1
|
Yu J, Pu H, Sun DW. Stacked long and short-term memory (SLSTM) - assisted terahertz spectroscopy combined with permutation importance for rapid red wine varietal identification. Talanta 2025; 291:127650. [PMID: 40037161 DOI: 10.1016/j.talanta.2025.127650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Mislabeling of low-value red wines as high-value ones is common, which seriously undermines consumer rights and interests. However, traditional sensory and chemical analysis methods have limitations, which highlights the need for novel detection techniques. To address above issues, terahertz time-domain spectroscopy (THz-TDS) combined with deep learning (DL) was employed to distinguish different red wine varieties quickly and non-destructively, contributing to correctly identifying red wine labels. Compared with the other models, the stacked long and short-term memory (SLSTM) model based on the first derivative (1-st der) spectra performed the best (Precision: 85.72 %, Recall: 85.61 %, F1-score: 85.59 %, Accuracy: 85.61 %). In addition, feature selection (FS) was used to explore the feasibility of improving model accuracy and reducing prediction time by eliminating redundant frequencies. Compared to full frequency, the 1-st der-SLSTM model based on permutation importance (PI) performed slightly lower (Precision: 84.42 %, Recall: 84.10 %, F1-score: 84.14 %, Accuracy: 84.18 %), but the prediction time was reduced by 2 s. Therefore, different models can be selected based on different detection needs by weighing accuracy and prediction time. In conclusion, the current research demonstrates that the SLSTM-assisted THz-TDS technology provides a novel approach for fast, accurate and non-destructive for fast, accurate and non-destructive discrimination of red wine labels, facilitating the maintenance of market discipline.
Collapse
Affiliation(s)
- Jingxiao Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Synergistic pH-responsive MUC-1 aptamer-conjugated Ag/MSN Janus nanoparticles for targeted chemotherapy, photothermal therapy, and gene therapy in breast cancer. BIOMATERIALS ADVANCES 2025; 166:214081. [PMID: 39454415 DOI: 10.1016/j.bioadv.2024.214081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Drug resistance in cancer treatment, primarily attributed to the overexpression of the multidrug resistance (MDR) gene, significantly hampers the effectiveness of chemotherapy. This mechanism, driven by the increased production of P-glycoprotein (P-gp) efflux pumps, highlights the urgent need for innovative strategies to combat drug resistance in cancer patients. This study explores the application of antisense technology to suppress MDR gene expression, while addressing the challenges of instability and limited cellular uptake associated with antisense oligonucleotides. We synthesized Janus silver-mesoporous silica nanoparticles (Ag/MSN JNPs) using a sol-gel method, characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), revealing uniformly sized, dumbbell-shaped nanoparticles with an average size of 285 ± 5.12 nm. Doxorubicin (DOX) was loaded into the porous structure of the mesoporous silica, and JNPs were functionalized with chitosan (CS) to incorporate P-gp antisense and a MUC-1 aptamer, serving as a pH-responsive gatekeeper. Our findings indicate that the Ap-As-DOX-JNPs achieved a remarkable 89 ± 0.59 % cell death in drug-resistant MCF-7/ADR cells after 48 h, alongside an 80 % reduction in P-gp expression. The combination of DOX, antisense technology, and photothermal therapy utilizing these JNPs demonstrates a promising strategy to effectively overcome drug resistance. Notably, normal MCF-7 cells exhibited reduced viability from 39.11 ± 1.12 % to 30.05 ± 1.07 % when treated with DOX-JNPs under near-infrared (NIR) irradiation. These results underscore the potential of utilizing MUC-1 aptamer-conjugated Janus nanoparticles in conjunction with chitosan as a gatekeeper to enhance the efficacy of chemotherapy, photothermal therapy, and gene therapy in overcoming multidrug resistance in cancer treatment.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Lu N, Ma J, Lin Y, Cheng JH, Sun DW. A fluorescent Aptasensor based on magnetic-separation strategy with gold nanoclusters for Deoxynivalenol (DON) detection. Food Chem 2024; 459:140341. [PMID: 39121528 DOI: 10.1016/j.foodchem.2024.140341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
A highly sensitive method based on MBs-cDNA@Apt-AuNCs519 was developed for deoxynivalenol (DON) detection in wheat. The MBs-cDNA@Apt-AuNCs519 was established using green emission gold nanoclusters (AuNCs519) with aggregation-induced emission properties as signal probes and combining amino-modified DON-aptamer (Apt), biotin-modified DNA strand (the partially complementary to Apt (cDNA)), and streptavidin-modified magnetic beads (MBs). The Apt-AuNCs519 were well connected with MBs-cDNA without DON but dissociated from MBs-cDNA@Apt-AuNCs519 with the addition of DON, leading to a noticeable reduction in the fluorescent intensity of the aptasensor. Moreover, this fluorescence aptasensor showed two linear relationships in the concentration range of 0.1-50 ng/mL and 50-5000 ng/mL with a limit of detection of 3.73 pg/mL with good stability, reproducibility and specificity. The results were consistent with high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, further indicating the potential of this method for accurate trace detection of DON in wheat.
Collapse
Affiliation(s)
- Nian Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Bahlol HS, Li J, Deng J, Foda MF, Han H. Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1750. [PMID: 39513830 PMCID: PMC11547707 DOI: 10.3390/nano14211750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Food safety has recently become a widespread concern among consumers. Surface-enhanced Raman scattering (SERS) is a rapidly developing novel spectroscopic analysis technique with high sensitivity, an ability to provide molecular fingerprint spectra, and resistance to photobleaching, offering broad application prospects in rapid trace detection. With the interdisciplinary development of nanomaterials and biotechnology, the detection performance of SERS biosensors has improved significantly. This review describes the advantages of nanomaterial-based SERS detection technology and SERS's latest applications in the detection of biological and chemical contaminants, the identification of foodborne pathogens, the authentication and quality control of food, and the safety assessment of food packaging materials. Finally, the challenges and prospects of constructing and applying nanomaterial-based SERS sensing platforms in the field of food safety detection are discussed with the aim of early detection and ultimate control of foodborne diseases.
Collapse
Affiliation(s)
- Hagar S. Bahlol
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Jiawen Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Jiamin Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Mohamed F. Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| |
Collapse
|
5
|
Yang J, Zhang R, Liu J, Xiong R, He Y, Luo X, Yang X. Well-ordered Au@Ag NBPs/SiO 2 nanoarray for sensitive detection of chloramphenicol via DNAzyme-assisted SERS sensing. Food Chem 2024; 454:139806. [PMID: 38820635 DOI: 10.1016/j.foodchem.2024.139806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Misuse of chloramphenicol (CAP) can lead to severe food safety issues. Therefore, the accurate and sensitive detection of CAP residues is important for public health. Herein, a convenient and reliable interfacial self-assembly technique was used to form a uniform Au@Ag nanobipyramids (NBPs) film on an ordered SiO2 nanosphere array (SiO2 NS), which served as a Raman-enhanced substrate. In conjunction with a deoxyribonucleic acid enzyme-induced signal amplification strategy, we developed a novel surface-enhanced Raman scattering (SERS) biosensor for the selective and sensitive detection of CAP. The biosensor exhibited a detection limit of 6.42 × 10-13 mol·L-1 and a detection range of 1.0 × 10-12-1.0 × 10-6 mol·L-1. The biosensor could detect CAP in spiked milk samples with a high accuracy, and its recovery rates ranged from 97.88% to 107.86%. The as-developed biosensor with the advantages of high sensitivity and high selectivity offers a new strategy for the rapid, reliable and sensitive detection of CAP, rendering it applicable to food safety control.
Collapse
Affiliation(s)
- Jia Yang
- Xihua University, Chengdu 610039, PR China
| | | | | | | | - Yi He
- Xihua University, Chengdu 610039, PR China.
| | | | - Xiao Yang
- Xihua University, Chengdu 610039, PR China
| |
Collapse
|
6
|
Lv M, Pu H, Sun DW. A tailored dual core-shell magnetic SERS substrate with precise shell-thickness control for trace organophosphorus pesticides residues detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124336. [PMID: 38678838 DOI: 10.1016/j.saa.2024.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
For addressing the challenges of strong affinity SERS substrate to organophosphorus pesticides (OPs), herein, a rapid water-assisted layer-by-layer heteronuclear growth method was investigated to grow uniform UiO-66 shell with controllable thickness outside the magnetic core and provide abundant defect sites for OPs adsorption. By further assembling the tailored Au@Ag, a highly sensitive SERS substrate Fe3O4-COOH@UiO-66/Au@Ag (FCUAA) was synthesized with a SERS enhancement factor of 2.11 × 107. The substrate's suitability for the actual vegetable samples (cowpeas and peppers) was confirmed under both destructive and non-destructive detection conditions, showing a strong SERS response to fenthion and triazophos, with limits of detection of 1.21 × 10-5 and 2.96 × 10-3 mg/kg in the vegetables under destructive conditions, and 0.13 and 1.39 ng/cm2 for non-destructive detection, respectively. The FCUAA substrate had high SERS performance, effective adsorption capability for OPs, and demonstrated good applicability, thus exhibiting great potential for rapid detection of trace OPs residues in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Yang N, Pu H, Sun DW. Developing a magnetic SERS nanosensor utilizing aminated Fe-Based MOF for ultrasensitive trace detection of organophosphorus pesticides in apple juice. Food Chem 2024; 446:138846. [PMID: 38460279 DOI: 10.1016/j.foodchem.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
The unreasonable use of organophosphorus pesticides leads to excessive pesticide residues in food, seriously threatening public health, and the potential of surface-enhanced Raman spectroscopy (SERS) technology, incorporating a metal-organic framework, is substantial for the rapid detection of trace pesticide residues. Here, a novel Fe3O4@NH2-MIL-101(Fe)@Ag (FNMA) SERS nanosensor was developed. Results indicated that the FNMA had a high enhancement factor of 1.53 × 108, a low limit of detection (LOD) of 4.55 × 10-12 M, and a relative standard deviation of 7.73 % for 4-nitrothiophenol, demonstrating its good SERS sensitivity and uniformity, and also possessed good storage stability for one month. In quantifying fenthion and methyl parathion in standard solutions and apple juice in the range of 0.05/0.02-20 mg/L, it showed LODs of 3.02 × 10-3 mg/L and 1.43 × 10-3 mg/L, and 0.0407 and 0.0075 mg/L, respectively, demonstrating potentials in ultrasensitive trace detection of pesticides in food.
Collapse
Affiliation(s)
- Nengjing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Pu H, Yu J, Luo J, Paliwal J, Sun DW. Terahertz spectra reconstructed using convolutional denoising autoencoder for identification of rice grains infested with Sitophilus oryzae at different growth stages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124015. [PMID: 38359515 DOI: 10.1016/j.saa.2024.124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Rice grains are often infected by Sitophilus oryzae due to improper storage, resulting in quality and quantity losses. The efficacy of terahertz time-domain spectroscopy (THz-TDS) technology in detecting Sitophilus oryzae at different stages of infestation in stored rice was employed in the current research. Terahertz (THz) spectra for rice grains infested by Sitophilus oryzae at different growth stages were acquired. Then, the convolutional denoising autoencoder (CDAE) was used to reconstruct THz spectra to reduce the noise-to-signal ratio. Finally, a random forest classification (RFC) model was developed to identify the infestation levels. Results showed that the RFC model based on the reconstructed second-order derivative spectrum with an accuracy of 84.78%, a specificity of 86.75%, a sensitivity of 86.36% and an F1-score of 85.87% performed better than the original first-order derivative THz spectrum with an accuracy of 89.13%, a specificity of 91.38%, a sensitivity of 88.18% and an F1-score of 89.16%. In addition, the convolutional layers inside the CDAE were visualized using feature maps to explain the improvement in results, illustrating that the CDAE can eliminate noise in the spectral data. Overall, THz spectra reconstructed with the CDAE provided a novel method for effective THz detection of infected grains.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jingxiao Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jie Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co 2. Biomedicines 2024; 12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Monitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water-DMSO acidified environment. The same hybrid material in the unchanged water-DMSO medium was the sensing material used for Co2+ monitoring. The best results of the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between 3.58 × 10-6 M and 3.37 × 10-5 M, and the same hybrid material quantified Co2+ in the concentration range of 8.92 × 10-5 M-1.77 × 10-4 M. In addition, we proved that AuNPs can be used for the detection of azaporphyrin (from 2.66 × 10-5 M to 3.29 × 10-4 M), making them a useful tool to monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion, we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.
Collapse
Affiliation(s)
- Ionela Fringu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Diana Anghel
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania;
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| |
Collapse
|
10
|
Li M, He X, Wu C, Wang L, Zhang X, Gong X, Zeng X, Huang Y. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films. ACS Sens 2024; 9:979-987. [PMID: 38299870 DOI: 10.1021/acssensors.3c02519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Through the capture of a target molecule at the metal surface with a highly confined electromagnetic field induced by surface plasmon, surface enhanced Raman spectroscopy (SERS) emerges as a spectral analysis technology with high sensitivity. However, accurate SERS identification of a gaseous molecule with low density and high velocity is still a challenge due to its difficulty in capture. In this work, a flexible paper-based plasmonic metal-organic framework (MOF) film consisting of Ag nanowires@ZIF-8 (AgNWs@ZIF-8) is fabricated for SERS detection of gaseous molecules. Benefiting from its micronanopores generated by the nanowire network and ZIF-8 shell, the effective capture of the gaseous molecule is achieved, and its SERS spectrum is obtained in this paper-based flexible plasmonic MOF nanowire film. With optimal structure parameters, spectra of gaseous 4-aminothiophenol, 4-mercaptophenol, and dithiohydroquinone demonstrate that this film has good SERS performance, which could maintain obvious Raman signals within 30 days during reproducible detection. To realize SERS identification of gaseous molecules, deep learning is performed based on the SERS spectra of the mixed gaseous analyte obtained in this flexible porous film. The results point out that an artificial neural network algorithm could identify gaseous aldehydes (gaseous biomarker of colorectal cancer) in simulated exhaled breath with high accuracy at 93.7%. The integration of the flexible paper-based film sensors with deep learning offers a promising new approach for noninvasive colorectal cancer screening. Our work explores SERS applications in gaseous analyte detection and has broad potential in clinical medicine, food safety, environmental monitoring, etc.
Collapse
Affiliation(s)
- Minghong Li
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Xi He
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Chaolin Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Li Wang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Xin Zhang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
- Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Xiping Zeng
- Shenzhen Huake-Tek Company Limited, Shenzhen, Guangdong 518116, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
11
|
Wu KH, Huang WC, Wang JC, Wang SH. Paper-based colorimetric sensor using Photoshop and a smartphone app for the quantitative detection of carbofuran. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1043-1049. [PMID: 38268410 DOI: 10.1039/d3ay02211k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We developed a smartphone-assisted microchemistry analyzer for the quantitative detection of carbofuran using a paper-based colorimetric sensor, Photoshop software, and a smartphone app. The changes in color of the carbofuran enzymatic reaction in the paper-based sensor were captured and analyzed using a smartphone-controlled analyzer with an LED light source and a smartphone camera. The high accuracy of this method was demonstrated for the determination of carbofuran with a linear response in the range 0.05-1.0 ppm and limits of detection (LOD) of 0.02 and 0.018 ppm using Photoshop and smartphone app colorimetric analysis, respectively. These two methods not only show the high sensitivity and highly quantitative relationships between the concentrations of commercial carbofuran and characteristic color values of the blue channel in smartphone images but were also applied to infusions of tea. Moreover, the smartphone app is able to GPS tag the location of the test and transmit the results to a website that displays quantitative results from carbofuran samples on a map.
Collapse
Affiliation(s)
- Kuo-Hui Wu
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Wen-Chien Huang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Je-Chuang Wang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Shih-Hsien Wang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| |
Collapse
|
12
|
Strach A, Dulski M, Wasilkowski D, Matus K, Dudek K, Podwórny J, Rawicka P, Grebnevs V, Waloszczyk N, Nowak A, Poloczek P, Golba S. Multifaceted Assessment of Porous Silica Nanocomposites: Unraveling Physical, Structural, and Biological Transformations Induced by Microwave Field Modification. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:337. [PMID: 38392710 PMCID: PMC10893391 DOI: 10.3390/nano14040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland;
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Jacek Podwórny
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Vladlens Grebnevs
- Faculty of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Paulina Poloczek
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| |
Collapse
|
13
|
Lv M, Pu H, Sun DW. A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chem 2024; 433:137389. [PMID: 37690135 DOI: 10.1016/j.foodchem.2023.137389] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
A new type of durian-shaped Fe3O4@Au@Ag@Au (DFAAA) multilayer core-shell composite was prepared as an efficient surface-enhanced Raman scattering (SERS) substrate. The optimization process and SERS enhancement mechanism of the substrate were further explained with finite-difference time-domain simulation. The dense and uniform spiny array on the DFAAA surface had abundant "hot spots", greatly improving sensitivity, uniformity and reproducibility, with a Raman enhancement factor of 3.01 × 107 and storage-life of 30 d. A "flow magnetic detection method" was proposed to realize rapid and flexible detection of pesticide residues on the surface of different foods including fish and apple. The limit of detection of malachite green and thiram on the fish and apple surfaces were 0.13 and 0.18 ng/cm2, respectively. With its high SERS performance and good magnetic, the DFAAA possessed great application prospects as a facile SERS substrate for rapid and non-destructive detection of trace pesticide residues on foods.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Cheng JH, Zhang X, Ma J, Sun DW. Fluorescent polythymidine-templated copper nanoclusters aptasensor for sensitive detection of tropomyosin in processed shrimp products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123271. [PMID: 37714106 DOI: 10.1016/j.saa.2023.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Tropomyosin (TM) is the main allergen in shellfish. Developing a novel, simple and accurate method to track and detect TM in food products is necessary. In this work, a label-free fluorescent aptasensor based on polythymidine (poly(T))-templated copper nanoclusters (CuNCs) was designed for sensitive detection of TM in processed shrimp products. Magnetic beads (MBs), aptamer and cDNA were used to construct an MBs-aptamer@cDNA complex as a detection probe, and with the presence of TM, the poly(T)-templated CuNCs attached at the end of the cDNA as the fluorescent signal was released from the complex to turn on the fluorescence. Under optimal conditions, the poly(T)-templated CuNCs aptasensor achieved a linear range from 0.1 to 50 μg/mL (R2 = 0.9980), a low limit of detection of 0.0489 μg/mL and an excellent recovery percentage of 105.29%-108.91% in the complex food matrix, providing a new approach for food safety assurance.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xinxue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Wu Z, Sun DW, Pu H. CRISPR/Cas12a and G-quadruplex DNAzyme-driven multimodal biosensor for visual detection of Aflatoxin B1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123121. [PMID: 37579713 DOI: 10.1016/j.saa.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/16/2023]
Abstract
Aflatoxin B1 (AFB1) contamination severely threatens human and animal health, it is thus critical to construct a strategy for its rapid, accurate, and visual detection. Herein, a multimodal biosensor was proposed based on CRISPR/Cas12a cleaved G-quadruplex (G4) for AFB1 detection. Briefly, specific binding of AFB1 to the aptamer occupied the binding site of the complementary DNA (cDNA), and cDNA then activated Cas12a to cleave G4 into fragments. Meanwhile, the intact G4-DNAzyme could catalyze 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form colourimetric/SERS/fluorescent signal-enhanced TMBox, and the yellow solution produced by TMBox under acidic conditions could be integrated with a smartphone application for visual detection. The colourimetric/SERS/fluorescent biosensor yielded detection limits of 0.85, 0.79, and 1.65 pg·mL-1, respectively, and was applied for detecting AFB1 in peanut, maize, and badam samples. The method is suitable for visual detection in naturally contaminated peanut samples and has prospective applications in the food industry.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
17
|
Yoon J, Kim DH, Park SG, Kim SH. Micromolding-Assisted Production of SERS-Active Microcylinders for Size- and Charge-Selective Molecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38016084 DOI: 10.1021/acsami.3c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an effective technique for amplifying the Raman signal of molecules by using metal nanostructures. However, these metal surfaces are susceptible to contamination by undesirable adhesives in complex mixtures, typically necessitating a time-consuming and costly sample pretreatment. In order to circumvent this, metal nanoparticles have been uniformly embedded within microgels by using microfluidics. In this work, we introduce a simple, scalable micromolding method for creating SERS-active cylindrical microgels designed to eliminate the need for pretreatment. These microcylinders are created through the simultaneous photoreduction and photo-cross-linking of precursor solutions. These solutions are optimized for consistent, high-intensity Raman signals as well as molecular size and charge selectivity. A sequential micromolding method is employed to design dual-compartment microcylinders, offering additional functionalities such as optical encoding, magnetoresponsiveness, and dual-charge selectivity. These SERS-active microcylinders provide robust Raman signals of small molecules, even in the presence of adhesive proteins, without compromising sensitivity. To demonstrate this capability, we directly detect pyocyanin in saliva and tartrazine in whole milk without any need for sample pretreatment.
Collapse
Affiliation(s)
- Jiwon Yoon
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Zeng Z, Yang X, Cao Y, Pu S, Zhou X, Gu R, Zhang Y, Wu C, Luo X, He Y. High-efficiency SERS platform based on 3D porous PPDA@Au NPs as a substrate for the detection of pesticides on vegetables. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4842-4850. [PMID: 37702073 DOI: 10.1039/d3ay00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Nowadays, the presence of highly toxic and persistent residues of pesticides in water and food around the world is becoming a serious problem, and so their rapid and sensitive detection is critical to human health. In this work, a 3D composite nanoparticle of porous PDA (polydopamine) microspheres and Au NPs (PPDA@Au NPs) was proposed as a SERS substrate to detect pesticides. Porous PDA as a substrate was first synthesized with F127 (Pluronic F127), dopamine hydrochloride, and 1,3,5-TMB (1,3,5-trimethylbenzene) under weakly alkaline conditions by a one-step method. Then, HAuCl4 was in situ reduced in the pores of PPDA spheres and grew sequentially for effecting the reducibility of PPDA. As a result, uniform 3D PPDA@Au NPs with "hot spots" were successfully synthesized as SERS substrates, which could effectively avoid the agglomeration of gold nanoparticles to greatly improve the sensitivity and uniformity of the SERS platform. At the same time, methyl parathion, 4-chlorophenol, and 2,4-D as representatives of pesticides were detected with the proposed PPDA@Au NP-based SERS platform, with detection limits lower than 7.26, 7.52, and 11 ng mL-1, separately. The current work presents a simple preparation method to prepare sensitive and uniform SERS platform PPDA@Au NPs, which have potential for applications in actual pesticide and drug testing.
Collapse
|
19
|
Lv M, Pu H, Sun DW. Preparation of Fe 3O 4@UiO-66(Zr)@Ag NPs core-shell-satellite structured SERS substrate for trace detection of organophosphorus pesticides residues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122548. [PMID: 36947914 DOI: 10.1016/j.saa.2023.122548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been revived and developed with the introduction of metal-organic frameworks (MOFs), while more valuable properties of MOFs for SERS substrates remain largely unexplored. This work constructed a new SERS substrate Fe3O4@UiO-66(Zr)@Ag nanoparticles (FUAs) with excellent SERS detection sensitivity, uniformity, reproducibility and stability, exhibiting a high Raman enhancement factor (5.62 × 106), low limit of detection (LOD, 2.11 × 10-11 M) and RSD (12.41 %) for 4-NBT, and maintaining 81 % SERS activity within 60 days. The FUAs took full advantage of the strong affinity of UiO-66(Zr) for organophosphorus pesticides (OPs) to realize trace OPs detection. The LODs of phoxim, triazophos and methyl parathion in apple juice were 0.041, 0.021 and 0.0031 mg/L, respectively, with good linearities ranging from 0.02 or 0.1-50 mg/L, meeting the requirements of the food control standards, indicating that the potentials and prospects of the FUAs SERS substrate for trace detecting OPs in foods.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Ahn H, Kim S, Oh SS, Park M, Kim S, Choi JR, Kim K. Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications. BIOSENSORS 2023; 13:bios13050534. [PMID: 37232896 DOI: 10.3390/bios13050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.
Collapse
Affiliation(s)
- Heesang Ahn
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Soojung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Mihee Park
- Educational Research Center for the Personalized Healthcare based on Cogno-Mechatronics, Pusan National University, Busan 46241, Republic of Korea
| | - Seungchul Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- The Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- The Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Pu H, Yu J, Sun DW, Wei Q, Li Q. Distinguishing pericarpium citri reticulatae of different origins using terahertz time-domain spectroscopy combined with convolutional neural networks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122771. [PMID: 37244024 DOI: 10.1016/j.saa.2023.122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/29/2023]
Abstract
The geographical indication of pericarpium citri reticulatae (PCR) is very important in grading the quality and price of PCRs. Therefore, terahertz time-domain spectroscopy (THz-TDS) technology combined with convolutional neural networks (CNN) was proposed to distinguish PCRs of different origins without damage in this study. The one-dimensional CNN (1D-CNN) model with an accuracy of 82.99% based on spectral data processed with SNV was established. The two-dimensional image features were transformed from unprocessed spectral data using the gramian angular field (GAF), the Markov transition field (MTF) and the recurrence plot (RP), which were used to build a two-dimensional CNN (2D-CNN) model with an accuracy of 78.33%. Further, the CNN models with different fusion methods were developed for fusing spectra data and image data. In addition, the adding spectra and images based on the CNN (Add-CNN) model with an accuracy of 86.17% performed better. Eventually, the Add-CNN model based on ten frequencies extracted using permutation importance (PI) achieved the identification of PCRs from different origins. Overall, the current study would provide a new method for identifying PCRs of different origins, which was expected to be used for the traceability of PCRs products.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jingxiao Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qian Li
- Shenzhen Institute of Terahertz Technology and Innovation, Shenzhen, Guangdong 518102, China
| |
Collapse
|
22
|
Strach A, Dulski M, Wasilkowski D, Metryka O, Nowak A, Matus K, Dudek K, Rawicka P, Kubacki J, Waloszczyk N, Mrozik A, Golba S. Microwave Irradiation vs. Structural, Physicochemical, and Biological Features of Porous Environmentally Active Silver–Silica Nanocomposites. Int J Mol Sci 2023; 24:ijms24076632. [PMID: 37047604 PMCID: PMC10095382 DOI: 10.3390/ijms24076632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Jerzy Kubacki
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
23
|
Kerry RG, Singh KRB, Mahari S, Jena AB, Panigrahi B, Pradhan KC, Pal S, Kisan B, Dandapat J, Singh J, Pandey SS, Singh RP, Majhi S. Bioactive potential of morin loaded mesoporous silica nanoparticles: A nobel and efficient antioxidant, antidiabetic and biocompatible abilities in in-silico, in-vitro, and in-vivo models. OPENNANO 2023; 10:100126. [DOI: 10.1016/j.onano.2023.100126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
24
|
Liu Y, Pu H, Li Q, Sun DW. Discrimination of Pericarpium Citri Reticulatae in different years using Terahertz Time-Domain spectroscopy combined with convolutional neural network. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122035. [PMID: 36332396 DOI: 10.1016/j.saa.2022.122035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Pericarpium Citri Reticulatae (PCR) in longer storage years possess higher medicinal values, but their differentiation is difficult due to similar morphological characteristics. Therefore, this study investigated the feasibility of using terahertz time-domain spectroscopy (THz-TDS) combined with a convolutional neural network (CNN) to identify PCR samples stored from 1 to 20 years. The absorption coefficient and refractive index spectra in the range of 0.2-1.5 THz were acquired. Partial least squares discriminant analysis, random forest, least squares support vector machines, and CNN were used to establish discriminant models, showing better performance of the CNN model than the others. In addition, the output data points of the CNN intermediate layer were visualized, illustrating gradual changes in these points from overlapping to clear separation. Overall, THz-TDS combined with CNN models could realize rapid identification of different year PCRs, thus providing an efficient alternative method for PCR quality inspection.
Collapse
Affiliation(s)
- Yao Liu
- School of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics (e) Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qian Li
- Shenzhen Institute of Terahertz Technology and Innovation, Shenzhen, Guangdong 518102, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics (e) Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
He H, Sun DW, Pu H, Wu Z. A SERS-Fluorescence dual-signal aptasensor for sensitive and robust determination of AFB1 in nut samples based on Apt-Cy5 and MNP@Ag-PEI. Talanta 2023; 253:123962. [PMID: 36208559 DOI: 10.1016/j.talanta.2022.123962] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
Food aflatoxin B1 (AFB1) contamination greatly threatens human health and its sensitive determination is imperative. In this study, a surface-enhanced Raman scattering (SERS) and fluorescence dual-signal aptasensor was constructed for sensitive AFB1 detection in peanuts, walnuts, and almonds samples. Fluorescent dye cy5 was used as fluorophore and Raman reporter, while polyethyleneimine modified Ag coating magnetic nanoparticles (MNP@Ag-PEI) were utilized to absorb the cy5 modified aptamer (apt-cy5). Results indicated that linear ranges of 0.001-1000 ng/mL and 0.2-20,000 ng/mL with detection limits of 0.45 pg/mL and 0.135 ng/mL for the SERS and fluorescence methods were obtained, respectively, and AFB1 detection in the nut samples using the aptasensor achieved satisfactory recoveries of 95.2%-108.6% for SERS and 94.7%-109.7% for fluorescence. Compared with other mono signal detection, the established aptasensor facilely fused the merits of the two signals and improved the detection accuracy and flexibility.
Collapse
Affiliation(s)
- Haoyang He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Zhihui Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| |
Collapse
|
26
|
Wu Z, Sun DW, Pu H, Wei Q. A dual signal-on biosensor based on dual-gated locked mesoporous silica nanoparticles for the detection of Aflatoxin B1. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Huang L, Sun DW, Pu H, Zhang C, Zhang D. Nanocellulose-based polymeric nanozyme as bioinspired spray coating for fruit preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Li Q, Lei T, Sun DW. Analysis and detection using novel terahertz spectroscopy technique in dietary carbohydrate-related research: Principles and application advances. Crit Rev Food Sci Nutr 2023; 63:1793-1805. [PMID: 36647744 DOI: 10.1080/10408398.2023.2165032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As one of the main functional substances, carbohydrates account for a large proportion of the human diet. Conventional analysis and detection methods of dietary carbohydrates and related products are destructive, time-consuming, and labor-intensive. In order to improve the efficiency of measurement and ensure food nutrition and consumer health, rapid and nondestructive quality evaluation techniques are needed. In recent years, terahertz (THz) spectroscopy, as a novel detection technology with dual characteristics of microwave and infrared, has shown great potential in dietary carbohydrate analysis. The current review aims to provide an up-to-date overview of research advances in using the THz spectroscopy technique in analysis and detection applications related to dietary carbohydrates. In the review, the principles of the THz spectroscopy technique are introduced. Advances in THz spectroscopy for quantitative and qualitative analysis and detection in dietary carbohydrate-related research studies from 2013 to 2022 are discussed, which include analysis of carbohydrate concentrations in liquid and powdery foods, detection of foreign body and chemical residues in carbohydrate food products, authentication of natural carbohydrate produce, monitoring of the fermentation process in carbohydrate food production and examination of crystallinity in carbohydrate polymers. In addition, applications in dietary carbohydrate-related detection research using other spectroscopic techniques are also briefed for comparison, and future development trends of THz spectroscopy in this field are finally highlighted.
Collapse
Affiliation(s)
- Qingxia Li
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Tong Lei
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|