervomayskaya St., Russian Federation
| | - E Yu Gerasimov
- Boreskov Institute of Catalysis SB RAS, 5 Lavrentieva Av., 630090 Novosibirsk, Russian Federation
| | - P A Sitnikov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167000, Syktyvkar, 48 Pervomayskaya St., Russian Federation
| |
Collapse
|
25
|
Allard J. Physiological properties of the lamina I spinoparabrachial neurons in the mouse. J Physiol 2019; 597:2097-2113. [PMID: 30719699 DOI: 10.1113/jp277447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Spinal cord lamina I neurons receiving dense input from nociceptors and projecting to the parabrachial area at the ponto-mesencephalic junction form the major ascending pain-related pathway in rodents. Lamina I spinoparabrachial (SPB) neurons have never been characterized in mice, despite the growing and extensive use of this species to understand the contribution of lamina I SPB neurons in chronic pain. The electrophysiological properties of lamina I SPB neurons recorded here in anaesthetized mice are comparable to those of rat or cat, forming a nociceptive and thermoreceptive pathway. It was confirmed 'on line' that lamina I SPB neurons that normally encode noxious stimuli can receive input from low threshold mechanoreceptors in certain conditions. The present work indicates that the study of lamina I SPB neurons in vivo could take advantage of the use of genetically modified mice. ABSTRACT Ongoing studies investigating the role of lamina I projection neurons in the generation of chronic pain are mainly based on the use of genetically modified mice. However, lamina I projection neurons have never been physiologically characterized in this species. The present work aimed to fill this gap, and to assess the effect of spinal 'disinhibition' that may occur in chronic pain states on the responses of these neurons to light touch. Seventy lamina I spinoparabrachial (SPB) neurons were characterized in anaesthetized mice. These neurons showed low central conduction velocities (<12.4 m s-1 ) and wide range of responses. Fifty-six neurons responded equally to noxious mechanical and thermal (heat) stimuli (16% responded consistently to light touch). Modality-specific neurons responded preferentially to thermal (cold) stimuli (n = 10) and pinch (n = 2), or specifically to heat (n = 2). Spinal bicuculline and strychnine application induced responses to brush in half of the neurons tested, confirming directly the potential connection between low threshold mechanoreceptors and nociceptive-specific neurons, responsible for mechanical allodynia. Remarkably, the effect of the treatment was highly variable and apparently independent of the initial profile of the neurons. The present data confirm that mice lamina I SPB neurons have the expected characteristics to form a nociceptive and thermoreceptive pathway, but they constitute a highly heterogeneous group. The differential effect of spinal disinhibition observed here suggests that a subgroup of lamina I SPB neurons might be responsible for abnormal pain in pathological conditions, and emphasizes the importance of in vivo recording, a neglected approach.
Collapse
Affiliation(s)
- Julien Allard
- E-Phys, CRBC, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| |
Collapse
|
26
|
Lee DJ, Matthews PGD. Quantifying the acid-base status of dragonflies across their transition from breathing water to breathing air. J Exp Biol 2019; 222:jeb.210294. [DOI: 10.1242/jeb.210294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022]
Abstract
Amphibiotic dragonflies show a significant increase in hemolymph total CO2 (TCO2) as they transition from water-breathing to air-breathing. This study examines the hemolymph acid-base status of dragonflies from two families (Aeshnidae and Libellulidae) as they transition from water to air. CO2 solubility (αCO2) and the apparent carbonic acid dissociation constant (pKapp) were determined in vitro, and pH/bicarbonate [HCO3−] plots were produced by equilibrating hemolymph samples with PCO2 between 0.5-5 kPa in custom-built rotating microtonometers. Hemolymph αCO2 varied little between families and across development (mean 0.355±0.005 mmol l−1 kPa−1) while the pKapp was between 6.23 to 6.27, similar to values determined for grasshopper hemolymph. However, the non-HCO3− buffer capacity for dragonfly hemolymph was uniformly low relative to other insects (3.6 to 5.4 mmol l−1 pH−1). While aeshnid dragonflies maintained this level as bimodally-breathing late-final instars and air-breathing adults, the buffer capacity of bimodally-breathing late-final instar Libellula nymphs increased substantially to 9.9 mmol l−1 pH−1. Using the pH/[HCO3−] plots and in vivo measurements of TCO2 and PCO2 from early-final instar nymphs, it was calculated that the in vivo hemolymph pH was 7.8 for an aeshnid nymph and 7.9 for a libellulid nymph, respectively. The pH/[HCO3−] plots show that the changes in acid-base status experienced by dragonflies across their development are more moderate than those seen in vertebrate amphibians. Whether these differences are due to dragonflies being secondarily aquatic, or arise from intrinsic differences between insect and vertebrate gas exchange and acid-base regulatory mechanisms, remains an open question.
Collapse
Affiliation(s)
- Daniel J. Lee
- Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| | - Philip G. D. Matthews
- Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
27
|
|
28
|
Loeven AM, Receno CN, Cunningham CM, DeRuisseau LR. Arterial blood sampling in male CD-1 and C57BL/6J mice with 1% isoflurane is similar to awake mice. J Appl Physiol (1985) 2018; 125:1749-1759. [PMID: 30284518 PMCID: PMC6737457 DOI: 10.1152/japplphysiol.00640.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Isoflurane (ISO) is a commonly used anesthetic that offers rapid recovery for laboratory animal research. Initial studies indicated no difference in arterial Pco2 (PaCO2) or pH between conscious (NO ISO) and 1% ISO-exposed CD-1 mice. Our laboratory investigated whether arterial blood sampling with 1% ISO is a suitable alternative to NO ISO sampling for monitoring ventilation in a commonly studied mouse strain. We hypothesized similar blood chemistry, breathing patterns, and cardiovascular responses with NO ISO and 1% ISO. C57BL/6J mice underwent unrestrained barometric plethysmography to quantify the pattern of breathing. Mice exposed to hypoxic and hypercapnic gas under 1% ISO displayed blunted responses; with air, there were no breathing differences. Blood pressure and heart rate were not different between NO ISO and 1% ISO-exposed mice breathing air. Oxygen saturation was not different between groups receiving 2% ISO, 1% ISO, or air. Breathing frequency stabilized at ~11 min of 1% ISO following 2% ISO exposure, suggesting that 11 min is the optimal time for a sample in C57BL/6J mice. Blood samples at 1% ISO and NO ISO revealed no differences in blood pH and PaCO2 in C57BL/6J mice. Overall, this method reveals similar arterial blood sampling values in awake and 1% ISO CD-1 and C57BL/6J mice exposed to air. Although this protocol may be appropriate in other mouse strains when a conscious sample is not feasible, caution is warranted first to identify breathing frequency responses at 1% ISO to tailor the protocol. NEW & NOTEWORTHY Conscious arterial blood sampling is influenced by extraneous factors and is a challenging method due to the small size of mice. Through a series of experiments, we show that arterial blood sampling with 1% isoflurane (ISO) is an alternative to awake sampling in C57BL/6J and CD-1 male mice breathing air. Monitoring breathing frequency during 1% ISO is important to the protocol and should be closely followed to confirm adequate recovery after the catheter implantation.
Collapse
Affiliation(s)
- Ashley M Loeven
- Department of Biological and Environmental Sciences, Le Moyne College , Syracuse, New York
| | - Candace N Receno
- Department of Biological and Environmental Sciences, Le Moyne College , Syracuse, New York
| | - Caitlin M Cunningham
- Department of Mathematics, Statistics and Computer Science, Le Moyne College , Syracuse, New York
| | - Lara R DeRuisseau
- Department of Biological and Environmental Sciences, Le Moyne College , Syracuse, New York
| |
Collapse
|
29
|
Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Füchtbauer AC, Füchtbauer EM, Wang T, Praetorius J, Damkier HH. The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 2018; 596:4709-4728. [PMID: 29956324 PMCID: PMC6166071 DOI: 10.1113/jp275489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Key points Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Abstract The choroid plexus epithelium (CPE) is located in the brain ventricles where it produces the majority of the cerebrospinal fluid (CSF). The hypothesis that normal brain function is sustained by CPE‐mediated CSF pH regulation by extrusion of acid‐base equivalents was tested by determining the contribution of the electrogenic Na+‐HCO3− cotransporter NBCe2 to CSF pH regulation. A novel strain of NBCe2 (Slc4a5) knockout (KO) mice was generated and validated. The base extrusion rate after intracellular alkalization was reduced by 77% in NBCe2 KO mouse CPE cells compared to control mice. NBCe2 KO mice and mice with CPE‐targeted NBCe2 siRNA knockdown displayed a reduction in CSF pH recovery during hypercapnia‐induced acidosis of approximately 85% and 90%, respectively, compared to control mice. NBCe2 KO did not affect baseline respiration rate or tidal volume, and the NBCe2 KO and wild‐type (WT) mice displayed similar ventilatory responses to 5% CO2 exposure. NBCe2 KO mice were not protected against pharmacological or heating‐induced seizure development. In conclusion, we establish the concept that the CPE is involved in the regulation of CSF pH by demonstrating that NBCe2 is necessary for proper CSF pH recovery after hypercapnia‐induced acidosis. Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Collapse
Affiliation(s)
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Hans Malte
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Annette C Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Tobias Wang
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Helle H Damkier
- Department of Biomedicine, Health, Aarhus University, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Whittamore JM, Hatch M. Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid-base homeostasis. Urolithiasis 2018; 47:243-254. [PMID: 29947993 DOI: 10.1007/s00240-018-1067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
In rats, we recently showed how a chronic metabolic acidosis simultaneously reduced urinary oxalate excretion and promoted oxalate secretion by the distal colon leading to the proposition that acid-base disturbances may trigger changes to renal and intestinal oxalate handling. The present study sought to reproduce and extend these observations using the mouse model, where the availability of targeted gene knockouts (KOs) would offer future opportunities to reveal some of the underlying transporters and mechanisms involved. Mice were provided with a sustained load of acid (NH4Cl), base (NaHCO3) or the carbonic anhydrase inhibitor acetazolamide (ATZ) for 7 days after which time the impacts on urinary oxalate excretion and its transport by the intestine were evaluated. Mice consuming NH4Cl developed a metabolic acidosis but urinary oxalate was only reduced 46% and not statistically different from the control group, while provision of NaHCO3 provoked a significant 2.6-fold increase in oxalate excretion. For mice receiving ATZ, the rate of urinary oxalate excretion did not change significantly. Critically, none of these treatments altered the fluxes of oxalate (or chloride) across the distal ileum, cecum or distal colon. Hence, we were unable to produce the same effects of a metabolic acidosis in mice that we had previously found in rats, failing to find any evidence of the 'gut-kidney axis' influencing oxalate handling in response to various acid-base challenges. Despite the potential advantages offered by KO mice, this model species is not suitable for exploring how acid-base status regulates oxalate handling between the kidney and intestine.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| |
Collapse
|
31
|
Rajkumar P, Cha B, Yin J, Arend LJ, Păunescu TG, Hirabayashi Y, Donowitz M, Pluznick JL. Identifying the localization and exploring a functional role for Gprc5c in the kidney. FASEB J 2018; 32:2046-2059. [PMID: 29196502 DOI: 10.1096/fj.201700610rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The investigation of orphan GPCRs (GPRs) has the potential to uncover novel insights into whole animal physiology. In this study, our goal was to determine the renal localization of Gprc5c, a receptor that we previously reported to be highly expressed in murine whole kidney, and to examine physiologic parameters in Gprc5c knockout (KO) mice to gain insight into function. Gprc5c localized to the apical membrane of renal proximal tubules (PTs) in mice, rats, and humans. With the comparison of Gprc5c wild-type (WT) and KO mice, we found that Gprc5c KO mice have altered acid-base homeostasis. Specifically, Gprc5c KO mice have lower blood pH and higher urine pH compared with WT mice, with a reduced level of titratable acids in their urine. In an in vitro GPCR internalization assay, we observed that Gprc5c internalization (an index of activation) was triggered by alkaline extracellular pH. Furthermore, with the use of an in vitro BCECF assay, we observed that Gprc5c increases Na+/H+ exchanger 3 (NHE3) activity at alkaline pH. We also find that the NHE3 activity is reduced in Gprc5c KO mice by 2 photon imaging in seminaphthorhodafluors (SNARF)-4F-loaded kidney sections. NHE3 is a primary contributor to apical transport of H+ in the renal PT. Together, these data imply that Gprc5c modulates the renal contribution to systemic pH homeostasis, at least in part, by taking part in the regulation of NHE3.-Rajkumar, P., Cha, B., Yin, J., Arend, L. J., Păunescu, T. G., Hirabayashi, Y., Donowitz, M., Pluznick, J. L. Identifying the localization and exploring a functional role for Gprc5c in the kidney.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Boyoung Cha
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianyi Yin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J Arend
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teodor G Păunescu
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Mark Donowitz
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer L Pluznick
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Santin JM. How important is the CO 2 chemoreflex for the control of breathing? Environmental and evolutionary considerations. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:6-19. [PMID: 28966145 DOI: 10.1016/j.cbpa.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This "CO2 chemoreflex" has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive "metabolic ventilatory drive" likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.
Collapse
|
33
|
Ge H, Riss PJ, Mirabello V, Calatayud DG, Flower SE, Arrowsmith RL, Fryer TD, Hong Y, Sawiak S, Jacobs RM, Botchway SW, Tyrrell RM, James TD, Fossey JS, Dilworth JR, Aigbirhio FI, Pascu SI. Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
McKee TJ, Komarova SV. Is it time to reinvent basic cell culture medium? Am J Physiol Cell Physiol 2017; 312:C624-C626. [PMID: 28228375 DOI: 10.1152/ajpcell.00336.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Turney J McKee
- Faculty of Dentistry, McGill University, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Zhou Y, Skelton LA, Xu L, Chandler MP, Berthiaume JM, Boron WF. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3. J Am Soc Nephrol 2016; 27:2616-21. [PMID: 26839367 DOI: 10.1681/asn.2015040439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lara A Skelton
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lumei Xu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jessica M Berthiaume
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
36
|
Zuurbier CJ, Koeman A, Houten SM, Hollmann MW, Florijn WJ. Optimizing anesthetic regimen for surgery in mice through minimization of hemodynamic, metabolic, and inflammatory perturbations. Exp Biol Med (Maywood) 2015; 239:737-46. [PMID: 24668552 DOI: 10.1177/1535370214524877] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of anesthetics in animal research models is crucial, yet often ignored, and is almost never the primary focus of examination. Here, we investigated the impact of anesthetic regimens on different parameters of hemodynamics (blood pressure (BP) and heart rate (HR)), metabolism (glucose, insulin, and free fatty acids (FFA)), and inflammation (IL-6 and TNF-α) in two frequently used mouse strains (C57BL/6 and FVB). All animals were at a similar surgical plane of anesthesia, mechanically ventilated, and monitored for 60 min. The following anesthetic regimens were studied: (1) fentanyl-ketamine-midazolam (FKM), (2) fentanyl-midazolam-haldol (FMH), (3) pentobarbital (P), (4) fentanyl-fluanisone-midazolam (FFM), (5) fentanyl-midazolam-acepromazine (FMA), (6) ketamine-medetomidine-atropine (KMA), (7) isoflurane (ISO), and (8) propofol-fentanyl-midazolam (PFM). Metabolic and inflammatory parameters were compared with those obtained from non-anesthetized animals. Hemodynamics: BP >80 mm Hg were only obtained with KMA, whereas hypotension (BP <60 mm Hg) was observed with FKM and P. HR >500 beats/min was observed with ISO and PFM, whereas HR <400 beats/min was induced with KMA, FMH (BL/6), P (BL/6), and FKM (FVB). Metabolism: Glucose and insulin were most disturbed by KMA and ISO and mildly disturbed by FMA, whereas FFM, PFM, and P did not have any effect. FFA increased largely by FMA, with ISO and FKM having no effects. Inflammation: Cytokines were increased least with ISO/FFM/FMA, whereas FKM and KMA induced the largest increases in cytokines. When aiming at achieving surgical anesthesia without large disturbances in hemodynamic, metabolic, and inflammatory profiles, FFM, ISO, or PFM may be the most neutral anesthetic regimens in mice.
Collapse
|
37
|
Ahn SH, Gil MS, Lee DS, Han Y, Park HC, Sohn JW, Kim HY, Shin EH, Yu JI, Noh JM, Cho JS, Ahn SH, Choi DH. Preclinical investigation for developing injectable fiducial markers using a mixture of BaSO4
and biodegradable polymer for proton therapy. Med Phys 2015; 42:2626-37. [DOI: 10.1118/1.4916663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Iversen NK, Frische S, Thomsen K, Laustsen C, Pedersen M, Hansen PB, Bie P, Fresnais J, Berret JF, Baatrup E, Wang T. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicol Appl Pharmacol 2013; 266:276-88. [DOI: 10.1016/j.taap.2012.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/15/2022]
|
39
|
Soegaard LB, Hansen MN, van Elk C, Brahm J, Jensen FB. Respiratory properties of blood in the harbor porpoise, Phocoena phocoena. J Exp Biol 2012; 215:1938-43. [DOI: 10.1242/jeb.069872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Harbor porpoises are active divers that exchange O2 and CO2 with the environment during a fast single breath upon surfacing. We investigated blood O2-transporting properties, buffer characteristics, Cl– transport via the erythrocyte anion exchanger (AE1), circulating nitric oxide metabolites and hemoglobin nitrite reduction in harbor porpoises with the aim to evaluate traits that are adaptive for diving behavior. Blood O2 affinity was higher in harbor porpoises than in similar sized terrestrial mammals, as supported by our parallel recordings of O2 equilibria in sheep and pig blood. Further, O2 affinity tended to increase with increasing body mass. A high O2 affinity favors O2 extraction from the lungs, but a normal Bohr effect (ΔlogP50/ΔpH=–0.46) gradually lowers O2 affinity during dives (where CO2 accumulates) to assist O2 off-loading to perfused tissues. The true plasma non-bicarbonate buffer value was moderately higher than in terrestrial mammals and increased upon deoxygenation. Plasma bicarbonate was also relatively high, contributing to increase the overall buffer capacity. The apparent Cl– permeability of harbor porpoise erythrocytes was similar to the human value at 37°C, showing absence of a comparative increase in the velocity of erythrocyte HCO –3/Cl– exchange to aid CO2 excretion. The Q10 for AE1-mediated Cl– transport in harbor porpoises was lower than in humans and seemed to match the Q10 for metabolism (Q10≈2). Plasma nitrite, plasma nitrate and hemoglobin-mediated nitrite reduction were elevated compared with mammalian standards, suggesting that increased nitric oxide bioavailability and nitrite-derived nitric oxide could play important roles in diving physiology.
Collapse
Affiliation(s)
- Lisette B. Soegaard
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Fjord and Belt, DK-5300 Kerteminde, Denmark
| | - Marie N. Hansen
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Jesper Brahm
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Frank B. Jensen
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|