1
|
Cardoso A, Maia Fraga AC, da Silva Araujo M, de Matos R, Teixeira Tarley CR, Ripke Ferreira CS, Santos OO, Medeiros RA. Innovation in venlafaxine detection: Development and application of electroanalytical method using a boron-doped diamond electrode and performance comparison with UHPLC-MS/MS. Talanta 2025; 293:127988. [PMID: 40194461 DOI: 10.1016/j.talanta.2025.127988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Venlafaxine hydrochloride (VEN) is a commonly used antidepressant that acts on monoamines, helping to regulate and enhance neurotransmitter levels in the body. However, due to its widespread use, VEN has been classified as an emerging contaminant, raising significant environmental concerns because of the risks it poses to ecosystems. In this context, we propose the development of a simple and rapid electroanalytical method for determining VEN, validated against the results obtained using the ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method. The electroanalytical method employed batch injection analysis with amperometric detection (BIA-AMP) and a boron-doped diamond (BDD) electrode as the working electrode. The linear concentration range achieved was 8.30-277.40 μg L-1 (0,029 to 1.00 μmol L-1), with a limit of detection (LOD) of 1.03 μg L-1 (3.71 nmol L-1). The UHPLC-MS/MS method provided a linear concentration range of 7.00-1000 ng L-1 (0.025-3.60 nmol L-1) and a LOD of 7.0 ng L-1 (0.025 nmol L-1). Spiking and recovery studies demonstrated that VEN can be accurately determined using these analytical methods without significant matrix effects. The BIA-AMP method demonstrates a more environmentally friendly profile compared to UHPLC-MS/MS, as assessed using the AGREE software. It is simple, rapid (22 determinations per hour), does not require organic and/or toxic solvents, consumes less energy, and allows for the possibility of reliable analyses.
Collapse
Affiliation(s)
- Arielly Cardoso
- Department of Chemistry, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Ana Carolina Maia Fraga
- Department of Chemistry, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Mayara da Silva Araujo
- Department of Chemistry, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Roberto de Matos
- Department of Chemistry, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | | | | | - Oscar Oliveira Santos
- Department of Chemistry, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Roberta Antigo Medeiros
- Department of Chemistry, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
2
|
Heredia C, Workentin A, Parker G, Persaud N. The Potential Role of Ecotoxicological Data in National Essential Medicine Lists: A Cross-Sectional Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:632. [PMID: 40283855 PMCID: PMC12027398 DOI: 10.3390/ijerph22040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Medicines affect the environment throughout their lifecycle, from production and distribution to use and disposal. They contribute to the pollution of air, water, and soil, impacting ecosystems and human health. Recognizing these risks, regulatory bodies and organizations have highlighted pharmaceutical pollution as a global concern, emphasizing the need for environmental risk assessments and sustainable practices. METHODS This study reviewed the essential medicines lists (EMLs) from 158 countries and examined the available ecotoxicological data. Medicines with high bioaccumulation, persistence, and toxicity were identified and cross-referenced with their inclusion in EMLs. Additionally, we analyzed the presence of alternative medicines with similar therapeutic effects but potentially lower environmental risks. RESULTS Five medicines-ciprofloxacin, ethinylestradiol, levonorgestrel, ibuprofen, and sertraline-were selected as illustrative examples due to their high environmental persistence and toxicity. All were listed in the 2023 WHO model list, with ciprofloxacin appearing in 94.3% of national EMLs. CONCLUSIONS This study underscores the limited availability of ecotoxicological data, which hinders environmental risk assessment for medicines. EMLs could serve as a tool to enhance the awareness and data mobilization of pharmaceutical pollution. Incorporating environmental criteria into EMLs could support more sustainable medicine selection and regulatory practices.
Collapse
Affiliation(s)
- Camila Heredia
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (C.H.); (A.W.)
| | - Aine Workentin
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (C.H.); (A.W.)
| | - Gillian Parker
- CHSC Student Training Program, Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M6, Canada;
| | - Navindra Persaud
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (C.H.); (A.W.)
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5B 1X2, Canada
| |
Collapse
|
3
|
Fagundes KRC, Kasica N, Potoczna M, Okitsu-Sakurayama S, Podlasz P, de Britto Mari R. Disruptive ecotoxicological effects of fluoxetine on serotoninergic signaling and enteric neurogenesis in early zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104698. [PMID: 40216344 DOI: 10.1016/j.etap.2025.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
This study investigated the multilevel effects of environmentally relevant concentrations of fluoxetine on serotonergic signaling and enteric neurogenesis in early zebrafish larvae (Danio rerio). To this end, zebrafish were exposed to various concentrations of fluoxetine for four days, from the 1,000-cell stage to 4 days post-fertilization (dpf).Following exposure, whole larvae were subjected to molecular, morphological, and behavioral analyses. All tested concentrations led to upregulation of the serotonin transporter (slc6a4a). At intermediate concentrations, overexpression of the serotonin receptor htr1aa was observed. The highest concentration caused a reduced total enteric neurons density, while the intermediate concentration reduced the density of serotonergic enteric neurons. Additionally, the highest concentration decreased larval locomotion and impaired their ability to differentiate between light and dark phases.Across all tested concentrations, fluoxetine disrupted serotonergic signaling, impaired enteric neurogenesis, and induced sedative-like behavioral effects.
Collapse
Affiliation(s)
- Kainã Rocha Cabrera Fagundes
- Laboratory of Animal Morphophysiology, Biosciences Institute, Sao Paulo State University, Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil.
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Małgorzata Potoczna
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland; Transphamation Poland Ltd., Olsztyn, Poland
| | - Shiho Okitsu-Sakurayama
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Renata de Britto Mari
- Laboratory of Animal Morphophysiology, Biosciences Institute, Sao Paulo State University, Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil
| |
Collapse
|
4
|
Schiesari L, Taniwaki R, Pelinson RM, Barsoumian HA, Bispo GB, Brejão GL, Cursino de Moura Hirye M, Martins AF, Costa JL. Population size, income and poor sanitation interact to explain widespread streamwater contamination by antidepressants in the Metropolitan Region of São Paulo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125658. [PMID: 39798791 DOI: 10.1016/j.envpol.2025.125658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The expansion of urban settlements over native environments may expose biodiversity to a host of emerging contaminants, with unintended ecological effects. This study evaluated patterns of contamination of streamwater by antidepressants in the Upper Tietê River Basin, a watershed of high social, economic and environmental relevance for comprising both the largest urban settlement in South America (the Metropolitan Region of São Paulo) and remnants of a globally important biodiversity hotspot (the Atlantic Rainforest). We sampled 53 third-order streams draining catchments regularly distributed across a gradient in urban cover. Antidepressant contamination was found to be widespread. Whereas no antidepressants were detected in any of the 11 streams draining entirely forested catchments, 39 of 42 remaining streams were contaminated with one to eight antidepressant molecules. Concentrations increased monotonically with urban cover and bracketed the entire range found in global freshwaters. Concentrations increased with the number of inhabitants in the catchment and with number of households with no sanitation, but only in catchments with higher mean per capita income. Although concentrations in the range of tens to hundreds of nanograms-per-liter as found may appear to be low, literature data demonstrate effects on individual performance, population growth rates, and even transgenerational effects in which short-term exposure at the embryonic stage may affect life history traits over three generations of descendants. These findings highlight the need to expand sanitation infrastructure and to adopt policies of urban planning that reconcile human settlement with biodiversity conservation in Latin America.
Collapse
Affiliation(s)
- Luis Schiesari
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP). Avenida Arlindo Béttio 1000, 03828-000, São Paulo, Brazil.
| | - Ricardo Taniwaki
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC). Santo André, Brazil
| | - Rodolfo Mei Pelinson
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP). Avenida Arlindo Béttio 1000, 03828-000, São Paulo, Brazil
| | - Hagop Armenio Barsoumian
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP). Avenida Arlindo Béttio 1000, 03828-000, São Paulo, Brazil
| | - Giulia Baldaconi Bispo
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP). Avenida Arlindo Béttio 1000, 03828-000, São Paulo, Brazil
| | | | | | - Aline Franco Martins
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP). Campinas, Brazil
| | - José Luiz Costa
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP). Campinas, Brazil
| |
Collapse
|
5
|
Rodriguez-Barucg Q, Garcia AA, Garcia-Merino B, Akinmola T, Okotie-Eboh T, Francis T, Bringas E, Ortiz I, Wade MA, Dowle A, Joyce DA, Hardman MJ, Wilkinson HN, Beltran-Alvarez P. Environmental fluoxetine promotes skin cell proliferation and wound healing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124952. [PMID: 39277126 DOI: 10.1016/j.envpol.2024.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the effects of environmentally-relevant concentrations of fluoxetine (FLX, commercial name: Prozac) on wound healing. Pollution of water systems with pharmaceutical and personal care products, including antidepressants such as FLX and other selective serotonin reuptake inhibitors, is a growing environmental concern. Environmentally-relevant FLX concentrations are known to impact physiological functions and behaviour of aquatic animals, however, the effects of exposure on humans are currently unknown. Using a combination of human skin biopsies and a human keratinocyte cell line, we show that exposure to environmental FLX promotes wound closure. We show dose-dependent increases in wound closure with FLX concentrations from 125 ng/l. Using several -omics and pharmaceutical approaches, we demonstrate that the mechanisms underlying enhanced wound closure are increased cell proliferation and serotonin signalling. Transcriptomic analysis revealed 350 differentially expressed genes after exposure. Downregulated genes were enriched in pathways related to mitochondrial function and metabolism, while upregulated genes were associated with cell proliferation and tissue morphogenesis. Kinase profiling showed altered phosphorylation of kinases linked to the MAPK pathway. Consistent with this, phosphoproteomic analyses identified 235 differentially phosphorylated proteins after exposure, with enriched GO terms related to cell cycle, division, and protein biosynthesis. Treatment of skin biopsies and keratinocytes with ketanserin, a serotonin receptor antagonist, reversed the increase in wound closure observed upon exposure. These findings collectively show that exposure to environmental FLX promotes wound healing through modulating serotonin signalling, gene expression and protein phosphorylation, leading to enhanced cell proliferation. Our results justify a transition from the study of behavioural effects of environmental FLX in aquatic animals to the investigation of effects of exposure on wound healing in aquatic and terrestrial animals, including direct impacts on human health.
Collapse
Affiliation(s)
- Quentin Rodriguez-Barucg
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Angel A Garcia
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Belen Garcia-Merino
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK; Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Tomilayo Akinmola
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Temisanren Okotie-Eboh
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Thomas Francis
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Mark A Wade
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Adam Dowle
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Domino A Joyce
- Evolutionary and Ecological Genomics Group, School of Natural Sciences, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Matthew J Hardman
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Holly N Wilkinson
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK.
| |
Collapse
|
6
|
Mohanthi S, Sutha J, Gayathri M, Ramesh M. Evaluation of the citalopram toxicity on early development of zebrafish: Morphological, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124399. [PMID: 38906410 DOI: 10.1016/j.envpol.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Citalopram, an antidepressant drug have been detected in different environmental matrices due to its high consumption. Previous study has proved that citalopram may alter the behaviour of aquatic organisms at environmentally relevant concentrations. However, scientific knowledge is still lacking on the ecotoxicological effects of citalopram on aquatic organisms. For this reason, the present study is aimed to investigate the potential toxicity of citalopram in terms of development, antioxidant, neurotoxicity, apoptosis, lipogenesis, and bone mineralization in embryonic and larval zebrafish (Danio rerio) at environmentally relevant concentrations. We noticed that citalopram exposure at 1 and 10 μg/L concentration delays hatching and heartbeat at 24, 48, 72 and 96 hpf. Exposure to citalopram also significantly increased mortality at 10 μg/L. Abnormal development with yolk sac edema, pericardial edema and scoliosis were also observed after citalopram treatment. In addition, citalopram significantly (P < 0.001) induced superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and lipid peroxidation (LPO) levels. A significant decrease in acetylcholine esterase (AChE) activity was also observed in citalopram exposed groups. We found significant dose-and time-dependent increases in apoptosis, lipogenesis, and bone mineralization. In conclusion, the findings of the present study can provide new insights on the ecotoxicity of citalopram in the aquatic environment.
Collapse
Affiliation(s)
- Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
7
|
Liu Q, Deng Z, Chen H, Kim MS, Kim DH, Gu L, Lee JS, Yang Z. Changes in Induced-Antipredation Defense Traits and Transcriptome Regulations of Daphnia magna in Response to 5-HT 1A Receptor Antagonist. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7577-7587. [PMID: 38630542 DOI: 10.1021/acs.est.3c10720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The serotonin signaling system plays a crucial role in regulating the ontogeny of crustaceans. Here, we describe the effects of different concentrations of the 5-hydroxytryptamine 1A receptor antagonist (WAY-100635) on the induced antipredation (Rhodeus ocellatus as the predator), morphological, behavioral, and life-history defenses of Daphnia magna and use transcriptomics to analyze the underlying molecular mechanisms. Our results indicate that exposure to WAY-100635 leads to changes in the expression of different defensive traits in D. magna when faced with fish predation risks. Specifically, as the length of exposure to WAY-100635 increases, high concentrations of WAY-100635 inhibit defensive responses associated with morphological and reproductive activities but promote the immediate negative phototactic behavioral defense of D. magna. This change is related to the underlying mechanism through which WAY-100635 interferes with gene expression of G-protein-coupled GABA receptors by affecting GABBR1 but promotes serotonin receptor signaling and ecdysteroid signaling pathways. In addition, we also find for the first time that fish kairomone can significantly activate the HIF-1α signaling pathway, which may lead to an increase in the rate of immediate movement. These results can help assess the potential impacts of serotonin-disrupting psychotropic drugs on zooplankton in aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ziyi Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Huafang Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
8
|
Aulsebrook LC, Wong BBM, Hall MD. Pharmaceutical pollution alters the cost of bacterial infection and its relationship to pathogen load. Proc Biol Sci 2024; 291:20231273. [PMID: 38196353 PMCID: PMC10777164 DOI: 10.1098/rspb.2023.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
The relationship between pathogen proliferation and the cost of infection experienced by a host drives the ecology and evolution of host-pathogen dynamics. While environmental factors can shape this relationship, there is currently limited knowledge on the consequences of emerging contaminants, such as pharmaceutical pollutants, on the relationship between a pathogen's growth within the host and the damage it causes, termed its virulence. Here, we investigated how exposure to fluoxetine (Prozac), a commonly detected psychoactive pollutant, could alter this key relationship using the water flea Daphnia magna and its bacterial pathogen Pasteuria ramosa as a model system. Across a variety of fluoxetine concentrations, we found that fluoxetine shaped the damage a pathogen caused, such as the reduction in fecundity or intrinsic growth experienced by infected individuals, but with minimal change in average pathogen spore loads. Instead, fluoxetine modified the relationship between the degree of pathogen proliferation and its virulence, with both the strength of this trade-off and the component of host fitness most affected varying by fluoxetine concentration and host genotype. Our study underscores the potential for pharmaceutical pollution to modify the virulence of an invading pathogen, as well as the fundamental trade-off between host and pathogen fitness, even at the trace amounts increasingly found in natural waterways.
Collapse
Affiliation(s)
- Lucinda C. Aulsebrook
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Bob B. M. Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
9
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
10
|
Orozco-Hernández JM, Elizalde-Velázquez GA, Gómez-Oliván LM, Santamaría-González GO, Rosales-Pérez KE, García-Medina S, Galar-Martínez M, Juan-Reyes NS. Acute exposure to fluoxetine leads to oxidative stress and hematological disorder in Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167391. [PMID: 37758136 DOI: 10.1016/j.scitotenv.2023.167391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), is consistently introduced into the environment due to its ongoing consumption and inadequate removal by wastewater treatment plants. As a result, the scientific community has displayed a keen interest in investigating the potential toxicological effects associated with this medication. Nevertheless, there is a scarcity of available data regarding the impact of FLX on blood parameters. With this in mind, this study aimed to evaluate the potential toxicological consequences of FLX at environmentally significant concentrations (5, 16, and 40 ng/L) following a 96-hour acute exposure blood parameters in Danio rerio fish. Moreover, the investigation encompassed an assessment of oxidative stress parameters to determine whether the drug could induce disruptions in the REDOX status of the fish. The findings unveiled that FLX prompted the induction of oxidative stress in various organs of the fish, encompassing the liver, gut, brain, and gills. Notably, the gills and brain exhibited heightened susceptibility to the drug's effects compared to other organs. Furthermore, following acute exposure to FLX, there was an upregulation of antioxidant-related genes (sod, cat, gpx, nrf1, and nrf2), thereby providing additional evidence supporting the induction of oxidative stress in the organs of the fish. Lastly, FLX significantly impacted the customary values of various blood parameters, including glucose, blood urea nitrogen, alanine aminotransferase, alkaline phosphatase, red blood cell count, hemoglobin, and hematocrit. Thus, it can be inferred that FLX harmed the overall health status of the fish, resulting in the development of liver disease, anemia, and other associated illnesses.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Guadalupe Ofelia Santamaría-González
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Nely San Juan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Wang W, Zhang J, Hu M, Liu X, Sun T, Zhang H. Antidepressants in wastewater treatment plants: Occurrence, transformation and acute toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166120. [PMID: 37579797 DOI: 10.1016/j.scitotenv.2023.166120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Antidepressants (ATDs) are one of the most prescribed medications for psychiatric conditions. The widespread presence in aquatic environment and demonstrated ecotoxicity make ATDs a class of concerning emerging contaminants. Municipal wastewater treatment plants (WWTPs) provide important connecting channel between wastewater and aquatic environment. Herein, we present a critical overview of the occurrence, transformation and toxicity of typical ATDs during water treatments. The total concentration of the detected ATDs and their metabolites in the WWTP influents and effluents are 72.62-5011.80 ng/L and 114.48-6992.40 ng/L, respectively, on a global scale. The frequently observed negative removal of ATDs in WWTPs indicates that some ATDs exist as conjugates in wastewaters. The biotic and abiotic transformation of ATDs and the generated transformation byproducts (TPs) were identified, which occurred in WWTPs worldwide along with ATDs. Acute toxicity of ATDs and their TPs was predicated using the ECOSAR model. Compared to ATDs, the demonstrated enhanced toxicity of several TPs to aquatic organisms necessitates more attention on TPs monitoring in WWTPs. This work provides scientific support for wastewater advanced treatment to alleviate ATDs pollution in effluents.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiaxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ming Hu
- Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Rafiq A, Capolupo M, Addesse G, Valbonesi P, Fabbri E. Antidepressants and their metabolites primarily affect lysosomal functions in the marine mussel, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166078. [PMID: 37574064 DOI: 10.1016/j.scitotenv.2023.166078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Antidepressants widely occur as emerging contaminants in marine coastal waters, with concentrations reported in the low ng/L range. Although at relatively lower levels with respect to other pharmaceuticals, antidepressants - fluoxetine (FLX) in particular - have attracted attention because of their striking effects exerted at low doses on marine invertebrates. In this study, the effects of four antidepressants including FLX, sertraline (SER), and citalopram, as members of the selective serotonin reuptake inhibitor (SSRI) class, and venlafaxine (VEN) as a member of the serotonin and norepinephrine reuptake inhibitor (SNRI) class, were evaluated in the mussel Mytilus galloprovincialis. In addition, the effects of two main metabolites of FLX and VEN, i.e., norfluoxetine (NFL) and O-desmethylvenlafaxine (ODV) respectively, were compared to those of the parent compounds. Eight concentrations of each drug (0.5-500 ng/L range) were tested on the early life stage endpoints of gamete fertilization and larval development at 48 h post fertilization (hpf). Egg fertilization was reduced by all compounds, except for VEN. Larval development at 48 hpf was affected by all SSRIs, but not by SNRIs. The above effects were significant but never exceeded 20 % of control values. Adult mussels were exposed in vivo for 7 days to environmental concentrations of the drugs (0.5, 5, and 10 ng/L) and a battery of eight biomarkers was assessed. Antidepressants primarily targeted lysosomal functions, decreasing haemocyte lysosome membrane stability (up to 70 % reduction) and increasing of the lysosome/cytosol ratio (up to 220 %), neutral lipid (up to 230 %), and lipofuscin (up to 440 %) accumulation in digestive gland. Only SER and NFL significantly affected catalase and glutathione-S-transferase activities in gills and digestive gland. NFL and ODV, were effective and sometimes more active than the parent compounds. All compounds impaired mussel health status, as indicated by the low to high stress levels assigned using the Mussel Expert System.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giulia Addesse
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| |
Collapse
|
13
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
14
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
15
|
Sanusi IO, Olutona GO, Wawata IG, Onohuean H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90595-90614. [PMID: 37488386 DOI: 10.1007/s11356-023-28802-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
In many nations and locations, groundwater serves as the population's primary drinking water supply. However, pharmaceuticals found in groundwater and surface waters may affect aquatic ecosystems and public health. As a result, their existence in natural raw waters are now more widely acknowledged as a concern. This review summarises the evidence of research on pharmaceuticals' occurrence, impact and fate, considering results from different water bodies. Also, various analytical techniques were reviewed to compare different pharmaceuticals' detection frequencies in water bodies. These include liquid chromatography-mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and gas chromatography-mass spectrometry (GC-MS). However, owing to LC-MS's high sensitivity and specification, it is the most reported instrument used for analysis. The PRISMA reviewing methodology was adopted based on relevant literature in order to focus on aim of the review. Among other pharmaceuticals reviewed, sulfamethoxazole was found to be the most frequently detected drug in wastewater (up to 100% detection frequency). The most reported pharmaceutical group in this review is antibiotics, with sulfamethoxazole having the highest concentration among the analysed pharmaceuticals in groundwater and freshwater (up to 5600 ng/L). Despite extensive study and analysis on the occurrence and fate of pharmaceuticals in the environment, appropriate wastewater management and disposal of pharmaceuticals in the water environment are not still monitored regularly. Therefore, there is a need for mainstream studies tailored to the surveillance of pharmaceuticals in water bodies to limit environmental risks to human and aquatic habitats in both mid and low-income nations.
Collapse
Affiliation(s)
- Idris Olatunji Sanusi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda.
| | - Godwin Oladele Olutona
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo, Nigeria
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Ibrahim Garba Wawata
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pure and Applied Chemistry, Kebbi State University of Science and Technology, Aliero, PMB +243 1144, Birnin Kebbi, Nigeria
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| |
Collapse
|
16
|
Ferreira CSS, Soares SC, Kille P, Oliveira M. Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. CHEMOSPHERE 2023; 335:139124. [PMID: 37285976 DOI: 10.1016/j.chemosphere.2023.139124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra C Soares
- William James Center for Research (WJRC), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Tan H, Martin JM, Alton LA, Lesku JA, Wong BBM. Widespread psychoactive pollutant augments daytime restfulness and disrupts diurnal activity rhythms in fish. CHEMOSPHERE 2023; 326:138446. [PMID: 36940830 DOI: 10.1016/j.chemosphere.2023.138446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical pollution is a major driver of global change, with the capacity to alter key behavioural and physiological traits in exposed animals. Antidepressants are among the most commonly detected pharmaceuticals in the environment. Despite well-documented pharmacological effects of antidepressants on sleep in humans and other vertebrates, very little is known about their ecologically relevant impacts as pollutants on non-target wildlife. Accordingly, we investigated the effects of acute 3-day exposure of eastern mosquitofish (Gambusia holbrooki) to field-realistic levels (nominal concentrations: 30 and 300 ng/L) of the widespread psychoactive pollutant, fluoxetine, on diurnal activity patterns and restfulness, as indicators of disruptions to sleep. We show that exposure to fluoxetine disrupted diel activity patterns, which was driven by augmentation of daytime inactivity. Specifically, unexposed control fish were markedly diurnal, swimming farther during the day and exhibiting longer periods and more bouts of inactivity at night. However, in fluoxetine-exposed fish, this natural diel rhythm was eroded, with no differences in activity or restfulness observed between the day and night. As a misalignment in the circadian rhythm has been shown to adversely affect fecundity and lifespan in animals, our findings reveal a potentially serious threat to the survival and reproductive success of pollutant-exposed wildlife.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Pereira AMPT, Freitas A, Pena A, Silva LJG. Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Antibiotics (Basel) 2023; 12:antibiotics12050913. [PMID: 37237816 DOI: 10.3390/antibiotics12050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of pharmaceuticals in aquatic ecosystems mostly originates from wastewater treatment plants (WWTPs) and such a situation can be responsible for significant negative impacts on natural ecosystems, such as estuarine and coastal areas. Bioaccumulation of pharmaceuticals, namely antibiotics, in exposed organisms is known to have remarkable effects on different trophic levels of non-target organisms such as algae, invertebrates and vertebrates, including the emergence of bacterial resistance. Bivalves are a highly appreciated seafood product, as they are fed by filtering water, and can bioconcentrate chemicals, being ideal for biomonitoring environmental health hazards in coastal and estuarine ecosystems. To use this sentinel species, an analytical strategy was developed to be used in accessing antibiotics, from human and veterinary medicine, and evaluate their occurrence as emerging pollutants in aquatic environments. The optimized analytical method was fully validated according to the European requirements defined by the Commission Implementing Regulation 2021/808. The validation comprised the following parameters: specificity, selectivity, precision, recovery, ruggedness, linearity, and the decision limit CCα, as well as the limit of detection (LoD) and limit of quantification (LoQ). The method was validated for 43 antibiotics to allow their quantification in both contexts, environmental biomonitoring and food safety.
Collapse
Affiliation(s)
- André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, LAQV/REQUIMTE, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Matejczyk M, Ofman P, Wiater J, Świsłocka R, Kondzior P, Lewandowski W. Determination of the Effect of Wastewater on the Biological Activity of Mixtures of Fluoxetine and Its Metabolite Norfluoxetine with Nalidixic and Caffeic Acids with Use of E. coli Microbial Bioindicator Strains. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093600. [PMID: 37176483 PMCID: PMC10180322 DOI: 10.3390/ma16093600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
In the present work, the conducted research concerned the determination of the toxicity and oxidative stress generation of the antidepressant fluoxetine (FLU), its metabolite nor-fluoxetine (Nor-FLU), the antibiotic nalidixic acid (NA), caffeic acid (CA) and their mixtures in three different environments: microbial medium (MM), raw wastewaters (RW) and treated wastewaters (TW). We evaluated the following parameters: E. coli cell viability, toxicity and protein damage, sodA promoter induction and ROS generation. It was found that FLU, Nor-FLU, NA, CA and their mixtures are toxic and they have the potency to generate oxidative stress in E. coli strains. We also detected that the wastewater, in comparison to the microbial medium, had an influence on the toxic activity and oxidative stress synthesis of the tested chemicals and their mixtures. Regardless of the environment under study, the strongest toxic activity and oxidative stress generation were detected after bacterial incubation with NA at a concentration of 1 mg/dm3 and the mixture of FLU (1 mg/dm3) with Nor-FLU (0.1 mg/dm3) and with NA (0.1 mg/dm3). The ROS synthesis and sodA promoter induction suggest that, in the case of the examined compounds and their mixtures, oxidative stress is the mechanism of toxicity. The analysis of the types of interactions among the substances constituting the mixtures in the wastewater revealed synergism, potentiation and antagonism.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Piotr Ofman
- Department of Technology in Environmental Engineering, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Renata Świsłocka
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Paweł Kondzior
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| |
Collapse
|
20
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
21
|
Zhang H, Kato D, Ihara MO, Jürgens MD, Johnson AC, Chen J, Tanaka H, Ihara M. Biological-Activity-Based Prioritization of Antidepressants in Wastewater in England and Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6444-6454. [PMID: 37022287 DOI: 10.1021/acs.est.2c08380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceuticals. Although they have been frequently detected in aquatic environments around the globe, little is known regarding their adverse effects on humans and aquatic organisms. Recently, an in vitro monoamine transporter inhibition assay was developed to detect transporter-inhibitory activities of antidepressants in wastewater in Japan. However, it was unclear which antidepressants were responsible for transporter-inhibitory activities in wastewater. Herein, the per capita consumption of 32 antidepressants, their excretion of unchanged parent compounds, per capita water consumption, removal rate during wastewater treatment processes, and potency values from the monoamine transporter inhibition assay were used to prioritize antidepressants of concern in effluent wastewater in England and Japan. In both countries, sertraline and O-desmethylvenlafaxine had the highest contribution to inhibitory activities against the human serotonin transporter (hSERT) and zebrafish SERT (zSERT), respectively. It was found that the antidepressants inhibited the zSERT more strongly than the hSERT. The inhibitory activities found against the zSERT in wastewater in England and Japan were higher than thresholds for abnormal behavior in fish. The antidepressants prioritized in this study provide insight into launching environmental monitoring and ecotoxicological studies of antidepressants.
Collapse
Affiliation(s)
- Han Zhang
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Daisuke Kato
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Monika D Jürgens
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku City, Kochi 783-8502, Japan
| |
Collapse
|
22
|
Golbaz S, Zamanzadeh M, Yaghmaeian K, Nabizadeh R, Rastkari N, Esfahani H. Occurrence and removal of psychiatric pharmaceuticals in the Tehran South Municipal Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27041-27055. [PMID: 36374381 PMCID: PMC9660169 DOI: 10.1007/s11356-022-23667-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Psychiatric drugs released by humans in wastewater have received more attention because of their potential risks for aquatic organisms. In this study, the occurrence of the two most common groups of psychiatric drugs (sedatives-hypnotics-anxiolytics and antidepressants) were evaluated in the Tehran South Municipal Wastewater Treatment Plant. All the target sedatives-hypnotics-anxiolytics (alprazolam, phenobarbital, and thioridazine) and antidepressants (fluoxetine, citalopram, sertraline, and venlafaxine) were observed in influent and secondary clarification (SC) effluent. Thioridazine (164.25 ± 218.74 ng/L) and citalopram (672.53 ± 938.56 ng/L) had the highest mean concentrations in the influent, while alprazolam (5.09 ± 2.33 ng/L) and citalopram (776.97 ± 1088.01 ng/L) had the highest concentrations in the SC effluent. The higher concentrations of the psychiatric drugs, except thioridazine, were detected in the SC effluent compared to the concentrations in the influent. The increased drugs concentrations, with negative removal efficiencies, were more distinctive in the cold season samples. Psychiatric drugs processed in the chlorination unit followed a completely different pattern compared to the drugs in the biological treatment unit. All the drugs' concentrations, except thioridazine, decreased in the chlorination unit, ranging between 27 ± 14% for alprazolam and 75 ± 10% for citalopram. However, the mean concentrations of the detected drugs were as follows: sertraline (11.96 ± 11.62 ng/L) and venlafaxine (184.94 ± 219.74 ng/L) which could cause environmental and ecological concerns.
Collapse
Affiliation(s)
- Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Management (CSWM), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nushin Rastkari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Esfahani
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
23
|
Correia D, Domingues I, Faria M, Oliveira M. Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159486. [PMID: 36257440 DOI: 10.1016/j.scitotenv.2022.159486] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Fluoxetine is one of the most studied and detected selective serotonin reuptake inhibitors in the aquatic environment, found at concentrations ranging from ng/L to μg/L. Its presence in this environment can induce effects on aquatic organisms that may compromise their fitness. Several experimental studies have demonstrated that fluoxetine can induce neurotoxicity, genetic and biochemical changes, and cause behavioral dysfunction in a wide range of fish species. However, contradictory results can be found. There is thus the need for a comprehensive review of the current state of knowledge on the effects of fluoxetine on fish at different levels of biological organization, highlighting inclusive patterns and discussing the potential causes for the contradictory results, that can be found in the available literature. This review also aims to explore and identify the main gaps in knowledge and areas for future research. We conclude that environmentally relevant concentrations of fluoxetine (e.g., from 0.00345 μg/L) produced adverse effects and often this concentration range is not addressed in conventional environmental risk assessment strategies. Its environmental persistence and ionizable properties reinforce the need for standardized testing with representative aquatic models, targeting endpoints sensitive to the specific mode of action of fluoxetine, in order to assess and rank its actual environmental risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
van der Most MA, Estruch IM, van den Brink NW. Contrasting dose response relationships of neuroactive antidepressants on the behavior of C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114493. [PMID: 36608562 DOI: 10.1016/j.ecoenv.2022.114493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Antidepressant prescriptions are on a rise worldwide and this increases the concerns for the impacts of these pharmaceuticals on nontarget organisms. Antidepressants are neuroactive compounds that can affect organism's behavior. Behavior is a sensitive endpoint that may also propagate effects at a population level. Another interesting aspect of antidepressants is that they have shown to induce non-monotonic dose-response (NMDR) curves. While such NMDR relationships may have clear implications for the environmental risk, the resolution of current studies is often too coarse to be able to detect relevant NMDR. Therefore, the current study was performed into the behavioral effects (activity, feeding and chemotaxis) in Caenorhabditis elegans as the model organism of the selective serotonin reuptake inhibitors fluoxetine and sertraline and the acetylcholinesterase inhibiting pesticide chlorpyrifos, using a wide range of concentrations (ng/l to mg/l). In order to statistically examine the non-monotonicity, nonlinear regression models were applied to the results. The results showed a triphasic dose-response relationship for activity and chemotaxis after exposure to fluoxetine, but not to sertraline or chlorpyrifos. Effects of fluoxetine already occurred at low concentrations in the range of ng/l while sertraline only showed effects at concentrations in the μg/l range, similar to chlorpyrifos. The different responses between fluoxetine and sertraline, both SSRIs, indicate that response patterns may not always be extrapolated from chemicals with the same primary mode of action. The effects of fluoxetine at low concentrations, in a non-monotonic manner, confirm the relevance of examining such responses at low concentrations.
Collapse
Affiliation(s)
- Merel A van der Most
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands.
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
25
|
Wang J, Gao J, Liao M, Liu J, Hu X, He B. Attitudes and opinions about ecopharmacovigilance from multi-disciplinary perspectives: a cross-sectional survey among academic researchers in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2273-2282. [PMID: 35931847 DOI: 10.1007/s11356-022-22406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a promising upstream strategy to reduce the environmental loads of pharmaceutical emerging contaminants (PECs) through source control, ecopharmacovigilance (EPV) is concerned with the set of activities to identify, evaluate, understand, and prevent against diverse PEC-related problems, and has been accepted as a multi-disciplinary and multi-stakeholder system. This cross-sectional observational survey aimed to assess the attitudes and opinions about EPV from multi-disciplinary perspectives among Chinese academic professors from four main EPV-related disciplines including pharmacy, management, clinical medicine, and environmental and ecological science based on a self-developed questionnaire. Forty-two usable survey instruments were acquired. Results showed that the responding Chinese academic researchers from different disciplines expressed consistently positive attitudes and strong intentions for EPV, in spite of several disparities existing among disciplinary groups showing that pharmacy and medical researchers felt more certain of the environmental adverse effects of PECs, and researchers in pharmacy and environmental and ecological science were more interested in EPV. A multi-disciplinary consensus was achieved in regard to the types of key stakeholders in EPV practices including the pharmaceutical manufacturers, the public, the drug safety authority, hospitals, and the environmental protection agency. The main roles and responsibilities of each stakeholder identity in EPV practices were summarized based on the expert opinions.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, China.
| |
Collapse
|
26
|
Antonopoulou M, Dormousoglou M, Spyrou A, Dimitroulia AA, Vlastos D. An overall assessment of the effects of antidepressant paroxetine on aquatic organisms and human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158393. [PMID: 36044951 DOI: 10.1016/j.scitotenv.2022.158393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Paroxetine (PRX) is one of the most used antidepressants and an emerging contaminant with potential harmful effects to the environment and human health. The present study investigates in detail the toxic potential of PRX using a battery of bioassays on fresh- and marine species, marine bacteria, and human lymphocytes. All the tested organisms and human lymphocytes were exposed at concentrations ranging from μg L-1 to mg L-1. It was found that PRX can cause toxic effects to aquatic organisms at environmental relevant concentrations (μg L-1 level). A significant effect of PRX was observed in all tested algal species especially at the first 24 h. However, differences in responses and sensitivities among the tested algal species were observed. The most sensitive organism was found to be Dunaliella tertiolecta with IC50 = 0.092 mg L-1 (72 h). In the case of Aliivibrio fischeri, EC50 values were determined to be 16.65, 14.31 and 14.41 mg L-1 for 5, 15 and 30 min of exposure, respectively. PRX also induced cytotoxic and genotoxic effects in human lymphocytes. A dose-dependent increase in micronucleus frequencies was occurred at all tested concentrations with a statistically significant increase in micronucleus frequencies at the medium to high PRX tested concentrations. The findings of the present study expand the available toxicity profile of PRX on aquatic organisms and the knowledge about the potential risk of PRX to induce genotoxic effects in cultured human lymphocytes.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| | | | - Alexandra Spyrou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | | | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| |
Collapse
|
27
|
Yavuz-Guzel E, Atasoy A, Gören İE, Daglioglu N. Impact of COVID- 19 pandemic on antidepressants consumptions by wastewater analysis in Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155916. [PMID: 35568186 PMCID: PMC9095074 DOI: 10.1016/j.scitotenv.2022.155916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic has been a major challenge worldwide, forcing countries to take restrictive measures beyond conventional methods in their fight against the spread of the disease. Followingly, many studies have been conducted on the effects of these measures on mental health. Wastewater-based epidemiology (WBE) was used in this study to monitor and estimate changes in antidepressant use under normal conditions (2019) and COVID-19 pandemic conditions (2020). Likewise, this study utilized wastewater-based epidemiology (WBE) to monitor and assess changing trends from the pre-pandemic period (2019) to COVID-19 pandemic conditions in antidepressant use (2020). Wastewater samples were collected from 11 cities in Turkey throughout six sampling periods covering the pre-pandemic and during-pandemic periods (June 2019-December 2020). Then, samples were analyzed via LC-MS/MS method. As a result, we observed that venlafaxine was the drug with the highest concentration (mean ± SD: 103.6 ± 112.1 mg/1000p/day). Moreover, city number 6 presented the highest venlafaxine use and the most dramatic increase during the pandemic period. Finally, this study revealed the potential of WBE to estimate the changing trends in mental health during the ongoing pandemic.
Collapse
Affiliation(s)
- Evsen Yavuz-Guzel
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkey.
| | - Aslı Atasoy
- Cukurova University, Institute of Addiction and Forensic Sciences, 01330 Adana, Turkey.
| | - İsmail Ethem Gören
- Cukurova University, Faculty of Medicine, Department of Forensic Medicine, 01330 Adana, Turkey.
| | - Nebile Daglioglu
- Cukurova University, Faculty of Medicine, Department of Forensic Medicine, 01330 Adana, Turkey.
| |
Collapse
|
28
|
Davey CJE, Kraak MHS, Praetorius A, Ter Laak TL, van Wezel AP. Occurrence, hazard, and risk of psychopharmaceuticals and illicit drugs in European surface waters. WATER RESEARCH 2022; 222:118878. [PMID: 35878520 DOI: 10.1016/j.watres.2022.118878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to provide insights into the risk posed by psychopharmaceuticals and illicit drugs in European surface waters, and to identify current knowledge gaps hampering this risk assessment. First, the availability and quality of data on the concentrations of psychopharmaceuticals and illicit drugs in surface waters (occurrence) and on the toxicity to aquatic organisms (hazard) were reviewed. If both occurrence and ecotoxicity data were available, risk quotients (risk) were calculated. Where abundant ecotoxicity data were available, a species sensitivity distribution (SSD) was constructed, from which the hazardous concentration for 5% of the species (HC5) was derived, allowing to derive integrated multi-species risks. A total of 702 compounds were categorised as psychopharmaceuticals and illicit drugs based on a combination of all 502 anatomical therapeutic class (ATC) 'N' pharmaceuticals and a list of illicit drugs according to the Dutch Opium Act. Of these, 343 (49%) returned occurrence data, while only 105 (15%) returned ecotoxicity data. Moreover, many ecotoxicity tests used irrelevant endpoints for neurologically active compounds, such as mortality, which may underestimate the hazard of psychopharmaceuticals. Due to data limitations, risks could only be assessed for 87 (12%) compounds, with 23 (3.3%) compounds indicating a potential risk, and several highly prescribed drugs returned neither occurrence nor ecotoxicity data. Primary bottlenecks in risk calculation included the lack of ecotoxicity data, a lack of diversity of test species and ecotoxicological end points, and large disparities between well studied and understudied compounds for both occurrence and toxicity data. This study identified which compounds merit concern, as well as the many compounds that lack the data for any calculation of risk, driving research priorities. Despite the large knowledge gaps, we concluded that the presence of a substantial part (26%) of data-rich psychopharmaceuticals in surface waters present an ecological risk for aquatic non-target organisms.
Collapse
Affiliation(s)
- Charlie J E Davey
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Michiel H S Kraak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Antonia Praetorius
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Thomas L Ter Laak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Annemarie P van Wezel
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
29
|
Diaz-Camal N, Cardoso-Vera JD, Islas-Flores H, Gómez-Oliván LM, Mejía-García A. Consumption and ocurrence of antidepressants (SSRIs) in pre- and post-COVID-19 pandemic, their environmental impact and innovative removal methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154656. [PMID: 35318057 DOI: 10.1016/j.scitotenv.2022.154656] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are pharmaceuticals whose consumption has increased significantly. They are prescribed as first-line treatment in mental disorders such as depression, obsessive-compulsive disorder, phobias, and anxiety; also, they are indicated as adjuvants in diseases such as fibromyalgia and bulimia nervosa. In addition to being linked to the illegal market to be consumed as recreational drugs. The relevance of this review lies in the fact that worldwide consumption has increased significantly during the COVID-19 pandemic, due to the depression and anxiety that originated in the population. As a consequence of this increase in consumption, concentrations of SSRIs in the environment have increased, and these have become a relevant issue for toxicologists due to the effects that they could generate in different organisms, both aquatic and terrestrial. For this reason, the objective of this article was to do a critical evaluation of the existing data on the characteristics and physicochemical properties of SSRIs, consumption data during the COVID-19 pandemic, its occurrence in the environment and the reports of toxic effects that have been generated in different organisms; we also conclude with an updated review of different methods that have been used for their removal. With this analysis, it can be concluded that, despite SSRIs are pharmaceutical products widely studied since their launching to the market, still currently under investigation to clarify their mechanisms of action to understand the different effects on the organisms, adverse reactions, as well as possible toxicological effects on non-target organisms. On the other hand, it has been proven that although it is already possible to eliminate a significant percentage of SSRIs in the laboratory, due to their physicochemical characteristics and their behavior in complex mixtures in the environment, they have not yet been eradicated, showing a persistence in the soil, subsoil and surface waters of the entire planet that may represent a future risk.
Collapse
Affiliation(s)
- Nidya Diaz-Camal
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
30
|
Fluoxetine and Nutrients Removal from Aqueous Solutions by Phycoremediation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106081. [PMID: 35627618 PMCID: PMC9141300 DOI: 10.3390/ijerph19106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/08/2023]
Abstract
The tertiary treatment using microalgae offers an attractive alternative to the removal of low but relevant concentrations of pharmaceuticals from domestic wastewaters. The removal of fluoxetine from aqueous solutions by living and non-living (lyophilized) Chlorella vulgaris was assessed. The determination of the pH at the point of zero charge, Fourier transmittance infrared analysis, and scanning electron microscopy were performed to characterize the microalgae biomass. Kinetic and equilibrium experiments were performed. The pseudo-second-order model described the kinetics of fluoxetine. The corresponding kinetic constants indicated that biosorption was faster onto non-living biomass than onto living biomass. The equilibrium results showed that the systems followed the Langmuir isotherm model. The maximum capacity of living microalgae (1.9 ± 0.1 mg·g−1) was slightly higher than the non-living microalgae (1.6 ± 0.2 mg·g−1). Living Chlorella vulgaris, free and immobilized in calcium-alginate, were also used to remove fluoxetine and nutrients (nitrogen and phosphorus) from treated municipal wastewater in a batch system. In both experiments, fluoxetine was completely removed within six days. The total phosphorus (TP) and total nitrogen (TN) removal efficiencies achieved for free and immobilized cells were, null and 65.0 ± 0.1%, and 86.2 ± 0.1% and 81.8 ± 3.1, respectively.
Collapse
|
31
|
Weber A, Xie Y, Challis JK, DeBofsky A, Ankley PJ, Hecker M, Jones P, Giesy JP. Effects of aqueous fluoxetine exposure on gut microbiome of adult Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152422. [PMID: 34953827 DOI: 10.1016/j.scitotenv.2021.152422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The microbiome of the gut is vital for homeostasis of hosts with its ability to detoxify and activate toxicants, as well as signal to the immune and nervous systems. However, in the field of environmental toxicology, the gut microbiome has only recently been identified as a measurable indicator for exposure to environmental pollutants. Antidepressants found in effluents of wastewater treatment plants and surface waters have been shown to exhibit antibacterial-like properties in vitro, where some bacteria are known to express homologous proteins that bind antidepressants in vertebrates. Therefore, it has been hypothesized that exposure to antidepressant drugs might affect gut microbiota of aquatic organisms. In this study, the common antidepressant, fluoxetine, was investigated to determine whether it can modulate the gut microbiome of adult fathead minnows. A 28-day, sub-chronic, static renewal exposure was performed with nominal fluoxetine concentrations of 0.01, 10 or 100 μg/L. Using 16S rRNA amplicon sequencing, shifts among the gut-associated microbiota were observed in individuals exposed to the greatest concentration, with greater effects observed in females. These changes were associated with a decrease in relative proportions of commensal bacteria, which can be important for health of fish including bacteria essential for fatty acid oxidation, and an increase in relative proportions of pathogenic bacteria associated with inflammation. Results demonstrate, for the first time, how antidepressants found in some aquatic environments can influence gut microbiota of fishes.
Collapse
Affiliation(s)
- Alana Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada.
| | | | - Abigail DeBofsky
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Phillip J Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
32
|
Kumari M, Kumar A. Environmental and human health risk assessment of mixture of Covid-19 treating pharmaceutical drugs in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152485. [PMID: 34942257 PMCID: PMC8686450 DOI: 10.1016/j.scitotenv.2021.152485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 04/14/2023]
Abstract
This study identified ecological and human health risks exposure of COVID-19 pharmaceuticals and their metabolites in environmental waters. Environmental concentrations in aquatic species were predicted using surface water concentrations of pharmaceutical compounds. Predicted No-Effect Concentrations (PNEC) in aquatic organisms (green algae, daphnia, and fish) was estimated using EC50/LC50 values of pharmaceutical compounds taken from USEPA ECOSAR database. PNEC for human health risks was calculated using the acceptable daily intake values of drugs. Ecological PNEC revealed comparatively high values in algae (Chronic toxicity PNEC values, high to low: ribavirin (2.65 × 105 μg/L) to ritonavir (2.3 × 10-1 μg/L)) than daphnia and fish. Risk quotient (RQ) analysis revealed that algae (Avg. = 2.81 × 104) appeared to be the most sensitive species to pharmaceutical drugs followed by daphnia (Avg.: 1.28 × 104) and fish (Avg.: 1.028 × 103). Amongst the COVID-19 metabolites, lopinavir metabolites posed major risk to aquatic species. Ritonavir (RQ = 6.55) is the major drug responsible for human health risk through consumption of food (in the form fish) grown in pharmaceutically contaminated waters. Mixture toxicity analysis of drugs revealed that algae are the most vulnerable species amongst the three trophic levels. Maximum allowable concentration level for mixture of pharmaceuticals was found to be 0.53 mg/L.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| |
Collapse
|
33
|
Chronic Effects of Fluoxetine on Danio rerio: A Biochemical and Behavioral Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluoxetine is an antidepressant widely used to treat depressive and anxiety states. Due to its mode of action in the central nervous system (selective serotonin reuptake inhibitor (SSRI)), it becomes toxic to non-target organisms, leading to changes that are harmful to their survival. In this work, the effects of fluoxetine on juvenile zebrafish (Danio rerio) were evaluated, assessing biochemical (phase II biotransformation—glutathione S-transferase (GST), neurotransmission—acetylcholinesterase (ChE), energy metabolism—lactate dehydrogenase (LDH), and oxidative stress—glutathione peroxidase (GPx)) and behavior endpoints (swimming behavior, social behavior, and thigmotaxis) after 21 days exposure to 0 (control), 0.1, 1 and 10 µg/L. Biochemically, although chronic exposure did not induce significant effects on neurotransmission and energy metabolism, GPx activity was decreased after exposure to 10 µg/L of fluoxetine. At a behavioral level, exploratory and social behavior was not affected. However, changes in the swimming pattern of exposed fish were observed in light and dark periods (decreased locomotor activity). Overall, the data show that juvenile fish chronically exposed to fluoxetine may exhibit behavioral changes, affecting their ability to respond to environmental stressors and the interaction with other fish.
Collapse
|
34
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
35
|
Orozco-Hernández JM, Gómez-Oliván LM, Elizalde-Velázquez GA, Heredia-García G, Cardoso-Vera JD, Dublán-García O, Islas-Flores H, SanJuan-Reyes N, Galar-Martínez M. Effects of oxidative stress induced by environmental relevant concentrations of fluoxetine on the embryonic development on Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151048. [PMID: 34673069 DOI: 10.1016/j.scitotenv.2021.151048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Fluoxetine (FLX) is a psychoactive drug that acts as an antidepressant. FLX is one of the world's best-selling prescription antidepressants. FLX is widely used for the treatment of various psychiatric disorders. For these reasons, this drug may eventually end up in the aquatic environment via municipal, industrial, and hospital discharges. Even though the occurrence of FLX in aquatic environments has been reported as ubiquitous, the toxic effects that this drug may induce, especially at environmentally relevant concentrations, on essential biological processes of aquatic organisms require more attention. In the light of this information, this work aimed to investigate the influence that fluoxetine oxidative stress-induced got over the embryonic development of Danio rerio. For this purpose, D. rerio embryos (4 h post fertilization) were exposed to environmentally relevant concentrations (5, 10, 15, 20, 25, 30, 35, and 40 ng L-1) of fluoxetine, until 96 h post fecundation. Along the exposure, survival, alterations to embryonic development, and teratogenic effects were evaluated using a stereomicroscope. Furthermore, oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation, hydroperoxide, and carbonyl content) were evaluated at 72 and 96 h post fecundation. LC50, EC50m, and teratogenic index were 30 ng L-1, 16 ng L-1, and 1.9, respectively. The main teratogenic effects induced by fluoxetine were pericardial edema, hatching retardation, spine alterations and craniofacial malformations. Concerning oxidative stress, our integrated biomarkers (IBR) analysis demonstrated that as the concentration increased, oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, fluoxetine induces an important oxidative stress response on the embryos of D. rerio. Collectively, our results allow us to concluded that FLX is a dangerous drug in the early life stages of D. rerio due to its high teratogenic potential and that FLX-oxidative stress induced may be involved in this toxic process.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
36
|
Aulsebrook LC, Wong BBM, Hall MD. Warmer temperatures limit the effects of antidepressant pollution on life-history traits. Proc Biol Sci 2022; 289:20212701. [PMID: 35135347 PMCID: PMC8825998 DOI: 10.1098/rspb.2021.2701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmaceutical pollutants pose a threat to aquatic ecosystems worldwide. Yet, few studies have considered the interaction between pharmaceuticals and other chronic stressors contemporaneously, even though the environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Thermal stress is one such environmental challenge that may modify the threat of pharmaceutical pollutants. Accordingly, we investigated how fluoxetine (Prozac), a common psychotherapeutic and widespread pollutant, interacts with temperature to affect life-history traits in the water flea, Daphnia magna. We chronically exposed two genotypes of Daphnia to two ecological relevant concentrations of fluoxetine (30 ng l-1 and 300 ng l-1) and a concentration representing levels used in acute toxicity tests (3000 ng l-1) and quantified the change in phenotypic trajectories at two temperatures (20°C and 25°C). Across multiple life-history traits, we found that fluoxetine exposure impacted the fecundity, body size and intrinsic growth rate of Daphnia in a non-monotonic manner at 20°C, and often in genotypic-specific ways. At 25°C, however, the life-history phenotypes of individuals converged under the widely varying levels of fluoxetine, irrespective of genotype. Our study underscores the importance of considering the complexity of interactions that can occur in the wild when assessing the effects of chemical pollutants on life-history traits.
Collapse
Affiliation(s)
- Lucinda C Aulsebrook
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
37
|
Gould SL, Winter MJ, Norton WHJ, Tyler CR. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16299-16312. [PMID: 34856105 DOI: 10.1021/acs.est.1c04724] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.
Collapse
Affiliation(s)
- Sophie L Gould
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| |
Collapse
|
38
|
Costa C, Semedo M, Machado SP, Cunha V, Ferreira M, Urbatzka R. Transcriptional analyses reveal different mechanism of toxicity for a chronic exposure to fluoxetine and venlafaxine on the brain of the marine fish Dicentrarchrus labrax. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109170. [PMID: 34454087 DOI: 10.1016/j.cbpc.2021.109170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023]
Abstract
Selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) are prescribed for clinical depression and detected in aquatic ecosystems. The main aim of this study was to explore and evaluate transcriptional responses of neurotransmitter genes in the brain of a marine fish species, European seabass, and to analyze global brain transcriptomic changes by a RNA-seq technology (MACE, massive analysis of cDNA ends). The juveniles were exposed to two psychopharmaceuticals: (i) fluoxetine (FLX) at the concentration of 0.5 μg/L and 50 μg/L; (ii) venlafaxine (VENX) at the concentration of 0.01 μg/L and 1 μg/L. The exposures were performed for 21 days, followed by a 7-day recovery period to assess the reversibility of effects. Both psychopharmaceuticals affected differentially the neurotransmitter mRNA expression analyzed by RT-qPCR (serotonin receptors: 5-ht3a, 5-ht3b; dopamine receptors: d2, d3; neurotransmitter transporter: sert, vmat; degrading enzyme: mao). Transcriptomic analyses after 21 days of exposure revealed 689 and 632 significant different transcripts by FLX at 0.5 and 50 μg/L, respectively, and 432 and 1250 by VENX at 0.01 and 1 μg/L, respectively, and confirmed different mechanism of toxicity between both compounds. At environmental concentrations, more general pathways including energy metabolism were affected, while at the higher concentration effects on neurotransmitter pathways were observed (FLX: exocytosis and vesicle formation; VENX: small molecule catabolism regulating dopamine and tyrosine level). These results provided new insights into the chronic effects of psychopharmaceutical compounds on marine fish and suggest the need of a separate ecotoxicological risk analysis.
Collapse
Affiliation(s)
- Carolina Costa
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel Semedo
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Sandrine P Machado
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Virginia Cunha
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Marta Ferreira
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; School of Marine Studies, Faculty of Science, Technology & Environment, University of South Pacific, Laucala Bay Road, Suva, Fiji
| | - Ralph Urbatzka
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
39
|
Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past twenty years, the prescription of antidepressant drugs has increased all over the world. After their application, antidepressants, like other pharmaceuticals, are excreted and enter the aquatic environment. They are dispersed among surface waters mainly through waste water sources, typically at very low concentrations— from a tenth up to hundreds of ng/L. Frequently detected antidepressants include fluoxetine and citalopram—both selective serotonin reuptake inhibitors. The aim of our study was to assess the embryotoxicity of fluoxetine hydrochloride and citalopram hydrochloride on the early life stages of zebrafish (Danio rerio) and the African clawed frog (Xenopus laevis). The embryos were exposed to various concentrations of the individual antidepressants and of their mixtures for 96 h. The tested levels included both environmentally relevant and higher concentrations for the evaluation of dose-dependent effects. Our study demonstrated that even environmentally relevant concentrations of these psychiatric drugs influenced zebrafish embryos, which was proven by a significant increase (p < 0.01) in the embryos’ heart rates after fluoxetine hydrochloride exposure and in their hatching rate after exposure to a combination of both antidepressants, and thus revealed a potential risk to aquatic life. Despite these results, we can conclude that the African clawed frog is more sensitive, since exposure to the highest concentrations of fluoxetine hydrochloride (10,000 μg/L) and citalopram hydrochloride (100,000 μg/L) resulted in total mortality of the frog embryos.
Collapse
|
40
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
41
|
Lv J, Ou C, Fu M, Xu Z. Characteristics and transformation pathways of venlafaxine degradation during disinfection processes using free chlorine and chlorine dioxide. CHEMOSPHERE 2021; 276:130147. [PMID: 33714880 DOI: 10.1016/j.chemosphere.2021.130147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Venlafaxine, a representative antidepressant, has been detected frequently in aquatic environments. The treatment of venlafaxine by free chlorine (NaOCl) and chlorine dioxide (ClO2) was investigated in this study. The effects of operational variables and the water matrix on venlafaxine degradation were evaluated. The transformation pathways of venlafaxine were also studied. The results indicated that venlafaxine was removed efficiently during disinfection processes, especially when reacted with ClO2. A higher dosage of disinfectant and mildly alkaline conditions (pH 9) enhanced the degradation of venlafaxine. The reactions were impacted when the tests were conducted in real water matrices, especially in secondary effluent. The presence of chloride and low concentrations of fulvic acid enhanced venlafaxine decomposition. The presence of Br- also accelerated the reaction between venlafaxine and NaOCl. However, NO2- inhibited venlafaxine removal in both disinfection processes. Six intermediates were identified during venlafaxine degradation by ultrahigh-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry, and the main reactions included dehydration and demethylation.
Collapse
Affiliation(s)
- Juan Lv
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Changyuan Ou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Mengya Fu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhiwei Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| |
Collapse
|
42
|
Assessment of Human Pharmaceuticals in Drinking Water Catchments, Tap and Drinking Fountain Waters. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The occurrence of pharmaceuticals in water catchments and drinking waters raises potential risks to public health. Therefore, after addressing the major aquatic contamination pathway, the wastewater treatment plants (WWTPs), and, subsequently, surface waters, 18 human pharmaceuticals from 6 therapeutic groups (antibiotics, lipid regulators, selective serotonin reuptake inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs) and hormones) were analyzed in drinking water catchments, tap and drinking fountain waters. This was performed by solid phase extraction (SPE) and liquid chromatography coupled with tandem mass detection (LC-MS/MS). The 97 samples analyzed were collected from 31 different sites in the center of Portugal. All samples presented concentrations below the method detection limits (MDLs) that ranged between 1.13 to 5.45 ng L−1. The achieved results contributed to a better knowledge on the Portuguese and European context of drinking water, since there is a knowledge gap regarding this matrix. Comparing our data with other studies, published worldwide, we can observe that median concentrations of pharmaceuticals were reported in the low ng L−1 levels, values close to our MDLs. Consequently, it is unlikely that, in light of the current knowledge, the presence of pharmaceuticals in drinking water presents a threat to human health.
Collapse
|
43
|
Grzesiuk M, Pawelec A. Fluoxetine results in misleading conclusions on fish behavior. Ecol Evol 2021; 11:9707-9714. [PMID: 34306656 PMCID: PMC8293709 DOI: 10.1002/ece3.7797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Fluoxetine is an antidepressant medicine causing relaxation and mood improvement in people, with silencing certain personality traits in some cases. The question arise if such phenomena can be observed in nontarget organisms such as fish. Fluoxetine affects fishes behavior; however, it is not known if the medicine affects its "personality." This study aimed to evaluate the reaction of the invasive Neogobius fluviatilis and native Gobio gobio individuals to fluoxetine at environmental concentration of 360 ng/L. We prepared three variants of the experiments: (a) behavioral trials with unexposed fishes, (b) behavioral trials with the same fishes after 21 days of fluoxetine exposure, and (c) behavioral trials with the same fishes after 21-day depuration period, that is, without fluoxetine. The fishes reaction time (RT), that is, difference in time spent on reaching food with and without the necessity of overcoming the obstacle, was analyzed. Additionally, the personality, bold or shy, traits of each fish individual, was assigned. The results indicated that environmental concentrations of the antidepressant influenced RT. The average RT of the fishes cultured with fluoxetine was by 7-min shorter in comparison with the nonexposed control. Share of individuals exposed to fluoxetine assigned as bold raised to 71.4% in comparison with 46.4% in nonexposed control. This sheds new light on wild fishes behavior caught from freshwater. Environmental concentrations of the antidepressant influenced the time of fishes reaction and share individuals assigned as bold. Moreover, 21-day recovery lasting might be not enough to get fluoxetine effect on fishes.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and MicrobiologyInstitute of BiologyWarsaw University of Life Sciences (SGGW)WarsawPoland
- Department of Hydrobiology at Biological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Alicja Pawelec
- Department of Hydrobiology at Biological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
44
|
Tominaga FK, Silva TT, Boiani NF, de Jesus JMS, Teixeira ACSC, Borrely SI. Is ionizing radiation effective in removing pharmaceuticals from wastewater? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23975-23983. [PMID: 33394434 DOI: 10.1007/s11356-020-11718-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Wastewater and effluent discharges are the main causes of receiving water body pollution and important challenges in water quality management. Among the emerging contaminants, pharmaceuticals have increasingly drawn attention due to their incomplete removal during conventional biological treatment, inducing potential and actual risks to living organisms following residue discharges in river effluent. Electron beam irradiation (EBI) is a clean process technology for organic compound degradation and mineralization, as well as persistent pollutant detoxification. This study aimed to evaluate EBI effects on the degradation and toxicity removal of anti-inflammatory aspirin (ASA) in a single solution and in a fluoxetine (FLX) mixture. Results indicate that 98% of the single aspirin was degraded at 5.0 kGy. Aspirin toxicity to Daphnia similis, however, increased with increasing absorbed dose (1.0 to 5.0 kGy), possibly as a result of the presence of H2O2 and other byproducts formed during the oxidation process. Regarding the irradiated mixture, complete degradation was achieved for both pharmaceuticals. Toxicity removals for the mixture were of 56.2 ± 0.9% and 58.8 ± 5.4% for 1.0 and 2.5 kGy, respectively. These findings demonstrate that EBI can be an interesting alternative process to be applied as a pre-treatment followed by biological treatment.
Collapse
Affiliation(s)
- Flávio Kiyoshi Tominaga
- Nuclear and Energy Research Institute, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP 05508-000, Brazil.
| | - Thalita Tieko Silva
- Nuclear and Energy Research Institute, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP 05508-000, Brazil
| | - Nathalia Fonseca Boiani
- Nuclear and Energy Research Institute, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP 05508-000, Brazil
| | - Juliana Mendonça Silva de Jesus
- Research Group in Advanced Oxidation Processes, Chemical Systems Engineering Center, Chemical Engineering Department, University of São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, CEP 05508-010, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes, Chemical Systems Engineering Center, Chemical Engineering Department, University of São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, CEP 05508-010, Brazil
| | - Sueli Ivone Borrely
- Nuclear and Energy Research Institute, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP 05508-000, Brazil
| |
Collapse
|
45
|
Palma TL, Costa MC. Anaerobic biodegradation of fluoxetine using a high-performance bacterial community. Anaerobe 2021; 68:102356. [PMID: 33766774 DOI: 10.1016/j.anaerobe.2021.102356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 01/13/2023]
Abstract
Fluoxetine (FLX), an antidepressant extensively used worldwide is considered an emerging pollutant. The present work intends to investigate for the first time the capacity of a bacterial community containing sulphate-reducing bacteria (SRB) enriched from an anaerobic sludge to biodegrade and use FLX as sole carbon source, since current literature suggests that this drug is poorly biodegraded being mainly removed by adsorption to sediments, where it persists. FLX was biodegraded under sulphate reducing conditions until reaching its lowest and reliably detectable concentration, when 20 mg/L of the drug was used as sole carbon source, while 66 ± 9% of 50 mg/L FLX was removed, after 31 days. The initial bacterial population was mainly constituted by Desulfomicrobium and Desulfovibrio whereas during the experiments using FLX as unique carbon source a clear shift occurred with the increase of vadinBC27 wastewater-sludge group, Macellibacteroidetes, Dethiosulfovibrio, Bacteroides, Tolumonas, Sulfuricurvum, f_Enterobacteriaceae_OTU_18 that are assumed for the first time as FLX degrading bacteria. Although the main mechanism of FLX removal described in literature is by adsorption, in the results herein presented anaerobic biodegradation appears to play the main role in the removal of the FLX, thus demonstrating the potentialities that the anaerobic processes can play in wastewater treatment aiming the removal of new emerging compounds.
Collapse
Affiliation(s)
- Tânia Luz Palma
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| | - Maria Clara Costa
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| |
Collapse
|
46
|
Hossain MS, Kubec J, Guo W, Roje S, Ložek F, Grabicová K, Randák T, Kouba A, Buřič M. A combination of six psychoactive pharmaceuticals at environmental concentrations alter the locomotory behavior of clonal marbled crayfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141383. [PMID: 32882544 DOI: 10.1016/j.scitotenv.2020.141383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutically active compounds (PhACs) are ubiquitous in the aquatic environment worldwide and considered emerging contaminants. Their effects on growth, behavior, and physiological processes of aquatic organisms have been identified even at very low concentrations. Ecotoxicological investigations have primarily focused on single compound exposure, generally at a range of concentrations. In the natural environment, pollutants seldom occur in isolation, but little is known about the effects and risks of combinations of chemicals. This study aimed to investigate the effects of concurrent exposure to six psychoactive PhACs on locomotory behavior and life history traits of clonal marbled crayfish Procambarus virginalis. Crayfish were exposed to ~1 μg L-1 of the antidepressants sertraline, citalopram, and venlafaxine; the anxiolytic oxazepam; the opioid tramadol; and the widely abused psychostimulant methamphetamine. In the absence of shelter, exposed crayfish moved significantly shorter distances and at lower velocity and showed significantly less activity than controls. With available shelter, exposed crayfish moved significantly more distance, showed higher activity, and spent a significantly more time outside the shelter than controls. Molting, mortality, and spawning frequency did not vary significantly between the groups. Hemolymph glucose level did not vary among groups and was not correlated with observed behaviors. Results suggest that environmental concentrations of the tested compounds in combination can alter the behavior of non-target aquatic organisms as individual exposure of these compounds, which may lead to disruption of ecosystem processes due to their reduced caution in polluted conditions. Further research is needed using varied chemical mixtures, exposure systems, and habitats, considering molecular and physiological processes connected to behavior alterations.
Collapse
Affiliation(s)
- Md Shakhawate Hossain
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Bangabandhu Sheikh Mujibur Rahman Agricultural University, Department of Fisheries Biology and Aquatic Environment, Gazipur 1706, Bangladesh.
| | - Jan Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wei Guo
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Sara Roje
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Filip Ložek
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
47
|
Li Y, Miao Y, Zhang W, Yang N, Niu L, Zhang H, Wang L. Sertraline inhibits top-down forces (predation) in microbial food web and promotes nitrification in sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115580. [PMID: 33254665 DOI: 10.1016/j.envpol.2020.115580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Sertraline is a widely used antidepressant that becomes an aquatic pollutant through metabolic excretion and improper disposal. Determining the impact of sertraline on benthic microbial ecosystems is important for the transformation of river biogenic elements. However, the molecular initiating event induced by sertraline is more readily observed at higher levels, such as the individual or population level of larger organisms, and the effect is not pronounced in benthic organisms, which are directly involved in nitrogen transformation. Therefore, this study used DNA metabarcoding to analyze the effect of sertraline on the microbial ecosystem and material cycles in river sediment through the lens of a microbial food web. The presence of sertraline in the river sediment enhanced the mineralization capacity of nitrogen and increased the accumulation of nitrate in the sediment. Sertraline affected the structure of the microbial food web by stimulating different successions of bacteria and eukaryotes. A structural equation model revealed that sertraline affected the microbial food web model through top-down forces (predation) by reducing the trophic transfer efficiency from metazoans to protozoans. This effect resulted in decreases in the trophic transfer efficiency from protozoans to bacteria and increases in nitrogen mineralization capacity. This was followed by a gradual increase in the nitrification reaction under the action of nitrifying bacteria, increasing the threat to the ecological health of rivers. The results show that sertraline affects the material cycle of river ecosystems and emphasizes that the assessment of the ecological risks of sertraline needs to be considered from the perspective of the material cycle of ecosystems.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
48
|
Kosma CI, Kapsi MG, Konstas PSG, Trantopoulos EP, Boti VI, Konstantinou IK, Albanis TA. Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. ENVIRONMENTAL RESEARCH 2020; 191:110152. [PMID: 32877707 PMCID: PMC7456450 DOI: 10.1016/j.envres.2020.110152] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 05/07/2023]
Abstract
Nowadays the occurrence and associated risks of Pharmaceutical Active Compounds (PhACs) in the aquatic environment comprises a major issue. In the present study, a comprehensive survey on contamination profiles, occurrence, removals, temporal variation and ecological risk of multiclass multiresidue PhACs, such as antibiotics, non-steroidal anti-inflammatories, lipid regulators and phsychiatrics, (including past and newly monitored PhACs as well as some of their metabolites) was performed in wastewaters from the WWTP of Ioannina University hospital along one year period on a monthly sampling basis. WWTP influent and effluent samples were analyzed for physicochemical quality parameters and PhACs concentration levels using Ultra High Performance Liquid Chromatography-Orbitrap-Mass Spectrometry (UHPLC-Orbitrap-MS), after Solid Phase Extraction (SPE) through Oasis HLB cartridges. Influent concentrations ranged between < LOQ (Limit of Quantification) for diclofenac and tolfenamic acid and 48586 ng/L for caffeine, while effluent concentrations between < LOQ for tolfenamic acid and simvastatin and 3361 ng/L for caffeine. Removal efficiencies ranged between -132.6% for venlafaxine and 100% for caffeine. Environmental risk assessment by means of Risk Quotient (RQ) for maximum and minimum concentration levels as well as optimized by the frequency of exceeding toxicity threshold values, RQf, was applied revealing that up to 12 PhACs posed acute toxicity (clofibric acid, fenofibrate, sulfadiazine, sulfamethoxazole, trimethoprim, amitryptiline, fluoxetine, fluvoxamine, norfluoxetine, sertraline, venlafaxine, caffeine) while up to 4 compounds exerted long-term toxicity (sulfamethoxazole, fluoxetine, sertraline, caffeine) at least for one of the studied organisms. Furthermore, mixture RQMEC/PNEC and RQSTU effect of multiple compounds showed high potential risks of the target groups in some cases, although some contaminants were not included due to lack of available data. Results can be used to prioritization of PhACs and their metabolites for surveillance in receiving water bodies as well as development of knowledge on toxicity and mechanism(s) of action.
Collapse
Affiliation(s)
- Christina I Kosma
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Margarita G Kapsi
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | | | | | - Vasiliki I Boti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Ioannis K Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, Ioannina, 45110, Greece.
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, Ioannina, 45110, Greece.
| |
Collapse
|
49
|
Heyland A, Bastien T, Halliwushka K. Transgenerational reproductive effects of two serotonin reuptake inhibitors after acute exposure in Daphnia magna embryos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108875. [PMID: 32835857 DOI: 10.1016/j.cbpc.2020.108875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) into aquatic environments has been a major concern for the health of ecosystems. Transgenerational plasticity is a potential mechanism for organisms to respond to changing environmental conditions, including climate change and environmental contaminants. The purpose of the present study was to determine the long-term transgenerational effects of an abundant freshwater zooplankton, Daphnia magna, to acute embryonic exposures of serotonin re-uptake inhibitors (SSRI - fluoxetine and sertraline). Both SSRIs have been used extensively to treat depression and anxiety disorders for decades and persist in freshwater ecosystems at physiologically relevant concentrations. Our results revealed that even short (72 h) embryonic exposures of D. magna embryos had long lasting consequences on life history and expression of 5HT related genes in the unexposed generation (F3). Moreover, we identified direct effects of SSRIs on heart rate and swimming behavior in the first generation that carried over from embryonic exposure. We also found that SSRI exposure resulted in a transient increase of ephippia formation in the F1 and F2 . Our results suggest that SSRI exposure has transgenerational consequences to the unexposed generation and potentially beyond, even at low concentration (10-100× lower than what can be found in natural ecosystems) and as a result of embryonic exposure. Because of the short reproductive period of D. magna and their integral role in aquatic food webs, these findings have population-level implications and deserve further investigation.
Collapse
Affiliation(s)
- Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada.
| | - Trysta Bastien
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada
| | - Kelsey Halliwushka
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
50
|
Kózka B, Nałęcz-Jawecki G, Turło J, Giebułtowicz J. Application of Pleurotus ostreatus to efficient removal of selected antidepressants and immunosuppressant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111131. [PMID: 32777642 DOI: 10.1016/j.jenvman.2020.111131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Disposed pharmaceuticals constitute a significant threat to the environment due to the high consumption of drugs and inefficient treatment of wastewater. In this paper, we first described the efficient removal of a series of antidepressants and immunosuppressant from a cultivation medium carried out by white-rot fungus, Pleurotus ostreatus. We determined the removal efficiency of pharmaceuticals and the activity of fungal ligninolytic enzymes over time, as well as the toxicity of pre- and post-cultivation medium to Spirostomum ambiguum. We showed that P. ostreatus can remove from the model medium most of the pharmaceuticals studied, including clomipramine, mianserin, paroxetine, sertraline, and mycophenolic acid. Pharmaceuticals containing phenolic or benzene moieties, likewise in the natural monolignols, were removed in a high efficiency within a short time. The activity of the fungal ligninolytic enzymes, laccase, and lignin peroxidase, in the cultivation medium, was three times higher in the presence of the pharmaceuticals, which justifies their contribution to the degradation. The post-cultivation medium showed lower toxicity than pre-cultivation medium and toxic units were 7- and 2-fold lower for the sublethal and lethal response, respectively. Over twenty metabolites we detected resulted mostly from oxygenation or demethylation of parent pharmaceuticals. The biological treatment we developed using P. ostreatus-based system should be convenient and effective in mycoremediation of environmental wastewater polluted with emerging contaminants including monolignol-like antidepressants and immunosuppressant.
Collapse
Affiliation(s)
- Bartosz Kózka
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Mazovia, Poland.
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Mazovia, Poland.
| | - Jadwiga Turło
- Department of Drug Chemistry and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Mazovia, Poland.
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Mazovia, Poland.
| |
Collapse
|