1
|
Xu TT, Zhang YJ, Yi JF, Bai CL, Guo Y. Exposure to plasticizers in city waste recycling: Focused on the size-fractioned particulate-bound phthalates and bisphenols. J Environ Sci (China) 2025; 155:454-465. [PMID: 40246480 DOI: 10.1016/j.jes.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 04/19/2025]
Abstract
Phthalate (PAEs) and Bisphenols (BPs) are plasticizers or additives in consumer products. They are typical endocrine disruptors, and potential health hazards may occur when people are exposed to them through inhalation, ingestion, and dermal contact. The current research on inhalation exposure pays limited attention to the particle distribution of PAEs and BPs in air, although particulate-bound pollutants are usually size-dependent. In this study, we discussed the size resolution of PAEs and BPs in air particles from city waste recycling plants. With paired urine samples of the workers, we also compared the internal and external exposure of PAEs and BPs and related potential health risks. The particulate-bound PAEs and BPs concentrated mainly on coarse particles (Dp > 2.1 µm), with a bimodal distribution, and the peak particle size ranged from 9-10 to 4.7-5.85 µm, respectively. Model calculation revealed that the deposition fluxes of PAEs in different respiratory regions followed the sequence of head airways (167±92.8 ng/h) > alveolar region (18.9 ± 9.96 ng/h) > tracheobronchial region (9.20±5.22 ng/h), and the similar trends went for BPs. The daily intakes of PAEs and BPs via dust ingestion were higher than those from respiratory inhalation and dermal contact, with mean value of 96 and 0.88 ng/(kg-bw day), respectively. For internal exposure, the estimated daily intakes of PAEs for waste recycling workers were higher than those in e-waste dismantling workers, while the exposure levels of bisphenols were comparable. Overall, the potential health risks from inhalation exposure to particulate-bound PAEs and BPs were low.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Shen HY, Zhang Y, Lu XY, Chen LB, Zhu NZ, Xiao H, Yang G, Huang C, Dai X, Ye J, Chen D, Li H, Wang Z, Gao CJ, Guo Y. How indoor decoration materials contribute to phthalates pollution: Uncovering occurrences, sources, and their implications for environmental burdens in households. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137719. [PMID: 40020295 DOI: 10.1016/j.jhazmat.2025.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Phthalate acid esters (PAEs), widely used as plasticizers in decoration materials, are significant indoor pollutants. However, research on their potential environmental impact in indoor settings remains limited. In this study, nine PAEs were determined in 177 decoration materials (41 furniture panels, 42 flooring, 52 wall coverings, and 42 paint and coatings) collected from China. PAEs were detectable in all materials, with total concentrations ranging from 261 ng/g to 4480,000 ng/g. Furniture panels and paint and coatings exhibited the highest levels. DEHP was the most abundant PAE in furniture panels and flooring, while DMP and DBP were dominant in wall coverings and paint and coatings. Principal component analysis indicated that polyvinyl chloride films, solvents, adhesives, and coatings are major sources of PAEs. The study also estimated the total PAE burdens in Chinese households, which ranged from 5.33 × 109 to 5.95 × 1012 ng. Regional variations in PAE burdens were significant (p < 0.05), with households in Southwest China experiencing the highest burdens. The type of decoration material, housing area, number of rooms, household income, and renovation budget were found to significantly influence PAE burdens. This study is the first to systematically evaluate the PAE burdens associated with decoration materials in Chinese households on a national scale, providing valuable insights into their presence and impact on daily life.
Collapse
Affiliation(s)
- Hao-Yang Shen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Ying Zhang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Xin-Yu Lu
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Li-Bo Chen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Ning-Zheng Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing 314051, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Key Laboratory of Urban Environmental Pollution and Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Guojing Yang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Cenyan Huang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Xiaorong Dai
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Jien Ye
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Dezhen Chen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Hui Li
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Zekai Wang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Chong-Jing Gao
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Liao Q, Huang L, Yang J, Zhang S, Cai F, Tang B, Li L, Qin R, Yan X, Luo W, Mai B, Yu Y, Zheng J. Retrospective prediction of environmental emerging contaminants exposure using human hair: Insights into suitability, reliability, and availability. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138274. [PMID: 40239516 DOI: 10.1016/j.jhazmat.2025.138274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Hair is a widely utilized non-invasive matrix for human biomonitoring assessment. Nevertheless, its efficacy in reflecting various pollutants, along with the concentrations and time-scales of exposure, remains undetermined. In this panel study, hair and indoor dust samples were collected quarterly from May 2022 to June 2023. The concentrations of 34 types of plasticizers, belonging to three categories - organophosphate flame retardants (OPFRs), phthalate esters (PAEs), and alternative plasticizers (APs) - were measured. The study aimed to identify which pollutants hair is suitable for monitoring and to determine the exposure levels and time periods over which it can retrospectively predict contamination, using generalized linear mixed models. A one-unit increase in the hair concentration of acetyl tributyl citrate (ATBC) was associated with a 40.3 % (95 % CI: 7.2 %, 83.5 %) rise in its level in dust over the preceding 3 months. Retrospective predictions revealed that the levels of di (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DOP) in dust increased by 83.6 % (95 % CI: 31.9 %, 155.7 %) and 76.7 % (95 % CI: 13.5 %, 174.9 %), respectively, over the previous 6-9 months. Furthermore, the DEHP and DOP concentrations in hair accounted for 99.60 % and 100 % of the variance in their levels in dust, respectively. Our findings provide valuable insights into the time-concentration relationships of plasticizers in paired hair and dust samples, advancing the understanding of hair as a retrospective biomarker for environmental exposure.
Collapse
Affiliation(s)
- Qilong Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lulu Huang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Juanjuan Yang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Shiyi Zhang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Fengshan Cai
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bin Tang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Li Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Ruixin Qin
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiao Yan
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Weikeng Luo
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yunjiang Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Lv J, Sun S, Wu R, Li X, Bai Y, Xu J, Guo C. Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing. ENVIRONMENTAL RESEARCH 2025; 266:120513. [PMID: 39631649 DOI: 10.1016/j.envres.2024.120513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Phthalate esters (PAEs) are widely used plasticizers that can easily migrate from plastic products, thereby presenting potential health risks through exposure. While PAE concentrations in dust have received increasing attention, there is still a lack of comprehensive understanding regarding their environmental distribution, composition profiles, and associated human exposure risks in Beijing. This study investigated the presence of seven PAEs in 124 dust samples collected from eight indoor and four outdoor microenvironment types across the Beijing metropolitan area. The PAEs were detected universally in all samples, with di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and di-iso-butyl phthalate (DIBP) as the predominant compounds, accounting for 91.78%-99.91% and 91.22%-99.76% of total PAE concentrations (Σ7PAEs) in indoor and outdoor dust, respectively. Indoor dust exhibited significantly higher Σ7PAEs (range: 45.33-1212.41 μg/g, mean: 130.61 μg/g) compared to outdoor dust (range: 2.10-5.41 μg/g, mean: 3.38 μg/g). Among indoor microenvironments, taxis had the highest Σ7PAEs (mean: 1250.59 μg/g), followed by private cars, print shops, residences, furniture shops, shopping malls, dormitories and offices. Outdoor Σ7PAEs levels decreased in the order of roads, residential areas, green belts, and parks. Estimated daily exposure doses through dust ingestion were significantly higher than those from dermal absorption and inhalation for five occupational groups (taxi drivers, print shop workers, road workers, office workers, jobless people), indicating dust ingestion as the primary exposure route, with DEHP and DBP as the main contributors. While current exposure levels may not present significant non-cancer risks based on hazard quotient and hazard index estimations, it's noteworthy that DEHP may pose a carcinogenic risk to taxi drivers. Potential risks cannot be overlooked considering the absence of toxicity thresholds, additional exposure pathways, and possible cocktail effects from coexisting pollutants.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shanwei Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xu Li
- Beijing Jianhua Experimental E-Town School, Beijing, 100023, China
| | - Yangwei Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Zhang R, Liu F, Wang L, Wu Z, Fan L, Liu B, Shang H. Dust-phase phthalates in university dormitories in Beijing, China: pollution characteristics, potential sources, and non-dietary oral exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3615-3633. [PMID: 38339769 DOI: 10.1080/09603123.2024.2313184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to determine dust-phase phthalate levels in 112 dormitories of 14 universities during autumn and winter, investigate their potential sources, and estimate phthalate exposure via dust ingestion. Twelve phthalates were detected, among which di-(2-ethylhexyl) phthalate (DEHP) and dicyclohexyl phthalate (DCHP) were the most abundant, followed by di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP). The median concentrations and contributions of DCHP and DEHP were the highest. The contributions of di-n-octyl phthalate and di-nonyl phthalate were higher in winter than in autumn. Potential sources included iron furniture, chemical fiber textiles, clothes, and personal care products. Medium-density fiberboard furniture is a potential sink for phthalates. In two seasons, DEHP, DCHP, DiBP, and DnBP were the main phthalates ingested by college students . The median oral exposure of ten phthalates was higher in females than in males. College students have a high risk of exposure to DEHP in dormitories.
Collapse
Affiliation(s)
- Ruixin Zhang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Fang Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Liujia Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Bing Liu
- Beijing Boxgo Technology Co, Ltd, Beijing, China
| | - Hong Shang
- Beijing Boxgo Technology Co, Ltd, Beijing, China
| |
Collapse
|
6
|
Chen LB, Gao CJ, Zhang Y, Shen HY, Lu XY, Huang C, Dai X, Ye J, Jia X, Wu K, Yang G, Xiao H, Ma WL. Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks. TOXICS 2024; 12:505. [PMID: 39058157 PMCID: PMC11280923 DOI: 10.3390/toxics12070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Phthalate acid esters (PAEs) are one of the most widely used plasticizers globally, extensively employed in various decoration materials. However, studies on the impact of these materials on indoor environmental PAE pollution and their effects on human health are limited. In this study, forty dust samples were collected from four types of stores specializing in decoration materials (flooring, furniture boards, wall coverings, and household articles). The levels, sources, exposure doses, and potential health risks of PAEs in dust from decoration material stores were assessed. The total concentrations of Σ9PAE (the sum of nine PAEs) in dust from all decoration-material stores ranged from 46,100 ng/g to 695,000 ng/g, with a median concentration of 146,000 ng/g. DMP, DEP, DBP, and DEHP were identified as the predominant components. Among all stores, furniture board stores exhibited the highest Σ9PAE (159,000 ng/g, median value), while flooring stores exhibited the lowest (95,300 ng/g). Principal component analysis (PCA) showed that decoration materials are important sources of PAEs in the indoor environment. The estimated daily intakes of PAEs through non-dietary dust ingestion and dermal-absorption pathways among staff in various decoration-material stores were 60.0 and 0.470 ng/kg-bw/day (flooring stores), 113 and 0.780 ng/kg-bw/day (furniture board stores), 102 and 0.510 ng/kg-bw/day (wall covering stores), and 114 and 0.710 ng/kg-bw/day (household article stores). Particularly, staff in wall-covering and furniture-board stores exhibited relatively higher exposure doses of DEHP. Risk assessment indicated that although certain PAEs posed potential health risks, the exposure levels for staff in decoration material stores were within acceptable limits. However, staff in wall covering stores exhibited relatively higher risks, necessitating targeted risk-management strategies. This study provides new insights into understanding the risk associated with PAEs in indoor environments.
Collapse
Affiliation(s)
- Li-Bo Chen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Chong-Jing Gao
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Hao-Yang Shen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xin-Yu Lu
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Cenyan Huang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xiaorong Dai
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Jien Ye
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xiaoyu Jia
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Observation and Research Station, Ningbo 315830, China; (X.J.); (K.W.)
| | - Kun Wu
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Observation and Research Station, Ningbo 315830, China; (X.J.); (K.W.)
| | - Guojing Yang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Hang Xiao
- Institute of Urban Environment, Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| |
Collapse
|
7
|
Bereketoglu C, Häggblom I, Turanlı B, Pradhan A. Comparative analysis of diisononyl phthalate and di(isononyl)cyclohexane-1,2 dicarboxylate plasticizers in regulation of lipid metabolism in 3T3-L1 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1245-1257. [PMID: 37927243 DOI: 10.1002/tox.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Diisononyl phthalate (DINP) and di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) are plasticizers introduced to replace previously used phthalate plasticizers in polymeric products. Exposure to DINP and DINCH has been shown to impact lipid metabolism. However, there are limited studies that address the mechanisms of toxicity of these two plasticizers. Here, a comparative toxicity analysis has been performed to evaluate the impacts of DINP and DINCH on 3T3-L1 cells. The preadipocyte 3T3-L1 cells were exposed to 1, 10, and 100 μM of DINP or DINCH for 10 days and assessed for lipid accumulation, gene expression, and protein analysis. Lipid staining showed that higher concentrations of DINP and DINCH can induce adipogenesis. The gene expression analysis demonstrated that both DINP and DINCH could alter the expression of lipid-related genes involved in adipogenesis. DINP and DINCH upregulated Pparγ, Pparα, C/EBPα Fabp4, and Fabp5, while both compounds significantly downregulated Fasn and Gata2. Protein analysis showed that both DINP and DINCH repressed the expression of FASN. Additionally, we analyzed an independent transcriptome dataset encompassing temporal data on lipid differentiation within 3T3-L1 cells. Subsequently, we derived a gene set that accurately portrays significant pathways involved in lipid differentiation, which we subsequently subjected to experimental validation through quantitative polymerase chain reaction. In addition, we extended our analysis to encompass a thorough assessment of the expression profiles of this identical gene set across 40 discrete transcriptome datasets that have linked to diverse pathological conditions to foreseen any potential association with DINP and DINCH exposure. Comparative analysis indicated that DINP could be more effective in regulating lipid metabolism.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Isabel Häggblom
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Beste Turanlı
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Shinohara N, Oguri T, Takagi M, Ueyama J, Isobe T. Evaluating the risk of phthalate and non-phthalate plasticizers in dust samples from 100 Japanese houses. ENVIRONMENT INTERNATIONAL 2024; 183:108399. [PMID: 38157606 DOI: 10.1016/j.envint.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Phthalates are widely used as plasticizer and associated with various health issues. Recently, non-phthalate plasticizers are replacing phthalates; however, the exposure to these substances and the risk in Japan is unclear. In this study, we assessed the concentrations of phthalates, non-phthalate plasticizers, and phthalate degradation products in house dust and determined their respective exposure risks via oral and dermal routes. Twelve phthalates, seven non-phthalate plasticizers, and two degradation products were determined in the house dust obtained from 100 Japanese homes. The median concentration of di(2-ethylhexyl) phthalate (DEHP), accounting for 85 % of the total concentration of phthalates and non-phthalate plasticizers detected in this study, was 2.1 × 103 μg/g of dust. Apart from DEHP, diisononyl phthalate (DINP) and di(2-ethylhexyl) terephthalate (DEHT) were the most abundant in the house dust, accounting for 6.2 % (median: 1.7 × 102 μg/g of dust) and 6.1 % (median: 1.7 × 102 μg/g of dust) of the total concentrations, respectively. DEHP and DEHT concentrations in house dust were higher in apartment and small houses (floor area: ≤30 m2 or 31-60 m2 for DEHP and 31-60 m2 for DEHT) than in detached and large houses (floor area: ≥121 m2). Conversely, di-n-butyl phthalate (DnBP) concentrations were significantly higher in detached and large houses (floor area: ≥121 m2) than in apartment and small houses (floor area: ≤30 m2). The total hazard quotient (HQ), using the maximum concentration in house dust, revealed that oral and dermal exposure to house dust was 1.3 × 10-6-0.11 for adults (all substances) and 1.6 × 10-5-2.2 × 10-2 for preschool children (except for DnBP and DEHP), suggesting no risk. The HQs for DnBP and DEHP exposure via house dust for preschool children using the maximum values were 0.46 and 1.2, and 6.0 × 10-3 and 0.18 using the median values, indicating that risk of DEHP exposure should be exhaustively determined by considering other exposure routes that were not evaluated in this study, such as diet.
Collapse
Affiliation(s)
- Naohide Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Japan.
| | - Tomoko Oguri
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Japan
| | - Mai Takagi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan
| | - Jun Ueyama
- Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya, Japan
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan
| |
Collapse
|
9
|
Bekki K, Eguchi A, Takaguchi K, Inaba Y, Yukawa K, Yoshida S, Azuma K. Comprehensive survey on the use of plastic additives in toy products used in Japan. Environ Health Prev Med 2024; 29:43. [PMID: 39168605 PMCID: PMC11362670 DOI: 10.1265/ehpm.24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Plastic additives have adverse effects on human health. Children frequently use toys that contain various substances found in paints, plasticizers, and other materials, which heighten the risk of specific chemical exposure. Infants are particularly prone to chemical exposure through the "mouthing" behavior because of the possibility of placing toys in their mouths. Thus, this vulnerability should be considered during risk assessments of chemical exposure. METHODS This study performed a comprehensive analysis of the chemical components in various 84 plastic toys including "designated toys" (toys that may be harmful to infant health if in contact with their mouths: Article 78 of the Enforcement Regulations of the Food Sanitation Law by the Minister of Health, Labor and Welfare) such as dolls, balls, blocks, bathing toys, toy vehicles, pacifiers, and household items, purchased in the Japanese market by nontargeted and targeted analysis. RESULTS Plasticizers, flame retardants, and fragrances were the main compounds in almost all the toy products. The results showed that plastic products made in China tended to contain high levels of phthalate esters. In particular, hazardous plasticizers, such as diisodecyl, di-n-octyl, and diisononyl phthalates were detected above the regulatory limit (0.1%) in used products manufactured before regulations were passed in Japan. Furthermore, we detected alternative plasticizers, such as acetyl tributyl citrate (ATBC; 52%), diisononyl adipate (DINA; 50%), and di(2-ethylhexyl) terephthalate (DEHT; 40%). ATBC was detected at high concentrations in numerous toy products. Thus, infants with free access to indoor plastic toys might be exposed to these chemicals. CONCLUSIONS This study observed that the chemical profiles of toy products were dependent on the year of manufacture. Furthermore, the detection of currently regulated plasticizers in secondhand products manufactured before regulations were enforced, along with the increasing trend of using alternative substances to regulated phthalate esters in products, suggests the potential exposure of infants to these plasticizers through the use of toys. Therefore, regular fact-finding surveys should continue to be conducted for the risk assessment and safety management of domestic toy products.
Collapse
Affiliation(s)
- Kanae Bekki
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Yohei Inaba
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Keiko Yukawa
- Department of Health Policy and Technology Assessment, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Satomi Yoshida
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Ohnohigashi Osakasayama, Osaka 589-0014, Japan
| |
Collapse
|
10
|
Hama S, Kumar P, Tiwari A, Wang Y, Linden PF. The underpinning factors affecting the classroom air quality, thermal comfort and ventilation in 30 classrooms of primary schools in London. ENVIRONMENTAL RESEARCH 2023; 236:116863. [PMID: 37567379 DOI: 10.1016/j.envres.2023.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The health and academic performance of children are significantly impacted by air quality in classrooms. However, there is a lack of understanding of the relationship between classroom air pollutants and contextual factors such as physical characteristics of the classroom, ventilation and occupancy. We monitored concentrations of particulate matter (PM), CO2 and thermal comfort (relative humidity and temperature) across five schools in London. Results were compared between occupied and unoccupied hours to assess the impact of occupants and their activities, different floor coverings and the locations of the classrooms. In-classroom CO2 concentrations varied between 500 and 1500 ppm during occupancy; average CO2 (955 ± 365 ppm) during occupancy was ∼150% higher than non-occupancy. Average PM10 (23 ± 15 μgm-3), PM2.5 (10 ± 4 μgm-3) and PM1 (6 ± 3 μg m-3) during the occupancy were 230, 125 and 120% higher than non-occupancy. Average RH (29 ± 6%) was below the 40-60% comfort range in all classrooms. Average temperature (24 ± 2 °C) was >23 °C in 60% of classrooms. Reduction in PM10 concentration (50%) by dual ventilation (mechanical + natural) was higher than for PM2.5 (40%) and PM1 (33%) compared with natural ventilation (door + window). PM10 was higher in classrooms with wooden (33 ± 19 μg m-3) and vinyl (25 ± 20 μgm-3) floors compared with carpet (17 ± 12 μgm-3). Air change rate (ACH) and CO2 did not vary appreciably between the different floor levels and types. PM2.5/PM10 was influenced by different occupancy periods; highest value (∼0.87) was during non-occupancy compared with occupancy (∼0.56). Classrooms located on the ground floor had PM2.5/PM10 > 0.5, indicating an outdoor PM2.5 ingress compared with those located on the first and third floors (<0.5). The large-volume (>300 m3) classroom showed ∼33% lower ACH compared with small-volume (100-200 m3). These findings provide guidance for taking appropriate measures to improve classroom air quality.
Collapse
Affiliation(s)
- Sarkawt Hama
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Chemistry, School of Science, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom.
| | - Arvind Tiwari
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Yan Wang
- UCL Institute for Environmental Design and Engineering, London, United Kingdom
| | - Paul F Linden
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| |
Collapse
|
11
|
Zeng Y, Goudarzi H, Ait Bamai Y, Ketema RM, Roggeman M, den Ouden F, Gys C, Miyashita C, Ito S, Konno S, Covaci A, Kishi R, Ikeda-Araki A. Exposure to organophosphate flame retardants and plasticizers is positively associated with wheeze and FeNO and eosinophil levels among school-aged children: The Hokkaido study. ENVIRONMENT INTERNATIONAL 2023; 181:108278. [PMID: 37897874 DOI: 10.1016/j.envint.2023.108278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Exposure to organophosphate flame retardants and plasticizers (PFRs) increases the risk of asthma and allergies. However, little is known about its association with type 2 inflammation (T2) biomarkers used in the management of allergies. The study investigated associations among urinary PFR metabolite concentrations, allergic symptoms, and T2 biomarkers. The data and samples were collected between 2017 and 2020, including school children (n = 427) aged 9-12 years living in Sapporo City, Japan, among the participants of "The Hokkaido Study on Environment and Children's Health." Thirteen urinary PFR metabolites were measured by LC-MS/MS. Allergic symptoms were assessed using the International Study of Asthma and Allergies in Childhood questionnaire. For T2 biomarkers, the peripheral blood eosinophil counts, fraction of exhaled nitric oxide level (FeNO), and serum total immunoglobulin E level were measured. Multiple logistic regression analysis, quantile-based g-computation (qg-computation), and Bayesian kernel machine regression (BKMR) were used to examine the associations between the health outcomes of the individual PFRs and the PFR mixtures. The highest concentration of PFR was Σtris(1-chloro-isopropyl) phosphates (ΣTCIPP) (Median:1.20 nmol/L). Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was significantly associated with a high odds ratio (OR, 95%CI:1.36, 1.07-1.72) for wheeze. TDCIPP (OR, 95%CI:1.19, 1.02-1.38), Σtriphenyl phosphate (ΣTPHP) (OR, 95%CI:1.81, 1.40-2.37), and Σtris(2-butoxyethyl) phosphate (ΣTBOEP) (OR, 95%:1.40, 1.13-1.74) were significantly associated with increased odds of FeNO (≥35 ppb). ΣTPHP (OR, 95%CI:1.44, 1.15-1.83) was significantly associated with high eosinophil counts (≥300/μL). For the PFR mixtures, a one-quartile increase in all PFRs (OR, 95%CI:1.48, 1.18-1.86) was significantly associated with high FeNO (≥35 ppb) in the qg-computation model. The PFR mixture was positively associated with high FeNO (≥35 ppb) and eosinophil counts (≥300/μL) in the BKMR models. These results may suggest that exposure to PFRs increases the probability of asthma, allergies, and T2 inflammation.
Collapse
Affiliation(s)
- Yi Zeng
- Graduate School of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Houman Goudarzi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Sachiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan.
| |
Collapse
|
12
|
Shi Y, Zhao L, Zhu H, Cheng Z, Luo H, Sun H. Co-occurrence of phthalate and non-phthalate plasticizers in dust and hand wipes: A comparison of levels across various sources. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132271. [PMID: 37582303 DOI: 10.1016/j.jhazmat.2023.132271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
E-waste dismantlers' occupational exposure to plasticizers, particularly non-phthalate (NPAE) plasticizers, is poorly understood. This study monitored 11 phthalates (PAEs) and 16 NPAEs in dust and hand wipe samples from Central China e-waste workplace and ordinary homes. Concentrations of plasticizers in dust from e-waste dismantling workshops (median: 217 μg/g) were significantly lower than that from ordinary homes (462 μg/g; p < 0.01), however, the trend was similar but not significant in hand wipes from these two scenarios (50.2 vs. 72.3 μg/m2; p = 0.139). PAEs were still the dominant plasticizers, which is, on average, 5.46 and 3.58-fold higher than NPAEs. In all samples, di-(2ethylhexyl) phthalate (65.4%) and tri-octyl trimellitate (44.9%) were the most common PAE and NPAE plasticizers. Increasing dust concentrations of di-iso-nonyl ester 1,2-cyclohexane dicarboxylic acid, citrates and sebacates were significantly associated with their levels in worker's hand wipe, by contrast, this trend was not found in general population. Dust ingestion was the main channel, followed by hand-to-mouth contact, all participants' daily plasticizer intakes (median: 154 ng/kg bw/day) are within safety limits. Our work highlights knowledge gaps about co-exposure to PAEs and NPAEs by multiple pathways in occupational e-waste workers, which could provide baseline data in the future.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Ketema RM, Kasper-Sonnenberg M, Ait Bamai Y, Miyashita C, Koch HM, Pälmke C, Kishi R, Ikeda A. Exposure Trends to the Non-phthalate Plasticizers DEHTP, DINCH, and DEHA in Children from 2012 to 2017: The Hokkaido Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11926-11936. [PMID: 37506071 DOI: 10.1021/acs.est.3c03172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Phthalates owing to their endocrine-disrupting effects are regulated in certain products, leading to their replacement with substitutions such as di-2-ethylhexyl terephthalate (DEHTP), 1,2-cyclohexane dicarboxylic acid di(isononyl) ester (DINCH), and di(2-ethylhexyl) adipate (DEHA). However, information on human exposure to these substitutes, especially in susceptible subpopulations such as children, is limited. Thus, we examined the levels and exposure trends of DEHTP, DINCH, and DEHA metabolites in 7 year-old Japanese school children. In total, 180 urine samples collected from 2012 to 2017 were used to quantify 10 DEHTP, DINCH, and DEHA metabolites via isotope dilution liquid chromatography with tandem mass spectrometry. DEHTP and DINCH metabolites were detected in 95.6 and 92.2% of the children, respectively, and DEHA was not detected. This study, annually conducted between 2012 and 2017, revealed a significant (p < 0.05) 5-fold increase in DEHTP metabolites and a 2-fold increase in DINCH metabolites. However, the maximum estimated internal exposures were still below the health-based guidance and toxicological reference values. Exposure levels to DEHTP and DINCH have increased considerably in Japanese school children. DEHA is less relevant. Future studies are warranted to closely monitor the increasing trend in different aged and larger populations and identify the potential health effects and sources contributing to increasing exposure and intervene if necessary.
Collapse
Affiliation(s)
- Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
- Faculty of Health Sciences, Hokkaido University, North 12, West 5, Sapporo 060-0812, Japan
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, North 12, West 7, Sapporo 060-0812, Japan
- Faculty of Health Sciences, Hokkaido University, North 12, West 5, Sapporo 060-0812, Japan
| |
Collapse
|
14
|
Zhang W, Zheng N, Wang S, Sun S, An Q, Li X, Li Z, Ji Y, Li Y, Pan J. Characteristics and health risks of population exposure to phthalates via the use of face towels. J Environ Sci (China) 2023; 130:1-13. [PMID: 37032026 DOI: 10.1016/j.jes.2022.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/19/2023]
Abstract
The production of face towels is growing at an annual rate of about 4% in China, reaching 1.13 million tons by 2021. Phthalates (PAEs) are widely used in textiles, and face towels, as an important household textile, may expose people to PAEs via the skin, further leading to health risks. We collected new face towels and analyzed the distribution characterization of PAEs in them. The changes of PAEs were explored in a face towel use experiment and a simulated laundry experiment. Based on the use of face towels by 24 volunteers, we calculated the estimated daily intake (EDI) and comprehensively assessed the hazard quotient (HQ), hazard index (HI), and dermal cancer risk (DCR) of PAEs exposure in the population. PAEs were present in new face towels at total concentrations of <MDL-2388 ng/g, with a median of 173.2 ng/g, which was a lower contamination level compared with other textiles. PAE contents in used face towels were significantly higher than in new face towels. The concentrations of PAEs in coral velvet were significantly higher than those in cotton. Water washing removed some PAEs, while detergent washing increased the PAE content on face towels. Gender, weight, use time, and material were the main factors affecting EDI. The HQ and HI were less than 1, which proved PAEs had no significant non-carcinogenic health risks. Among the five target PAEs studied, DEHP was the only carcinogenic PAE and may cause potential health risks after long-term exposure. Therefore, we should pay more attention to DEHP.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zimeng Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yining Ji
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
15
|
Zhao J, Nagai Y, Gao W, Shen T, Fan Y. The Effects of Interior Materials on the Restorativeness of Home Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6364. [PMID: 37510596 PMCID: PMC10379609 DOI: 10.3390/ijerph20146364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The effects of a restorative environment on attention restoration and stress reduction have received much attention in societies, especially during the COVID-19 pandemic. Interior materials are a crucial environmental element influencing people's perceived restorativeness at home. Nevertheless, few studies have examined the links between interior materials and the restorativeness of home environments. To address this gap, this study aimed to investigate the restorative potential of interior materials among a sample of adults in China. Cross-sectional data from 85 participants whose professional majors were related to interior design were selected. The measures of the restorative potential of each interior material were obtained by a questionnaire adapted from the semantic differential method. The Wilcoxon signed-rank test was used to compare the restorative potential of interior materials. We found that glass material had the best restorative potential in home environments. Doubts were raised regarding wood material's restorativeness, and more consideration should be granted for designing a restorative home with wood material. In contrast, metal is not recommended for restorative home design. These findings contribute to the evidence of the restorative effects of home design.
Collapse
Affiliation(s)
- Jing Zhao
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| | - Yukari Nagai
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| | - Wei Gao
- School of Art & Design, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Shen
- College of Design and Innovation, Tongji University, Shanghai 200092, China
| | - Youming Fan
- School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| |
Collapse
|
16
|
Chen HK, Chang YH, Sun CW, Wu MT, Chen ML, Wang SL, Hsieh CJ. Associations of urinary phthalate metabolites with household environments among mothers and their preschool-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115162. [PMID: 37352583 DOI: 10.1016/j.ecoenv.2023.115162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Phthalates have become a matter of public health concern due to their extensive use worldwide and negative health effects. The evaluation of potential sources of phthalate exposure is crucial to design prevention strategies, especially for vulnerable populations. This study included 528 mother-child pairs in the Taiwan Mother Infant Cohort Study who were followed up at ages 3-6 years between 2016 and 2020. Each mother was interviewed by using a structured questionnaire containing questions on demographic characteristics and household environment factors, such as the use of plastic food packaging, residential visible mold, insecticide sprays, and electric mosquito repellents. Eleven phthalate metabolites were analyzed in urine samples simultaneously collected from the mother-child pairs. The phthalate metabolite urinary concentrations were higher among the children than among their mothers, except those of mono-ethyl phthalate (MEP) and mono-2-ethylhexyl phthalate (MEHP). Multiple linear regression analyses showed that urine samples collected during the summer showed higher concentrations of phthalate metabolites than those collected during the winter. Family income levels had negative associations with the concentrations of MnBP and metabolites of di-2-ethylhexyl phthalate (DEHP) in children. The use of plastic food packaging was positively associated with mono-n-butyl phthalate (MnBP) and metabolites of DEHP in mothers. Residential visible mold or mold stains were significantly associated with higher MnBP and DEHP metabolite concentrations in children. The use of insecticide sprays was positively associated with MnBP concentrations in children. Significant associations between household environmental factors and phthalate exposure were mostly found in children, potentially indicating different exposure pathways between mothers and their children. Findings from this study provide additional information for the design of prevention strategies to protect the health of children and women.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan, ROC
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC; Department of Pediatrics, National Taiwan University Hospital, Taiwan, ROC
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC; Department of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan, ROC.
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Public Health, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
17
|
Fan L, Wang L, Wang K, Liu F. Phthalates in glass window films are associated with dormitory characteristics, occupancy activities and habits, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32550-32559. [PMID: 36469278 DOI: 10.1007/s11356-022-24536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors that enter the human body through a variety of pathways and harm human health. The study aimed to explore the associations between phthalate concentrations in glass window films with dormitory characteristics, occupancy activities and habits, and environmental factors, of university dormitories. We surveyed these associations and measured the indoor environmental parameters of 144 dormitories from 13 universities in Beijing. Based on the results, we further explored the factors affecting phthalate concentrations using multivariate logistic regression. The results showed that phthalate concentrations in glass window films were associated with dormitory type, duration of occupancy, daily ventilation duration, window cleaning frequency, indoor relative humidity, light intensity, temperature, and particulate matter (PM10) concentration. To date, there have only been a few studies on the factors that influence phthalate concentrations in glass window films; therefore, further study is needed. Our findings determined the influence of external factors on the different types of phthalates in window films, which helps understand indoor phthalate pollution and evaluate human exposure based on phthalate concentrations in glass window films.
Collapse
Affiliation(s)
- Liujia Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fang Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
18
|
Fan L, Wang L, Wang K, Liu F, Wang G. Phthalates in Glass Window Films of Chinese University Dormitories and Their Associations with Indoor Decorating Materials and Personal Care Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15297. [PMID: 36430022 PMCID: PMC9696275 DOI: 10.3390/ijerph192215297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are widely used as plasticizers in the production of various consumer products used daily. We analyzed phthalate concentrations in window film samples from 144 dormitories in 13 universities and combined them with the results of questionnaires to explore the associations of phthalate concentrations with indoor decorating materials and personal care products. The phthalate pollution levels discovered in this study were much higher than those in previous studies of baby rooms and university buildings. Moreover, it was found that phthalate concentrations in glass window films were associated with laminated wood or polyvinyl chloride (PVC) flooring, iron furniture, medium density fiberboard (MDF) furniture, and the usage frequency of bottled skincare products. Laminated wood or PVC flooring, wallpaper, and iron furniture are very likely sources of specific phthalates, and the large surface areas of MDF furniture can act as sinks of phthalates. Transport of phthalates from the packaging of bottled skincare products into cosmetics should be given more attention. Our results provide a deep understanding of the sources of phthalates in glass window films.
Collapse
|
19
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
20
|
Patil PB, Maity S, Sarkar A. Potential human health risk assessment of microplastic exposure: current scenario and future perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:898. [PMID: 36251091 DOI: 10.1007/s10661-022-10539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The vast usage of synthetic plastics has led to the global problem of plastic pollution which in turn has positively impacted the concerns regarding microplastic pollution. The major factor responsible for the increased level of pollution is the smaller size of microplastics which helps in its transportation across the globe. It has been found in most remote areas like glaciers and Antarctic regions where it is difficult for other contaminants to reach. This is ensured by the physicochemical cycle of plastic. They can either be produced for different applications or generated through the fragmentation of large plastic particles. Different studies have shown the accumulation of microplastics in different organisms, especially in aquatic animals leading to their entry into the food chain. The ultimate fate of the microplastics is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. The present review summarizes a detailed discussion on the current status of microplastic pollution, their effect on different organisms, and its impact on human health with a case study on the human health risk assessment for analyzing the global rate of microplastic ingestion.
Collapse
Affiliation(s)
- Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
21
|
Preece AS, Shu H, Knutz M, Krais AM, Bornehag CG. Phthalate levels in prenatal and postnatal bedroom dust in the SELMA study. ENVIRONMENTAL RESEARCH 2022; 212:113429. [PMID: 35533715 DOI: 10.1016/j.envres.2022.113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are common in polyvinyl chloride (PVC) plastics and numerous consumer goods in our homes from which they can migrate and adhere to indoor dust particles. It is known that indoor dust exposure contribute to human phthalate intake; however, there is a lack of large studies with a repeated-measure design investigating how phthalate levels in indoor dust may vary over time in people's homes. This study investigated levels of seven phthalates and one alternative plasticiser di-iso-nonyl-cyclohexane-di-carboxylate (DiNCH) in bedroom dust collected prenatally around week 25 during pregnancy and postnatally at six months after birth, from 496 Swedish homes. Prenatal and postnatal phthalate levels were compared using correlation and season-adjusted general linear regression models. Over the nine-month period, levels of six out of seven phthalates were associated as indicated by a positive Pearson correlation (0.18 < r < 0.50, P < .001) and Lin's concordance correlation between matched prenatal and postnatal dust samples. Compared to prenatal levels, the season-adjusted postnatal levels decreased for five phthalates, whilst di-ethyl-hexyl phthalate (DEHP), di-2-propylheptyl phthalate (DPHP) and DiNCH increased. The results suggest that families with higher phthalate levels in bedroom dust during pregnancy are likely to remain among those with higher levels in the infancy period. However, all average phthalate levels changed over this specific nine-month period suggesting that available phthalate sources or their use were altered between the dust collections. Changes in home characteristics, family lifestyle, and phthalate replacement trends may contribute to explain the differences.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Huan Shu
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Malin Knutz
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institution of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Carl-Gustaf Bornehag
- Division of Public Health Sciences, Institution of Health Sciences, Karlstad University, SE-651 88, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
22
|
Bereketoglu C, Pradhan A. Plasticizers: negative impacts on the thyroid hormone system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38912-38927. [PMID: 35303231 PMCID: PMC9119869 DOI: 10.1007/s11356-022-19594-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/03/2022] [Indexed: 05/31/2023]
Abstract
This review aims to understand the impacts of plasticizers on the thyroid system of animals and humans. The thyroid gland is one of the earliest endocrine glands that appear during embryogenesis. The thyroid gland synthesizes thyroid hormones (TH), triiodothyronine (T3), and thyroxine (T4) that are important in the regulation of body homeostasis. TH plays critical roles in regulating different physiological functions, including metabolism, cell growth, circadian rhythm, and nervous system development. Alteration in thyroid function can lead to different medical problems. In recent years, thyroid-related medical problems have increased and this could be due to rising environmental pollutants. Plasticizers are one such group of a pollutant that impacts thyroid function. Plasticizers are man-made chemicals used in a wide range of products, such as children's toys, food packaging items, building materials, medical devices, cosmetics, and ink. The increased use of plasticizers has resulted in their detection in the environment, animals, and humans. Studies indicated that plasticizers could alter thyroid function in both animals and humans at different levels. Several studies demonstrated a positive and/or negative correlation between plasticizers and serum T4 and T3 levels. Plasticizers could also change the expression of various TH-related genes and proteins, including thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH), and transporters. Histological analyses demonstrated thyroid follicular cell hypertrophy and hyperplasia in response to several plasticizers. In conclusion, plasticizers could disrupt TH homeostasis and the mechanisms of toxicity could be diverse.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
23
|
Gunathilake TMSU, Ching YC, Kadokami K. An overview of organic contaminants in indoor dust, their health impact, geographical distribution and recent extraction/analysis methods. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:677-713. [PMID: 34170457 DOI: 10.1007/s10653-021-01013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 05/16/2023]
Abstract
People spend a substantial proportion of their time indoors; therefore, exposure to contaminants in indoor dust is persistent and profuse. According to the findings of recent studies, contaminants such as flame retardants (FRs), organochlorines (OCs), and phthalate esters (PAEs) are more prevalent in indoor dust. The discrepancy in the geographical distribution of these chemicals indicates country-specific applications. However, many studies have revealed that chlorophosphates, polychlorinated biphenyls (PCBs) and di-2-ethylhexyl phthalate are frequently detected in indoor dust throughout the world. Although some chemicals (e.g., OCs) were banned/severely restricted decades ago, they have still been detected in indoor dust. These organic contaminants have shown clear evidence of carcinogenic, neurotoxic, immunogenic, and estrogenic activities. Recent extraction methods have shown their advantages, such as high recoveries, less solvent consumption, less extraction time and simplicity of use. The latest separation techniques such as two-dimensional gas/liquid chromatography, latest ionization techniques (e.g., matrix-assisted laser desorption/ionization (MALDI)), and modern techniques of mass spectrometry (e.g., tandem mass spectrometry (MS/MS), time-of-flight (TOF) and high-resolution mass spectrometry (HRMS)) improve the detection limits, accuracy, reproducibility and simultaneous detection of organic contaminants. For future perspectives, it is suggested that the importance of the study of dust morphology for comprehensive risk analysis, introducing standard reference materials to strengthen the analytical methods, adopt common guidelines for comparison of research findings and the importance of dust analysis in the developing world since lack of records on the production and usage of hazardous substances. Such measures will help to evaluate the effectiveness of prevailing legislations and to set up new regulations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Hibikino 1-1, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
24
|
Blackburn K, Green D. The potential effects of microplastics on human health: What is known and what is unknown. AMBIO 2022; 51:518-530. [PMID: 34185251 PMCID: PMC8800959 DOI: 10.1007/s13280-021-01589-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 05/11/2023]
Abstract
Microplastic contamination is ubiquitous in aquatic and terrestrial environments, found in water, sediments, within organisms and in the atmosphere and the biological effects on animal and plant life have been extensively investigated in recent years. There is growing evidence that humans are exposed to microplastics via ingestion of food and drink and through inhalation. Despite the prevalence of contamination, there has been limited research on the effects of microplastics on human health and most studies, to date, analyse the effects on model organisms with the likely impacts on human health being inferred by extrapolation. This review summarises the latest findings in the field with respect to the prevalence of microplastics in the human-environment, to what extent they might enter and persist in the body, and what effect, if any, they are likely to have on human health. Whilst definitive evidence linking microplastic consumption to human health is currently lacking, results from correlative studies in people exposed to high concentrations of microplastics, model animal and cell culture experiments, suggest that effects of microplastics could include provoking immune and stress responses and inducing reproductive and developmental toxicity. Further research is required to explore the potential implications of this recent contaminant in our environment in more rigorous clinical studies.
Collapse
Affiliation(s)
- Kirsty Blackburn
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Room 302 Science Centre, Cambridge, CB1 1PT UK
- Biomedical Sciences Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Dannielle Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Room 302 Science Centre, Cambridge, CB1 1PT UK
| |
Collapse
|
25
|
Wan Y, North ML, Navaranjan G, Ellis AK, Siegel JA, Diamond ML. Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:69-81. [PMID: 33854194 DOI: 10.1038/s41370-021-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Canadian children are widely exposed to phthalates and polycyclic aromatic hydrocarbons (PAHs) from indoor sources. Both sets of compounds have been implicated in allergic symptoms in children. OBJECTIVE We characterize concentrations of eight phthalates and 12 PAHs in floor dust from the bedrooms of 79 children enrolled in the Kingston Allergy Birth Cohort (KABC). METHOD Floor dust was collected from the bedrooms of 79 children who underwent skin prick testing for common allergens after their first birthday. Data were collected on activities, household, and building characteristics via questionnaire. RESULTS Diisononyl phthalate (DiNP) and phenanthrene were the dominant phthalate and PAH with median concentrations of 561 µg/g and 341 ng/g, respectively. Benzyl butyl phthalate (BzBP) and chrysene had the highest variations among all tested homes, ranging from 1-95% to 1-99%, respectively. SIGNIFICANCE Some phthalates were significantly associated with product and material use such as diethyl phthalate (DEP) with fragranced products and DiNP and DiDP with vinyl materials. Some PAHs were significantly associated with household characteristics, such as benzo[a]pyrene with smoking, and phenanthrene and fluoranthene with the presence of an attached garage. Socioeconomic status (SES) had positive and negative relationships with some concentrations and some explanatory factors. No significant increases in risk of atopy (positive skin prick test) was found as a function of phthalate or PAH dust concentrations.
Collapse
Affiliation(s)
- Yuchao Wan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Michelle L North
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Novartis Pharmaceuticals Canada, Dorval, QC, Canada
| | - Garthika Navaranjan
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston General Hospital, Kingston, ON, Canada
| | - Jeffrey A Siegel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada.
- School of Environment, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Abdi S, Sobhanardakani S, Lorestani B, Cheraghi M, Panahi HA. Analysis and health risk assessment of phthalate esters (PAEs) in indoor dust of preschool and elementary school centers in city of Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61151-61162. [PMID: 34173141 DOI: 10.1007/s11356-021-14845-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Individuals spend a lot of time indoors; thus they are generally exposed to phthalates used in consumer products. Therefore, those exposed to phthalates as indoor contaminants are at high risks. The present study was conducted to evaluate the carcinogenic and non-carcinogenic hazard of phthalate esters (PAEs), like dimethyl phthalate, diethyl phthalate, di(nbutyl) phthalate, butyl benzyl phthalate, dioctyl phthalate, and di(2-ethylhexyl) phthalate in the dust obtained from 21 schools in Tehran, in 2019. A total of 63 indoor dust specimens were obtained by a vacuum cleaner. After transferring dust samples to the laboratory, 100 mg of each sample was centrifuged and mixed with 20 ml acetone and kept through a night and ultrasonicated within 30 min. Eventually, PAEs' contents were measured via gas chromatography-mass spectrometry. Based on the findings, median concentrations of DMP, DEP, DnBP, BBP, DEHP, and DnOP were 0.90, 0.10, 6.0, 0.20, 118.30, and 4.10 mg kg-1 respectively. Moreover, the overall average daily exposure doses (ADD) of phthalate esters via dust ingestion, skin contact, and inhalation were 1.56E-03, 1.70E-06, and 1.56E-07 mg kg-1 day-1, respectively, and the lifetime average daily exposure doses (LADD) were 1.83E-04, 2.34E-08, and 2.46E-08 mg kg-1 day-1, respectively; thus ingestion of dust particles was found to be the main pathway of exposure to phthalate for non-carcinogenic and carcinogenic risks. Although based on the results, the studied samples were below the US Environmental Protection Agency threshold of 1.00E-06, due to the disadvantages of phthalates in human safety, these kinds of investigations are helpful in understanding the main ways of exposure to PAEs and providing a science-based framework for the future attempts for mitigating the PAEs indoor emissions.
Collapse
Affiliation(s)
- Somayeh Abdi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, College of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Martínez-Martínez MI, Alegre-Martínez A, Cauli O. Prenatal exposure to phthalates and its effects upon cognitive and motor functions: A systematic review. Toxicology 2021; 463:152980. [PMID: 34624397 DOI: 10.1016/j.tox.2021.152980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Phthalates are chemicals widely used in packaging and consumer products, which have been shown to interfere with normal hormonal function and development in some human and animal studies. In recent decades, pregnant women's exposure to phthalates has been shown to alter the cognitive outcomes of their babies, and some studies have found delays in motor development. METHODS electronic databases including PubMed/MEDLINE and Scopus were searched from their inception to March 2021, using the keywords "phthalate", "cognitive" and "motor". RESULTS most studies find statistically significant inverse relationships between maternal urinary phthalate concentration during pregnancy and subsequent outcomes in children's cognitive and motor scales, especially in boys rather than girls. However, many associations are not significant, and there were even positive associations, especially in the third trimester. CONCLUSION the relationship between exposure to phthalates during pregnancy and low results on neurocognitive scales is sufficiently clear to adopt policies to reduce exposure. Further studies are needed to analyze sex differences, coordination and motor scales, and phthalate levels during breastfeeding.
Collapse
Affiliation(s)
- María Isabel Martínez-Martínez
- Department of Nursing, University of Valencia, Valencia, Spain; Frailty and Cognitive Impairment Group (FROG), University of Valencia, Valencia, Spain
| | - Antoni Alegre-Martínez
- Department of Biomedical Sciences, CEU Cardinal Herrera University. Avenida Seminario, s/n, 46113 Montcada, Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain; Frailty and Cognitive Impairment Group (FROG), University of Valencia, Valencia, Spain.
| |
Collapse
|
28
|
Lin WT, Chen CY, Lee CC, Chen CC, Lo SC. Air Phthalate Emitted from Flooring Building Material by the Micro-Chamber Method: Two-Stage Emission Evaluation and Comparison. TOXICS 2021; 9:toxics9090216. [PMID: 34564367 PMCID: PMC8473253 DOI: 10.3390/toxics9090216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
The phthalate and semi-volatile organic compounds (SVOCs) are modern chemical substances and extensively existing in the indoor environment. The European Commission stipulated the "European Unified Test Criteria", since 2011, for the declared specifications of building products (CEN/TS 16516), based on the "lowest concentrations of interest (LCI)", the index pollutants, test method, and emission standard of "phthalate" and "SVOC" were specified in detail. The purpose of this study is to use six common indoor floor construction products in Taiwan (regenerated pseudoplastic rubber flooring, healthy pseudoplastic imitation wood floor, regenerated pseudoplastic rubber flooring, PVC floor tile/floor, plastic click floor, composite floor covered with carpet) to detect the changes in the concentration of phthalate emitted to the air. The ISO 16000-25 Indoor air-Part 25: Determination of the emission of semi-volatile organic compounds by building products-micro-chamber method is used to build a DS-BMEMC (glass micro-chamber: volume 630 mL), the SVOC, including phthalate, is collected in two stages, in the stable conditions of temperature 25 °C, relative humidity 50% and air change rate 2 times/h, the Stage 1 emission detection experiment (24 h) is performed, and then the Stage 2 heating-up desorption emission detection experiment (40 min air sampling) is performed, the temperature rises to 200-220 °C, the phthalate and SVOC adsorbed on the glass micro-chamber is desorbed at a high temperature to catch the air substances, the air is caught by Tenax®-TA and Florisil® adsorption tube, and then the GC/MS and LC/MSMS analysis methods are used for qualitative and emission concentration analyses of SVOC of two-stage emission, respectively. The findings show that the floor construction materials emit nine phthalate SVOCs: DEHP, DINP, DNOP, DIDP, BBP, DBP, DIBP, DEP, and DMP, the two-stage emission concentrations are different, Stage 1 (normal temperature) emission concentration of six floor construction materials is 0.01-1.2% of Stage 2 (high temperature) emission concentration, meaning the phthalate SVOC of floor construction materials is unlikely to be volatilized or emitted at normal temperature. An interesting finding is that only S3 was detected DINP 72.6 (μg/m3) in stage 1. Others were detected DINP in stage 2. This might be because S3 has carpet on the surface. This implies that floor material with carpet may have an emission of DINP at normal temperature. The result of this study refers to the limited value evaluation of EU structural material standard emission TSVOC ≤ 0.1 ug/m3, the floor building material emissions are much higher than the evaluation criteria, increasing the health risk of users. The detection method and baseline can be used as the standard for controlling the emission of phthalate SVOC of Taiwan's green building material labeling system in the future.
Collapse
Affiliation(s)
- Wu-Ting Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan;
- Architecture and Building Research Institute, Ministry of the Interior, 13F., No. 200, Sec. 3, Beisin Rd., Sindian District, New Taipei City 23143, Taiwan;
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City 71101, Taiwan;
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan;
- Correspondence: (C.-C.L.); (C.-C.C.); Tel.: +886-2-2771-2171 (ext. 2951) (C.-C.C.)
| | - Cheng-Chen Chen
- Department of Architecture, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Correspondence: (C.-C.L.); (C.-C.C.); Tel.: +886-2-2771-2171 (ext. 2951) (C.-C.C.)
| | - Shih-Chi Lo
- Architecture and Building Research Institute, Ministry of the Interior, 13F., No. 200, Sec. 3, Beisin Rd., Sindian District, New Taipei City 23143, Taiwan;
| |
Collapse
|
29
|
Preece AS, Shu H, Knutz M, Krais AM, Bekö G, Bornehag CG. Indoor phthalate exposure and contributions to total intake among pregnant women in the SELMA study. INDOOR AIR 2021; 31:1495-1508. [PMID: 33751666 DOI: 10.1111/ina.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are widely used in consumer products. Exposure to phthalates can lead to adverse health effects in humans, with early-life exposure being of particular concern. Phthalate exposure occurs mainly through ingestion, inhalation, and dermal absorption. However, our understanding of the relative importance of different exposure routes is incomplete. This study estimated the intake of five phthalates from the residential indoor environment for 455 Swedish pregnant women in the SELMA study using phthalate mass fraction in indoor dust and compares these to total daily phthalate intakes back-calculated from phthalate metabolite concentrations in the women's urine. Steady-state models were used to estimate indoor air phthalate concentrations from dust measurements. Intakes from residential dust and air made meaningful contributions to total daily intakes of more volatile di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) (11% of total DEP intake and 28% of total DnBP and DiBP intake combined). Dermal absorption from air was the dominant pathway contributing to the indoor environmental exposure. Residential exposure to less volatile phthalates made minor contributions to total intake. These results suggest that reducing the presence of low molecular weight phthalates in the residential indoor environment can meaningfully reduce phthalate intake among pregnant women.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Gabriel Bekö
- Department of Civil Engineering, International Centre for Indoor Environment and Energy, Technical University of Denmark, Kgs. Lyngby, Denmark
- Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas, Lithuania
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
30
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China. ENVIRONMENTAL RESEARCH 2021; 200:111760. [PMID: 34324846 DOI: 10.1016/j.envres.2021.111760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) have a negative impact on human health and are widely distributed in China. As part of the China, Children, Home, Health (CCHH) study, we investigated the associations between childhood asthmatic symptoms and PAEs in settled house dust in Shanghai, China. We found that di-2-ethylhexyl phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DiBP) were abundant in the indoor environment. A total of 27 % of children suffered from diagnosed asthma. The Mann-Whitney U test and multiple logistic regression were used to obtain the associations between PAEs and childhood asthmatic symptoms. Stratification analysis was performed to reveal the influence of gender on the associations between PAE exposure and target symptoms. Compared with low concentrations of PAEs, high concentrations of high molecular weight PAEs (HMW-PAEs) were significantly associated with childhood diagnosed asthma (adjusted odds ratios (AORs) > 1, P < 0.05). Moreover, significantly negative associations were found between high concentrations of DiBP and current cough (AORs<1, P < 0.05). All significantly positive associations were observed among girls, and most of the associations of dimethyl phthalate (DMP) and diethyl phthalate (DEP) exposure with the studied symptoms among girls were higher than those among boys. Exposure to PAEs may be a risk factor for asthmatic symptoms in children, especially in girls.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, PR China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
31
|
Huang C, Zhang YJ, Liu LY, Wang F, Guo Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146806. [PMID: 33836381 DOI: 10.1016/j.scitotenv.2021.146806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
We spend more than half of our daily time in indoor environments, and the contributions of phthalates present in it to total exposure are important. Here, we determined phthalate concentrations in paired indoor settled dust/air and their metabolites in human urine from 100 general families in south China to explore such kind of effect. The total concentrations of phthalates/metabolites were 48.7-2850 μg/g, 279-5080 ng/m3 and 10.7-2840 ng/mL in the indoor dust, air and urine samples, respectively. Among all targets, di-n-butyl phthalate, di-isobutyl phthalate and di-(2-ethylhexyl) phthalate and their metabolites were the predominant compounds. The daily intakes (DIs) of phthalates via dust or air decreased with age, except for infant, and the values of dust ingestion, air inhalation and air dermal uptake were 2720 ± 2460, 1300 ± 973 and 3590 ± 2890 ng/kg/day for toddlers and 236 ± 194, 360 ± 179 and 1120 ± 586 ng/kg/day for adults, respectively. The ratios of DIs from air to dust were greater than 1.0 for people in all age groups, and the ratio was the highest for adults. Furthermore, the contributions of phthalates from indoor dust and air to total DIs from all sources (estimated from urinary phthalate metabolites) were 0.60%-5.23% and 2.65%-12.2% for different ages, respectively. Our results indicated that indoor air was a quite important source for human exposure to phthalates in indoor environment in south China.
Collapse
Affiliation(s)
- Cong Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China.
| |
Collapse
|
32
|
Qu M, Wang L, Liu F, Zhao Y, Shi X, Li S. Characteristics of dust-phase phthalates in dormitory, classroom, and home and non-dietary exposure in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38159-38172. [PMID: 33725303 DOI: 10.1007/s11356-021-13347-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The phthalate concentrations in dust from undergraduate dormitories, classrooms, and homes in Beijing, China, were measured in April 2017. We analyzed the characteristics of phthalates in dust from three environments. In addition, we estimated the daily intake of phthalates via three pathways using Monte Carlo simulations. The detection frequency of eight phthalates in dust ranges from 74.5 to 100%. Di (2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) are the most abundant phthalates. The median proportion of DEHP in dust is the highest, ranging from 67.1 to 72.9%. The PMF results indicated that two, four, and three types of phthalate sources exist in home, dormitory, and classroom, respectively. The differences in the phthalate concentrations between sunny and shaded rooms and urban and suburban classrooms are insignificant, whereas that between male and female dormitories is significant. The total daily intake of DEHP, DnBP, and DiBP ranges from 97.3 to 336 ng/ (kg·day). The oral intake for DEHP in classrooms and the dermal intake of DnBP and DiBP in homes are the highest. The carcinogenic risk of DEHP to university students is the highest in classrooms and the total carcinogenic risk of the three environments is 4.70 × 10-6.
Collapse
Affiliation(s)
- Meinan Qu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Fang Liu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiangzhao Shi
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sijia Li
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
33
|
Kishi R, Ikeda-Araki A, Miyashita C, Itoh S, Kobayashi S, Ait Bamai Y, Yamazaki K, Tamura N, Minatoya M, Ketema RM, Poudel K, Miura R, Masuda H, Itoh M, Yamaguchi T, Fukunaga H, Ito K, Goudarzi H. Hokkaido birth cohort study on environment and children's health: cohort profile 2021. Environ Health Prev Med 2021; 26:59. [PMID: 34022817 PMCID: PMC8141139 DOI: 10.1186/s12199-021-00980-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hokkaido Study on Environment and Children's Health is an ongoing study consisting of two birth cohorts of different population sizes: the Sapporo cohort and the Hokkaido cohort. Our primary objectives are to (1) examine the effects that low-level environmental chemical exposures have on birth outcomes, including birth defects and growth retardation; (2) follow the development of allergies, infectious diseases, and neurobehavioral developmental disorders, as well as perform a longitudinal observation of child development; (3) identify high-risk groups based on genetic susceptibility to environmental chemicals; and (4) identify the additive effects of various chemicals, including tobacco. METHODS The purpose of this report is to provide an update on the progress of the Hokkaido Study, summarize recent results, and suggest future directions. In particular, this report provides the latest details from questionnaire surveys, face-to-face examinations, and a collection of biological specimens from children and measurements of their chemical exposures. RESULTS The latest findings indicate different risk factors of parental characteristics on birth outcomes and the mediating effect between socioeconomic status and children that are small for the gestational age. Maternal serum folate was not associated with birth defects. Prenatal chemical exposure and smoking were associated with birth size and growth, as well as cord blood biomarkers, such as adiponectin, leptin, thyroid, and reproductive hormones. We also found significant associations between the chemical levels and neuro development, asthma, and allergies. CONCLUSIONS Chemical exposure to children can occur both before and after birth. Longer follow-up for children is crucial in birth cohort studies to reinforce the Developmental Origins of Health and Disease hypothesis. In contrast, considering shifts in the exposure levels due to regulation is also essential, which may also change the association to health outcomes. This study found that individual susceptibility to adverse health effects depends on the genotype. Epigenome modification of DNA methylation was also discovered, indicating the necessity of examining molecular biology perspectives. International collaborations can add a new dimension to the current knowledge and provide novel discoveries in the future.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan. .,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Kumiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Houman Goudarzi
- Faculty of Medicine and Graduate School of Medicine, Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
34
|
Secular trends of urinary phthalate metabolites in 7-year old children and association with building characteristics: Hokkaido study on environment and children's health. Int J Hyg Environ Health 2021; 234:113724. [PMID: 33761429 DOI: 10.1016/j.ijheh.2021.113724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
The widespread commercial production and use of phthalates as plasticizers in consumer products have led to significant human exposure. Some phthalates are known to disrupt the endocrine system and result in adverse health outcomes. As such, they have been regulated in materials used for children's items and food packages. In this study, we examined the secular trend of urinary phthalate metabolites in children and the association between metabolites and building characteristics. In total, 400 first-morning spot urine samples of 7 years old children collected from 2012 to 2017 from an ongoing birth cohort study were examined. Parents provided information on demographics and building questionnaires. We analyzed 10 urinary phthalate metabolites from five phthalate diesters using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS): MiBP, MnBP, MBzP, MEHP, MEOHP, MEHHP, MECPP, MiNP, OH-MiNP, and cx-MiNP. A multivariable regression model with creatinine-corrected metabolite levels was applied to assess secular trends during 2012-2017. The association between metabolite levels and building characteristics was investigated using a mutual-adjusted linear regression. The metabolites MnBP, MEHP, MEOHP, MEHHP, MECPP, and OH-MiNP were detected in all samples. The highest median concentration was for MECPP 37.4 ng/mL, followed by MnBP and MEHHP at concentrations of 36.8 and 25.8 ng/mL, respectively. Overall, DBP, BBzP, and DINP metabolite concentrations in this study were comparable to or lower than those in previous studies from Japan and other countries in a similar study period. Higher concentrations of DEHP metabolites were observed in this study than in children from the USA and Germany, as per previous reports. Despite updated phthalate regulations and reports of production volume change in Japan, all the measured metabolites showed a stable trend between 2012 and 2017. Higher phthalate metabolite levels were observed among children from households with low annual income, those who lived in old buildings, and those with window opening habits of ≥1 h than ≤1 h. In contrast, children in houses that vacuumed 4 or more days/week showed a lower level of MnBP than those in houses that vacuumed ≤3 days/week. This study demonstrates that the internal exposure level of phthalates in Japanese children was stable from 2012 to 2017. Our findings suggest that phthalate exposure in children is consistent. Thus, improvements in the indoor environment, such as frequent vacuuming, may reduce exposure. Biomonitoring of phthalates is critical for elucidating their possible health effects and developing mitigation strategies.
Collapse
|
35
|
Preece AS, Shu H, Knutz M, Krais AM, Wikström S, Bornehag CG. Phthalate levels in indoor dust and associations to croup in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:257-265. [PMID: 32952153 DOI: 10.1038/s41370-020-00264-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous indoor pollutants which have been associated with child airway disease although results are inconclusive. This study examined associations between phthalate levels in residential indoor dust and croup during infancy. Settled indoor dust was collected in 482 homes of 6-month-old infants in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study and analysed for seven phthalates and one phthalate replacement using gas chromatography tandem mass spectrometry. The incidence of parental reported croup at 12 months was 6.4% for girls and 13.4% for boys. Associations between phthalate dust levels and croup were analysed by logistic regression adjusted for potential confounders. We found significant associations between di-ethyl phthalate (DEP) and di-ethyl-hexyl phthalate (DEHP) in residential dust and parental reported croup (adjusted odds ratio (aOR) = 1.71; 95% CI: 1.08-2.73 and 2.07; 1.00-4.30, respectively). Stratified results for boys showed significant associations between DEP and butyl-benzyl phthalate (BBzP) in dust and infant croup (aOR = 1.86; 95% CI: 1.04-3.34 and 2.02; 1.04-3.90, respectively). Results for girls had questionable statistical power due to few cases. Our results suggest that exposure to phthalates in dust is a risk factor for airway inflammatory responses in infant children.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sverre Wikström
- School of Medical Science, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| |
Collapse
|
36
|
Yang C, Harris SA, Jantunen LM, Kvasnicka J, Nguyen LV, Diamond ML. Phthalates: Relationships between Air, Dust, Electronic Devices, and Hands with Implications for Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8186-8197. [PMID: 32539399 DOI: 10.1021/acs.est.0c00229] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Exposure to phthalates is pervasive and is of concern due to associations with adverse health effects. Exposures and exposure pathways of six phthalates were investigated for 51 women aged 18-44 years in Ontario, Canada, based on measured phthalate concentrations in hand wipes and indoor media in their residences. All six phthalates had detection frequencies of 100% in air (∑6670 ng m-3 geomean) and floor dust (∑6630 μg g-1), nearly 100% detection frequencies for hand palms and backs that were significantly correlated and concentrations were repeatable over a 3 week interval. Phthalates on hands were significantly correlated with levels in air and dust, as expected according to partitioning theory. Total exposure was estimated as 4860 ng kg bw-1 day-1 (5th and 95th percentiles 1980-16 950 ng kg bw-1 day-1), with dust ingestion, followed by hand-to-mouth transfer, as the dominant pathways. With the exception of diethyl phthalate (DEP), phthalates had over 50% detection frequencies in surface wipes of most electronic devices sampled, including devices in which the use of phthalates was not expected. Phthalate concentrations on surfaces of hand-held devices were ∼10 times higher than on non-hand-held devices and were correlated with levels on hands. The data are consistent with phthalate emissions from sources such as laminate flooring and personal care products (e.g., scented candles), followed by partitioning among air, dust, and surface films that accumulate on electronic devices and skin, including hands. We hypothesize that hands transfer phthalates from emission sources and dust to hand-held electronic devices, which accumulate phthalates due to infrequent washing and which act as a sink and then a secondary source of exposure. The findings support those of others that exposure can be mitigated by increasing ventilation, damp cloth cleaning, and minimizing the use of phthalate-containing products and materials.
Collapse
Affiliation(s)
- Congqiao Yang
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - Shelley Anne Harris
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada M5T 3M7
- Occupational Cancer Research Center, Cancer Care Ontario, Toronto, Ontario, Canada M5G 1X3
| | - Liisa M Jantunen
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
- Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, Ontario, Canada L0L 1N0
| | - Jacob Kvasnicka
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - Linh V Nguyen
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada M5T 3M7
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
37
|
Zhang Q, Sun Y, Zhang Q, Hou J, Wang P, Kong X, Sundell J. Phthalate exposure in Chinese homes and its association with household consumer products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:136965. [PMID: 32120090 DOI: 10.1016/j.scitotenv.2020.136965] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are SVOCs (Semi-volatile Organic Compounds) that are widely used in industrial and daily home products. This study aimed to investigate exposure levels to phthalates in Chinese homes and to relate these to building characteristics and lifestyles. Dust in 399 homes of 410 children in urban Tianjin and rural Cangzhou was analyzed for concentrations of six target phthalates. The median concentrations were 0.31μg/g for diethyl phthalate (DEP), 16.39μg/g for di-isobutyl phthalate (DiBP), 42.60μg/g for di-n-butyl phthalate (DnBP), 0.10μg/g for benzyl butyl phthalate (BBzP), 127.11μg/g for di (2-ethylhexyl) phthalate (DEHP) and 0.28μg/g for di-isononyl phthalate (DiNP). Strong associations were found between modern flooring materials (laminated wood/wood) and concentrations of DiBP, BBzP and DiNP; modern window frame (aluminum/plastic steel) and BBzP concentration; leather polish and DEHP concentration; perfume and DEP concentration. Concentrations of phthalates were significantly higher in Tianjin urban homes than Cangzhou rural homes. Concentrations of phthalates increased significantly with increasing household income. Our study indicates that exposure to phthalates in Chinese homes increases with attributes of modern life.
Collapse
Affiliation(s)
- Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.
| | - Qingnan Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Pan Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Xiangrui Kong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jan Sundell
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| |
Collapse
|
38
|
Sears CG, Lanphear BP, Calafat AM, Chen A, Skarha J, Xu Y, Yolton K, Braun JM. Lowering Urinary Phthalate Metabolite Concentrations among Children by Reducing Contaminated Dust in Housing Units: A Randomized Controlled Trial and Observational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4327-4335. [PMID: 32101426 PMCID: PMC7494216 DOI: 10.1021/acs.est.9b04898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dust in homes can contain phthalates that may adversely affect child development, but whether residential interventions and dust removal can prevent children's exposure to phthalates is unknown. We quantified the influence of a residential lead hazard intervention and dust control on children's urinary phthalate metabolite concentrations. Between 2003 and 2006, The Health Outcomes and Measures of the Environment (HOME) Study randomized 355 pregnant women to receive an intervention to reduce either residential lead or injury hazards before delivery. We quantified eight urinary phthalate metabolites from 288 children at ages 1, 2, or 3 years (680 observations). During yearly home visits, we assessed dust accumulation in housing units. Children in the lead intervention group had 11-12% lower concentrations of the sum of di(2-ethylhexyl) phthalate metabolites, monocarboxyoctyl phthalate, and monocarboxynonyl phthalate compared to the injury intervention group. Monoethyl phthalate concentrations did not differ by group. In observational analyses, children living in housing units that appeared clean had 12-17% lower concentrations of these phthalate metabolites and monobenzyl phthalate, compared to children living in housing units with more dust accumulation. Features of this lead hazard intervention and measures to control dust may reduce children's exposure to phthalates found in building materials and household furnishings.
Collapse
Affiliation(s)
- Clara G. Sears
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julianne Skarha
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
39
|
Araki A, Ait Bamai Y, Bastiaensen M, Van den Eede N, Kawai T, Tsuboi T, Miyashita C, Itoh S, Goudarzi H, Konno S, Covaci A, Kishi R. Combined exposure to phthalate esters and phosphate flame retardants and plasticizers and their associations with wheeze and allergy symptoms among school children. ENVIRONMENTAL RESEARCH 2020; 183:109212. [PMID: 32058144 DOI: 10.1016/j.envres.2020.109212] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/12/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phthalate esters and phosphate flame retardants and plasticizers (PFRs) are both used as plasticizers and are commonly detected in indoor environments. Although both phthalates and PFRs are known to be associated with children's wheeze and allergic symptoms, there have been no previous studies examining the effects of mixtures of these exposures. OBJECTIVES To investigate the association between exposure to mixtures of phthalate esters and PFRs, and wheeze and allergic symptoms among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. Metabolites of 3 phthalate esters and 7 PFRs were measured in urine samples. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. In the primary model, we created a phthalate ester and PFR mixture exposure index, and estimated odds ratios (ORs) using weighted quantile sum (WQS) regression and quantile g (qg)-computation. The two highest chemicals according to qg-computation weight %s were combined to create a combination high × high exposure estimate, with ORs calculated using the "low × low" exposure group as the reference category. Concentrations of each metabolite were corrected by multiplying this value by the sex- and body size-Standardised creatinine concentration and dividing by the observed creatinine value. All models were adjusted for sex, grade, dampness index and annual house income. RESULTS The odds ratio of rhinoconjunctivitis for the association between exposure to chemical mixtures according to the WQS index positive models was; OR = 2.60 (95% confidence interval [CI]: 1.38-5.14). However, wheeze and eczema of the WQS index positive model, none of the WQS index negative models or qg-computation result yielded statistically significant results. Combined exposure to the two highest WQS weight %s of "high-high" ΣTCIPP and ΣTPHP was associated with an increased prevalence of rhino-conjunctivitis, OR = 5.78 (1.81-18.43) to the "low × low" group. CONCLUSIONS Significant associations of mixed exposures to phthalates and PFRs and increased prevalence of rhinoconjunctivitis was found among elementary school-aged children in the WQS positive model. Mixed exposures were not associated with any of allergic symptoms in the WQS negative model or qg-computation approach. However, the combined effects of exposure to two PFRs suggested an additive and/or multiplicative interaction, potentially increasing the prevalence of rhinoconjunctivitis. A further study with a larger sample size is needed to confirm these results.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Yu Ait Bamai
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| | - Chihiro Miyashita
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Medical Education and International Relations, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University, Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
40
|
Navaranjan G, Takaro TK, Wheeler AJ, Diamond ML, Shu H, Azad MB, Becker AB, Dai R, Harris SA, Lefebvre DL, Lu Z, Mandhane PJ, McLean K, Moraes TJ, Scott JA, Turvey SE, Sears MR, Subbarao P, Brook JR. Early life exposure to phthalates in the Canadian Healthy Infant Longitudinal Development (CHILD) study: a multi-city birth cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:70-85. [PMID: 31641275 DOI: 10.1038/s41370-019-0182-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few studies have examined phthalate exposure during infancy and early life, critical windows of development. The Canadian Healthy Infant Longitudinal Development (CHILD) study, a population-based birth cohort, ascertained multiple exposures during early life. OBJECTIVE To characterize exposure to phthalates during infancy and early childhood. METHODS Environmental questionnaires were administered, and urine samples collected at 3, 12, and 36 months. In the first 1578 children, urine was analyzed for eight phthalate metabolites: mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-3-carboxypropyl phthalate (MCPP). Geometric mean (GM) concentrations were calculated by age, together with factors that may influence concentrations. Trends with age were examined using mixed models and differences within factors examined using ANOVA. RESULTS The highest urinary concentration was for the metabolite MBP at all ages (GM: 15-32 ng/mL). Concentrations of all phthalate metabolites significantly increased with age ranging from GM: 0.5-15.1 ng/mL at 3 months and 1.9-32.1 ng/mL at 36 months. Concentrations of all metabolites were higher in the lowest income categories except for MEHP at 3 months, among children with any breastfeeding at 12 months, and in urine collected on dates with warmer outdoor temperatures (>17 °C), except for MBzP at 3 months and MEHP at 3 and 12 months. No consistent differences were found by gender, study site, or maternal age. CONCLUSIONS Higher phthalate metabolite concentrations were observed among children in lower income families. Examination of factors associated with income could inform interventions aimed to reduce infant phthalate exposure.
Collapse
Affiliation(s)
| | | | - Amanda J Wheeler
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
- University of Tasmania, Hobart, TAS, Australia
| | - Miriam L Diamond
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
| | - Huan Shu
- Stockholm University, Stockholm, Sweden
- Karlstad University, Karlstad, Sweden
| | | | | | - Ruixue Dai
- Hospital for Sick Children, Toronto, ON, Canada
| | - Shelley A Harris
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Cancer Care Ontario, Toronto, ON, Canada
| | | | - Zihang Lu
- Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Theo J Moraes
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - James A Scott
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
| | | | | | - Padmaja Subbarao
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - Jeffrey R Brook
- University of Toronto, 223 College Street, Toronto, ON, M5T 1R4, Canada.
| |
Collapse
|
41
|
Başaran B, Soylu GN, Yılmaz Civan M. Concentration of phthalate esters in indoor and outdoor dust in Kocaeli, Turkey: implications for human exposure and risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1808-1824. [PMID: 31758479 DOI: 10.1007/s11356-019-06815-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The interest in phthalate esters (PAEs) has increased in recent years because elevated phthalate levels have been detected in environmental matrices and they have certain adverse effects on human health. Indoor dust from 90 homes and outdoor (street) dust from outside these homes were collected in Kocaeli province between February and April 2016 and analyzed for eight PAEs. The total indoor dust concentrations of eight PAEs (Σ8PAEs) ranged from 21.33 μg g-1 to 1802 μg g-1 (median, 387.67 μg g-1), significantly higher than outdoor dust concentrations (0.16-36.85 μg g-1 with median 4.84 μg g-1). Di-2-ethylhexyl phthalate (DEHP) was the most dominant pollutant in both indoor and outdoor environments with a median value of 316.02 μg g-1 and 3.89 μg g-1, respectively, followed by di-n-butyl phthalate and butylbenzyl phthalate (BBP). DEHP was measured within the range of 198.54-816.92 μg g-1 and BBP within the range of 15.52-495.33 μg g-1 in homes with PVC coating, significantly higher than the levels in homes with parquet and tiled floor (p<0.05). Monte Carlo simulation was applied to probabilistically estimate exposure to PAEs and associated carcinogenic risk. The Σ5PAE median values of non-dietary ingestion and dermal absorption exposure were estimated as 1.57 μg kg day-1 and 0.007 μg kg day-1 for children and 0.09 μg kg day-1 and 0.04 μg kg day-1 for adults while inhalation route exposure to PAE in dust was at a negligible level for both groups. Children were more exposed to PAEs through ingestion route (92.74% to 99.54% of the total exposure) while adult exposure through ingestion routes (62-68.4%) and dermal absorption (29.74% and 31.87% of the total exposure) were comparable. The mean cancer risk level via non-dietary ingestion of DEHP for children was 2.33×10-6, about eight times higher than the levels for adults. The risk levels of about 16% of adults and 95% of children are greater than the threshold value of 10-6 when the population is exposed to DEHP in indoor dust. Looking from the viewpoint of child health, the most effective method to reduce exposure among the measured PAEs is to keep the release of DEHP under control, especially in indoor environment, and to take precautions to reduce exposure.
Collapse
Affiliation(s)
- Bilgehan Başaran
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Gizem Nur Soylu
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey.
| |
Collapse
|
42
|
Household Dust: Loadings and PM10-Bound Plasticizers and Polycyclic Aromatic Hydrocarbons. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Residential dust is recognized as a major source of environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs) and plasticizers, such as phthalic acid esters (PAEs). A sampling campaign was carried out to characterize the dust fraction of particulate matter with an aerodynamic diameter smaller than 10 µm (PM10), using an in situ resuspension chamber in three rooms (kitchen, living room, and bedroom) of four Spanish houses. Two samples per room were collected with, at least, a one-week interval. The PM10 samples were analyzed for their carbonaceous content by a thermo-optical technique and, after solvent extraction, for 20 PAHs, 8 PAEs and one non-phthalate plasticizer (DEHA) by gas chromatography-mass spectrometry. In general, higher dust loads were observed for parquet flooring as compared with tile. The highest dust loads were obtained for rugs. Total carbon accounted for 9.3 to 51 wt% of the PM10 mass. Plasticizer mass fractions varied from 5 µg g−1 to 17 mg g−1 PM10, whereas lower contributions were registered for PAHs (0.98 to 116 µg g−1). The plasticizer and PAH daily intakes for children and adults via dust ingestion were estimated to be three to four orders of magnitude higher than those via inhalation and dermal contact. The thoracic fraction of household dust was estimated to contribute to an excess of 7.2 to 14 per million people new cancer cases, which exceeds the acceptable risk of one per million.
Collapse
|
43
|
Plichta V, Völkel W, Fembacher L, Spolders M, Wöckner M, Aschenbrenner B, Schafft H, Fromme H. Bioavailability of phthalate and DINCH® plasticizers, after oral administration of dust to piglets. Toxicol Lett 2019; 314:82-88. [PMID: 31306742 DOI: 10.1016/j.toxlet.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022]
Abstract
For decades, phthalates have been widely used as plasticizers in a large number of consumer products, leading to a complex exposure to humans via ingestion, inhalation or dermal uptake. Children may have a higher unintended dust intake per day compared to adults. Therefore, dust intake of children could pose a relevant exposure and subsequently a potential health risk. The aim of this study was to determine the relative bioavailability of certain phthalates, such as di(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate (DINP) and the non-phthalate plasticizer diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH®, Hexamoll®), after ingestion of dust. Seven 5-week-old male piglets were fed five different dust samples collected from daycare centers. Overall, 0.43 g to 0.83 g of dust sieved to 63 μm were administered orally. The piglets' urine was collected over a period of 38 h. The excreted metabolites were quantified using an LC-MS/MS method. The mean uptake rates of the applied doses for DEHP, DINP, and DINCH® were 43% ± 11%, 47% ± 26%, and 9% ± 3.5%, respectively. The metabolites of DEHP and DINP showed maximum concentrations in urine after three to five hours, whereas the metabolites of DINCH®, reached maximum concentrations 24 h post-dose. The oral bioavailability of the investigated plasticizers was higher compared to the bioaccessibility reported from in vitro digestion tests. Furthermore, the bioavailability of DEHP did not vary substantially between the dust samples, whereas a dose-dependent saturation process for DINP was observed. In addition to other intake pathways, dust could be a source of plasticizers in children using the recent intake rates for dust ingestion.
Collapse
Affiliation(s)
- V Plichta
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany
| | - W Völkel
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany.
| | - L Fembacher
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany
| | - M Spolders
- German Federal Institute for Risk Assessment, D-10589, Berlin, Germany
| | - M Wöckner
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany
| | - B Aschenbrenner
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany
| | - H Schafft
- German Federal Institute for Risk Assessment, D-10589, Berlin, Germany
| | - H Fromme
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538, Munich, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, D-80336, Munich, Germany
| |
Collapse
|
44
|
Promtes K, Kaewboonchoo O, Kawai T, Miyashita K, Panyapinyopol B, Kwonpongsagoon S, Takemura S. Human exposure to phthalates from house dust in Bangkok, Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1269-1276. [PMID: 31296107 DOI: 10.1080/10934529.2019.1637207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The study determined concentrations of and estimated human exposure to house dust-ingested phthalates from 99 homes in Bangkok, Thailand. Phthalates in dust collected using a handheld vacuum cleaner was analyzed by gas chromatography/mass spectrometry revealing a median content of 3,477 µg g-1, range 753-13,810 µg g-1, with di-2-ethylhexylphthalate (DEHP) having the highest level (median = 1,739 µg g-1, range 467-8,172 µg g-1) followed by di-iso-nonyl phthalate (DiNP) (median = 611 µg g-1, range 15.2-11,052 µg g-1). DEHP in house dust from multi-family apartments with polyvinyl (PVC) floor material (n = 34), multi-family apartments without PVC floor material (n = 55) and single family houses without PVC floor material (n = 10) was median and range 3,009 and 568-6,898; 1,479 and range 467-8,172 and 1,207 µg g-1 and 611-3518 µg g-1, respectively. At high-end house dust DEHP level, preschool children in all three types of homes were exposed above US Environment Protection Agency reference dose (20 µg g-1). The results suggest phthalate-containing house products constitute a likely major source of phthalates in indoor home environment and pose a potential health risk to residents, particularly preschool children, in Bangkok.
Collapse
Affiliation(s)
- Kamonwan Promtes
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Orawan Kaewboonchoo
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association , Osaka , Japan
| | - Kazuhisa Miyashita
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| | - Bunyarit Panyapinyopol
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Suphaphat Kwonpongsagoon
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Shigeki Takemura
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
45
|
Bastiaensen M, Ait Bamai Y, Araki A, Van den Eede N, Kawai T, Tsuboi T, Kishi R, Covaci A. Biomonitoring of organophosphate flame retardants and plasticizers in children: Associations with house dust and housing characteristics in Japan. ENVIRONMENTAL RESEARCH 2019; 172:543-551. [PMID: 30852457 DOI: 10.1016/j.envres.2019.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Indoor environments contain a wide range of new chemicals such as phosphate flame retardants and plasticizers (PFRs). Despite recent epidemiological evidence suggesting that children might be affected by widespread exposure to PFRs, questions remain about the various exposure pathways to these chemicals. Therefore, the aim of this study was to investigate exposure to PFRs by measuring the concentrations a set of urinary metabolites for schoolchildren from Japan (n = 128) and associating them with house dust concentrations and housing characteristics. Detectable concentrations of both diaryl and dialkyl phosphates (DAPs) and hydroxylated metabolites (HO-PFRs) were found in urine samples of almost all children. 2-Hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP) was the most frequently detected metabolite (98%) followed by 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP, 95%) and tris(chloroethyl) phosphate (TCEP). Next to BBOEHEP, two other metabolites of tris(2-butoxyethyl) phosphate (TBOEP) were also frequently detected. Significant correlations of moderate strength were found between parent compounds detected in high concentrations in house dust (TBOEP, tris(2-chloroisopropyl) phosphate (TCIPP)) and their corresponding metabolites, suggesting that dust is a primary exposure source for these PFRs. Several personal and housing characteristics, such as gender, income, and the use of PVC and ventilation were associated with metabolite concentrations in multivariate linear regression. Overall, this study showed that Japanese schoolchildren are exposed to a wide range of PFRs.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
46
|
Zhu Q, Jia J, Zhang K, Zhang H, Liao C, Jiang G. Phthalate esters in indoor dust from several regions, China and their implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1187-1194. [PMID: 30586805 DOI: 10.1016/j.scitotenv.2018.10.326] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Phthalate esters (PAEs) have been used in large quantities all over the world for decades, leading to ubiquitous occurrence in the indoor environment. Indoor dust samples were collected from six geographical regions in China (n = 120) and the concentrations, profiles and human exposure to nine prevalent PAEs from dust were investigated in this study. The total concentrations of nine PAEs (Σ9PAEs) varied from 2.31 to 1590 μg/g (mean: 150 μg/g). The highest concentration of Σ9PAEs was found for dusts from the geographical region of Northeast China (mean: 394 μg/g), which was nearly 8 times higher than that of the lowest value for dusts from the Southwest China (52.1 μg/g). The sum concentrations of six priority controlled PAEs, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BzBP), bis (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), in our study (mean: 133 μg/g) were lower than those found in other regions of the world (230-1280 μg/g) reported in earlier studies. DEHP, DBP and di-iso-butyl phthalate (DIBP) were the major congeners found in all dust samples, cumulatively accounting for 98.7% of Σ9PAEs. The daily intake (DI) of PAEs via dust through the routes of ingestion, inhalation and dermal contact was estimated. Comparably, dust ingestion is the major pathway of human exposure to PAEs from dust and the DI values through dust ingestion were 985 ng/kg/day for children and 126 ng/kg/day for adults in China, respectively. The contribution of indoor dust to the total exposure of human to PAEs varied, depending on the type of PAE congeners. Among PAE congeners, DEHP was the predominant contributor, accounting for 3.45% and 2.39% of the estimated total DIs for Chinese children and adults, respectively. This indicates that indoor dust is an important source of human exposure to certain PAE congeners.
Collapse
Affiliation(s)
- Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Lee ST, Lin C, Vu CT, Chen YC, Chen KS, Villanueva MC. How human activities in commercial areas contribute to phthalate ester pollution in street dust of Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:619-626. [PMID: 30092517 DOI: 10.1016/j.scitotenv.2018.07.362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 05/15/2023]
Abstract
UNLABELLED Exposure to phthalate esters (PAEs) poses health risks to humans. Much research has been performed evaluating PAE levels in foodstuffs, river sediment and drinking water, but little attention has been paid to their presence in urban outdoor environments where human activities are highly intense. Here we evaluated PAE presence and distribution in street dust in Kaohsiung, the most industrialized city in Taiwan. Our results showed that PAEs were ubiquitous in fifty-two street-dust samples (levels of total PAEs 5.4-989.2 mg kg-1). Di-(2-ethylhexyl) phthalate was the most abundant congener observed and made up 85.0%, 79.7%, and 97.2% of the total PAEs found in industrial, residential and commercial areas, respectively. PAE levels in street dust in commercial areas (night markets) were significantly higher, suggesting a higher risk of contamination on people present in these areas (H value > χU2). In residential and commercial areas, the higher the intensity of human activity, the higher the PAE content observed. PAE content decreased progressively from the center to the outskirts of the Houjing night market, suggesting that the increased human and consumer activities inside this commercial hotspot were the main PAE source in street dust. Children had higher estimated daily intakes (DIs) than adults and dermal absorption contributed more to these levels than oral ingestion. Although all calculated DIs were below referenced danger thresholds, street dust PAEs in the area should remain an environmental concern especially since night markets play an important role in Taiwanese/Asian culture and economy. Contrary to other studies, PAEs in this study were found less related to industrial manufacturing activities but highly linked to commercial activities. These findings are relevant for future pollution prevention efforts dedicated to mitigating public exposure to PAEs. MAIN FINDINGS PAE levels in street dust are related to commercial activities. Night markets, an important commercial activity in Taiwan, were found to contribute considerably to PAE contamination in street dust.
Collapse
Affiliation(s)
- Sung-Tse Lee
- National Sun Yat-Sen University, Institute of Environmental Engineering, Kaohsiung 80424, Taiwan
| | - Chitsan Lin
- National Kaohsiung University of Science and Technology, Department of Marine Environmental Engineering, Kaohsiung 81157, Taiwan.
| | - Chi Thanh Vu
- The University of Alabama in Huntsville, Civil and Environmental Engineering Department, Huntsville, AL 35899, USA.
| | - Yi-Cyuan Chen
- National Kaohsiung University of Science and Technology, Department of Marine Environmental Engineering, Kaohsiung 81157, Taiwan
| | - Kang-Shin Chen
- National Sun Yat-Sen University, Institute of Environmental Engineering, Kaohsiung 80424, Taiwan
| | - Maria Ching Villanueva
- IFREMER, Laboratoire Biologies Halieutiques, STH, Z.I. Pointe du Diable BP 70, Plouzané, France
| |
Collapse
|
48
|
Marie C, Lémery D, Vendittelli F, Sauvant-Rochat MP. Phthalate Exposure in Pregnant Women: Risk Perception and Preventive Advice of Perinatal Health Professionals. Matern Child Health J 2018; 23:335-345. [DOI: 10.1007/s10995-018-2668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Bi C, Maestre JP, Li H, Zhang G, Givehchi R, Mahdavi A, Kinney KA, Siegel J, Horner SD, Xu Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. ENVIRONMENT INTERNATIONAL 2018; 121:916-930. [PMID: 30347374 DOI: 10.1016/j.envint.2018.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Juan P Maestre
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Ge Zhang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Environment and Energy Application Engineering, University of Science and Technology Beijing, Beijing, China
| | - Raheleh Givehchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Alireza Mahdavi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sharon D Horner
- School of Nursing, The University of Texas at Austin, TX, USA
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
50
|
Araki A, Bastiaensen M, Ait Bamai Y, Van den Eede N, Kawai T, Tsuboi T, Ketema RM, Covaci A, Kishi R. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. ENVIRONMENT INTERNATIONAL 2018; 119:438-446. [PMID: 30031263 DOI: 10.1016/j.envint.2018.07.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Phosphate flame retardants (PFRs) are ubiquitously detected in indoor environments. Despite increasing health concerns pertaining to PFR exposure, few epidemiological studies have examined PFR exposure and its effect on children's allergies. OBJECTIVES To investigate the association between PFRs in house dust, their metabolites in urine, and symptoms of wheeze and allergies among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. House dust samples were collected from upper-surface objects. Urine samples were collected from the first morning void. Levels of 11 PFRs in dust and 14 PFR metabolites in urine were measured. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood questionnaire. The odds ratios (ORs) of the Ln transformed PFR concentrations and categorical values were calculated using a logistic regression model adjusted for sex, grade, dampness index, annual house income, and creatinine level (for PFR metabolites only). RESULTS The prevalence rates of wheeze, rhinoconjunctivitis, and eczema were 22.7%, 36.7%, and 28.1%, respectively. A significant association between tris(1,3-dichloroisopropyl) phosphate (TDCIPP) in dust and eczema was observed: OR (95% confidence interval), 1.44 (1.13-1.82) (>limit of detection (LOD) vs <LOD). The ORs for rhinoconjunctivitis (OR = 5.01 [1.53-16.5]) and for at least one symptom of allergy (OR = 3.87 [1.22-12.3]) in the 4th quartile of Σtris(2-chloro-isopropyl) phosphate (TCIPP) metabolites was significantly higher than those in the 1st quartile, with significant p-values for trend (Ptrend) (0.013 and 0.024, respectively). A high OR of 2.86 (1.04-7.85) (>LOD vs <LOD) was found for hydroxy tris(2-butoxyethyl) phosphate (TBOEP)-OH and eczema. OR of the 3rd tertile of bis (1,3-dichloro-2-propyl) phosphate (BDCIPP) was higher than the 1st tertile as a reference for at least one symptom (OR = 3.91 [1.25-12.3]), with a significant Ptrend = 0.020. CONCLUSIONS We found that TDCIPP in house dust, and metabolites of TDCIPP, TBOEP and TCIPP were associated with children's allergic symptoms. Despite some limitations of this study, these results indicate that children's exposure to PFR may impact their allergic symptoms.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Rahel Mesfin Ketema
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan; Hokkaido University, Graduate School of Health Sciences, Kita 12, Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|