1
|
Izdebska A, Budzyńska S, Bierla K. Unveiling New Arsenic Compounds in Plants via Tailored 2D-RP-HPLC Separation with ICP and ESI MS Detection. Molecules 2024; 29:3055. [PMID: 38999006 PMCID: PMC11243089 DOI: 10.3390/molecules29133055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Arsenic (As) speciation analysis is scientifically relevant due to the pivotal role the As chemical form plays in toxicity, which, in turn, directly influences the effect it has on the environment. The objective of this study was to develop and optimize a method tailored for studying As compounds in plant samples. Different extraction procedures and HPLC methods were explored to assess their efficiency, determine mass balance, and improve the resolution of compounds in the chromatograms. Conventionally applied anion-exchange chromatography facilitated the separation of well-documented As compounds in the extracts corresponding to 19 to 82% of As present in extracts. To gain insight into compounds which remain undetectable by anion chromatography (18 to 81% of As in the extracts), but still possibly metabolically relevant, we explored an alternative chromatographic approach. The procedure of sample purification and preconcentration through solid-phase extraction, facilitating the detection of those minor As compounds, was developed. The system was further refined to achieve an online 2D-RP-HPLC system, which was employed to analyze the extracts more comprehensively with ICP and ESI MS. Using this newly developed method, As(III)-phytochelatins, along with other arseno-thio-compounds, were detected and identified in extracts derived from the tree roots of seedlings grown in the presence of As(III) and As(V), and a group of arseno lipids was detected in the roots of plants exposed to As(V).
Collapse
Affiliation(s)
- Aleksandra Izdebska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Helioparc, 64053 Pau, France
| | - Sylwia Budzyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Katarzyna Bierla
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Helioparc, 64053 Pau, France
| |
Collapse
|
2
|
Wang Y, Ma C, Dang F, Zhao L, Zhou D, Gu X. Mixed effects and co-transfer of CeO 2 NPs and arsenic in the pakchoi-snail food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132770. [PMID: 37852136 DOI: 10.1016/j.jhazmat.2023.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nanomaterial application in agriculture offers novel solutions for soil arsenic (As) pollution control, yet safety along the food chain is of concern. We comprehensively assessed CeO2 nanoparticles (NPs) foliar application effects on As uptake by pakchoi and their presence in the pakchoi-snail food chain. CeO2 NPs reduced As transfer from pakchoi roots to shoots by 37.9%, lowered As in snail foot by 39%, and halved human As exposure risk. The NPs alleviated pakchoi shoot As toxicity by regulating antioxidants, enhancing water use efficiency, and photosynthesis. CeO2 +As treatment raised GSH/GSSG ratios by 38.92%- 167.54%, leading to an increased AsIII/AsV ratio and inorganic As detoxification compared to As alone. Metabolomics revealed CeO2's rapid As response via phosphatidylinositol signaling. The enzyme-like activity of CeO2 NPs may drive these effects. While CeO2 foliar application accumulated Ce on pakchoi leaves, > 99% of Ce was excreted following snail consumption. Ce transfer from pakchoi leaves to snail foot was minimal (trophic transfer factor ∼0.00007) due to limited bioavailability. The target hazard quotient of Ce in pakchoi shoot (1.21 ± 0.18) and snails (0.0016 ± 0.0004) indicated low exposure risk, suggesting a 'risk filter' effect for CeO2. Our results contribute to the safe and sustainable application of CeO2 NPs in the future implication.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Peña-Garcia Y, Shinde S, Natarajan P, Lopez-Ortiz C, Balagurusamy N, Chavez ACD, Saminathan T, Nimmakayala P, Reddy UK. Arsenic Stress-Related F-Box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124831. [PMID: 33340971 DOI: 10.1016/j.jhazmat.2020.124831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As), a non-biodegradable contaminant, is extremely toxic to plants and animals in its inorganic form. As negatively affects plant growth and development, primarily by inducing oxidative stress through redox imbalance. Here we characterized the Arabidopsis F-box protein gene AT2G16220 (Arsenic Stress-Related F-box (ASRF)) that we identified in the genome-wide association study. The asrf mutant seedlings showed high sensitivity to arsenate (AsV) stress. AsV significantly affected asrf seedling growth when germinated on or exposed to AsV-supplemented growth regimes. AsV stress significantly induced production of reactive oxygen species and proline accumulation in asrf, so the asrf maintained high proline content, possibly for cellular protection and redox homeostasis. Heterozygous seedlings (Col-0 x asrf, F1 progeny) were relatively less affected by AsV stress than asrf mutant but showed slightly reduced growth compared with the Col-0 wild type, which suggests that the homozygous ASRF locus is important for AsV stress resistance. Transcriptome analysis involving the mutant and wild type revealed altered phosphate homeostasis in asrf seedlings, which implies that ASRF is required for maintaining phosphate and cellular- homeostasis under excess AsV. Our findings confirm the roles of ASRF in As stress tolerance in plants, for a novel way to mitigate arsenic stress.
Collapse
Affiliation(s)
- Yadira Peña-Garcia
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, TN, India
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Ana Cristina Delgado Chavez
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
4
|
Biochemical Characterization and Functional Analysis of Heat Stable High Potential Protease of Bacillus amyloliquefaciens Strain HM48 from Soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 2021; 11:biom11010117. [PMID: 33477596 PMCID: PMC7831320 DOI: 10.3390/biom11010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
A novel temperature stable alkaline protease yielding bacteria was isolated from the soils of Dachigam National Park, which is known to be inhabited by a wide variety of endemic plant and animal species of Western Himalaya. This high-potential protease producing isolate was characterized and identified as Bacillus amyloliquefaciens strain HM48 by morphological, Gram’s staining and biochemical techniques followed by molecular characterization using 16S rRNA approach. The extracellular protease of B. amyloliquefaciens HM48 was purified by precipitating with ammonium sulfate (80%), followed by dialysis and Gel filtration chromatography increasing its purity by 5.8-fold. The SDS–PAGE analysis of the purified enzyme confirmed a molecular weight of about ≈25 kDa. The enzyme displayed exceptional activity in a broad temperature range (10–90 °C) at pH 8.0, retaining its maximum at 70 °C, being the highest reported for this proteolytic Bacillus sp., with KM and Vmax of 11.71 mg/mL and 357.14 µmol/mL/min, respectively. The enzyme exhibited remarkable activity and stability against various metal ions, surfactants, oxidizing agent (H2O2), organic solvents and displayed outstanding compatibility with widely used detergents. This protease showed effective wash performance by exemplifying complete blood and egg-yolk stains removal at 70 °C and efficiently disintegrated chicken feathers making it of vital importance for laundry purpose and waste management. For functional analysis, protease gene amplification of strain HM48 yielded a nucleotide sequence of about 700 bp, which, when checked against the available sequences in NCBI, displayed similarity with subtilisin-like serine protease of B. amyloliquefaciens. The structure of this protease and its highest-priority substrate β-casein was generated through protein modeling. These protein models were validated through futuristic algorithms following which protein–protein (protease from HM48 and β-casein) docking was performed. The interaction profile of these proteins in the docked state with each other was also generated, shedding light on their finer details. Such attributes make this thermally stable protease novel and suitable for high-temperature industrial and environmental applications.
Collapse
|
5
|
Jia X, Yang X, Zhao W, Hu Y, Cheng H. A method for rapid determination of arsenic species in vegetables using microwave‐assisted extraction followed by detection with HPLC hyphenated to inductively coupled plasma‐mass spectrometry. J Sep Sci 2019; 42:2957-2967. [DOI: 10.1002/jssc.201900282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xintong Jia
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Xiaoyue Yang
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Wei Zhao
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and EvolutionSchool of Water Resources and EnvironmentChina University of Geosciences (Beijing) Beijing P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| |
Collapse
|
6
|
Monagail MM, Cummins E, Bermejo R, Daly E, Costello D, Morrison L. Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed. ENVIRONMENT INTERNATIONAL 2018; 118:314-324. [PMID: 29935490 DOI: 10.1016/j.envint.2018.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Seaweed has a long-associated history of use as a supplemented livestock feed, providing nutrients and vitamins essential to maintaining animal health. Some species of seaweed, particularly the fucoids, are well-known accumulators of the metalloid arsenic (As). Arsenic toxicity to humans is well established even at low exposure levels and is considered a class 1 human carcinogen. As mankind's appetite for livestock produce continues to grow unabated, there is a concern that consumption of livestock produce reared on a diet supplemented with seaweed animal feed (SAF) may pose a threat to the human population due to potentially high levels of As present in seaweed. To address this concern and provide end users, including industry, consumers, policymakers and regulators with information on the exposure associated with As in commercial seaweed animal feed, the estimated daily intake (EDI) of As was calculated to evaluate potential human exposure levels. Using As data from a commercially available seaweed meal over a five-year period (2012-2017) a population exposure assessment was carried out. A Monte Carlo simulation model was developed to characterise the feed to food transfer of As from animal feed to animal produce such as beef, milk, chicken, and eggs. The model examined initial levels in seaweed, inclusion rate in animal feed, animal feeding rates and potential transfer to food produced from a supplemented diet of SAF. The analysis of seaweed animal feed showed that inorganic As was a small fraction of the total As found in seaweed meal (80:1). Statistical analysis found significant differences in the concentration of As in seaweed animal feed depending on the grain size (p < 0.001), with higher As concentrations in smaller sized grain fractions. Due to several detoxification steps and subsequent rapid excretion from the bodies of livestock, a very low carryover rate of As compounds from seaweed animal feed into livestock produce was observed. The EDI calculated in this study for the livestock produce evaluated at the 95th confidence interval was <0.01% of suggested safe levels of inorganic As intake. The threat to the general population as a result of consumption of livestock products reared on a diet consisting of SAF is found to be negligible.
Collapse
Affiliation(s)
- Michéal Mac Monagail
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture, and Food Science, University College Dublin, Ireland
| | - Ricardo Bermejo
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Eve Daly
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Declan Costello
- Public Analyst's Laboratory, University Hospital Galway, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Yang F, Xie S, Wei C, Liu J, Zhang H, Chen T, Zhang J. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:77-86. [PMID: 29335176 DOI: 10.1016/j.scitotenv.2018.01.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
In this study, multiple types of samples, including soils, plants, litter and soil invertebrates, were collected from a former arsenic (As) mine in China. The total As concentrations in the soils, earthworms, litter and the aboveground portions of grass from the contaminated area followed the decreasing order of 83-2224 mg/kg, 31-430 mg/kg, 1-62 mg/kg and 2-23 mg/kg, respectively. X-ray absorption near-edge structure (XANES) analysis revealed that the predominant form of As in the soils was arsenate (As(V)), while no arsenite (As(III)) was detected. In the grass and litter of the native plant community, inorganic As species (As(V) and As(III)) were the main species, while minor amounts of DMA, MMA, AsC, and an unknown As species were also detected in the extracts analyzed with high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The As speciation and As concentrations varied with the plant species, and very high As levels (197-584 mg/kg) and proportions of inorganic As (>99%) were found in two As-hyperaccumulating ferns, Pteris vittata and Pteris cretica. The major As species extracted from earthworms were inorganic, with proportions of 51-53% As(III) and 38-48% As(V). AsB was the only organic species present in the earthworm samples, although at low proportions (<8.99%). The internal bioconversion of other As species is hypothesized to contribute greatly to the formation and accumulation of AsB in earthworms, although the direct external absorption of organic As from soils might be another source. This study sheds light on the potential sources of complex organoarsenicals, such as AsB, in terrestrial organisms.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaowen Xie
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jinxin Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhi Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Sadee BA, Foulkes ME, Hill SJ. A study of arsenic speciation in soil, irrigation water and plant tissue: A case study of the broad bean plant, Vicia faba. Food Chem 2016; 210:362-70. [PMID: 27211659 DOI: 10.1016/j.foodchem.2016.04.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
Samples of soil, the broad bean plant, Vicia faba and irrigation water were collected from the same agricultural site in Dokan, in the Kurdistan region of Iraq. Total arsenic and arsenic speciation were determined in all materials by ICP-MS and HPLC-ICP-MS, respectively. Available arsenic (11%) was also determined within the soil, together with Cd, Cr, Cu, Ni, Zn, Fe and Mn. The concentrations of total arsenic were: soil (5.32μgg(-1)), irrigation water (1.06μgL(-1)), roots (2.065μgg(-1)) and bean (0.133μgg(-1)). Stems, leaves and pods were also measured. Inorganic As(V) dominated soil (90%) and root (78%) samples. However, organo-arsenic (MMA, 48% and DMA, 19%) was the more dominant species in the edible bean. The study provides an insight into the uptake, preferred disposal route, speciation changes and loss mechanism involved for arsenic with this food source.
Collapse
Affiliation(s)
- Bashdar A Sadee
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Mike E Foulkes
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Steve J Hill
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| |
Collapse
|
9
|
Tang F, Ni Z, Liu Y, Yu Q, Wang Z, Mo R. Arsenic Speciation in Honeysuckle (Lonicera japonica Thunb.) from China. Biol Trace Elem Res 2015; 168:269-75. [PMID: 25865059 DOI: 10.1007/s12011-015-0327-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/25/2015] [Indexed: 11/26/2022]
Abstract
In this study, honeysuckle, a common Chinese herbal medicine, produced from different areas was investigated for total arsenic and arsenic species concentration. The total arsenic concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and ranged from 275 to 635 μg kg(-1). A microwave-assisted procedure with 1 % phosphoric acid (v/v) was used for the extraction of arsenic species in honeysuckle. The total arsenic species concentration found by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) was in agreement with the total arsenic concentration determined by the ICP-MS analysis after the microwave digestion. Arsenate (As(V)) with an average proportion of 54.3 % was the predominant arsenic species in honeysuckle. The order of concentration is as follows: As(V) > arsenite (As(III)) > dimethylarsinic acid (DMA) > arsenobetaine (AsB) > monomethylarsonic acid (MMA). The proportion of organic arsenic (24.7 %) was higher than that in most terrestrial plants. Moreover, the distributions of arsenic species in the honeysuckle from different producing areas were significantly different. This study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.
Collapse
Affiliation(s)
- Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73 Daqiao Street, Fuyang, Zhejiang, 311400, People's Republic of China
| | - Zhanglin Ni
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73 Daqiao Street, Fuyang, Zhejiang, 311400, People's Republic of China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73 Daqiao Street, Fuyang, Zhejiang, 311400, People's Republic of China.
| | - Qing Yu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73 Daqiao Street, Fuyang, Zhejiang, 311400, People's Republic of China
| | - Zhikun Wang
- College of Science, Zhejiang Agriculture and Forestry University, No. 88 Huanchengbei Road, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73 Daqiao Street, Fuyang, Zhejiang, 311400, People's Republic of China
| |
Collapse
|
10
|
Zhao D, Li HB, Xu JY, Luo J, Ma LQ. Arsenic extraction and speciation in plants: Method comparison and development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:138-145. [PMID: 25863504 DOI: 10.1016/j.scitotenv.2015.03.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
We compared four methods to extract arsenic (As) from three different plants containing different As levels for As speciation with the goal of developing a more efficient method, i.e., As-hyperaccumulator Pteris vittata at 459-7714mgkg(-1), rice seedling at 53.4-574mgkg(-1), and tobacco leaf at 0.32-0.35mgkg(-1). The four methods included heating with dilute HNO3, and sonication with phosphate buffered solution, methanol/water, and ethanol/water, with As being analyzed using high-performance liquid chromatography coupled with inductively-coupled plasma mass spectrometry (HPLC-ICP-MS). Among the four methods, the ethanol/water method produced the most satisfactory extraction efficiency (~80% for the roots and >85% for the fronds) without changing As species based on P. vittata. The lower extraction efficiency from P. vittata roots was attributed to its dominance by arsenate (82%) while arsenite dominated in the fronds (89%). The ethanol/water method used sample:solution ratio of 1:200 (0.05g:10mL) with 50% ethanol and 2h sonication. Based on different extraction times (0.5-2h), ethanol concentrations (25-100%) and sample:solution ratios (1:50-1:300), the optimized ethanol/water method used less ethanol (25%) and time (0.5h for the fronds and 2h for the roots). Satisfactory extraction was also obtained for tobacco leaf (78-92%) and rice seedlings (~70%) using the optimized method, which was better than the other three methods. Based on satisfactory extraction efficiency with little change in As species during extraction from three plants containing different As levels, the optimized method has the potential to be used for As speciation in other plants.
Collapse
Affiliation(s)
- Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Jia-Yi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Lena Qiying Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
11
|
Inorganic arsenic in starchy roots, tubers, and plantain and assessment of cancer risk of sub-Saharan African populations. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Boshoff M, De Jonge M, Dardenne F, Blust R, Bervoets L. The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems. ENVIRONMENTAL RESEARCH 2014; 134:169-180. [PMID: 25173048 DOI: 10.1016/j.envres.2014.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/27/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
In this study the influence of metal pollution on soil functional activity was evaluated by means of Bait lamina and BIOLOG(®) EcoPlates™ assays. The in situ bait lamina assay investigates the feeding activity of macrofauna, mesofauna and microarthropods while the BIOLOG(®) EcoPlate™ assay measures the metabolic fingerprint of a selectively extracted microbial community. Both assays proved sensitive enough to reveal changes in the soil community between the plots nearest to and further away from a metal pollution source. Feeding activity (FA) at the less polluted plots reached percentages of 90% while plots nearer to the source of pollution reached percentages as low as 10%. After 2 and 6 days of incubation average well color development (AWCD) and functional richness (R') were significantly lower at the plots closest to the source of pollution. While the Shannon Wiener diversity index (H') decreased significantly at sites nearer to the source of pollution after 2 days but not after 6 days of incubation. Arsenic, Cu and Pb correlated significantly and negatively with feeding activity and functional indices while the role of changing environmental factors such as moisture percentage could not be ruled out completely. Compared to the Bait lamina method that is used in situ and which is therefore more affected by site specific variation, the BIOLOG assay, which excludes confounding factors such as low moisture percentage, may be a more reliable assay to measure soil functional activity.
Collapse
Affiliation(s)
- Magdalena Boshoff
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Maarten De Jonge
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Freddy Dardenne
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ronny Blust
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lieven Bervoets
- Laboratory of Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
13
|
Amaral CDB, Nóbrega JA, Nogueira ARA. Sample preparation for arsenic speciation in terrestrial plants--a review. Talanta 2013; 115:291-9. [PMID: 24054594 DOI: 10.1016/j.talanta.2013.04.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Abstract
Arsenic is an element widely present in nature. Additionally, it may be found as different species in several matrices and therefore it is one of the target elements in chemical speciation. Although the number of studies in terrestrial plants is low, compared to matrices such as fish or urine, this number is raising due to the fact that this type of matrix are closely related to the human food chain. In speciation analysis, sample preparation is a critical step and several extraction procedures present drawbacks. In this review, papers dealing with extraction procedures, analytical methods, and studies of species conservation in plants cultivated in terrestrial environment are critically discussed. Analytical procedures based on extractions using water or diluted acid solutions associated with HPLC-ICP-MS are good alternatives, owing to their versatility and sensitivity, even though less expensive strategies are shown as feasible choices.
Collapse
Affiliation(s)
- Clarice D B Amaral
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, PO Box 676, 13560-970 São Carlos, SP, Brazil; Embrapa Southeast Livestock, PO Box 339, 13560-970 São Carlos, SP, Brazil
| | | | | |
Collapse
|
14
|
Miguel B, Edell A, Edson Y, Edwin P. A phytoremediation approach using Calamagrostis ligulata and Juncus imbricatus in Andean wetlands of Peru. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:323-334. [PMID: 22327477 DOI: 10.1007/s10661-012-2552-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Emergent plant species growing in Andean natural wetlands have shown efficient phytoremediation capabilities in wetlands polluted by acid mine drainage. However, the types and amounts of heavy metals accumulated by native plant species are not well understood. In this study, we focused on determining heavy metal concentrations and bioaccumulation factors in Calamagrostis ligulata and Juncus imbricatus. Two acid wetlands located above 3,500 m a.s.l. in Ancash, Peru were assessed. Physico-chemical parameters and heavy metals concentrations in control and experimental plant samples were measured in dry and rainy seasons. Results indicated that C. ligulata and J. imbricatus aerial parts accumulated higher amounts of Fe, Zn, As and Al. Also, bioaccumulation factors revealed notable increases in As, Pb and Al, but less so in Cd, Fe and Zn. On the other hand, physico-chemical parameters of water quality (pH, temperature, dissolved oxygen, sulphides) between inflow and outflow of wetlands indicated significant differences in the presence of metals in comparison with their maximum permissible limits. Both emergent plant species showed an accumulation of heavy metals and thus the ability to recovery of water quality in wetland outflows.
Collapse
Affiliation(s)
- Bobadilla Miguel
- Departamento de Botánica, Universidad de Murcia, Campus de Espinardo, CP 30100 Murcia, Spain.
| | | | | | | |
Collapse
|
15
|
Thallium speciation in plant tissues—Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals. Talanta 2012; 93:326-9. [DOI: 10.1016/j.talanta.2012.02.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022]
|
16
|
Hsieh YJ, Jiang SJ. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2083-2089. [PMID: 22339408 DOI: 10.1021/jf204595d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Speciation of arsenic in seaweeds was carried out using ion chromatography (IC) for separation and inductively coupled mass spectrometry (ICP-MS) for detection. The arsenic species studied were arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC). Chromatographic separation of all the species was achieved in <9 min in gradient elution mode using (NH(4))(2)CO(3) and methanol at pH 8.5. The outlet of the IC column was directly connected to the nebulizer of ICP-MS for the determination of arsenic. The speciation of arsenic has been carried out in several seaweed samples. A microwave-assisted extraction method was used for the extraction of arsenic species from seaweed samples. With a mixture of mobile phase A and methanol as extractant, the extraction efficiency was >84%, and the recoveries from spiked samples were in the range of 90-106%. The unknown compounds detected in different seaweeds were identified by coupling IC directly with electrospray ionization-mass spectrometry (ESI-MS). Two arsenosugars and tetramethylarsonium ion (TETRA) were identified in different seaweeds. A fat-soluble arsenolipid compound was identified in the extract of certified reference material BCR-279 Ulva lactuca when 1% HNO(3) was used as the extractant. The precision between sample replicates was >9% for all determinations. The limits of detection were in the range of 0.006-0.015 μg L(-1) for various arsenic species based on peak height.
Collapse
Affiliation(s)
- Yu-Jhe Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | |
Collapse
|
17
|
Chu YL, Jiang SJ. Speciation analysis of arsenic compounds in edible oil by ion chromatography–inductively coupled plasma mass spectrometry. J Chromatogr A 2011; 1218:5175-9. [DOI: 10.1016/j.chroma.2011.05.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/26/2022]
|
18
|
Díaz O, Tapia Y, Pastene R, Montes S, Núñez N, Vélez D, Montoro R. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:666-669. [PMID: 21484519 DOI: 10.1007/s00128-011-0269-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.
Collapse
Affiliation(s)
- O Díaz
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
19
|
Studies on the uptake of different arsenic forms and the influence of sample pretreatment on arsenic speciation in White mustard (Sinapis alba). Microchem J 2010. [DOI: 10.1016/j.microc.2009.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zabłudowska E, Kowalska J, Jedynak L, Wojas S, Skłodowska A, Antosiewicz DM. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? CHEMOSPHERE 2009; 77:301-307. [PMID: 19733893 DOI: 10.1016/j.chemosphere.2009.07.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/29/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).
Collapse
Affiliation(s)
- E Zabłudowska
- Faculty of Biology, Institute of Experimental Plant Biology, University of Warsaw, Miecznikowa Str. 1, 02-096 Warszawa, Poland
| | | | | | | | | | | |
Collapse
|