1
|
Yue X, Wang T, Cai Y, Wang H, Lv E, Yuan X, Zeng J, Zhao W, Wang J. Composite metamaterial of hyperbolic nanoridges and gold nanoparticles for biosensing. NANOSCALE 2025; 17:7271-7280. [PMID: 39973344 DOI: 10.1039/d4nr05517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hyperbolic metamaterials have gained considerable attention in the field of optical biosensing due to their ability to support highly sensitive plasmonic modes. The high sensitivity of these electromagnetic modes mainly manifests as a strong response to variations in the bulk refractive index of the surrounding environment. However, its capability to detect low-concentration biochemical molecules near the surface of the metamaterial still requires further enhancement. In this work, we developed a composite metamaterial of gold nanoparticles and nanoridge hyperbolic metamaterials. The hyperbolic nanoridges are high-periodicity metamaterial arrays fabricated by combining electron beam lithography and electroplating. By exciting the high-sensitivity coupling modes formed by the bulk plasmon-polariton and localized surface plasmon resonance in this composite metamaterial, we achieved an improvement of over one order of magnitude in the detection limit for biomolecules, while maintaining the high bulk sensitivity of 23 333 nm RIU-1. Our research not only plays a key role in advancing the field of real-time, high-precision plasmonic biosensing but also offers substantial promise for improving early disease detection and monitoring.
Collapse
Affiliation(s)
- Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Enze Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jinwei Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wenyu Zhao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Lien D. The role of DNA nanotechnology in medical sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1148-1159. [PMID: 39714254 DOI: 10.1039/d4ay01803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, etc. This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Darell Lien
- Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA
| |
Collapse
|
3
|
Zheng L, Hara K, Murakami H, Tonouchi M, Serita K. A Reflective Terahertz Point Source Meta-Sensor with Asymmetric Meta-Atoms for High-Sensitivity Bio-Sensing. BIOSENSORS 2024; 14:568. [PMID: 39727832 DOI: 10.3390/bios14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed. A near-field point THz source was locally generated at a femtosecond-laser-irradiation spot via optical rectification, exciting only the single central meta-atom, thereby inducing Fano resonance. The reflective resonance response demonstrated dependence on several aspects, including structure asymmetricity, geometrical size, excitation point position, thickness and array-period arrangement. DNA samples were examined using 1 μL applied to an effective sensing area of 0.234 mm2 (484 μm × 484 μm) for performance evaluation. The developed Fano resonance sensor exhibited nearly double sensitivity compared to that of symmetrical sensors and one-gap split ring resonators. Thus, this study advances liquid-based sensing by enabling easy, rapid and trace-level measurements while also driving the development of compact and highly sensitive THz sensors for biological samples.
Collapse
Affiliation(s)
- Luwei Zheng
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Kazuki Hara
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Hironaru Murakami
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Masayoshi Tonouchi
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Kazunori Serita
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
- Graduate School of Information, Production, and Systems, Waseda University, Kitakyusyu 808-0135, Fukuoka, Japan
| |
Collapse
|
4
|
Javaid Z, Iqbal MA, Javeed S, Maidin SS, Morsy K, Shati AA, Choi JR. Reviewing advances in nanophotonic biosensors. Front Chem 2024; 12:1449161. [PMID: 39318420 PMCID: PMC11420028 DOI: 10.3389/fchem.2024.1449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Biosensing, a promising branch of exploiting nanophotonic devices, enables meticulous detection of subwavelength light, which helps to analyze and manipulate light-matter interaction. The improved sensitivity of recent high-quality nanophotonic biosensors has enabled enhanced bioanalytical precision in detection. Considering the potential of nanophotonics in biosensing, this article summarizes recent advances in fabricating nanophotonic and optical biosensors, focusing on their sensing function and capacity. We typically classify these types of biosensors into five categories: phase-driven, resonant dielectric nanostructures, plasmonic nanostructures, surface-enhanced spectroscopies, and evanescent-field, and review the importance of enhancing sensor performance and efficacy by addressing some major concerns in nanophotonic biosensing, such as overcoming the difficulties in controlling biological specimens and lowering their costs for ease of access. We also address the possibility of updating these technologies for immediate implementation and their impact on enhancing safety and health.
Collapse
Affiliation(s)
- Zunaira Javaid
- Department of Biochemistry, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Saher Javeed
- Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Siti Sarah Maidin
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A. Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Makwana M. FEM simulation of SARS-CoV-2 sensing in single-layer graphene-based bionanosensors. J Mol Model 2024; 30:327. [PMID: 39240273 DOI: 10.1007/s00894-024-06123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
CONTEXT Airborne pathogens, defined as microscopic organisms, pose significant health risks and can potentially cause a variety of diseases. Given their ability to spread through diverse transmission routes from infected hosts, there is a critical need for accurate monitoring of these pathogens. This study aims to develop a sensor by investigating the vibrational responses of cantilever and bridged boundary-conditioned single-layer graphene (SLG) sheets with microorganisms, specifically SARS-CoV-2, attached at various positions on the sheet. The dynamic analysis of SLG with different boundary conditions and lengths was conducted using the atomistic finite element method (AFEM). Simulations were performed to evaluate SLG's performance as a sensor for biological entities. Altering the sheet's length and the mass of the attached biological object revealed observable frequency differences. This sensor design shows promise for enhancing the detection capabilities of graphene-based technologies for viruses. METHODS Finite element method (FEM) analysis is employed to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of SARS-CoV-2. Bridged and cantilever boundary conditions are applied at the ends of the SLG structure by using ANSYS software. Simulations have been conducted to observe how SLG behaves when used as sensors. In armchair graphene, under both boundary conditions, an SLG (5, 5) structure with a length of 50 nm displayed the highest frequency when a SARS-CoV-2 molecule with a mass of 2.6594 × 10-18 g was attached. Conversely, the chiral SLG (17, 1) structure exhibited its lowest frequency at a length of 10 nm. This insight is crucial for grasping detection limits and how factors such as size and boundary conditions influence sensor efficacy. These biosensors hold immense promise in biological sciences and medical applications, revolutionizing patient care by enabling early detection and accurate pathogen identification in clinical settings.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, CVM University, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
6
|
Aslan M, Seymour E, Brickner H, Clark AE, Celebi I, Townsend MB, Satheshkumar PS, Riley M, Carlin AF, Ünlü MS, Ray P. A Label-free Optical Biosensor-Based Point-of-Care Test for the Rapid Detection of Monkeypox Virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309903. [PMID: 39006424 PMCID: PMC11245052 DOI: 10.1101/2024.07.03.24309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation to achieve virtually unlimited sensitivity. In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/ml (~3.3 attomolar). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface.
Collapse
Affiliation(s)
- Mete Aslan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Elif Seymour
- iRiS Kinetics, Boston University, Business Incubation Center, Boston, MA, 02215, USA
| | - Howard Brickner
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA
| | - Alex E. Clark
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA
| | - Iris Celebi
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Michael B. Townsend
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Aaron F. Carlin
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - M. Selim Ünlü
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Partha Ray
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA
| |
Collapse
|
7
|
Tezsezen E, Yigci D, Ahmadpour A, Tasoglu S. AI-Based Metamaterial Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29547-29569. [PMID: 38808674 PMCID: PMC11181287 DOI: 10.1021/acsami.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The use of metamaterials in various devices has revolutionized applications in optics, healthcare, acoustics, and power systems. Advancements in these fields demand novel or superior metamaterials that can demonstrate targeted control of electromagnetic, mechanical, and thermal properties of matter. Traditional design systems and methods often require manual manipulations which is time-consuming and resource intensive. The integration of artificial intelligence (AI) in optimizing metamaterial design can be employed to explore variant disciplines and address bottlenecks in design. AI-based metamaterial design can also enable the development of novel metamaterials by optimizing design parameters that cannot be achieved using traditional methods. The application of AI can be leveraged to accelerate the analysis of vast data sets as well as to better utilize limited data sets via generative models. This review covers the transformative impact of AI and AI-based metamaterial design for optics, acoustics, healthcare, and power systems. The current challenges, emerging fields, future directions, and bottlenecks within each domain are discussed.
Collapse
Affiliation(s)
- Ece Tezsezen
- Graduate
School of Science and Engineering, Koç
University, Istanbul 34450, Türkiye
| | - Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Türkiye
| | - Abdollah Ahmadpour
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Bogaziçi
Institute of Biomedical Engineering, Bogaziçi
University, Istanbul 34684, Türkiye
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
8
|
Lam WS, Lam WH, Lee PF, Jaaman SH. Biophotonics as a new application in optical technology: A bibliometric analysis. Heliyon 2023; 9:e23011. [PMID: 38076099 PMCID: PMC10703716 DOI: 10.1016/j.heliyon.2023.e23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Biophotonics procures wide practicability in life sciences and medicines. The contribution of biophotonics is well recognized in various Nobel Prizes. Therefore, this paper aims to conduct a bibliometric analysis of biophotonics publications. The scientific database used is the Web of Science database. Harzing's Publish or Perish and VOSviewer are the bibliometric tools used in this analysis. This study found an increasing trend in the number of publications in recent years as the number of publications peaked at 347 publications in 2020. Most of the documents are articles (3361 publications) and proceeding papers (1632 publications). The top three subject areas are Optics (3206 publications), Engineering (1706 publications) and Radiology, Nuclear Medicine, and Medical Imaging (1346 publications). The United States has the highest number of publications (2041 publications) and citation impact (38.07 citations per publication; h-index: 125). The top three publication titles are Proceedings of SPIE (920 publications), Journal of Biomedical Optics (599 publications), and Proceedings of the Society of Photo Optical Instrumentation Engineers SPIE (245 publications). The potential areas for future research include to overcome the optical penetration depth issue and to develop publicly available biosensors for the detection of common diseases.
Collapse
Affiliation(s)
- Weng Siew Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Pei Fun Lee
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Saiful Hafizah Jaaman
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
9
|
Dadouche N, Mezache Z, Tao J, Ali E, Alsharef M, Alwabli A, Jaffar A, Alzahrani A, Berazguia A. Design and Fabrication of a Novel Corona-Shaped Metamaterial Biosensor for Cancer Cell Detection. MICROMACHINES 2023; 14:2114. [PMID: 38004971 PMCID: PMC10673234 DOI: 10.3390/mi14112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The early detection and diagnosis of cancer presents significant challenges in today's healthcare. So, this research, suggests an original experimental biosensor for cell cancer detection using a corona-shaped metamaterial resonator. This resonator is designed to detect cancer markers with high sensitivity, selectivity, and linearity properties. By exploiting the unique properties of the corona metamaterial structure in the GHz regime, the resonator provides enhanced interaction of electromagnetic waves and improved detection skills. Through careful experimental, simulation, and optimization studies, we accurately demonstrate the resonator's ability to detect cancer. The proposed detection system is capable of real-time non-invasive cancer detection, allowing for rapid intervention and better patient outcomes. The sensitivity value was confirmed through simulation, estimated at 0.1825 GHz/RIU. The results of two different simulation methods are used: the simulation software CST Studio Suite (version 2017) based on the finite element method (FEM), and the simulation software ADS (version 2019) based on the equivalent circuit method, thereby increasing confidence in the convergence of simulation and measurement results. This work opens new avenues for developing advanced detection technologies in the field of oncology, and paves the way for more effective cancer diagnosis. The experimental study verified that this realized sensor has very small frequency shifts, significantly small electrical dimension and miniaturization, high sensitivity, and good linearity. The suggested configurations showed a capacity for sensing cancer cells in the GHz regime.
Collapse
Affiliation(s)
- Nourelhouda Dadouche
- Institute of Optics and Precision Mechanics, University of Ferhat Abbas Setif, Setif 19000, Algeria; (N.D.); (A.B.)
| | - Zinelabiddine Mezache
- Institute of Optics and Precision Mechanics, University of Ferhat Abbas Setif, Setif 19000, Algeria; (N.D.); (A.B.)
| | - Junwu Tao
- LAPLACE, INP-ENSEEIHT, 2 Rue Camichel, 31071 Toulouse, France;
- University Toulouse III, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Enas Ali
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt;
| | - Mohammad Alsharef
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.A.)
| | - Abdullah Alwabli
- Department of Electrical Engineering, College of Engineering and Computing in Al-Qunfudhah, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Amar Jaffar
- Computer and Network Engineering Department, College of Computing, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Abdullah Alzahrani
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.A.)
| | - Achouak Berazguia
- Institute of Optics and Precision Mechanics, University of Ferhat Abbas Setif, Setif 19000, Algeria; (N.D.); (A.B.)
| |
Collapse
|
10
|
Yuwen L, Zhang S, Chao J. Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. BIOSENSORS 2023; 13:822. [PMID: 37622908 PMCID: PMC10452139 DOI: 10.3390/bios13080822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Virus-related infectious diseases are serious threats to humans, which makes virus detection of great importance. Traditional virus-detection methods usually suffer from low sensitivity and specificity, are time-consuming, have a high cost, etc. Recently, DNA biosensors based on DNA nanotechnology have shown great potential in virus detection. DNA nanotechnology, specifically DNA tiles and DNA aptamers, has achieved atomic precision in nanostructure construction. Exploiting the programmable nature of DNA nanostructures, researchers have developed DNA nanobiosensors that outperform traditional virus-detection methods. This paper reviews the history of DNA tiles and DNA aptamers, and it briefly describes the Baltimore classification of virology. Moreover, the advance of virus detection by using DNA nanobiosensors is discussed in detail and compared with traditional virus-detection methods. Finally, challenges faced by DNA nanobiosensors in virus detection are summarized, and a perspective on the future development of DNA nanobiosensors in virus detection is also provided.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Shifeng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Jie Chao
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
11
|
Seymour E, Ekiz Kanik F, Diken Gür S, Bakhshpour-Yucel M, Araz A, Lortlar Ünlü N, Ünlü MS. Solid-Phase Optical Sensing Techniques for Sensitive Virus Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:5018. [PMID: 37299745 PMCID: PMC10255700 DOI: 10.3390/s23115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.
Collapse
Affiliation(s)
- Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M4P 1R2, Canada;
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Fulya Ekiz Kanik
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| | - Sinem Diken Gür
- Department of Biology, Hacettepe University, Ankara 06800, Türkiye;
| | - Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
- Department of Chemistry, Bursa Uludag University, Bursa 16059, Türkiye
| | - Ali Araz
- Department of Chemistry, Dokuz Eylül University, Izmir 35390, Türkiye;
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - M. Selim Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| |
Collapse
|
12
|
Batool R, Soler M, Colavita F, Fabeni L, Matusali G, Lechuga LM. Biomimetic nanoplasmonic sensor for rapid evaluation of neutralizing SARS-CoV-2 monoclonal antibodies as antiviral therapy. Biosens Bioelectron 2023; 226:115137. [PMID: 36796306 PMCID: PMC9904857 DOI: 10.1016/j.bios.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Monoclonal antibody (mAb) therapy is one of the most promising immunotherapies that have shown the potential to prevent or neutralize the effects of COVID-19 in patients at very early stages, with a few formulations recently approved by the European and American medicine agencies. However, a main bottleneck for their general implementation resides in the time-consuming, laborious, and highly-specialized techniques employed for the manufacturing and assessing of these therapies, excessively increasing their prices and delaying their administration to the patients. We propose a biomimetic nanoplasmonic biosensor as a novel analytical technique for the screening and evaluation of COVID-19 mAb therapies in a simpler, faster, and reliable manner. By creating an artificial cell membrane on the plasmonic sensor surface, our label-free sensing approach enables real-time monitoring of virus-cell interactions as well as direct analysis of antibody blocking effects in only 15 min assay time. We have achieved detection limits in the 102 TCID50/mL range for the study of SARS-CoV-2 viruses, which allows to perform neutralization assays by only employing a low-volume sample with common viral loads. We have demonstrated the accuracy of the biosensor for the evaluation of two different neutralizing antibodies targeting both Delta and Omicron variants of SARS-CoV-2, with half maximal inhibitory concentrations (IC50) determined in the ng/mL range. Our user-friendly and reliable technology could be employed in biomedical and pharmaceutical laboratories to accelerate, cheapen, and simplify the development of effective immunotherapies for COVID-19 and other serious infectious diseases or cancer.
Collapse
Affiliation(s)
- Razia Batool
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| | - Francesca Colavita
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Lavinia Fabeni
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Giulia Matusali
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| |
Collapse
|
13
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
14
|
Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM. Plasmonic Refractive Index Sensor Enhanced with Chitosan/Au Bilayer Thin Film for Dopamine Detection. BIOSENSORS 2022; 12:1124. [PMID: 36551091 PMCID: PMC9775628 DOI: 10.3390/bios12121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Surface plasmonic sensors have received considerable attention, found extensive applications, and outperformed conventional optical sensors. In this work, biopolymer chitosan (CS) was used to prepare the bilayer structure (CS/Au) of a plasmonic refractive index sensor for dopamine (DA) detection. The sensing characteristics of the developed plasmonic sensor were evaluated. Increasing DA concentrations significantly shifted the SPR dips. The sensor exhibited stability and a refractive index sensitivity of 8.850°/RIU in the linear range 0.1 nM to 1 µM with a detection limit of 0.007 nM and affinity constant of 1.383 × 108 M-1. The refractive index and thickness of the CS/Au structure were measured simultaneously by fitting the obtained experimental findings to theoretical data based on Fresnel equations. The fitting yielded the refractive index values n (1.5350 ± 0.0001) and k (0.0150 ± 0.0001) for the CS layer contacting 0.1 nM of DA, and the thickness, d was (15.00 ± 0.01) nm. Then, both n and d values increased by increasing DA concentrations. In addition, the changes in the FTIR spectrum and the variations in sensor surface roughness and structure obtained by AFM analysis confirmed DA adsorption on the sensing layer. Based on these observations, CS/Au bilayer has enhanced the performance of this plasmonic sensor, which showed promising importance as a simple, low-cost, and reliable platform for DA sensing.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | |
Collapse
|
15
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
16
|
Sobhanie E, Salehnia F, Xu G, Hamidipanah Y, Arshian S, Firoozbakhtian A, Hosseini M, Ganjali MR, Hanif S. Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. Trends Analyt Chem 2022; 157:116727. [PMID: 35815064 PMCID: PMC9254503 DOI: 10.1016/j.trac.2022.116727] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
Researchers are constantly looking to find new techniques of virus detection that are sensitive, cost-effective, and accurate. Additionally, they can be used as a point-of-care (POC) tool due to the fact that the populace is growing at a quick tempo, and epidemics are materializing greater often than ever. Electrochemiluminescence-based (ECL) biosensors for the detection of viruses have become one of the most quickly developing sensors in this field. Thus, we here focus on recent trends and developments of these sensors with regard to virus detection. Also, quantitative analysis of various viruses (e.g., Influenza virus, SARS-CoV-2, HIV, HPV, Hepatitis virus, and Zika virus) with a specific interest in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was introduced from the perspective of the biomarker and the biological receptor immobilized on the ECL-based sensors, such as nucleic acids-based, immunosensors, and other affinity ECL biosensors.
Collapse
Affiliation(s)
- Ebtesam Sobhanie
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Foad Salehnia
- Departament d'Enginyeria Electrònica, Escola Tècnica Superior d'Enginyeria, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yalda Hamidipanah
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Shayesteh Arshian
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Islamabad, Pakistan
| |
Collapse
|
17
|
Vitrik O. Editorial for the Special Issue Applications of Nanomaterials in Plasmonic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1634. [PMID: 35630856 PMCID: PMC9144300 DOI: 10.3390/nano12101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
Further progress in the modern sensor industry is associated with the widespread application of new solutions and principles from the field of nanooptics and nanophotonics [...].
Collapse
Affiliation(s)
- Oleg Vitrik
- Institute of Automation and Control Processes (IACP) FEB RAS 1, 690041 Vladivostok, Russia;
- Photonics and Digital Laser Technologies Department, Far Eastern Federal University (FEFU), 690922 Vladivostok, Russia
| |
Collapse
|
18
|
Singh S, Melnik R. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. CHEMOSENSORS (BASEL, SWITZERLAND) 2022; 10:157. [PMID: 35909810 PMCID: PMC9171916 DOI: 10.3390/chemosensors10050157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022]
Abstract
Low-dimensional nanostructures have many advantages when used in sensors compared to the traditional bulk materials, in particular in their sensitivity and specificity. In such nanostructures, the motion of carriers can be confined from one, two, or all three spatial dimensions, leading to their unique properties. New advancements in nanosensors, based on low-dimensional nanostructures, permit their functioning at scales comparable with biological processes and natural systems, allowing their efficient functionalization with chemical and biological molecules. In this article, we provide details of such sensors, focusing on their several important classes, as well as the issues of their designs based on mathematical and computational models covering a range of scales. Such multiscale models require state-of-the-art techniques for their solutions, and we provide an overview of the associated numerical methodologies and approaches in this context. We emphasize the importance of accounting for coupling between different physical fields such as thermal, electromechanical, and magnetic, as well as of additional nonlinear and nonlocal effects which can be salient features of new applications and sensor designs. Our special attention is given to nanowires and nanotubes which are well suited for nanosensor designs and applications, being able to carry a double functionality, as transducers and the media to transmit the signal. One of the key properties of these nanostructures is an enhancement in sensitivity resulting from their high surface-to-volume ratio, which leads to their geometry-dependant properties. This dependency requires careful consideration at the modelling stage, and we provide further details on this issue. Another important class of sensors analyzed here is pertinent to sensor and actuator technologies based on smart materials. The modelling of such materials in their dynamics-enabled applications represents a significant challenge as we have to deal with strongly nonlinear coupled problems, accounting for dynamic interactions between different physical fields and microstructure evolution. Among other classes, important in novel sensor applications, we have given our special attention to heterostructures and nucleic acid based nanostructures. In terms of the application areas, we have focused on chemical and biomedical fields, as well as on green energy and environmentally-friendly technologies where the efficient designs and opportune deployments of sensors are both urgent and compelling.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
- BCAM-Basque Centre for Applied Mathematics, E-48009 Bilbao, Spain
| |
Collapse
|
19
|
Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. BIOLOGY 2022; 11:621. [PMID: 35625349 PMCID: PMC9138269 DOI: 10.3390/biology11050621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 04/26/2023]
Abstract
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.
Collapse
Affiliation(s)
| | | | - Mohamed A. Swillam
- Nanophotonics Research Laboratory, Department of Physics, The American University in Cairo, Cairo 11835, Egypt; (M.E.H.); (M.A.O.)
| |
Collapse
|
20
|
Seder I, Jo A, Jun BH, Kim SJ. Movable Layer Device for Rapid Detection of Influenza a H1N1 Virus Using Highly Bright Multi-Quantum Dot-Embedded Particles and Magnetic Beads. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:284. [PMID: 35055303 PMCID: PMC8778663 DOI: 10.3390/nano12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
Preventing the rapid spread of viral infectious diseases has become a major concern for global health. In this study, we present a microfluidic platform that performs an immunoassay of viral antigens in a simple, automated, yet highly sensitive manner. The device uses silica particles embedded with highly bright quantum dots (QD2) and performs the immunoassay with a vertically movable top layer and a rotating bottom layer. Through the motion of the layers and the surface tension in the liquids, reagents move from top chambers to bottom chambers and mix homogeneously. A tip in the top layer with a mobile permanent magnet moves the immune complexes comprising the magnetic beads, virus particles, and QD2 between the bottom chambers. In this way, our automated device achieves a highly sensitive magnetic bead-based sandwich immunoassay for the influenza A H1N1 virus within 32.5 min. The detection limit of our method is 5.1 × 10-4 hemagglutination units, which is 2 × 103 times more sensitive than that of the conventional hemagglutination method and is comparable to PCR. Our device is useful for the rapid and sensitive detection of infectious diseases in point-of-care applications and resource-limited environments.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
21
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
22
|
Wang Z, Chen J, Khan SA, Li F, Shen J, Duan Q, Liu X, Zhu J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 22:133. [PMID: 35009676 PMCID: PMC8747222 DOI: 10.3390/s22010133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 05/25/2023]
Abstract
Plasmonic metasurfaces have been widely used in biosensing to improve the interaction between light and biomolecules through the effects of near-field confinement. When paired with biofunctionalization, plasmonic metasurface sensing is considered as a viable strategy for improving biomarker detection technologies. In this review, we enumerate the fundamental mechanism of plasmonic metasurfaces sensing and present their detection in human tumors and COVID-19. The advantages of rapid sampling, streamlined processes, high sensitivity, and easy accessibility are highlighted compared with traditional detection techniques. This review is looking forward to assisting scientists in advancing research and developing a new generation of multifunctional biosensors.
Collapse
Affiliation(s)
- Zhenbiao Wang
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Science, Xiamen University, Xiamen 361003, China;
| | - Sayed Ali Khan
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
| | - Fajun Li
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
| | - Jiaqing Shen
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
| | - Qilin Duan
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
| | - Xueying Liu
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
| | - Jinfeng Zhu
- Key Laboratory of Electromagnetic Wave Science and Detection Technology, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China; (Z.W.); (S.A.K.); (F.L.); (J.S.); (Q.D.); (X.L.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
23
|
Au-strip's shape dependent performance of D-shaped SPR based sensors. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Bardhan NM, Jansen P, Belcher AM. Graphene, Carbon Nanotube and Plasmonic Nanosensors for Detection of Viral Pathogens: Opportunities for Rapid Testing in Pandemics like COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.733126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the emergence of global pandemics such as the Black Death (Plague), 1918 influenza, smallpox, tuberculosis, HIV/AIDS, and currently the COVID-19 outbreak caused by the SARS-CoV-2 virus, there is an urgent, pressing medical need to devise methods of rapid testing and diagnostics to screen a large population of the planet. The important considerations for any such diagnostic test include: 1) high sensitivity (to maximize true positive rate of detection); 2) high specificity (to minimize false positives); 3) low cost of testing (to enable widespread adoption, even in resource-constrained settings); 4) rapid turnaround time from sample collection to test result; and 5) test assay without the need for specialized equipment. While existing testing methods for COVID-19 such as RT-PCR (real-time reverse transcriptase polymerase chain reaction) offer high sensitivity and specificity, they are quite expensive – in terms of the reagents and equipment required, the laboratory expertise needed to run and interpret the test data, and the turnaround time. In this review, we summarize the recent advances made using carbon nanotubes for sensors; as a nanotechnology-based approach for diagnostic testing of viral pathogens; to improve the performance of the detection assays with respect to sensitivity, specificity and cost. Carbon nanomaterials are an attractive platform for designing biosensors due to their scalability, tunable functionality, photostability, and unique opto-electronic properties. Two possible approaches for pathogen detection using carbon nanomaterials are discussed here: 1) optical sensing, and 2) electrochemical sensing. We explore the chemical modifications performed to add functionality to the carbon nanotubes, and the physical, optical and/or electronic considerations used for testing devices or sensors fabricated using these carbon nanomaterials. Given this progress, it is reason to be cautiously optimistic that nanosensors based on carbon nanotubes, graphene technology and plasmonic resonance effects can play an important role towards the development of accurate, cost-effective, widespread testing capacity for the world’s population, to help detect, monitor and mitigate the spread of disease outbreaks.
Collapse
|