1
|
Zeng L, Bai J, Huang J, Huang S, Qin Y, Yin Y, Chen Y, Wei Z, Huang W, Ouyang K. Construction and preliminary immunological evaluation of EV-G replicon expressing PEDV-COE-N region. Virology 2025; 604:110436. [PMID: 39889482 DOI: 10.1016/j.virol.2025.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that causes acute infectious disease in swine, with mortality rates in piglets reaching up to 100%. In recent years, PEDV has led to significant economic losses in China's pig industry. As there is no specific treatment for PEDV, vaccination remains a key strategy for its prevention and control. This study utilized the EV-G replicon system to develop a nucleic acid vaccine expressing the PEDV core neutralizing epitope (COE) region, which was evaluated through immunization of Kunming mice. The results demonstrated that the vaccine successfully induced high levels of specific IgG and neutralizing antibodies in the mice, while also significantly enhanced splenic lymphocyte proliferation, and increased the expression of IL-4 and IFN-γ cytokines. These findings indicate that the constructed pBluescript-EV-G-COE-N plasmid is an effective DNA replicon vaccine. Notably, immunized with pBluescript-EV-G-COE-N replicons with chitosan resulted in higher neutralizing antibodies and IFN-γ, suggesting the enhanced immune efficacy. The successful construction and preliminary immunological evaluation of the pBluescript-EV-G-COE-N replicon highlights its potential in PEDV vaccine development and offers valuable data for future research in new PEDV vaccine formulations.
Collapse
Affiliation(s)
- Lingyou Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Jiaguo Bai
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Jiabao Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Shiting Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Yeshi Yin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| |
Collapse
|
2
|
Innamma N, Kaeoket K. Feeding Sows with Multi-Species Probiotics During Late Pregnancy and the Lactating Period Influences IgA Concentration in Colostrum and Subsequently Increases the Survival Rate of Piglets in Porcine Epidemic Diarrhea Outbreak Herd. Animals (Basel) 2025; 15:103. [PMID: 39795046 PMCID: PMC11718946 DOI: 10.3390/ani15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Porcine epidemic diarrhea (PED) virus is an important cause of diarrhea in sows and piglets [...].
Collapse
Affiliation(s)
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
3
|
Liang J, Xu W, Pan X, Han S, Zhang L, Wen H, Ding M, Zhang W, Peng D. Advances research in porcine enteric coronavirus therapies and antiviral drugs. Vet Q 2024; 44:1-49. [PMID: 39484691 PMCID: PMC11536681 DOI: 10.1080/01652176.2024.2421299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The porcine enteric coronaviruses (PECs) currently reported include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). In the absence of effective treatment, they can cause similar clinical characteristics including weight loss, sleepiness, vomiting, anorexia and fatal diarrhea in neonatal piglets, resulting in significant economic losses to the global pig industry. Although many studies on drugs for treating and combating PECs have been issued. There are still no specific drug targeting PECs and used in clinical production. Therefore, it is necessary to sort out and summarize the research on the treatment and anti PECs drugs, and further development of low toxicity and high efficiency drugs is needed. Here, we review the latest progress of anti PECs drugs, focus on the mechanism of anti PECs reaction of drug components, and try to clarify new strategies for effective control and elimination of PECs. These comprehensive and profound insights will help to further investigate, prevent and control the transmission of PECs infection.
Collapse
Affiliation(s)
- Jixiang Liang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Weihang Xu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoming Pan
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Shiyun Han
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Linwei Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hao Wen
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Mingyue Ding
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Wanpo Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Dapeng Peng
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Xiang X, Huang Y, Shen Y, Lv J, Li W, Dong M, Sun Y, Xu J, Cui M, Huang Y, Xia J. Radix Isatidis polysaccharide (RIP) alleviates QX-genotype infectious bronchitis virus-induced interstitial nephritis through the Nrf2/NLRP3/Caspase-3 signaling pathway. Int J Biol Macromol 2024; 278:134571. [PMID: 39147344 DOI: 10.1016/j.ijbiomac.2024.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) were pre-treated with RIP and subsequently infected with QX-genotype IBV strain. Kidneys were sampled for transcriptomic and metabolomic analyses, and the cecum contents were collected for 16S rRNA gene sequencing. Results showed that pre-treatment with RIP led to a 50 % morbidity reduction in infected-chickens, along with decreased tissue lesion and viral load in the kidneys. Multi-omics analysis indicated three possible pathways (including antioxidant, anti-inflammatory and anti-apoptosis) which associated with RIP's efficacy against interstitial nephritis. Following further validation both in vivo and in vitro, the results showed that pre-treatment with RIP could activate the antioxidant transcription factor Nrf2, stimulate antioxidant enzyme expression, and consequently inhibit oxidative stress. Pre-treatment with RIP could also significantly reduce the expression of NLRP3 inflammasome and apoptosis-associated proteins (including Bax, Caspase-3, and Caspase-9). Additionally, RIP was also observed to promote the growth of beneficial bacteria in the intestine. Overall, pretreatment with RIP can alleviate QX-genotype IBV-induced interstitial nephritis via the Nrf2/NLRP3/Caspase-3 signaling pathway. This study lays the groundwork for the potential use of RIP in controlling avian infectious bronchitis (IB).
Collapse
Affiliation(s)
- Xuelian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yamei Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jiadai Lv
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Wenwen Li
- Agricultural Service Center, Shanghe Town, Tongnan District, Chongqing 402671, China
| | - Mengyi Dong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yi Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
5
|
Wang J, Zhao Y, Cui T, Bao H, Gao M, Cheng M, Sun Y, Lu Y, Guan J, Zhang D, Jiang Y, Huang H, Shi C, Wang J, Wang N, Hu J, Yang W, Qian H, Jiang Q, Yang G, Zeng Y, Wang C, Cao X. AhR ligands from LGG metabolites promote piglet intestinal ILC3 activation and IL-22 secretion to inhibit PEDV infection. J Virol 2024; 98:e0103924. [PMID: 39012142 PMCID: PMC11334530 DOI: 10.1128/jvi.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yibo Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tong Cui
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hongyu Bao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Qingrong Jiang
- Sichuan Sundaily Farm Ecological Food Co. Ltd, Mianyang, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Yang H, Fan X, Mao X, Yu B, He J, Yan H, Wang J. The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets. J Anim Sci Biotechnol 2024; 15:61. [PMID: 38698473 PMCID: PMC11067158 DOI: 10.1186/s40104-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
Collapse
Affiliation(s)
- Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China.
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| |
Collapse
|
7
|
Chen S, Nai Z, Qin Z, Li G, He X, Wang W, Tian Y, Liu D, Jiang X. The extracellular polysaccharide inhibit porcine epidemic diarrhea virus with extract and gene editing Lacticaseibacillus. Microb Cell Fact 2023; 22:225. [PMID: 37924089 PMCID: PMC10625274 DOI: 10.1186/s12934-023-02226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/07/2023] [Indexed: 11/06/2023] Open
Abstract
Lacticaseibacillus is one of the predominant microorganisms in gut from human and animal, and the lacticaseibacillus have effective applications against the viral diarrhea of piglets in the farm. However, the function and the concrete cell single pathways of the active ingredient from lacticaseibacillus was not clear within anti-infection in the postbiotics research. Here, we compared the biological function of extracellular polysaccharides (EPS) purified from lacticaseibacillus casei (L. casei) and gene editing lacticaseibacillus casei with the CRISPER-Cas9 technology, which were with the ability of antioxidation and anti-inflammation, and the EPS could also inhibit the ROS production within the Porcine Small Intestinal Epithelial Cells-J2 (IPEC-J2). Interestingly, we found that both of EPS and genome editing lacticaseibacillus casei could specifically target the IFN-λ expression in the IPEC-J2, which was beneficial against the PEDV infection in the virus replication and production with the qRT-PCR and indirect immunofluorescence methods. Finally, the STAT3 cell single pathway was stimulated to transcribe IFN-λ with the EPS to elucidate the detailed mechanism of activating type III IFN signals receptor of IL-10R2, which play the function between anti-inflammation and anti-virus in the PEDV infection. Taken together, our research linked a postbiotics of EPS with the antiviral infection of PEDV, which suggest that the lacticaseibacillus itself still have displayed the potential immunomodulatory activities, and highlight the immunomodulatory potential of EPS-producing microbes.
Collapse
Affiliation(s)
- Shaojun Chen
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zida Nai
- Yanbian University, Yanji, 133002, Jilin, People's Republic of China
| | - Ziliang Qin
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Gang Li
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences No, 368 Xuefu Road, Harbin, 150086, People's Republic of China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences No, 368 Xuefu Road, Harbin, 150086, People's Republic of China
| | - Yaguang Tian
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Undergraduate Experimental and Teaching Center, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Di Liu
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences No, 368 Xuefu Road, Harbin, 150086, People's Republic of China.
| | - Xinpeng Jiang
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Kan Z, Zhang S, Liao G, Niu Z, Liu X, Sun Z, Hu X, Zhang Y, Xu S, Zhang J, Zou H, Zhang X, Song Z. Mechanism of Lactiplantibacillus plantarum regulating Ca 2+ affecting the replication of PEDV in small intestinal epithelial cells. Front Microbiol 2023; 14:1251275. [PMID: 37840713 PMCID: PMC10569473 DOI: 10.3389/fmicb.2023.1251275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly invades the small intestine and promotes an inflammatory response, eventually leading to severe diarrhea, vomiting, dehydration, and even death of piglets, which seriously threatens the economic development of pig farming. In recent years, researchers have found that probiotics can improve the intestinal microenvironment and reduce diarrhea. At the same time, certain probiotics have been shown to have antiviral effects; however, their mechanisms are different. Herein, we aimed to investigate the inhibitory effect of Lactiplantibacillus plantarum supernatant (LP-1S) on PEDV and its mechanism. We used IPEC-J2 cells as a model to assess the inhibitory effect of LP-1S on PEDV and to further investigate the relationship between LP-1S, Ca2+, and PEDV. The results showed that a divalent cation chelating agent (EGTA) and calcium channel inhibitors (Bepridil hydrochloride and BAPTA-acetoxymethylate) could inhibit PEDV proliferation while effectively reducing the intracellular Ca2+ concentration. Furthermore, LP-1S could reduce PEDV-induced loss of calcium channel proteins (TRPV6 and PMCA1b), alleviate intracellular Ca2+ accumulation caused by PEDV infection, and promote the balance of intra- and extracellular Ca2+ concentrations, thereby inhibiting PEDV proliferation. In summary, we found that LP-1S has potential therapeutic value against PEDV, which is realized by modulating Ca2+. This provides a potential new drug to treat PEDV infection.
Collapse
Affiliation(s)
- Zifei Kan
- College of Veterinary Medicine, Southwest University, Chongqing, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guisong Liao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Northwest A and F University, Shanxi, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zhiwei Sun
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yiling Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Animal Scienceand Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Shasha Xu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hong Zou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xingcui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Hwang IC, Valeriano VD, Song JH, Pereira M, Oh JK, Han K, Engstrand L, Kang DK. Mucosal immunization with lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 epitopes on the surface induces humoral and mucosal immune responses in mice. Microb Cell Fact 2023; 22:96. [PMID: 37161468 PMCID: PMC10169176 DOI: 10.1186/s12934-023-02100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, Ren S, Guo L, Chen Z, Hrabchenko N, Wu J, Yu J. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023; 9:5. [PMID: 36740713 PMCID: PMC9901120 DOI: 10.1186/s40813-022-00295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
Collapse
Affiliation(s)
- Yue Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yuyu Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Fei Liu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yanwei Mao
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yimin Zhang
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Hao Zeng
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Sufang Ren
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Lihui Guo
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Chen
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Nataliia Hrabchenko
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Jiaqiang Wu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China ,grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, 250014 China
| | - Jiang Yu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| |
Collapse
|
11
|
Niu T, Jiang Y, Fan S, Yang G, Shi C, Ye L, Wang C. Antiviral effects of Pediococcus acidilactici isolated from Tibetan mushroom and comparative genomic analysis. Front Microbiol 2023; 13:1069981. [PMID: 36704546 PMCID: PMC9871908 DOI: 10.3389/fmicb.2022.1069981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Rotavirus is one of the main pathogens that cause diarrhoea in young animals, and countless animals have died of rotavirus infection worldwide. Three strains of lactic acid bacteria isolated from Tibetan mushrooms were used to study the inhibition of rotavirus in vitro and in vivo. One part was to identify and study the biochemical and probiotic characteristics of three isolated lactic acid bacteria, and the other part was to evaluate the inhibitory effect on rotavirus via in vivo and in vitro experiments. The whole genome of the lactic acid bacteria with the best antiviral effect was sequenced, and the differences between them and the standard strains were analyzed by comparative genomic analysis, so as to provide a theoretical basis for exploring the antiviral effect of lactic acid bacteria.The three strains were identified as Pediococcus acidilactici, Lactobacillus casei and Lactobacillus paracasei. Pediococcus acidilactici showed good acid tolerance, bile salt tolerance, survival in artificial intestinal fluid, survival in gastric fluid and bacteriostasis. In in vitro experiments, pig intestinal epithelial cells cocultured with Pediococcus acidilactici exhibited reduced viral infection. In the in vivo experiment, the duodenum of mice fed Pediococcus acidilactici had extremely low numbers of virus particles. The total genome size was 2,026,809 bp, the total number of genes was 1988, and the total length of genes was 1,767,273 bp. The proportion of glycoside hydrolases and glycoside transferases in CAZy was 50.6 and 29.6%, respectively. The Metabolism function in KEEG had the highest number of Global and overview maps. Among the comparative genomes, Pediococcus acidilactici had the highest homology with GCF 000146325.1, and had a good collinearity with GCF 013127755.1, without numerous gene rearrangement events such as insertion, deletion, inversion and translocation. In conclusion, Pediococcus acidilactici was a good candidate strain for antiviral probiotics.
Collapse
|
12
|
Yang MF, Yan W, Li Y, Li SQ, Chen HY, Yin QQ, Dang XW, Zhang HY. The Probiotic Attributes and Anti-pseudorabies Virus Evaluation of Lactobacillus Isolates. Front Vet Sci 2022; 9:902052. [PMID: 35795786 PMCID: PMC9252522 DOI: 10.3389/fvets.2022.902052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.
Collapse
Affiliation(s)
- Ming-Fan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wei Yan
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yan Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuai-Qi Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qing-Qiang Yin
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Wei Dang
- Henan Delin Biological Products Co., Ltd., Zhengzhou, China
| | - Hong-Ying Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Hong-Ying Zhang
| |
Collapse
|
13
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
14
|
Functional foods with antiviral activity. Food Sci Biotechnol 2022; 31:527-538. [PMID: 35437360 PMCID: PMC9007579 DOI: 10.1007/s10068-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are known to cause a variety of diseases, ranging from mild respiratory diseases, such as the common cold, to fatal illnesses. Although the development of vaccines and targeted drugs have significantly improved the mortality rate and disease severity against a number of viral infections, there are still many viruses without proper treatment/prevention options and newly emerging viruses can pose serious health threats. For instance, the coronavirus disease 2019 (COVID-19) pandemic is producing significant healthcare and socio-economic burden worldwide, which may jeopardize the lives and livelihoods for years to come. Studies have identified functional foods with antiviral activity. Certain foods may target the viral life cycle or modulate the host immune system to enhance defense against viral infections. In this review, we will discuss some of the food products reported to display protective effects against viruses including the influenza virus, human immunodeficiency virus, and severe acute respiratory syndrome coronavirus 2.
Collapse
|
15
|
Reduced activity of intestinal surface Na +/H + exchanger NHE3 is a key factor for induction of diarrhea after PEDV infection in neonatal piglets. Virology 2021; 563:64-73. [PMID: 34464882 DOI: 10.1016/j.virol.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea and vomiting, dehydration, and high mortality in neonatal piglets. Despite extensive research focusing on the pathogenesis of PEDV infection, the molecular pathogenesis of PEDV-induced diarrhea in piglets remains unclear. Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, is closely associated with the occurrence of diarrhea. To date, there is no study on whether diarrhea caused by PEDV infection is related to the activity of NHE3. In the present study, it was found that the expression level of cell membrane protein NHE3 significantly decreased after PEDV infection, whereas the total level of protein expression was not significantly changed. The Na+/H+ transport rate and the mRNA abundance of NHE3 decreased; the NHE3 activity decreased gradually with increasing infection time. In vivo, after PEDV infection of newborn piglets, rupture of intestinal villi and interstitial degeneration of intestinal epithelial cells in different intestinal segments were observed by hematoxylin-eosin staining. Immunohistochemical and immunofluorescence methods were used to observe the decreased expression of NHE3 protein on the membrane of intestinal epithelial cells in the jejunum and ileum. Taken together, these data indicate that PEDV infection reduces NHE3 activity in intestinal epithelial cells, hindering Na+ transport and thus causing diarrhea.
Collapse
|