1
|
Yao L, Hu Y, Yang JH, Wu R, Chen FL, Zhou X. Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137661. [PMID: 39986104 DOI: 10.1016/j.jhazmat.2025.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
As the number of chronic disease patients continues to climb, vast quantities of chronic disease drugs are continuously discharged into the wastewater treatment plants (WWTPs) and then are released to the receiving environment. However, the situations of pollution, removal, and consumption of chronic disease drugs in China were not studied. Here we investigated the mass load and removal efficiency of 14 chronic disease drugs in seven wastewater treatment plants (WWTPs) of Guangdong Province, China, and estimated the proportional usage of chronic disease drugs and the prevalence of chronic diseases by wastewater-based epidemiology (WBE) method. The results showed that all target chronic disease drugs were detected in the WWTPs, among which gliclazide, valsartan, and bezafibrate were the mainly detected antidiabetic drug, antihypertensive drug, and antihyperlipidemic drug, respectively. The aqueous removal rates of chronic disease drugs ranged from -163 %-100 % in studied WWTPs, and most chronic disease drugs were mainly removed at anaerobic stage in WWTPs that using Anaerobic-Anoxic-Oxic treatment technologies. Mean mass loads of chronic disease drugs in the influent of seven WWTPs ranged at 72-318099 mg·d-1 (valsartan), and mean emission of chronic disease drugs in seven WWTPs ranged at 0-56.3 mg·d-1·1000 inhabitant-1 (valsartan). Based on the WBE method, the prevalence of diabetes, hypertension, and dyslipidemia estimated by gliclazide, glipizide, valsartan, and bezafibrate in this study was consistent with those obtained via cross-sectional survey. The results formulated the contamination characteristics of chronic disease drugs in China and assessed the accuracy of chronic disease drugs used for disease prevalence estimation.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yang Hu
- Soil and Landscape Science, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Rui Wu
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Fei-Long Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
2
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
3
|
Roveri V, Guimarães LL, Kiyotani RB, Assis Junior WRAD, Metropolo AP, Santos GAD, Rodrigues AZ, Pereira CDS, Correia AT. Temporal variability and ecological risks of pharmaceuticals and cocaine during the Christmas and New Year holidays in a beach area of North Coast of São Paulo, Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106759. [PMID: 39332318 DOI: 10.1016/j.marenvres.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study assessed the occurrence and ecological potential risk of nine selected pharmaceuticals in water samples from the Juquehy River. The river flows continuously to Juquehy Beach, known as "the jewel of the north coast" of São Paulo, Brazil. Samples were collected during Christmas and the New Year (period of December 2023-January 2024), in addition to a previous baseline weekend, to compare the loads during "celebratory parties" versus "normal operational conditions." The findings indicated that the "mass gathering" during Christmas and New Year holidays contributed significantly to an increase of the mass load of the nine pharmaceuticals flowing along to the Juquehy River, i.e., caffeine (14.40-633.00 ng/L) > losartan ( furosemide (< LOQ to 9.16 ng/L) > diclofenac (0.61-4.55 ng/L) > carbamazepine (< LOQ to 0.73 ng/L) > orphenadrine (< LOQ to 0.11 ng/L) showed higher concentrations during the New Year holiday. Conversely, atenolol (< LOQ to 13.10 ng/L) > benzoylecgonine (0.33-7.23 ng/L) > cocaine (0.12-6.59 ng/L) showed higher concentrations during the Christmas day. The individual ecological risk assessment in the Juquehy River revealed a clear environmental concern for the aquatic ecosystem. The threat to the aquatic biota is significant, with caffeine and losartan presenting a moderate level of risk. Moreover, the mixture ecological risk assessment of nine compounds indicates acute moderate risks to algae, crustaceans, and fishes, as well as chronic low risks to fishes.
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, 11045-002, Santos, São Paulo, Brazil; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil.
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil
| | - Rafael Barreiros Kiyotani
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil
| | | | - Ana Paula Metropolo
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil
| | - Gilmar Aparecido Dos Santos
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil
| | - Aírton Zogaib Rodrigues
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, 11045-040, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, 11030-100, Santos, São Paulo, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Escola das Ciências da Vida e do Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Liu Y, Zhang M, Wu Y, Li S, Hu J, Sun W, Ni J. Profiles, drivers, and prioritization of antibiotics in China's major rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135399. [PMID: 39096643 DOI: 10.1016/j.jhazmat.2024.135399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Through a systematic review of literature references from 2007 to 2022, we compiled a comprehensive national dataset comprising over 67,000 records and covering information on 129 antibiotics detected in the surface water and sediments of China's major rivers. Our analysis revealed notably high antibiotic concentrations in the Liaohe and Yellow Rivers. Among the antibiotics examined, sulfonamides, quinolones, and tetracyclines exhibited relatively high median concentrations in river water. Regional distribution analysis highlighted increased antibiotic levels in Shandong and Tianjin compared to other areas. Partial least squares path modeling revealed that animal production and pollution discharge positively influenced antibiotic levels in river water, whereas natural and socioeconomic factors had negative impacts. Based on the ecological risk assessment, we formulated a prioritized national list of antibiotics, with sulfonamides having the largest number of entries, followed by quinolones. Importantly, our analysis revealed a declining trend in antibiotic concentrations and the associated risk levels across China during the study period. This study not only enhances our understanding of antibiotic distribution in China's water systems, but also contributes to the development of a scientifically sound approach for prioritizing antibiotics. Ultimately, these findings will inform targeted antibiotic management and control strategies. ENVIRONMENTAL IMPLICATION: Antibiotics, posing threats to ecosystems and human health, exhibit pseudo-persistence in the environment. we compiled a national dataset of over 67,000 records on antibiotics, our study scrutinized antibiotic distribution in China's major river water and sediment. Through this analysis, we identified key factors influencing distribution patterns and crafted a national priority ranking for antibiotics. These findings deepen our understanding of antibiotic presence and contribute to the development of targeted management strategies aimed at minimizing environmental impact.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Meng Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yang Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
5
|
Rivi V, Caruso G, Caraci F, Alboni S, Pani L, Tascedda F, Lukowiak K, Blom JMC, Benatti C. Behavioral and transcriptional effects of carnosine in the central ring ganglia of the pond snail Lymnaea stagnalis. J Neurosci Res 2024; 102:e25371. [PMID: 39078068 DOI: 10.1002/jnr.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Silvia Alboni
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Deparment of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Raman NV, Dubey A, van Donk E, von Elert E, Lürling M, Fernandes TV, de Senerpont Domis LN. Understanding the differential impacts of two antidepressants on locomotion of freshwater snails (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12406-12421. [PMID: 38233708 PMCID: PMC10869440 DOI: 10.1007/s11356-024-31914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigating their environmental risks. In addition, our results underline the importance of reporting non-significant effects and acknowledging individual variation in behavior for environmental risk assessment.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Asmita Dubey
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands.
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Environmental Biology, University of Utrecht, Utrecht, The Netherlands
| | - Eric von Elert
- Aquatic Chemical Ecology, Biocenter, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Miquel Lürling
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
- Department of Pervasive Systems, EEMCS, University of Twente & Department of Water Resources, ITC, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Capela R, Castro LF, Santos MM, Garric J. Development of a Lymnaea stagnalis embryo bioassay for chemicals hazard assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168061. [PMID: 37926257 DOI: 10.1016/j.scitotenv.2023.168061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The validation of high-throughput toxicity tests with invertebrate species is a key priority to improve hazard assessment of new chemicals and increase the available test guidelines with organisms from a representative set of taxa. This work aimed to contribute to the validation of an embryo test with the freshwater gastropod Lymnaea stagnalis, which has been identified by Organization for Economic Co-operation and Development (OECD) as a potential invertebrate test model, and provide the basis for such an endeavor. Recently, a L. stagnalis reproductive test was standardized by the OECD. However, to encompass the entire life cycle, it is crucial to addresses embryogenic development - a phase highly susceptible to various anthropogenic chemicals, which is covered in the proposed methodology. The approach used in the present study is in line with the OECD guidelines and other published studies, namely the Detailed Review Paper (DRP) on Mollusks life-cycle toxicity testing. Here, the assay quality criteria such as basal mortality and abnormality rates, development, growth and hatching rates, the appropriated testing media, and the optimal assay duration were investigated. Cadmium was chosen as the positive test substance, due to the available data and the verified model sensitivity to this compound, namely in the OECD reproductive test validation process. The obtained data demonstrate that L. stagnalis embryogenesis using the developed methodology is highly sensitive to cadmium. High concentration-response correlation was observed using this reference compound, the EC10 and EC50 for growth are 13.57 and 21.84 μg/L, respectively, after 168 h of exposure. The development EC's 10 and 50 were 15.75 and 38.66 μg/L, respectively, after 240 h. This demonstrates the model sensitivity to this compound when compared with other embryo test models, as well as the model sensitivity during the embryogenesis, if compared with the adult stage. Further, given the determined sensitivity parameters, and incubation times, the test can be performed at 240 h as over 95 % of the control embryos were hatched and no further significant changes in the exposure groups were determined. Overall, the findings of the present study demonstrate that the embryo test with L. stagnalis has potential to high-throughput testing and the model has a high sensitivity to cadmium during this life cycle period. The background data provide by this study will be essential to foster the future standardization of this assay.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Luís Filipe Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Jeanne Garric
- INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| |
Collapse
|
8
|
Bergamini G, Sacchi S, Ferri A, Franchi N, Montanari M, Ahmad M, Losi C, Nasi M, Cocchi M, Malagoli D. Clodronate Liposome-Mediated Phagocytic Hemocyte Depletion Affects the Regeneration of the Cephalic Tentacle of the Invasive Snail, Pomacea canaliculata. BIOLOGY 2023; 12:992. [PMID: 37508422 PMCID: PMC10376890 DOI: 10.3390/biology12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
After amputation, granular hemocytes infiltrate the blastema of regenerating cephalic tentacles of the freshwater snail Pomacea canaliculata. Here, the circulating phagocytic hemocytes were chemically depleted by injecting the snails with clodronate liposomes, and the effects on the cephalic tentacle regeneration onset and on Pc-Hemocyanin, Pc-transglutaminase (Pc-TG) and Pc-Allograft Inflammatory Factor-1 (Pc-AIF-1) gene expressions were investigated. Flow cytometry analysis demonstrated that clodronate liposomes targeted large circulating hemocytes, resulting in a transient decrease in their number. Corresponding with the phagocyte depletion, tentacle regeneration onset was halted, and it resumed at the expected pace when clodronate liposome effects were no longer visible. In addition to the regeneration progress, the expressions of Pc-Hemocyanin, Pc-TG, and Pc-AIF-1, which are markers of hemocyte-mediated functions like oxygen transport and immunity, clotting, and inflammation, were modified. After the injection of clodronate liposomes, a specific computer-assisted image analysis protocol still evidenced the presence of granular hemocytes in the tentacle blastema. This is consistent with reports indicating the large and agranular hemocyte population as the most represented among the professional phagocytes of P. canaliculata and with the hypothesis that different hemocyte morphologies could exert diverse biological functions, as it has been observed in other invertebrates.
Collapse
Affiliation(s)
- Giulia Bergamini
- Department Biology and Evolution of Marine Organisms, Zoological Station "Anton Dohrn", 80121 Naples, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anita Ferri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mohamad Ahmad
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- LASIRE, Université de Lille, Cité Scientifique, 59650 Villeneuve-d'Ascq, France
| | - Chiara Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical and Dental Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cocchi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
9
|
Hallmann A, Leszczyńska D, Czumaj A, Świeżak J, Caban M, Michnowska A, Smolarz K. Oxytetracycline-induced inflammatory process without oxidative stress in blue mussels Mytilus trossulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80462-80477. [PMID: 37301807 PMCID: PMC10345040 DOI: 10.1007/s11356-023-28057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Potentially harmful compounds including pharmaceuticals are commonly found in marine waters and sediments. Amongst those, antibiotics and their metabolites are detected worldwide in various abiotic (at concentrations as high as µg/L) and biotic matrices at ng/gram of tissue, posing a risk to non-target species exposed to them such as blue mussels. Amongst those, oxytetracycline (OTC) belongs to the most detected antibiotics in the marine environment. In this work, we concentrated on studying the potential induction of oxidative stress, activation of cellular detoxification processes (including Phase I and Phase II xenobiotic biotransformation enzymes) and multixenobiotic resistance pumps (Phase III) as well as changes in the aromatisation efficiency in Mytilus trossulus exposed to 100 μg/L OTC. Our results show that 100 µg/L OTC concentration did not provoke cellular oxidative stress and did not affect the expression of genes involved in detoxification processes in our model. Moreover, no effect of OTC on aromatisation efficiency was found. Instead, phenoloxidase activity measured in haemolymph was significantly higher in OTC exposed mussels than in those from the control (30.95 ± 3.33 U/L and 17.95 ± 2.75 U/L, respectively). OTC exposed mussels were also characterised by a tissue-dependant activation of major vault protein (MVP) gene expression (1.5 times higher in gills and 2.4 times higher in the digestive system) and a decreased expression of the nuclear factor kappa B-a (NF-κB) gene (3.4 times lower in the digestive system) when compared to those from the control. Additionally, an elevated number of regressive changes and inflammatory responses in tissues such as gills, digestive system and mantle (gonads) was observed underlining the worsening of bivalves' general health. Therefore, instead of a free-radical effect of OTC, we for the first time describe the occurrence of typical changes resulting from antibiotic therapy in non-target organisms like M. trossulus exposed to antibiotics such as OTC.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
10
|
Liu Y, Cai D, Li X, Wu Q, Ding P, Shen L, Yang J, Hu G, Wu J, Zhang L. Occurrence, fate, and risk assessment of antibiotics in typical pharmaceutical manufactories and receiving water bodies from different regions. PLoS One 2023; 18:e0270945. [PMID: 36662697 PMCID: PMC9858356 DOI: 10.1371/journal.pone.0270945] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the presence and persistence of antibiotics in wastewater of four typical pharmaceutical manufactories in China and receiving water bodies and suggest the removal of antibiotics by the wastewater treatment process. It also evaluated the environmental impact of antibiotic residues through wastewater discharge into receiving water bodies. The results indicated that thirteen antibiotics were detected in wastewater samples with concentrations ranging from 57.03 to 726.79 ng/L. Fluoroquinolones and macrolides were the most abundant antibiotic classes found in wastewater samples, accounting for 42.5% and 38.7% of total antibiotic concentrations, respectively, followed by sulfonamides (16.4%) and tetracyclines (2.4%). Erythromycin-H2O, lincomycin, ofloxacin, and trimethoprim were the most frequently detected antibiotics; among these antibiotics, the concentration of ofloxacin was the highest in most wastewater samples. No significant difference was found in different treatment processes used to remove antibiotics in wastewater samples. More than 50% of antibiotics were not completely removed with a removal efficiency of less than 70%. The concentration of detected antibiotics in the receiving water bodies was an order of magnitude lower than that in the wastewater sample due to dilution. An environmental risk assessment showed that lincomycin and ofloxacin could pose a high risk at the concentrations detected in effluents and a medium risk in their receiving water bodies, highlighting a potential hazard to the health of the aquatic ecosystem. Overall, The investigation was aimed to determine and monitor the concentration of selected antibiotics in 4 typical PMFs and their receiving water bodies, and to study the removal of these substances in PMFs. This study will provide significant data and findings for future studies on antibiotics-related pollution control and management in water bodies.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Qingyao Wu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
- School of Public Health and Emergency Management, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Liangchen Shen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Jian Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Gnatyshyna L, Khoma V, Martinyuk V, Matskiv T, Pedrini-Martha V, Niederwanger M, Stoliar O, Dallinger R. Sublethal cadmium exposure in the freshwater snail Lymnaea stagnalis meets a deficient, poorly responsive metallothionein system while evoking oxidative and cellular stress. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109490. [PMID: 36265756 DOI: 10.1016/j.cbpc.2022.109490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
The Great Pond snail Lymnaea stagnalis (Gastropoda, Hygrophila) is a wide-spread freshwater gastropod, being considered as a model organism for research in many fields of biology, including ecotoxicology. The aim of the present study was to explore the Cd sensitivity of L. stagnalis through the measurement of a biomarker battery for oxidative, toxic and cellular stress. The interpretation of biomarker parameters occurred against the background of a truncated metallothionein protein with a limited Cd-binding capacity. Individuals of L. stagnalis were exposed through 14 days to uncontaminated water (controls) or to low (30 μg · L-1) or high (50 μg · L-1) Cd concentrations. The digestive gland of control and low-Cd exposed snails was processed for transcriptional analysis of the Metallothionein (MT) gene expression, and for determination of biomarkers for oxidative stress, toxicity and cellular stress. Digestive gland supernatants of high-Cd exposed snails were subjected to chromatography and subsequent analysis by spectrophotometry. It was shown that the MT system of L. stagnalis is functionally deficient, with a poor Cd responsiveness at both, the transcriptional and the protein expression levels. Instead, L. stagnalis appears to rely on alternative detoxification mechanisms such as Cd binding by phytochelatins and metal inactivation by compartmentalization within the lysosomal system. In spite of this, however, traces of Cd apparently leak out of the pre-determined detoxification pathways, leading to adverse effects, which is clearly indicated by biomarkers of oxidative and cellular stress.
Collapse
Affiliation(s)
- Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Tetyana Matskiv
- I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | - Michael Niederwanger
- Institute of Zoology, University and Center of Molecular Biosciences, Innsbruck, Austria.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Reinhard Dallinger
- Institute of Zoology, University and Center of Molecular Biosciences, Innsbruck, Austria.
| |
Collapse
|
12
|
Al-Khalaifah H. Cellular and humoral immune response between snail hosts and their parasites. Front Immunol 2022; 13:981314. [PMID: 36439176 PMCID: PMC9685329 DOI: 10.3389/fimmu.2022.981314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 09/09/2023] Open
Abstract
In invertebrates, the innate immune system protects against a wide range of microbiological infections. Several immunological processes are involved in the interactive immune response between snails and their parasites, including phagocytosis, nitric oxide synthesis, phenol oxidase activity, lysozymes, and lectin formation. The immunological responses connected to the interaction between snails and parasites are discussed in detail in the current research. Understanding the nature of these interactive reactions will enable scientists to explore approaches to eliminate and cure parasitic infections.
Collapse
Affiliation(s)
- Hanan Al-Khalaifah
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
13
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
15
|
Trombini C, Kazakova J, Montilla-López A, Fernández-Cisnal R, Hampel M, Fernández-Torres R, Bello-López MÁ, Abril N, Blasco J. Assessment of pharmaceutical mixture (ibuprofen, ciprofloxacin and flumequine) effects to the crayfish Procambarus clarkii: A multilevel analysis (biochemical, transcriptional and proteomic approaches). ENVIRONMENTAL RESEARCH 2021; 200:111396. [PMID: 34062201 DOI: 10.1016/j.envres.2021.111396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 μg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Alejandro Montilla-López
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
16
|
Regan T, Stevens L, Peñaloza C, Houston RD, Robledo D, Bean TP. Ancestral Physical Stress and Later Immune Gene Family Expansions Shaped Bivalve Mollusc Evolution. Genome Biol Evol 2021; 13:6337976. [PMID: 34343278 PMCID: PMC8382680 DOI: 10.1093/gbe/evab177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bivalve molluscs comprise 20,000 species occupying a wide diversity of marine habitats. As filter feeders and detritivores they act as ecosystem engineers clarifying water, creating reefs, and protecting coastlines. The global decline of natural oyster reefs has led to increased restoration efforts in recent years. Bivalves also play an important role in global food security contributing to >20% of worldwide aquaculture production. Despite this importance, relatively little is known about bivalve evolutionary adaptation strategies. Difficulties previously associated with highly heterozygous and repetitive regions of bivalve genomes have been overcome by long-read sequencing, enabling the generation of accurate bivalve assemblies. With these resources we have analyzed the genomes of 32 species representing each molluscan class, including 15 bivalve species, to identify gene families that have undergone expansion during bivalve evolution. Gene family expansions across bivalve genomes occur at the point of evolutionary pressures. We uncovered two key factors that shape bivalve evolutionary history: expansion of bivalvia into environmental niches with high stress followed by later exposure to specific pathogenic pressures. The conserved expansion of protein recycling gene families we found across bivalvia is mirrored by adaptations to a sedentary lifestyle seen in plants. These results reflect the ability of bivalves to tolerate high levels of environmental stress and constant exposure to pathogens as filter feeders. The increasing availability of accurate genome assemblies will provide greater resolution to these analyses allowing further points of evolutionary pressure to become clear in other understudied taxa and potentially different populations of a single species.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Lewis Stevens
- Tree of Life Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| |
Collapse
|
17
|
Allograft Inflammatory Factor-1 in Metazoans: Focus on Invertebrates. BIOLOGY 2020; 9:biology9110355. [PMID: 33114451 PMCID: PMC7692721 DOI: 10.3390/biology9110355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary During their life, all living organisms defend themselves from pathogens using complex strategies. Vertebrates and invertebrates share mechanisms and molecules that guarantee their overall bodily integrity. Allograft inflammatory factor-1 (AIF-1) is a protein extensively studied in vertebrates, and especially in mammals. This factor, generally involved in inflammation events occurring upon pathogenic infection or tissue injury, is linked to several important human diseases. This review collects data on the presence and role of AIF-1 in invertebrates, which are still poorly investigated organisms. Multiple alignment and phylogenetic analysis reveal that AIF-1 is conserved in vertebrates and invertebrates, suggesting similarity of functions. In some invertebrate species, the expression of AIF-1 increases considerably after a bacterial challenge, indicating that it plays a key role during the immune responses. This review highlights the importance of studying this protein in invertebrates as a way to improve our knowledge of innate immunity mechanisms and to better understand inflammatory regulation events in mammals. Abstract Allograft inflammatory factor-1 (AIF-1) is a calcium-binding scaffold/adaptor protein often associated with inflammatory diseases. Originally cloned from active macrophages in humans and rats, this gene has also been identified in other vertebrates and in several invertebrate species. Among metazoans, AIF-1 protein sequences remain relatively highly conserved. Generally, the highest expression levels of AIF-1 are observed in immunocytes, suggesting that it plays a key role in immunity. In mammals, the expression of AIF-1 has been reported in different cell types such as activated macrophages, microglial cells, and dendritic cells. Its main immunomodulatory role during the inflammatory response has been highlighted. Among invertebrates, AIF-1 is involved in innate immunity, being in many cases upregulated in response to biotic and physical challenges. AIF-1 transcripts result ubiquitously expressed in all examined tissues from invertebrates, suggesting its participation in a variety of biological processes, but its role remains largely unknown. This review aims to present current knowledge on the role and modulation of AIF-1 and to highlight its function along the evolutionary scale.
Collapse
|
18
|
Yan Z, Zhang X, Bao X, Ling X, Yang H, Liu J, Lu G, Ji Y. Influence of dissolved organic matter on the accumulation, metabolite production and multi-biological effects of environmentally relevant fluoxetine in crucian carp (Carassius auratus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105581. [PMID: 32717676 DOI: 10.1016/j.aquatox.2020.105581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Fluoxetine is a widely prescribed antidepressant that has been frequently detected in aquatic environments and is associated with a series of neurological, behavioural and neuroendocrine disruptions in nontarget organisms. However, studies on its effects in fish under realistic environmental conditions are still limited. In this study, we determined the influences of an environmentally relevant concentration of fluoxetine (100 ng/L) on crucian carp (Carassius auratus) in the presence of dissolved organic matter (DOM). Endpoints that were assessed included accumulation of fluoxetine and metabolite formation as well as related biological responses involving neurotransmission and metabolic processes. Fluoxetine was significantly bioconcentrated in the fish brain and liver and largely transformed to the active metabolite norfluoxetine. Brain neurotransmission processes related to serotonin and choline and liver metabolic status were simultaneously altered. DOM added at 1 mg/L had no effect on the accumulation of fluoxetine or its metabolites in different tissues of the fish. However, at 10 mg/L DOM facilitated fluoxetine and norfluoxetine accumulation in the liver, brain, kidney, gill and bile tissues of the fish. The neuroendocrine-disrupting effects on fish caused by fluoxetine were also enhanced by the co-addition of DOM at 10 mg/L. Binding with fluoxetine and the inhibition of metabolic functions caused by DOM may be responsible for this increase in effects. These findings imply that at high concentrations DOM can increase the toxicity of environmentally relevant concentrations of fluoxetine to fish.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Yong Ji
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
19
|
Kulandaivelu J, Choi PM, Shrestha S, Li X, Song Y, Li J, Sharma K, Yuan Z, Mueller JF, Wang C, Jiang G. Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers. WATER RESEARCH 2020; 181:115945. [PMID: 32502752 DOI: 10.1016/j.watres.2020.115945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Discharging drinking water treatment sludge (DWTS) to sewers could be an efficient waste management strategy with the potential to replace chemical dosing for pollutant control. This study for the first time investigated the fate of 28 different organic micropollutants (MPs) due to the dosing of iron-rich and aluminum-rich DWTS in a pilot rising main sewer. Nine MPs had an initial rapid removal within 1-hr (i.e., 10-80%) due to Fe-DWTS dosing. The formation of FeS particles due to Fe-DWTS dosing was responsible for the removal of dissolved sulfides (80% reduction comparing to control sewer). Further particle characterization using SEM-EDS, XRD and ATR-FTIR confirmed that FeS particles formation played an important role in the removal of MPs from wastewater. Adsorption of MPs onto the FeS particles was likely the possible mechanism for their rapid removal. In comparison to iron-rich DWTS, aluminum-rich DWTS had very limited beneficial effects in removing MPs from wastewater. The degradability of degradable MPs, including caffeine, paraxanthine, paracetamol, metformin, cyclamate, cephalexin, and MIAA were not affected by the DWTS dosing. Some non-degradable MPs, including cotinine, hydroxycotinine, tramadol, gabapentin, desvenlafaxine, hydrochlorothiazide, carbamazepine, fluconazole, sulfamethoxazole, acesulfame, saccharin and sucralose were also not impacted by the DWTS dosing. This study systematically assessed the additional benefits of discharging Fe-DWTS to the sewer network i.e., the removal of MPs from the liquid phase thereby reducing its load to the treatment plant. The results corroborate the discharge of Fe-rich DWTS in sewers as an effective and beneficial way of managing the waste by-product.
Collapse
Affiliation(s)
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, 4102, Australia
| | - Sohan Shrestha
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Keshab Sharma
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, 4102, Australia
| | - Chengduan Wang
- Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Sichuan, China
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia; Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Sichuan, China; School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
20
|
Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 2020; 9:e56962. [PMID: 32539932 PMCID: PMC7297532 DOI: 10.7554/elife.56962] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Only a limited number of animal species lend themselves to becoming model organisms in multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater snail has been also recognised in fields as diverse as host-parasite interactions, ecotoxicology, evolution, genome editing and 'omics', and human disease modelling. While there is knowledge about the natural history of this species, what is currently lacking is an integration of findings from the laboratory and the field. With this in mind, this article aims to summarise the applicability of L. stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice for addressing a large range of different biological questions, problems and phenomena.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| | - Ahmed AA Hussein
- Department of Ecological Sciences, Faculty of Sciences, Vrije UniversiteitAmsterdamNetherlands
| | - Paul R Benjamin
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| |
Collapse
|
21
|
Young AP, Landry CF, Jackson DJ, Wyeth RC. Tissue-specific evaluation of suitable reference genes for RT-qPCR in the pond snail, Lymnaea stagnalis. PeerJ 2019; 7:e7888. [PMID: 31637135 PMCID: PMC6798871 DOI: 10.7717/peerj.7888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/13/2019] [Indexed: 01/02/2023] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression. To obtain reliable results with this method, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging model for the study of biological asymmetry, biomineralization, and evolution and development. However, no systematic assessment of qPCR reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from several commonly studied tissues in L. stagnalis as well as across the entire body. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase, beta-actin, beta-tubulin, ubiquitin, prenylated rab acceptor protein 1, and a voltage gated potassium channel. These genes exhibited a wide range of expression levels among tissues. The tissue-specific stability of each of the genes was consistent when measured by the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. Our data indicate that the most stable reference genes vary among the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle). Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we provide suggestions for strong pairs of reference genes for single- and multi-tissue analyses of RT-qPCR data in L. stagnalis.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Carmen F Landry
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Daniel J Jackson
- Department of Geobiology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
22
|
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:11-28. [PMID: 30877957 DOI: 10.1016/j.scitotenv.2019.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 03/03/2019] [Indexed: 05/14/2023]
Abstract
Lymnaea stagnalis, also referred to as great or common pond snail, is an abundant and widespread invertebrate species colonizing temperate limnic systems. Given the species importance, studies involving L. stagnalis have the potential to produce scientifically relevant information, leading to a better understanding of the damage caused by aquatic contamination, as well as the modes of action of toxicants. Lymnaea stagnalis individuals are easily maintained in laboratory conditions, with a lifespan of about two years. The snails are hermaphrodites and sexual maturity occurs about three months after egg laying. Importantly, they can produce a high number of offspring all year round and are considered well suited for use in investigations targeting the identification of developmental and reproductive impairments. The primary aims of this review were two-fold: i) to provide an updated and insightful compilation of established toxicological measures determined in both chronic and acute toxicity assays, as useful tool to the design and development of future research; and ii) to provide a state of the art related to direct toxicant exposure and its potentially negative effects on this species. Relevant and informative studies were analysed and discussed. Knowledge gaps in need to be addressed in the near future were further identified.
Collapse
Affiliation(s)
- João Amorim
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Isabel Abreu
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Rodrigues
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diogo Peixoto
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Pinheiro
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Aurélia Saraiva
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Luis Oliva-Teles
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
23
|
Nkoom M, Lu G, Liu J, Yang H, Dong H. Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:11-18. [PMID: 30669069 DOI: 10.1016/j.ecoenv.2019.01.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
Owing to its persistence, carbamazepine an antiepileptic drug is regularly detected in the aquatic environment. The motive for our research was to assess the bioconcentration, physiological and biochemical effects of carbamazepine in Daphnia magna. A 48 h aqueous exposure of carbamazepine yielded bioconcentration factors of 202.56 and 19.95 in Daphnia magna for the respective nominal treatments of 5 and 100 µg/L. Apparently, the inhibition of the capability of Daphnia magna to obtain food attributable to carbamazepine exposure will reduce their fitness to reproduce as well as to grow. Also, a significant alteration in the phototactic behaviour of Daphnia magna exposed to carbamazepine is maladaptive since it will increase their chance of being preyed upon in the surface water during daylight. Again, a significant decline in the acetylcholinesterase activity observed herein brings to light the neurotoxicity of carbamazepine to Daphnia magna. Moreover, significant inhibition of the superoxide dismutase, catalase and glutathione reductase activities coupled with the simultaneous induction of the malondialdehyde content imply that carbamazepine evoked a life-threatening oxidative stress that overpowered the antioxidant defence system of Daphnia magna. These observations confirm that carbamazepine can accumulate and consequently cause negative physiological and biochemical changes to wild Daphnia magna populations.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Neves RAF, Santiago TC, Carvalho WF, Silva EDS, da Silva PM, Nascimento SM. Impacts of the toxic benthic dinoflagellate Prorocentrum lima on the brown mussel Perna perna: Shell-valve closure response, immunology, and histopathology. MARINE ENVIRONMENTAL RESEARCH 2019; 146:35-45. [PMID: 30910251 DOI: 10.1016/j.marenvres.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Prorocentrum lima is a widely distributed marine benthic dinoflagellate that produces diarrhetic toxins, okadaic acid (OA) and its analogs, that may promote damage on bivalve tissues and cellular responses. Cultivation of the brown mussel Perna perna represents an important economic activity in the tropical and subtropical regions, where mussels may co-occur with P. lima. This study aimed to assess the behavioral, cellular immune responses, and pathological condition of P. perna following a short-term experimental exposure to P. lima. The toxic dinoflagellate treatment was compared to a non-toxic exposure to the chlorophyte Tetraselmis sp. at similar concentrations. The prevalence of pathological conditions and parasites were assessed, and a pathological index was applied by scoring the prevalences into four levels. Reaction time and the number of stimuli necessary for shell-valve closure response significantly increased after 72 h of P. lima exposure. Circulating hemocyte concentration was significantly lower in P. lima exposed mussels than in control mussels at 48- and 96 h of incubation, while hemocyte relative size in exposed mussels was significantly higher than that in control mussels. Comparatively, phagocytic activity and ROS production by hemocytes was significantly higher in mussels exposed to P. lima at 48- and 96 h of incubation, respectively. In addition, exposed mussels significantly presented exacerbated hemocytic infiltration in digestive organs, higher prevalence of moderate to severe atrophy in digestive tubules, and higher pathological index which suggests an impairment of mussel immunologic responses. A lower prevalence of Rickettsia-like organisms (RLOs), trematodes and copepods in P. lima exposed mussels suggests a direct toxic effect of OA on parasites. The exposure of mussels to P. lima is likely to occur frequently and may lead to constraints on mussel behavior, physiology, and pathological condition.
Collapse
Affiliation(s)
- Raquel A F Neves
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| | - Tainá Cristina Santiago
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Wanderson F Carvalho
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Edson Dos Santos Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Silvia M Nascimento
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Boisseaux P, Noury P, Delorme N, Perrier L, Thomas-Guyon H, Garric J. Immunocompetence analysis of the aquatic snail Lymnaea stagnalis exposed to urban wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16720-16728. [PMID: 29611123 DOI: 10.1007/s11356-018-1790-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Wastewater treatment plant effluents from urban area are a well-known source of chronic multiple micropollution to the downstream living organisms. In this study, ecologically relevant laboratory-bred freshwater gastropods, Lymnaea stagnalis, were exposed for 29 days to raw effluents of a wastewater treatment plant in Lyon area (France). A time-course analysis of individual markers of immunocompetence (hemocyte density and viability, hemocyte NADPH activity, phenol oxidase activity, and capacity of phagocytosis) has shown slight trends of inflammatory-like responses induced by the 100% effluents. So far, no short-term hazard for L. stagnalis can be revealed. However, over the long term, such environmental stress-stimulating immune responses could provoke deleterious life history trade-offs because the immune system is known to be highly energy-consuming.
Collapse
Affiliation(s)
- Paul Boisseaux
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Patrice Noury
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Nicolas Delorme
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Lucile Perrier
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Helene Thomas-Guyon
- LIttoral Environnement et Sociétés (LIENSs) - UMR 7266, Bâtiment ILE 2, Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jeanne Garric
- Irstea, UR RIVERLY, Laboratory of Ecotoxicology, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France.
| |
Collapse
|
26
|
Shao S, Hu Y, Cheng J, Chen Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol 2018; 38:1195-1208. [PMID: 29807455 DOI: 10.1080/07388551.2018.1471038] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.
Collapse
Affiliation(s)
- Sicheng Shao
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Yongyou Hu
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Jianhua Cheng
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Yuancai Chen
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| |
Collapse
|
27
|
Almeida Â, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Campos B, Barata C. Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:857-868. [PMID: 29353802 DOI: 10.1016/j.envpol.2017.12.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 μg/L) and CTZ (0.6 μg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves' sensitivity to drugs or alter drugs toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Campos
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
28
|
Multidrug-Resistant Enterobacteriaceae in Lebanese Hospital Wastewater: Implication in the One Health Concept. Microb Drug Resist 2018. [DOI: 10.1089/mdr.2017.0090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Du J, Zhao H, Liu S, Xie H, Wang Y, Chen J. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:521-527. [PMID: 28395267 DOI: 10.1016/j.scitotenv.2017.03.281] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 05/14/2023]
Abstract
The occurrence and distribution of 25 antibiotics from 5 categories in Yancheng coastal area of the South Yellow Sea were investigated using solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry. Results showed that these antibiotics were widely present in this region with the total concentration up to 1349.2ng/L. Fluoroquinolones and sulfonamides were the most abundant categories contributing 46.5%, and 21.4% to the total antibiotics burden. Trimethoprim was the antibiotic detected in all the samples. The detection rates of erythromycin-H2O, sulfamethoxazole and florfenicol were 70.0%, 56.7% and 53.4%, respectively. The distribution of antibiotics demonstrated a seaward decreasing trend with the attenuation rate ranging from 0.07 to 0.19km-1 in this region. Log total antibiotic concentrations was significantly correlated with DOC (dissolved organic carbon) contents, salinity and distance from the coast (p<0.05), which indicated the vital effect of these factors on the transport and fate of antibiotics. Risk assessment revealed that individual antibiotic could mainly pose a low to medium ecological risk, while the risk of antibiotic mixture on aquatic organisms needed further investigation.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Sisi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Cuttitta A, Ragusa MA, Costa S, Bennici C, Colombo P, Mazzola S, Gianguzza F, Nicosia A. Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia viridis. FISH & SHELLFISH IMMUNOLOGY 2017; 67:86-94. [PMID: 28579525 DOI: 10.1016/j.fsi.2017.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed with human members of AIF-1 family. The AvAIF-1 transcript was constitutively expressed in all tested tissues of unchallenged sea anemone, suggesting that AvAIF-1 could serve as a general protective factor under normal physiological conditions. Moreover, we profiled the transcriptional activation of AvAIF-1 after challenges with different abiotic/biotic stresses showing induction by warming conditions, heavy metals exposure and immune stimulation. Thus, mechanisms associated to inflammation and immune challenges up-regulated AvAIF-1 mRNA levels. Our results suggest its involvement in the inflammatory processes and immune response of A. viridis.
Collapse
Affiliation(s)
- Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare - Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Salvatore Mazzola
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
31
|
Gagné F, Bruneau A, Turcotte P, Gagnon C, Lacaze E. An investigation of the immunotoxicity of oil sands processed water and leachates in trout leukocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:43-51. [PMID: 28314140 DOI: 10.1016/j.ecoenv.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Increased oil sands (OS) mining activity has raised concerns about impacts on aquatic organisms. This study sought to examine the effects of single representative compounds from OS (benzo(a)pyrene, naphthalene), a mixture of naphthenic acids (NAs), OS-processed water (OSPW) and OS leachate (OSL) extracts on rainbow trout leukocytes. Primary cultures of trout leukocytes were exposed to increasing concentrations of benzo(a)pyrene, naphthalene, NAs, OSPW and OSL for 48h at 18°C. Immunocompetence was followed by measuring changes in lymphocyte and macrophage viability and phagocytosis. Changes in the expression of 10 transcripts were also followed: interleukin 1, 2 and 6 (Il-1, Il-2 and Il-6), calreticulin (CRT), caspase 9 (Cas9), aryl hydrocarbon receptor (AhR), cyclooxygenase-2 (COX2), glutathione S-transferase (GST), catalase (CAT) and p53 tumor suppressor. The results revealed that exposure to OSPW extracts decreased the capacity of macrophages to engulf three beads or more, while the other compounds generally increased phagocytosis activity. Lymphocyte apoptosis was increased by all compounds and mixtures except naphthalene. Both OSPW and OSL induced apoptosis in macrophages. At the gene expression level, Cas9, CRT, Il-1 (inhibition) and Il-2 were specifically influenced by OSPW, while CAT, p53, COX2 and Il-1 (induction) transcripts were specifically expressed by OSL. Leukocyte exposure to OSPW produced characteristic changes in immunocompetence and genes involved in proinflammatory, apoptosis and protein damage (CRT) pathways which could not be explained by OSL, benzo(a)pyrene, naphthalene and NA mixture.
Collapse
Affiliation(s)
- F Gagné
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada.
| | - A Bruneau
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada
| | - P Turcotte
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada
| | - C Gagnon
- Aquatic Contaminants Research Division, Water Science and Technology, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada
| | - E Lacaze
- INRS-Institut Armand-Frappier, 531 des Prairies, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
32
|
Zhang X, Zhao H, Du J, Qu Y, Shen C, Tan F, Chen J, Quan X. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16478-16487. [PMID: 28551746 DOI: 10.1007/s11356-017-9296-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/17/2017] [Indexed: 05/18/2023]
Abstract
In this study, the occurrence and removal efficiencies of 31 antibiotics, including 11 sulfonamides (SAs), five fluoroquinolones (FQs), four macrolides (MLs), four tetracyclines (TCs), three chloramphenicols (CAPs), and four other antibiotics (Others), were investigated in 12 municipal wastewater treatment plants (WWTPs) in Dalian, China. A total of 29 antibiotics were detected in wastewater samples with the concentration ranging from 63.6 to 5404.6 ng/L. FQs and SAs were the most abundant antibiotic classes in most wastewater samples, accounting for 42.2 and 23.9% of total antibiotic concentrations, respectively, followed by TCs (16.0%) and MLs (14.8%). Sulfamethoxazole, erythromycin, clarithromycin, azithromycin, ofloxacin, and norfloxacin were the most frequently detected antibiotics; of these, the concentration of ofloxacin was the highest in most of influent (average concentration = 609.8 ng/L) and effluent (average concentration = 253.4 ng/L) samples. The removal efficiencies varied among WWTPs in the range of -189.9% (clarithromycin) to 100% (enoxacin, doxycycline, etc), and more than 50% of antibiotics could not be efficiently removed with the removal efficiency less than 65%. An environmental risk assessment was also performed in the WWTP effluents by calculating the risk quotient (RQ), and high RQ values (>1) indicated erythromycin and clarithromycin might cause the ecological risk on organisms in surrounding water near discharge point of WWTPs in this area, which warrants further attention.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Juan Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Yixuan Qu
- Dalian Haixin Detection Technology Co., Ltd, Dalian, 116020, China
| | - Chen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
33
|
Oliveira P, Almeida Â, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, Soares AMVM, Figueira E, Freitas R. Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. WATER RESEARCH 2017; 117:102-114. [PMID: 28390233 DOI: 10.1016/j.watres.2017.03.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/08/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
The bivalve Mytilus galloprovincialis collected in the Ria de Aveiro, was selected to evaluate the acute and chronic effects of carbamazepine (CBZ) at environmentally relevant concentrations. CBZ is an antiepileptic drug widely found in the aquatic environment with toxic effects to inhabiting organisms. However, few studies evaluated the acute and chronic toxicity of this drug. The experiment was performed by exposing mussels to 0.0, 0.3, 3.0, 6.0 and 9.0 CBZ μg/L, for 96 h and 28 days. To assess the toxicity of the drug, a battery of biomarkers related to mussels general physiological health status and oxidative stress was applied. CBZ was quantified in mussel tissues by an Enzyme-Linked Immunosorbent Assay (ELISA). The results obtained show that CBZ did not induce oxidative stress. However, our findings demonstrated that the drug was taken up by mussels even though presenting low bioconcentration factor (BCF) values (up to 2.2). Furthermore, our results demonstrated that after a chronic exposure the physiological parameters, namely the condition and gonadosomatic indices, were negatively affected which may impair organisms' reproductive capacity with consequences to population sustainability.
Collapse
Affiliation(s)
- Patrícia Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, Berlin, Germany
| | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | | | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
34
|
Boisseaux P, Noury P, Thomas H, Garric J. Immune responses in the aquatic gastropod Lymnaea stagnalis under short-term exposure to pharmaceuticals of concern for immune systems: Diclofenac, cyclophosphamide and cyclosporine A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:358-366. [PMID: 28189777 DOI: 10.1016/j.ecoenv.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
This is a pioneering study in the ecotoxicological assessment of immunotoxic effects of the three selected drugs of concern to a freshwater gastropod species. Lymnaea stagnalis was exposed in the laboratory for 3 days to three drugs used for immune systems: diclofenac (nonsteroidal anti-inflammatory drug), cyclophosphamide (anti-cancer immunosuppressive drug) or cyclosporine A (anti-xenograft immunosuppressive drug). Exposure ranges included environmental realistic (1-10μgL-1) and therapeutic concentrations (100-1000μgL-1). At the end of exposure times, the immune parameters of individual snails were measured: hemocyte density and viability, hemocyte phagocytosis capacity and hemocyte-related oxidative activities (basal and NADPH-oxidase stimulated with zymosan particles). Diclofenac and cyclosporine A induced immune responses, although the effects were not strong. No immunosuppression was observed. Such subtle immunomodulations bring further interrogations regarding their long-term immunotoxicity and possible resulting tradeoffs with life-history traits. On the other hand, the prodrug cyclophosphamide did not induce significant immune responses. Since metabolism pathways differ greatly between vertebrates and invertebrates, this study also suggests that relevant vertebrate metabolites should be included in the immunotoxicity assessment of pharmaceuticals in non-target invertebrate species. Finally, the possible interactive effects of these pharmaceuticals sharing similar modes of action or effects features should also be explored.
Collapse
Affiliation(s)
- P Boisseaux
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - P Noury
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - H Thomas
- LIttoral ENvironnement et Sociétés (LIENSs) - UMR 7266, Avenue Michel Crépeau, 17 042 La Rochelle, France
| | - J Garric
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France.
| |
Collapse
|
35
|
Rodrigo AP, Costa PM. The Role of the Cephalopod Digestive Gland in the Storage and Detoxification of Marine Pollutants. Front Physiol 2017; 8:232. [PMID: 28473775 PMCID: PMC5397501 DOI: 10.3389/fphys.2017.00232] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The relevance of cephalopods for fisheries and even aquaculture, is raising concerns on the relationship between these molluscs and environmental stressors, from climate change to pollution. However, how these organisms cope with environmental toxicants is far less understood than for other molluscs, especially bivalves, which are frontline models in aquatic toxicology. Although, sharing the same basic body plan, cephalopods hold distinct adaptations, often unique, as they are active predators with high growth and metabolic rates. Most studies on the digestive gland, the analog to the vertebrate liver, focused on metal bioaccumulation and its relation to environmental concentrations, with indication for the involvement of special cellular structures (like spherulae) and proteins. Although the functioning of phase I and II enzymes of detoxification in molluscs is controversial, there is evidence for CYP-mediated bioactivation, albeit with lower activity than vertebrates, but this issue needs yet much research. Through novel molecular tools, toxicology-relevant genes and proteins are being unraveled, from metallothioneins to heat-shock proteins and phase II conjugation enzymes, which highlights the importance of increasing genomic annotation as paramount to understand toxicant-specific pathways. However, little is known on how organic toxicants are stored, metabolized and eliminated, albeit some evidence from biomarker approaches, particularly those related to oxidative stress, suggesting that these molluscs' digestive gland is indeed responsive to chemical aggression. Additionally, cause-effect relationships between pollutants and toxicopathic effects are little understood, thus compromising, if not the deployment of these organisms for biomonitoring, at least understanding how they are affected by anthropogenically-induced global change.
Collapse
Affiliation(s)
- Ana P Rodrigo
- Environmental Toxicology Lab, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Pedro M Costa
- Environmental Toxicology Lab, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| |
Collapse
|
36
|
Liu S, Zhao H, Lehmler HJ, Cai X, Chen J. Antibiotic Pollution in Marine Food Webs in Laizhou Bay, North China: Trophodynamics and Human Exposure Implication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2392-2400. [PMID: 28106989 PMCID: PMC5618103 DOI: 10.1021/acs.est.6b04556] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Little information is available about the bioaccumulation and biomagnification of antibiotics in marine food webs. Here, we investigate the levels and trophic transfer of 9 sulfonamide (SA), 5 fluoroquinolone (FQ), and 4 macrolide (ML) antibiotics, as well as trimethoprim in nine invertebrate and ten fish species collected from a marine food web in Laizhou Bay, North China in 2014 and 2015. All the antibiotics were detected in the marine organisms, with SAs and FQs being the most abundant antibiotics. Benthic fish accumulated more SAs than invertebrates and pelagic fish, while invertebrates exhibited higher FQ levels than fish. Generally, SAs and trimethoprim biomagnified in the food web, while the FQs and MLs were biodiluted. Trophic magnification factors (TMF) were 1.2-3.9 for SAs and trimethoprim, 0.3-1.0 for FQs and MLs. Limited biotransformation and relatively high assimilation efficiencies are the likely reasons for the biomagnification of SAs. The pH dependent distribution coefficients (log D) but not the lipophilicity (log KOW) of SAs and FQs had a significant correlation (r = 0.73; p < 0.05) with their TMFs. Although the calculated estimated daily intakes (EDI) for antibiotics suggest that consumption of seafood from Laizhou Bay is not associated with significant human health risks, this study provides important insights into the guidance of risk management of antibiotics.
Collapse
Affiliation(s)
- Sisi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
- Corresponding Authors. Hongxia Zhao, phone/fax: +86-411-8470 7965, , address: Linggong Road 2, Ganjingzi District, Dalian 116024, China; Jingwen Chen, phone/fax: +86-411-8470 6269, , address: Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA 52242, USA
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
- Corresponding Authors. Hongxia Zhao, phone/fax: +86-411-8470 7965, , address: Linggong Road 2, Ganjingzi District, Dalian 116024, China; Jingwen Chen, phone/fax: +86-411-8470 6269, , address: Linggong Road 2, Ganjingzi District, Dalian 116024, China
| |
Collapse
|
37
|
Elliott SM, VanderMeulen DD. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1726-1735. [PMID: 27932214 DOI: 10.1016/j.scitotenv.2016.11.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/02/2023]
Abstract
Anthropogenic chemicals and their potential for adverse biological effects raise concern for aquatic ecosystem health in protected areas. During 2013-15, surface waters of four Midwestern United States national parks were sampled and analyzed for wastewater indicators, pharmaceuticals, personal care products, and pesticides. More chemicals and higher concentrations were detected at the two parks with greater urban influences (Mississippi National River and Recreation Area and Indiana Dunes National Lakeshore) than at the two more remote parks (Apostle Islands National Lakeshore and Isle Royale National Park). Atrazine (10-15ng/L) and N,N-diethyl-meta-toluamide (16-120ng/L) were the only chemicals detected in inland lakes of a remote island national park (Isle Royale National Park). Bisphenol A and organophosphate flame retardants were commonly detected at the other sampled parks. Gabapentin and simazine had the highest observed concentrations (>1000ng/L) in three and two samples, respectively. At the two parks with urban influences, metolachlor and simazine concentrations were similar to those reported for other major urban rivers in the United States. Environmental concentrations of detected chemicals were often orders of magnitude less than standards or reference values with three exceptions: (1) hydrochlorothiazide exceeded a human health-based screening value in seven samples, (2) estrone exceeded a predicted critical environmental concentration for fish pharmacological effects in one sample, and (3) simazine was approaching the 4000ng/L Maximum Contaminant Level in one sample even though this concentration is not expected to reflect peak pesticide use. Although few environmental concentrations were approaching or exceeded standards or reference values, concentrations were often in ranges reported to elicit effects in aquatic biota. Data from this study will assist in establishing a baseline for chemicals of concern in Midwestern national parks and highlight the need to better understand the sources, pathways, and potential adverse effects to aquatic systems in national parks.
Collapse
Affiliation(s)
- Sarah M Elliott
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN, 55112, United States.
| | - David D VanderMeulen
- U.S. National Park Service, Great Lakes Inventory and Monitoring Network, 2800 Lakeshore Drive E., Ashland, WI, 54806, United States
| |
Collapse
|
38
|
Mazzitelli JY, Bonnafe E, Klopp C, Escudier F, Geret F. De novo transcriptome sequencing and analysis of freshwater snail (Radix balthica) to discover genes and pathways affected by exposure to oxazepam. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:127-140. [PMID: 27981403 DOI: 10.1007/s10646-016-1748-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals are increasingly found in aquatic ecosystems due to the non-efficiency of waste water treatment plants. Therefore, aquatic organisms are frequently exposed to a broad diversity of pharmaceuticals. Freshwater snail Radix balthica has been chosen as model to study the effects of oxazepam (psychotropic drug) on developmental stages ranging from trochophore to hatching. In order to provide a global insight of these effects, a transcriptome deep sequencing has been performed on exposed embryos. Eighteen libraries were sequenced, six libraries for three conditions: control, exposed to the lowest oxazepam concentration with a phenotypic effect (delayed hatching) (TA) and exposed to oxazepam concentration found in freshwater (TB). A total of 39,759,772 filtered raw reads were assembled into 56,435 contigs having a mean length of 1579.68 bp and mean depth of 378.96 reads. 44.91% of the contigs have at least one annotation. The differential expression analysis between the control condition and the two exposure conditions revealed 146 contigs differentially expressed of which 144 for TA and two for TB. 34.0% were annotated with biological function. There were four mainly impacted processes: two cellular signalling systems (Notch and JNK) and two biosynthesis pathways (Polyamine and Catecholamine pathways). This work reports a large-scale analysis of differentially transcribed genes of R. balthica exposed to oxazepam during egg development until hatching. In addition, these results enriched the de novo database of potential ecotoxicological models.
Collapse
Affiliation(s)
- Jean-Yves Mazzitelli
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, Université de Toulouse, INU Champollion, Albi, France.
| | - Elsa Bonnafe
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, Université de Toulouse, INU Champollion, Albi, France
| | - Christophe Klopp
- Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, Castanet-Tolosan, France
| | - Frédéric Escudier
- Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, Castanet-Tolosan, France
| | - Florence Geret
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, Université de Toulouse, INU Champollion, Albi, France
| |
Collapse
|
39
|
Bradley PM, Barber LB, Clark JM, Duris JW, Foreman WT, Furlong ET, Givens CE, Hubbard LE, Hutchinson KJ, Journey CA, Keefe SH, Kolpin DW. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:916-925. [PMID: 27350092 DOI: 10.1016/j.scitotenv.2016.06.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Collapse
|
40
|
Boisseaux P, Delignette-Muller ML, Abbaci K, Thomas H, Garric J. Analysis of hemocytes in Lymnaea stagnalis: Characterization and effects of repeated hemolymph collections. FISH & SHELLFISH IMMUNOLOGY 2016; 57:116-126. [PMID: 27521592 DOI: 10.1016/j.fsi.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
The first part of the study was devoted to test the hypothesis according to which the hemolymph of Lymnaea stagnalis can be collected repeatedly - regardless the time-intervals - at an individual scale without impact on survival nor immunocapacity defined as the hemocyte density and viability. No significant effects on snail survival were observed when repeated hemolymph samplings were performed at frequencies ranging from 96 h up to 24 h. The frequency of hemolymph sampling had no significant effects on hemocyte density but the hemocyte viability was slightly increased for the 24 h frequency group. Hence, we recommend setting the frequency lower than 48 h after two consecutive samplings for further assessment of hemocyte density and viability. Furthermore, a slight "day" effect was observed on snail immunocapacity. These results support the idea that L. stagnalis is a promising gastropod model in environmental immunotoxicology. A time-course analysis of individual hemocytes parameters can be evaluated with a relative confidence in the non-detrimental effect of the sampling. Linear mixed-effect models allow taking the "day" effect into account and so the possible effect of an environmental factor (i.e. xenobiotic exposures) can be analyzed. Statistical inferences indicated that the inter-individual variability for these hemocyte endpoints were on the same order of magnitude than intra-individual variability. The second part of the study was devoted to provide greater insights into the structure/ultrastructure of hemocytes in L. stagnalis. Only one type of hemocyte has been observed. The hemocytes in their free-floating status showed ovoid or spherical shapes. Some hemocytes exerted filopodia and structures shaped like sailboats. Their ultrastructure showed signs of intense cellular activity. Two peculiar organelles were observed. One corresponds to a massive perinuclear structure of dense aspect. The other corresponds to a structure with fibrillary arrangements. These two structures deserve further investigation in order to understand their nature, function and importance in the snails' immunocompetence.
Collapse
Affiliation(s)
- Paul Boisseaux
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France
| | - Marie-Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 Bd du 11 novembre 1918, 69622 Villeurbanne, France; Université de Lyon, VetAgro Sup Campus Vétérinaire de Lyon, 69280 Marcy l'Etoile, France
| | - Khédidja Abbaci
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France
| | - Hélène Thomas
- LIttoral ENvironnement et Sociétés (LIENSs) - UMR 7266, Avenue Michel Crépeau, 17 042 La Rochelle, France
| | - Jeanne Garric
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| |
Collapse
|
41
|
Matozzo V, Bertin V, Battistara M, Guidolin A, Masiero L, Marisa I, Orsetti A. Does the antibiotic amoxicillin affect haemocyte parameters in non-target aquatic invertebrates? The clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis as model organisms. MARINE ENVIRONMENTAL RESEARCH 2016; 119:51-8. [PMID: 27219711 DOI: 10.1016/j.marenvres.2016.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 05/07/2023]
Abstract
Amoxicillin (AMX) is one of the most widely used antibiotics worldwide, and its levels in aquatic ecosystems are expected to be detectable. At present, information concerning the toxic effects of AMX on non-target aquatic organisms, such as bivalves, is scarce. Consequently, in this study, we investigated for the first time the effects of AMX on the haemocyte parameters of two bivalve species, the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis, which share the same habitat in the Lagoon of Venice, in order to compare the relative sensitivity of the two species. The bivalves were exposed to 100, 200 and 400 μg AMX/L for 1, 3 and 7 days, and the effects on the total haemocyte count (THC), the diameter and volume of the haemocytes, haemocyte proliferation, lactate dehydrogenase (LDH) activity in cell-free haemolymph, the haemolymph pH, and the formation of micronuclei were evaluated. The actual concentrations of AMX in the seawater samples from the experimental tanks were also measured. Overall, the obtained results demonstrated that AMX affected slightly the haemocyte parameters of bivalves. In addition, no clear differences in terms of sensitivity to AMX exposure were recorded between the two bivalve species.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Valeria Bertin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Margherita Battistara
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Angelica Guidolin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Orsetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
42
|
Moreno-González R, Rodríguez-Mozaz S, Huerta B, Barceló D, León VM. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? ENVIRONMENTAL RESEARCH 2016; 146:282-298. [PMID: 26775009 DOI: 10.1016/j.envres.2016.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/02/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
The bioaccumulation of 20 pharmaceuticals in cockle (Cerastodema glaucum), noble pen shell (Pinna nobilis), sea snail (Murex trunculus), golden grey mullet (Liza aurata) and black goby (Gobius niger) was evaluated, considering their distribution throughout the Mar Menor lagoon and their variations in spring and autumn 2010. The analytical procedure was adapted for the different matrices as being sensitive and reproducible. Eighteen out of the 20 compounds analysed were found at low ngg(-1) in these species throughout the lagoon. Hydrochlorothiazide and carbamazepine were detected in all species considered. The bioaccumulation of pharmaceuticals was heterogeneous in the lagoon, with a higher number of pharmaceuticals being detected in fish (18) than in wild molluscs (8), particularly in golden grey mullet muscle (16). В-blockers and psychiatric drugs were preferentially bioccumulated in fish and hydrochlorothiazide was also confirmed in caged clams. The higher detection frequency and concentrations found in golden grey mullet suggested that mugilids could be used as an indicator of contamination by pharmaceuticals in coastal areas. To the best of our knowledge, this is the first study that shows data about hydrochlorothiazide, levamisole and codeine in wild marine biota.
Collapse
Affiliation(s)
- R Moreno-González
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA)-Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain
| | - B Huerta
- Catalan Institute for Water Research (ICRA)-Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA)-Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain; Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V M León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
43
|
Matozzo V, De Notaris C, Finos L, Filippini R, Piovan A. Environmentally realistic concentrations of the antibiotic Trimethoprim affect haemocyte parameters but not antioxidant enzyme activities in the clam Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:567-574. [PMID: 26301695 DOI: 10.1016/j.envpol.2015.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Several biomarkers were measured to evaluate the effects of Trimethoprim (TMP; 300, 600 and 900 ng/L) in the clam Ruditapes philippinarum after exposure for 1, 3 and 7 days. The actual TMP concentrations were also measured in the experimental tanks. The total haemocyte count significantly increased in 7 day-exposed clams, whereas alterations in haemocyte volume were observed after 1 and 3 days of exposure. Haemocyte proliferation was increased significantly in animals exposed for 1 and 7 days, whereas haemocyte lysate lysozyme activity decreased significantly after 1 and 3 days. In addition, TMP significantly increased haemolymph lactate dehydrogenase activity after 3 and 7 days. Regarding antioxidant enzymes, only a significant time-dependent effect on CAT activity was recorded. This study demonstrated that environmentally realistic concentrations of TMP affect haemocyte parameters in clams, suggesting that haemocytes are a useful cellular model for the assessment of the impact of TMP on bivalves.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Chiara De Notaris
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
44
|
Godoy AA, Kummrow F, Pamplin PAZ. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment--A review. CHEMOSPHERE 2015; 138:281-91. [PMID: 26091869 DOI: 10.1016/j.chemosphere.2015.06.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/26/2015] [Accepted: 06/06/2015] [Indexed: 05/13/2023]
Abstract
This study presents a review of the investigated antihypertensives in different aquatic compartments. It aims to compare these data with those regarding ecotoxicity effects in order to find out ecotoxicological data gaps for these pharmaceuticals and to point out the need for future studies. In addition, part of this article is dedicated to the risk assessment of the parent compounds atenolol, metoprolol, propranolol and verapamil, which are of great environmental concern in terms of contamination levels and for which there are sufficient ecotoxicological data available. 79 articles were retrieved presenting quantization data for 34 different antihypertensives and/or their metabolites. Only 43 articles were found regarding acute and chronic ecotoxicological effects of antihypertensive drugs. The results indicated that the beta-blockers atenolol, metoprolol and propranolol are the antihypertensives most frequently detected in the aquatic environment. They are also the drugs which reached the highest maximum concentrations in surface waters in the data reported in the literature. The highest percentages of ecotoxicity data regarding antihypertensives were also related to these beta-blockers. On the other hand, there is clearly a lack of ecotoxicity data, especially the chronic ones, regarding other antihypertensives. The environmental risk assessment (ERA) showed that all three of the evaluated beta-blockers can pose a potential long-term risk for non-target organisms of both fresh and marine water species. However, more meaningful ecotoxicity data for antihypertensives, including saltwater species, are required to refine and enlarge these results. Additional studies focusing on potential interactions between pharmaceutical mixtures, including antihypertensives, are also an urgent need.
Collapse
Affiliation(s)
- Aline A Godoy
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11,999, Poços de Caldas, MG 37715-400, Brazil.
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, 09972-270 Diadema, SP, Brazil.
| | - Paulo Augusto Z Pamplin
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11,999, Poços de Caldas, MG 37715-400, Brazil.
| |
Collapse
|
45
|
de Almeida CAA, Oliveira MS, Mallmann CA, Martins AF. Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17192-201. [PMID: 26139407 DOI: 10.1007/s11356-015-4948-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/23/2015] [Indexed: 05/25/2023]
Abstract
This study addresses the occurrence of carbamazepine and diazepam and their metabolites in the wastewater of the University Hospital (HUSM) of the Federal University of Santa Maria, RS-Brazil. Samples were collected from three sampling points of the sewage treatment system: point A ('emergency effluent'), point B ('general effluent') and point C ('water course-receptor'). Eight metabolites were identified: carbamazepine-10-11-epoxide, 10-dihydro-carbamazepine, 2-OH-carbamazepine, iminoquinone, acridone, nordiazepam, oxazepam and temazepam. The mean concentrations in the emergency, general effluent and water course-receptor were as follows: 433.0 ± 4.7, 349.0 ± 5.0 and 485.0 ± 5.6 ng L(-1), for carbamazepine and 550.0 ± 4.3, 441.0 ± 7.9 and 586.6 ± 9.3 ng L(-1), for diazepam, respectively. Liquid chromatography with electrospray ionization tandem mass spectrometry (LC-QqLIT-MS) proved to be a method fit-to-purpose. The determination of carbamazepine and diazepam, and the identification of active metabolites showing environmental persistence (carbamazepine-10-11-epoxide, nordiazepam and oxazepam) revealed the need for a more effective treatment of the HUSM effluent. As far as we know, no similar study has been carried out on the wastewater of Brazilian hospitals.
Collapse
Affiliation(s)
- Carlos A A de Almeida
- Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Maurício S Oliveira
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Carlos A Mallmann
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Ayrton F Martins
- Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Departamento de Química, Universidade Federal de Santa Maria, Campus Camobi, CEP 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
46
|
Goodchild CG, Frederich M, Zeeman SI. AMP-activated protein kinase is a biomarker of energetic status in freshwater mussels exposed to municipal effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:201-209. [PMID: 25622267 DOI: 10.1016/j.scitotenv.2015.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Although biomarkers are frequently used to assess sublethal effects of contaminants, a lack of mechanistic linkages to higher-level effects limits the predictive power of biomarkers. Bioenergetics has been proposed as a framework for linking cellular effects to whole-animal effects. We investigated sublethal effects of exposure to wastewater treatment facility effluent in freshwater mussels in situ, thereby capturing ecologically relevant exposure conditions. Our study focused on the energetic biomarker AMP-activated protein kinase (AMPK), while also considering more traditional biomarkers like heat shock proteins (HSP70), and antioxidant enzymes (i.e., superoxide dismutase (SOD), glutathione-S-transferase (GST)). We examined biomarkers at mRNA and protein levels. Effluent exposure caused a reduction in total-AMPK protein abundance (p=0.05) and AMPK mRNA expression (p=0.02). Conversely, AMPK activity increased at downstream sites by 2.2-fold (p=0.05), indicating increased cellular energy consumption. HSP70 protein abundance was lower at downstream sites (p<0.05), while SOD and GST activity levels significantly increased. By using various biomarkers, we demonstrate that exposure to municipal effluent creates an energetically taxing situation. This is the first study to use AMPK to evaluate the effects of contamination in situ, and our results suggest that energetic biomarkers, like AMPK, complement traditional biomarkers and may help establish functional links between cellular and whole-animal effects.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA; Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| | - Markus Frederich
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA.
| | - Stephan I Zeeman
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA.
| |
Collapse
|
47
|
Cassese A, Guindani M, Antczak P, Falciani F, Vannucci M. A Bayesian model for the identification of differentially expressed genes in Daphnia magna exposed to munition pollutants. Biometrics 2015; 71:803-11. [PMID: 25771699 DOI: 10.1111/biom.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 02/01/2015] [Indexed: 11/29/2022]
Abstract
In this article we propose a Bayesian hierarchical model for the identification of differentially expressed genes in Daphnia magna organisms exposed to chemical compounds, specifically munition pollutants in water. The model we propose constitutes one of the very first attempts at a rigorous modeling of the biological effects of water purification. We have data acquired from a purification system that comprises four consecutive purification stages, which we refer to as "ponds," of progressively more contaminated water. We model the expected expression of a gene in a pond as the sum of the mean of the same gene in the previous pond plus a gene-pond specific difference. We incorporate a variable selection mechanism for the identification of the differential expressions, with a prior distribution on the probability of a change that accounts for the available information on the concentration of chemical compounds present in the water. We carry out posterior inference via MCMC stochastic search techniques. In the application, we reduce the complexity of the data by grouping genes according to their functional characteristics, based on the KEGG pathway database. This also increases the biological interpretability of the results. Our model successfully identifies a number of pathways that show differential expression between consecutive purification stages. We also find that changes in the transcriptional response are more strongly associated to the presence of certain compounds, with the remaining contributing to a lesser extent. We discuss the sensitivity of these results to the model parameters that measure the influence of the prior information on the posterior inference.
Collapse
Affiliation(s)
- Alberto Cassese
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A.,Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Michele Guindani
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Philipp Antczak
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas 77005, U.S.A
| |
Collapse
|
48
|
Neves RAF, Figueiredo GM, Valentin JL, da Silva Scardua PM, Hégaret H. Immunological and physiological responses of the periwinkle Littorina littorea during and after exposure to the toxic dinoflagellate Alexandrium minutum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:96-105. [PMID: 25621399 DOI: 10.1016/j.aquatox.2015.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Species of the dinoflagellate genus Alexandrium produce phycotoxins responsible for paralytic shellfish poisoning. Blooms of Alexandrium minutum reach very high concentrations of vegetative cells in the water column; and when these blooms occur, large numbers of toxic cysts can be produced and deposited on sediments becoming available to benthic species. The present study investigated the potential effect of exposure to toxic cysts of A. minutum on the periwinkle Littorinalittorea. Snails were exposed for nine days to pellicle cysts of toxic and non-toxic dinoflagellates, A. minutum and Heterocapsa triquetra, respectively, followed by six days of depuration while they were fed only H. triquetra. Toxin accumulation, condition index, immune and histopathological responses were analyzed. Histological alterations were also monitored in snails exposed to a harmful A. minutum bloom, which naturally occurred in the Bay of Brest. Snails exposed to toxic cysts showed abnormal behavior that seems to be toxin-induced and possibly related to muscle paralysis. Periwinkles accumulated toxins by preying on toxic cysts and accumulation appeared dependent on the time of exposure, increasing during intoxication period but tending to stabilize during depuration period. Toxic exposure also seemed to negatively affect hemocyte viability and functions, as ROS production and phagocytosis. Histological analyses revealed that toxic exposure induced damages on digestive organs of snails, both in laboratory and natural systems. This study demonstrates that an exposure to the toxic dinoflagellate A. minutum leads to sublethal effects on L. littorea, which may alter individual fitness and increase the susceptibility of snails to pathogens and diseases.
Collapse
Affiliation(s)
- Raquel A F Neves
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gisela M Figueiredo
- Laboratório de Ecologia Trófica, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jean Louis Valentin
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Zooplâncton Marinho, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Patricia Mirella da Silva Scardua
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO/IRD/IFREMER, Institut Universitaire Européen de la Mer, 29280 Plouzané, France; GDR 3569 'PHYCOTOX, Des Microalgues aux Risques pour l'Homme et l'Ecosystème', 29280 Plouzané, France.
| |
Collapse
|
49
|
De Castro-Català N, Muñoz I, Armendáriz L, Campos B, Barceló D, López-Doval J, Pérez S, Petrovic M, Picó Y, Riera JL. Invertebrate community responses to emerging water pollutants in Iberian river basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:142-150. [PMID: 25042416 DOI: 10.1016/j.scitotenv.2014.06.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Chemical pollution is one of the greatest threats to freshwater ecosystems, especially in Mediterranean watersheds, characterized by periodical low flows that may exacerbate chemical exposure. Different groups of emerging pollutants have been detected in these basins during the last decade. This study aims to identify the relationships between the presence and levels of prioritary and emerging pollutants (pesticides, pharmaceutical active compounds--PhACs, Endocrine Disrupting Compounds EDCs and Perfluorinated Compounds--PFCs) and the invertebrate community in four Mediterranean basins: the Ebro, the Llobregat, the Júcar and the Guadalquivir. Structural (species composition and density) and functional (catalase activity of the tricopteran Hydropsyche exocellata and the feeding activity of the cladoceran Daphnia magna) variables were analyzed to determine which of the pollutants would greatly influence invertebrate responses. EDCs and conductivity, followed by PhACs, were the most important variables explaining the invertebrate density changes in the studied basins, showing a gradient of urban and industrial pollutions. Despite this general pattern observed in the four studied basins - impoverishment of species diversity and abundance change with pollution - some basins maintained certain differences. In the case of the Llobregat River, analgesics and anti-inflammatories were the significant pollutants explaining the invertebrate community distribution. In the Júcar River, fungicides were the main group of pollutants that were determining the structure of the invertebrate community. Functional biomarkers tended to decrease downstream in the four basins. Two groups of pollutants appeared to be significant predictors of the catalase activity in the model: EDCs and PhACs. This study provides evidence that the information given by functional biomarkers may complement the results found for the structural community descriptors, and allowed us to detect two emerging contaminant groups that are mainly affecting the invertebrate community in these basins.
Collapse
Affiliation(s)
- N De Castro-Català
- Department of Ecology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | - I Muñoz
- Department of Ecology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - L Armendáriz
- Instituto de Limnología Dr. Raúl A. Ringuelet (ILPLA-CONICET-UNLP), Boulevard 120, 61 y 62, s/n, 1900 La Plata, Buenos Aires, Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina
| | - B Campos
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research ICRA, C/Emili Grahit, 101, 17003 Girona, Spain
| | - J López-Doval
- Department of Ecology, Laboratorio de Limnologia, Instituto de Biociencias, Universidade de Sao Paulo, R. do Matao, Travessa 14, 321, Butanta, 05508-090 Sao Paulo, Brasil
| | - S Pérez
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Petrovic
- Catalan Institute for Water Research ICRA, C/Emili Grahit, 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona,Spain
| | - Y Picó
- Food and Environmental Safety Research Group, Faculty of Pharmacy, Universitat de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - J L Riera
- Department of Ecology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| |
Collapse
|
50
|
Ghisi NDC, de Oliveira EC, Fávaro LF, Silva de Assis HC, Prioli AJ. In situ assessment of a neotropical fish to evaluate pollution in a river receiving agricultural and urban wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:699-709. [PMID: 25319198 DOI: 10.1007/s00128-014-1403-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
We aimed to assess the quality of a midsize river that receives agricultural and urban wastewater. Nuclear abnormalities (NA), comet assays of blood and gills, and gill histopathology were evaluated in fish Astyanax aff. paranae during the summer and winter 2011 at three sites in Paraná State, Brazil: (1) a biological reserve (Rebio-reference area); (2) an agricultural site; (3) a downstream site that accumulates agricultural and urban effluents. We found the highest effects of pollutants in fish at the downstream site during the summer. The agricultural site showed an intermediate damage rate, and fish at Rebio generally had the least damage, with the exception of NA. Despite conflicting results from the biomarkers used, we observed an increase in damage associated with the accumulation of pollutants. Pesticides are probable xenobiotics in the agricultural area. Additionally, metals and substances such as pharmaceuticals and ammonia may be present at the downstream site.
Collapse
Affiliation(s)
- Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)/Nupélia, Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil,
| | | | | | | | | |
Collapse
|