1
|
Fadel A, Ibrahim HAH, Al-Sodany YM, Bessat M, Abdelsalam M, Amer MS. Prevalence and molecular characterization of Acute hepatopancreatic necrosis disease (AHPND) in cultured white-leg shrimp Litopenaeus vannamei with the fungal bioactive control strategy. Microb Pathog 2025; 203:107450. [PMID: 40054677 DOI: 10.1016/j.micpath.2025.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Mass mortalities with clinical signs characteristic of acute hepatopancreatic necrosis disease (AHPND) were reported in cultured Litopenaeus vannamei from three Egyptian farms: Wadi-Mariote, Berket Ghalyoun, and Qarun Lake. During 4-month surveillance in 2023, shrimp samples were collected to investigate the prevalence of AHPND-causing Vibrio parahaemolyticus (VpAHPND) based upon phenotypic identification, PCR, and DNA sequencing of pirA genes and pirB toxin genes followed by maximum likelihood phylogenetic analysis. In addition, the pathogenicity of V. parahaemolyticus was evaluated through the injection challenge and histopathological examination. Moreover, the antibacterial activity of marine fungal extracts against identified V. parahaemolyticus was also assessed. Molecular analysis confirmed both pirA (282 bp) and pirB (392 bp) toxin genes in the bacterial isolates. A significant positive correlation (P < 0.05) was found between V. parahaemolyticus levels in shrimp and pond water samples throughout the study period. Injection challenge with 2.7 × 104 CFU bacterial suspension resulted in 63.33 % mortality in challenged shrimp, with typical AHPND clinical signs. The histopathological examination revealed degenerative changes, including atrophy, necrosis, and sloughing of hepatopancreatic tubule epithelial cells, along with loss of functional hepatopancreatic cells. Among 11 fungal isolates screened for anti-vibrio activity, Aspergillus niger HMA9 showed the strongest inhibitory effect against V. parahaemolyticus. This study provides the first genetic confirmation of pirA and pirB toxin genes in VpAHPND as the cause of L. vannamei mass mortalities in Egypt. Further, it demonstrates the potential of fungal bioactive compounds for controlling AHPND in shrimp aquaculture.
Collapse
Affiliation(s)
- Amr Fadel
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | | | - Yassien Mohamed Al-Sodany
- Botany & Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Mohamed Bessat
- Faculty of Veterinary Medicine, Alexandria University, Abbis 10, Alexandria, Egypt; Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, PO 12211, Giza, Egypt
| | - Mohamed S Amer
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
2
|
Browning H, Burn C, Schnell AK, Crump A, Birch J. Animal welfare risks from commercial practices involving cephalopod molluscs and decapod crustaceans. Anim Welf 2025; 34:e24. [PMID: 40337297 PMCID: PMC12056426 DOI: 10.1017/awf.2025.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 05/09/2025]
Abstract
There is increasing recognition that the welfare needs of cephalopod molluscs and decapod crustaceans are important. Current commercial practices involving these animals include a range of potential threats to their welfare, such as conditions of farming, capture, transport, and slaughter. This article draws from and updates our 2021 review for the UK Government, recommending a range of relatively simple and impactful changes that could benefit welfare while highlighting important research gaps that should be prioritised to facilitate the drafting of guidelines for best-practice.
Collapse
Affiliation(s)
- Heather Browning
- Department of Philosophy, University of Southampton, UK
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, UK
| | - Charlotte Burn
- Department of Pathobiology and Population Sciences, Royal Veterinary College, UK
| | | | - Andrew Crump
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, UK
| | - Jonathan Birch
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, UK
| |
Collapse
|
3
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
4
|
Rahman MM, Shohag MKR, Islam MR, Hasan MS, Nasrin JA, Khatun MM, Debnath S, Rahman MM, Alam E, Hattawi KSA, Islam MK, Islam ARMT. Occupational health safety in aquaculture: A case study on semi-intensive shrimp farmers of Bangladesh. PLoS One 2025; 20:e0315075. [PMID: 39946325 PMCID: PMC11825047 DOI: 10.1371/journal.pone.0315075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/21/2024] [Indexed: 02/16/2025] Open
Abstract
The study examined health safety issues among semi-intensive shrimp farmers in southwestern Bangladesh. The study assessed semi-intensive shrimp farmers' knowledge, attitudes, and practices (KAP) on health and safety during their farm activities. The KAP model examined working circumstances, exposures, health complaints, diseases, current health status, and job satisfaction. Face-to-face interviews were conducted with 158 semi-intensive shrimp farmers from Bangladesh's Khulna, Satkhira, and Bagerhat districts. Type-based data analysis was done. We used Spearman's rank correlation and multiple linear regression. Only 35% of respondents said that they knew the health safety of chemicals and pesticides used in semi-intensive shrimp farms and that safety training is needed, and all farmers wanted to attend when available. At least 74% of farmers used masks when handling pesticides, fertilizers, and chemicals. 40.50% of farmers used protective clothing, 91% cleansed their hands, legs, and face after each day's work, and 94% felt that sanitization reduces pesticide, fertilizer, and chemical pollution. A significant positive correlation coefficient was established in KAP. Education significantly increased knowledge. Practices varied with health and safety training. Results suggest that attitudes determine practices, where knowledge is significantly associated with attitudes. A comprehensive health safety and hygiene training program for all shrimp farmers should be developed to raise awareness, reduce illness outbreaks, and preserve healthy living.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Faculty of Arts and Social Sciences, Department of Disaster Management & Resilience, Bangladesh University of Professionals, Dhaka, Bangladesh
| | | | - Md. Ridwanul Islam
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Md Shamim Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Jinat Ara Nasrin
- Faculty of Arts and Social Sciences, Department of Disaster Management & Resilience, Bangladesh University of Professionals, Dhaka, Bangladesh
| | - Mst. Muslima Khatun
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sudip Debnath
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Md. Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Edris Alam
- Department of Geography and Environmental Studies, University of Chittagong, Chittagong, Bangladesh
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, UAE
| | | | - Md Kamrul Islam
- Department of Civil and Environmental Engineering College of Engineering, King Faisal University, AlAhsa, Saudi Arabia
| | | |
Collapse
|
5
|
Duan Y, Zhong G, Nan Y, Yang Y, Xiao M, Li H. Effects of Nitrite Stress on the Antioxidant, Immunity, Energy Metabolism, and Microbial Community Status in the Intestine of Litopenaeus vannamei. Antioxidants (Basel) 2024; 13:1318. [PMID: 39594461 PMCID: PMC11591295 DOI: 10.3390/antiox13111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Nitrite is the main environmental pollutant that endangers shrimp culture. Intestinal health is essential for the disease resistance of shrimp. In this study, Litopenaeus vannamei shrimps were separately exposed to 1 and 5 mg/L of nitrite stress for 48 h, and then the variations in intestinal health were investigated from the aspects of histology, antioxidant, immunity, energy metabolism, and microbial community status. The results showed that nitrite stress damaged intestinal mucosa, and 5 mg/L of nitrite induced more obvious physiological changes than 1 mg/L. Specifically, the relative expression levels of antioxidant (ROMO1, Nrf2, SOD, GPx, and HSP70), ER stress (Bip and XBP1), immunity (proPO, Crus, ALF, and Lys), inflammation (JNK and TNF-α), and apoptosis (Casp-3 and Casp-9) genes were increased. Additionally, intestinal energy metabolism was activated by inducing glucose metabolism (HK, PK, PDH, and LDH), lipid metabolism (AMPK and FAS), tricarboxylic acid cycle (MDH, CS, IDH, SDH, and FH), and electron transfer chain (NDH, CytC, COI, CCO, and AtpH) gene transcription. Further, the homeostasis of intestinal microbiota composition was also disturbed, especially the abundance of some beneficial genera (Clostridium sensu stricto 1, Faecalibacterium, Romboutsia, and Ruminococcaceae UCG-010). These results reveal that nitrite stress could damage the intestinal health of L. vannamei by destroying mucosal integrity, inducing oxidation and ER stress, interfering with physiological homeostasis and energy metabolism, and disrupting the microbial community.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guowei Zhong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
6
|
Ghosh AK, Panda SK, Hu H, Schoofs L, Luyten W. Compound isolation through bioassay-guided fractionation of Tectona grandis leaf extract against Vibrio pathogens in shrimp. Int Microbiol 2024; 27:1195-1204. [PMID: 38151632 DOI: 10.1007/s10123-023-00468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Tectona grandis Linn, commonly known as teak, is traditionally used to treat a range of diseases, including the common cold, headaches, bronchitis, scabies, diabetes, inflammation, and others. The present study was conducted with the purpose of isolating and identifying the active compounds in T. grandis leaf against a panel of Vibrio spp., which may induce vibriosis in shrimp, using bioassay-guided purification. The antimicrobial activity was assessed using the microdilution method, followed by the brine shrimp lethality assay to determine toxicity. Following an initial screening with a number of different solvents, it was established that the acetone extract was the most effective. The acetone extract was then exposed to silica gel chromatography followed by reversed-phase HPLC and further UHPLC-orbitrap-ion trap mass spectrometry to identify the active compounds. Three compounds called 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin were identified with substantial anti-microbial action against V. parahaemolyticus, V. alginolyticus, V. harveyi, V. anguillarum, and V. vulnificus. The IC50 values of the three compounds viz. 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin varied between 2 and 28, 7 and 38, and 7 and 56 μg/mL, respectively, which are as good as the standard antibiotics such as amoxicillin and others. The in vivo toxicity test revealed that the compounds were non-toxic to shrimp. The results of the study suggest that T. grandis leaf can be used as a source of bioactive compounds to treat Vibrio species in shrimp farming.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Fisheries and Marine Resource Technology Discipline, Khulna University, Sher-E-Bangla Rd, Khulna, 9208, Bangladesh.
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Haibo Hu
- School of Pharmacy, Gannan Medical University, Zhanggong District, Ganzhou, Jiangxi, China
| | - Liliane Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Ghosh AK, Hasanuzzaman AFM, Sarower MG, Islam MR, Huq KA. Unveiling the biofloc culture potential: Harnessing immune functions for resilience of shrimp and resistance against AHPND -causing Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109710. [PMID: 38901683 DOI: 10.1016/j.fsi.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
In shrimp aquaculture, disease mitigation may be accomplished by reducing the virulence of the pathogen or by boosting the shrimp's immunity. Biofloc technology is an innovative system that improves the health and resistance of shrimp to microbial infections while providing a viable option for maintaining the quality of culture water through efficient nutrient recycling. This review aimed at demonstrating the efficacy of the biofloc system in boosting the immune responses and protective processes of shrimp against Vibrio parahaemolyticus infection, which is known to cause Acute Hepatopancreatic Necrosis Disease (AHPND). Numerous studies have revealed that the biofloc system promotes the immunological capability of shrimp by raising multiple immune -related genes e.g. prophenoloxidase, serine proteinase gene, ras-related nuclear gene and penaeidinexpression and cellular and humoral responses such as hyperaemia, prophenoloxidase activity, superoxide dismutase activity, phagocytic activity; the protection and survival of shrimp when faced with a challenge from the V. parahaemolyticus strain have been enhanced. Furthermore, the use of the biofloc system improves water quality parameters and potentially bolstering their immune and overall health to effectively resist diseases; hence, promotes the growth of shrimp. The present review suggests that biofloc can serve as an effective therapy for both preventing and supporting the management of probable AHPND infection in shrimp culture. This approach exhibits potential for the progress of sustainable shrimp farming, higher productivity, and improved shrimp health.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | | | - Md Golam Sarower
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Rashedul Islam
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Khandaker Anisul Huq
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
8
|
Priya PS, Vaishnavi S, Sreekutty AR, Sudhakaran G, Arshad A, Arockiaraj J. White feces syndrome in shrimp: Comprehensive understanding of immune system responses. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109704. [PMID: 38880362 DOI: 10.1016/j.fsi.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
White feces syndrome (WFS) is a multifactorial disease that affects global shrimp production. The diagnostic approach to identify WFS involves traditional and molecular scientific methods by examining histopathology, bioassays, PCR (polymerase chain reaction), and calorimetric estimation. The pathogenesis of WFS is closely associated with Vibrio spp., intestinal microbiota (IM) dysbiosis, and Enterocytozoon hepatopenaei (EHP). It also has caused over 10-15 % loss in the aquaculture industry and is also known to cause retardation, lethargy and slowly leading to high mortality in shrimp farms. Therefore, it is necessary to understand the molecular mechanisms processed under the association of IM dysbiosis, Vibrio spp., and EHP to analyze the impact of disease on the innate immune system of shrimp. However, only very few reviews have described the molecular pathways involved in WFS. Hence, this review aims to elucidate an in-depth analysis of molecular pathways involved in the innate immune system of shrimp and their response to pathogens. The analysis and understanding of the impact of shrimp's innate immune system on WFS would help in developing treatments to prevent the spread of disease, thereby improving the economic condition of shrimp farms worldwide.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600105, Tamil Nadu, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
9
|
Ghosh AK, Panda SK, Hu H, Schoofs L, Luyten W. Bioassay-guided isolation and identification of antibacterial compounds from
Piper betle
leaf with inhibitory activity against the
Vibrio
species in shrimp. JOURNAL OF ESSENTIAL OIL RESEARCH 2024; 36:353-366. [DOI: 10.1080/10412905.2024.2353648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/29/2024] [Indexed: 01/11/2025]
Affiliation(s)
- Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, Utkal University, Utkal, Odisha, India
| | - Haibo Hu
- School of Pharmacy, Gannan Medical University, Jiangxi, China
| | - Liliane Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium
| |
Collapse
|
10
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
11
|
Yaparatne S, Morón-López J, Bouchard D, Garcia-Segura S, Apul OG. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172687. [PMID: 38663593 DOI: 10.1016/j.scitotenv.2024.172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
The ever-growing demand for aquaculture has led the industry to seek novel approaches for more sustainable practices. These attempts aim to increase aquaculture yield by increasing energy efficiency and decreasing footprint and chemical demand without compromising animal health. For this, emerging nanobubbles (NBs) aeration technology gained attention. NBs are gas-filled pockets suspended as sphere-like cavities (bulk NBs) or attached to surfaces (surface NBs) with diameters of <1 μm. Compared to macro and microbubbles, NBs have demonstrated unique characteristics such as long residence times in water, higher gas mass transfer efficiency, and hydroxyl radical production. This paper focuses on reviewing NB technology in aquaculture systems by summarizing and discussing uses and implications. Three focus areas were targeted to review the applicability and effects of NBs in aquaculture: (i) NBs aeration to improve the aquaculture harvest yield and subsequent wastewater treatment; (ii) NB application for inactivation of harmful microorganisms; and (iii) NBs for reducing oxidative stress and improving animal health. Thus, this study reviews the research studies published in the last 10 years in which air, oxygen, ozone, and hydrogen NBs were tested to improve gas mass transfer, wastewater treatment, and control of pathogenic microorganisms. The experimental results indicated that air and oxygen NBs yield significantly higher productivity, growth rate, total harvest, survival rate, and less oxygen consumption in fish and shrimp farming. Secondly, the application of air and ozone NBs demonstrated the ability of efficient pollutant degradation. Third, NB application demonstrated effective control of infectious bacteria and viruses, and thus increased fish survival, as well as different gene expression patterns that induce immune responses to infections. Reviewed studies lack robust comparative analyses of the efficacy of macro- and microbubble treatments. Also, potential health and safety implications, as well as economic feasibility through factors such as changes in capital infrastructure, routine maintenance and energy consumption need to be considered and evaluated in parallel to applicability. Therefore, even with a promising future, further studies are needed to confirm the benefits of NB treatment versus conventional aquaculture practices.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Jesús Morón-López
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Deborah Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
12
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
13
|
Tamilselvan M, Raja S. Exploring the role and mechanism of potential probiotics in mitigating the shrimp pathogens. Saudi J Biol Sci 2024; 31:103938. [PMID: 38327656 PMCID: PMC10847377 DOI: 10.1016/j.sjbs.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Shrimp aquaculture has rapidly developed into a significant industry worldwide, providing not only financial gain and high-quality food but also tens of thousands of trained and competent workers. Frequent diseases are now regarded as a significant risk factor for shrimp aquaculture, as they have the potential to significantly reduce shrimp production and result in economic losses. Over the years various traditional methods including the use of antibiotics have been followed to control diseases yet unsuccessful. Probiotic is considered potential supplements for shrimps during farming, they may also act beneficially as disease control and increased production. Probiotics are described as a live microbial supplement that benefits the host by modifying the microbial population associated with the host and its ambient. The present state of research about probiotics demonstrates notable impacts on the immune defences of the host's gastrointestinal system, which play a crucial role in safeguarding against diseases and managing inflammation inside the digestive tract. In the past ten years, many studies on probiotics have been published. However, there is a lack of information about the processes by which probiotics exert their effects in aquaculture systems, with only limited elucidations being offered. This study explores the variety of procedures behind the positive effects of probiotics in shrimp culture. These mechanisms include the augmentation of the immune system, control of growth, antagonistic action against pathogens, competitive exclusion, and modification of the gut microbiota. Mechanisms involved in the probiotic mode of action are mostly interlinked. This provides a greater understanding of the importance of probiotics in shrimp culture as an environmentally friendly practice.
Collapse
Affiliation(s)
- Manishkumar Tamilselvan
- Aquaculture Biotechnology Laboratory, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Sudhakaran Raja
- Aquaculture Biotechnology Laboratory, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
14
|
Domínguez-Maqueda M, García-Márquez J, Tapia-Paniagua ST, González-Fernández C, Cuesta A, Espinosa-Ruíz C, Esteban MÁ, Alarcón FJ, Balebona MC, Moriñigo MÁ. Evaluation of the Differential Postbiotic Potential of Shewanella putrefaciens Pdp11 Cultured in Several Growing Conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1-18. [PMID: 38153608 PMCID: PMC10869407 DOI: 10.1007/s10126-023-10271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The increased knowledge of functional foods has led to the development of a new generation of health products, including those containing probiotics and products derived from them. Shewanella putrefaciens Pdp11 (SpPdp11) is a strain described as a probiotic that exerts important beneficial effects on several farmed fish. However, the use of live probiotic cells in aquaculture has limitations such as uncertain survival and shelf life, which can limit their efficacy. In addition, its efficacy can vary across species and hosts. When probiotics are administered orally, their activity can be affected by the environment present in the host and by interactions with the intestinal microbiota. Furthermore, live cells can also produce undesired substances that may negatively impact the host as well as the risk of potential virulence reversion acquired such as antibiotic resistance. Therefore, new alternatives emerged such as postbiotics. Currently, there is no knowledge about the postbiotic potential of SpPdp11 in the aquaculture industry. Postbiotic refers to the use of bacterial metabolites, including extracellular products (ECPs), to improve host physiology. However, the production of postbiotic metabolites can be affected by various factors such as cultivation conditions, which can affect bacterial metabolism. Thus, the objective of this study was to evaluate the postbiotic potential of ECPs from SpPdp11 under different cultivation conditions, including culture media, temperature, growth phase, and salinity. We analyzed their hydrolytic, antibacterial, antiviral, and cytotoxic capacity on several fish cell lines. The results obtained have demonstrated how each ECP condition can exert a different hydrolytic profile, reduce the biofilm formation by bacterial pathogens relevant to fish, lower the titer of nervous necrosis virus (NNV), and exert a cytotoxic effect on different fish cell lines. In conclusion, the ECPs obtained from SpPdp11 have different capacities depending on the cultivation conditions used. These conditions must be considered in order to recover the maximum number of beneficial capacities or to choose the appropriate conditions for specific activities.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain.
| | - Carmen González-Fernández
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Alberto Cuesta
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Cristóbal Espinosa-Ruíz
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, Almería, Spain
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
15
|
Ghosh AK, Ahmmed SS, Islam HMR, Hasan MA, Banu GR, Panda SK, Schoofs L, Luyten W. Oral administration of Zingiber officinale and Aegle marmelos extracts enhances growth and immune functions of the shrimp Penaeus monodon against the white spot syndrome virus (WSSV). AQUACULTURE INTERNATIONAL 2024; 32:613-632. [DOI: 10.1007/s10499-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
|
16
|
Dekham K, Jones SM, Jitrakorn S, Charoonnart P, Thadtapong N, Intuy R, Dubbs P, Siripattanapipong S, Saksmerprome V, Chaturongakul S. Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection. Sci Rep 2023; 13:21610. [PMID: 38062111 PMCID: PMC10703779 DOI: 10.1038/s41598-023-47897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
White Spot syndrome virus (WSSV) causes rapid shrimp mortality and production loss worldwide. This study demonstrates potential use of Lactobacillus johnsonii KD1 as an anti-WSSV agent for post larva shrimp cultivation and explores some potential mechanisms behind the anti-WSSV properties. Treatment of Penaeus vannamei shrimps with L. johnsonii KD1 prior to oral challenge with WSSV-infected tissues showed a significantly reduced mortality. In addition, WSSV copy numbers were not detected and shrimp immune genes were upregulated. Genomic analysis of L. johnsonii KD1 based on Illumina and Nanopore platforms revealed a 1.87 Mb chromosome and one 15.4 Kb plasmid. Only one antimicrobial resistance gene (ermB) in the chromosome was identified. Phylogenetic analysis comparing L. johnsonii KD1 to other L. johnsonii isolates revealed that L. johnsonii KD1 is closely related to L. johnsonii GHZ10a isolated from wild pigs. Interestingly, L. johnsonii KD1 contains isolate-specific genes such as genes involved in a type I restriction-modification system and CAZymes belonging to the GT8 family. Furthermore, genes coding for probiotic survival and potential antimicrobial/anti-viral metabolites such as a homolog of the bacteriocin helveticin-J were found. Protein-protein docking modelling suggests the helveticin-J homolog may be able to block VP28-PmRab7 interactions and interrupt WSSV infection.
Collapse
Affiliation(s)
- Kanokwan Dekham
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Samuel Merryn Jones
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT2 7NZ, UK
| | - Sarocha Jitrakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Patai Charoonnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nalumon Thadtapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rattanaporn Intuy
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vanvimon Saksmerprome
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
17
|
Bai N, Deng W, Qi Z, Pan S, Li Q, Gu M. The effect of alginate oligosaccharides on intestine barrier function and Vibrio parahaemolyticus infections in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109011. [PMID: 37604263 DOI: 10.1016/j.fsi.2023.109011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The intestine is a host-pathogen interaction site and improved intestinal barrier function help to prevent disease in shrimp. Alginate oligosaccharides (AOS) are derived from resourceful brown algae. The intestine protection properties of AOS were widely recognized, and their benefits in fish have been reported. Nevertheless, there are no reports on AOS in shrimp and other crustaceans. In the present work, we measured the effects of AOS on growth performance and disease resistance in the white shrimp Litopenaeus vannamei and investigated their effects on intestinal health. Shrimps with an initial weight of about 2 g were fed with diets supplemented with 0 (control), 0.07%, 0.2%, 0.6%, or 1.2% of AOS for 56 days and were sampled and challenged with Vibrio parahaemolyticus. Dietary AOS did not significantly influence weight gain or feed utilization (P > 0.05). However, AOS considerably decreased the seven-day cumulative mortality after the challenge at any dose (P < 0.05). Dietary AOS improved the intestinal structure, significantly boosted the intestinal villus height at 0.6% and 1.2% levels, and increased intestinal wall thickness by 0.2%, 0.6%, and 1.2%. The alkaline phosphatase and maltase activities were also increased, suggesting that AOS improved the intestinal condition. Redox homeostasis in intestinal was improved by AOS, as expressed by the enhanced total antioxidant capacity and decreased malonaldehyde content, partly due to the increased superoxide dismutase and catalase activities. Compared with the antioxidant system, AOS's stimulating effects on immunity were more significant. At any level, AOS significantly activated lysozyme activity, the expression of propo and two antimicrobial peptide genes (pen-3 and crusin). However, the lowest concentration of AOS did not stimulate the gene expression of all three assayed pattern recognition receptors (LGBP, Toll, and IMD), and only the highest concentration of AOS increased the expression of imd. These findings suggest that AOS are highly efficient immunostimulants, and various immune pathways in shrimp are differentially sensitive to AOS. Finally, our findings suggest that AOS significantly alter the gut microbiota and their relative abundance at the phylum, family, and genus levels. In conclusion, AOS significantly enhances disease resistance in L. vannamei, possibly attributed to improved intestinal development, increased intestinal immunity and altered microbiota. These findings could provide a basis for future studies on the practical use of AOS and its mechanisms of action.
Collapse
Affiliation(s)
- Nan Bai
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Wanzhen Deng
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Zezheng Qi
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Shihui Pan
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Qing Li
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China
| | - Min Gu
- Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China.
| |
Collapse
|
18
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
19
|
Eze OC, Berebon DP, Emencheta SC, Evurani SA, Okorie CN, Balcão VM, Vila MMDC. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals (Basel) 2023; 16:1091. [PMID: 37631006 PMCID: PMC10458718 DOI: 10.3390/ph16081091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the increasing limitations and negative impacts of the current options for preventing and managing diseases, including chemotherapeutic drugs and radiation, alternative therapies are needed, especially ones utilizing and maximizing natural products (NPs). NPs abound with diverse bioactive primary and secondary metabolites and compounds with therapeutic properties. Marine probiotics are beneficial microorganisms that inhabit marine environments and can benefit their hosts by improving health, growth, and disease resistance. Several studies have shown they possess potential bioactive and therapeutic actions against diverse disease conditions, thus opening the way for possible exploitation of their benefits through their application. Pseudoalteromonas spp. are a widely distributed heterotrophic, flagellated, non-spore-forming, rod-shaped, and gram-negative marine probiotic bacteria species with reported therapeutic capabilities, including anti-cancer and -bacterial effects. This review discusses the basic concepts of marine probiotics and their therapeutic effects. Additionally, a survey of the anticancer and antibacterial effects of Pseudoalteromonas spp. is presented. Finally, marine probiotic production, advances, prospects, and future perspectives is presented.
Collapse
Affiliation(s)
- Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| | - Somtochukwu A. Evurani
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Chibundo N. Okorie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Victor M. Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M. D. C. Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| |
Collapse
|
20
|
Wang C, Li PF, Hu DG, Wang H. Effect of Clostridium butyricum on intestinal microbiota and resistance to Vibrio alginolyticus of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108790. [PMID: 37169113 DOI: 10.1016/j.fsi.2023.108790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
In order to evaluate the effect of Clostridium butyricum (C. butyricum) feeding on intestinal microorganisms and protection against infection by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei). We set up two groups, CG30 (fed normal feed) and CB30 (fed feed supplemented with C. butyricum), for the 30d C. butyricum feeding test, and four groups, CG (CG30 group injected with PBS), CB (CB30 group injected with PBS), VACG (CG30 group injected with V. alginolyticus), and VACB (CB30 group injected with V. alginolyticus), for the 24h infection test. The protective effect of C. butyricum against acute V. alginolyticus infection in P. vannamei was explained in terms of survival, histopathology, changes in enzyme activity, transcriptome analysis, and immune-related genes. We found that feeding C. butyricum significantly altered intestinal microbial populations' abundance and significantly reduced Vibrio spp. In the V. alginolyticus stress test, C. butyricum improved the survival rate and alleviated pathological changes in hepatopancreatic tissues, alleviated the reduction of superoxide dismutase (SOD) and phenoloxidase (PO) activity caused by infection, and increased the lysozyme content in P. vannamei. VACB group compared with the VACG group, 1730 up-regulated differentially expressed genes (DEGs) and 2029 down-regulated DEGs were screened. Quantitative real-time PCR (qRT-PCR) showed that dietary supplementation with C. butyricum suppressed the upregulation of alkaline phosphatase (AKP) transcription factors and the downregulation of prophenoloxidase (proPO), alpha-2-macroglobulin (A2M), and anti-lipopolysaccharide factor (ALF) induced by V. alginolyticus infection. In conclusion, feed supplementation with C. butyricum changed P. vannamei's population ratio of intestinal microorganisms. Moreover, C. butyricum has the potential to act as an inhibitor of V. alginolyticus infection and enhance the resistance of P. vannamei to V. alginolyticus infection.
Collapse
Affiliation(s)
- Chen Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China
| | - Peng-Fei Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China.
| | - Hui Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
21
|
Du Y, Hu X, Chen J, Xu W, Li H, Chen J. Investigation of the effects of cup plant (Silphium perfoliatum L.) on the growth, immunity, gut microbiota and disease resistance of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108631. [PMID: 36907480 DOI: 10.1016/j.fsi.2023.108631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
To investigate the effects of adding different concentrations of cup plant (Silphium perfoliatum L.) to the feed on the growth performance, hepatopancreas and intestinal microstructure, gene expression, enzyme activity, as well as intestinal microorganisms and resistance to Vibrio parahaemolyticus E1 and White spot syndrome virus (WSSV) infection of the shrimp, cup plant was added to the basal feed at 1%, 3%, 5% and 7% respectively, and fed the shrimp for 6 weeks. It was found that the addition of different concentrations of cup plant could significantly improve the specific growth rate and survival rate of shrimp, reduce the feed conversion rate, and improve the resistance to V. parahaemolyticus E1 and WSSV in shrimp, with the best effect of 5% addition. The tissue sections observations showed that the addition of cup plant significantly improved the hepatopancreas and intestinal tissues of shrimp, especially in alleviating the tissue damage caused by V. parahaemolyticus E1 and WSSV infection, but too high an addition (7%) could also cause side effects on the shrimp intestinal tract. Meantime, the addition of cup plant can also increase the activity of immunodigestive-related enzymes in the hepatopancreas and intestinal tissues of shrimp, and can significantly induce the up-regulation of immune-related genes expression, and it is positively correlated with the amount of addition in a certain range. In addition, it was found that the addition of cup plant has a significant regulating effect on the intestinal flora of shrimp, which can significantly promote the growth of beneficial bacteria such as Haloferula sp., Algoriphagus sp. and Coccinimonas sp., and inhibit pathogenic bacteria Vibrio sp., such as the number of Vibrionaceae_Vibrio and Pseudoalteromonadaceae_Vibrio in the experimental group were significantly reduced, and the lowest level in the 5% addition group. In summary, the study shows that cup plant can promote the growth of shrimp, improve the resistance of shrimp to disease, and is a potential green environmental feed additive that can replace antibiotics.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Xiaoman Hu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jifeng Chen
- Nanjing Silphium Biotechnology Company Limited, Nanjing, 211899, China
| | - Wenlong Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Hao Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
22
|
Utilization of microalgae, Chlorella sp. UMT LF2 for bioremediation of Litopenaeus vannamei culture system and harvesting using bio-flocculant, Aspergillus niger. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Abd El-Hack ME, Alqhtani AH, Swelum AA, El-Saadony MT, Salem HM, Babalghith AO, Taha AE, Ahmed O, Abdo M, El-Tarabily KA. Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: an updated knowledge. Poult Sci 2022; 101:102031. [PMID: 35926350 PMCID: PMC9356169 DOI: 10.1016/j.psj.2022.102031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; Theriogenology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Behira, Rasheed, Edfina, 22758, Egypt
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt; Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|