1
|
Ekdahl KN, Monie L, Juárez-Facio AT, Olofsson U, Mancini A, Tsyupa B, Elihn K, Nilsson B, Fromell K. The blood response to subway-derived iron nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104717. [PMID: 40378944 DOI: 10.1016/j.etap.2025.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
In this study, we investigated the impact of iron-rich nanoparticles derived from different locations in the subway on the innate immune system in blood. Nanoparticles were generated from Third Rail, Rail, and Wheel materials and characterized using several techniques. The response in a human whole-blood model was analyzed using ELISA and capillary immunoelectrophoresis. All nanoparticles were iron oxides, but Third Rail nanoparticles also contained Silicon and were highly thrombo-inflammatory, activating Factor XI-induced coagulation and pro-inflammatory kallikrein/kinin pathways. Wheel and Rail nanoparticles were less reactive, mainly activating the kallikrein/kinin pathway, leading to milder inflammatory reactions. The strong thrombo-inflammatory properties of Third Rail nanoparticles are attributed to their high Silicon content. None of the nanoparticles significantly activated the complement system. In conclusion, we found that the elemental composition of nanoparticles is crucial in determining whether activation leads to kallikrein/kinin system activation and bradykinin release or Factor XI activation and thrombosis.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden; Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.
| | - Lisa Monie
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| | - Ana T Juárez-Facio
- Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
| | - Alessandro Mancini
- Materials Engineering & Laboratories, Research & Development Department, Brembo N.V., Stezzano, BG 24040, Italy.
| | - Bozhena Tsyupa
- Materials Engineering & Laboratories, Research & Development Department, Brembo N.V., Stezzano, BG 24040, Italy.
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| |
Collapse
|
2
|
George JV, Hornburg KJ, Merrill A, Marvin E, Conrad K, Welle K, Gelein R, Chalupa D, Graham U, Oberdörster G, Johnson GA, Cory-Slechta DA, Sobolewski M. Brain iron accumulation in neurodegenerative disorders: Does air pollution play a role? Part Fibre Toxicol 2025; 22:9. [PMID: 40312348 PMCID: PMC12046710 DOI: 10.1186/s12989-025-00622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Both excess brain Fe and air pollution (AP) exposures are associated with increased risk for multiple neurodegenerative disorders. Fe is a redox-active metal that is abundant in AP and even further elevated in U.S. subway systems. Exposures to AP and associated contaminants, such as Fe, are lifelong and could therefore contribute to elevated brain Fe observed in neurodegenerative diseases, particularly via nasal olfactory uptake of ultrafine particle AP. These studies tested the hypotheses that exogenously generated Fe oxide nanoparticles could reach the brain following inhalational exposures and produce neurotoxic effects consistent with neurodegenerative diseases and disorders in adult C57/Bl6J mice exposed by inhalation to Fe nanoparticles at a concentration similar to those found in underground subway systems (~ 150 µg/m3) for 20 days. Olfactory bulb sections and exposure chamber TEM grids were analyzed for Fe speciation. Measures included brain volumetric and diffusivity changes; levels of striatal and cerebellar neurotransmitters and trans-sulfuration markers; quantification of frontal cortical and hippocampal Aβ42, total tau, and phosphorylated tau; and behavioral alterations in locomotor activity and memory. RESULTS Particle speciation confirmed similarity of Fe oxides (mostly magnetite) found on chamber TEM grids and in olfactory bulb. Alzheimer's disease (AD) like characteristics were seen in Fe-exposed females including increased olfactory bulb diffusivity, impaired memory, and increased accumulation of total and phosphorylated tau, with total hippocampal tau levels significantly correlated with increased errors in the radial arm maze. Fe-exposed males showed increased volume of the substantia nigra pars compacta, a region critical to the motor impairments seen in Parkinson's disease (PD), in conjunction with reduced volume of the trigeminal nerve and optic tract and chiasm. CONCLUSIONS Inhaled Fe oxide nanoparticles appeared to lead to olfactory bulb uptake. Further, these exposures reproduced characteristic features of neurodegenerative diseases in a sex-dependent manner, with females evidencing features similar to those seen in AD and effects in regions in males associated with PD. As such, prolonged inhaled Fe exposure via AP should be considered as a source of elevated brain Fe with aging, and as a risk factor for neurodegenerative diseases. The bases for dichotomous sex effects of inhaled Fe nanoparticles is as of yet unclear. Also as of yet unknown is how duration of such Fe exposures affect outcome, and/or whether exposures to inhaled Fe during early brain development enhances vulnerability to subsequent Fe exposures. Collectively, these findings suggest that regulation of air Fe levels, particularly in enclosed areas like subway stations, may have broad public health protective effects.
Collapse
Affiliation(s)
- Jithin V George
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kathryn J Hornburg
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kevin Welle
- Mass Spectrometry Core, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Uschi Graham
- Faraday Energy, Coldstream Research Park, Lexington, KY, 40511, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - G Allan Johnson
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Kuhn J, Vallabani NVS, Montes AM, Juárez-Facio AT, Introna M, Steimer SS, Patel A, Manem DB, Tsyupa B, Mancini A, Olofsson U, Elihn K, Karlsson HL. Unraveling toxicity of nanoparticles from different subway materials in lung epithelial cells and macrophages. ENVIRONMENTAL RESEARCH 2025; 271:121027. [PMID: 39909088 DOI: 10.1016/j.envres.2025.121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Nanoparticles (ultrafine particles) are prevalent in various environments and raise concerns due to their potential health effects. In this study, we aimed to enhance the understanding of the toxicity associated with nanoparticles generated within subway systems. Specifically, we investigated nanoparticles produced using spark discharge from electrodes made of the same material as the third rail (which provides electric power), rail, and wheel components in the Stockholm subway system. Characterization revealed that the generated nanoparticles typically had a primary size of 6-10 nm and exhibited high agglomeration. They consisted mainly of iron, along with varying amounts of manganese and silicon. Despite having low oxidative potential, they showed some cytotoxicity and clearly induced DNA strand breaks in both dTHP-1 cells (monocyte-derived macrophages) and A549 cells (lung epithelial cells). In addition, gene expression analysis showed an upregulation of the cytokine IL-8 in dTHP-1 cells. No increased release of IL-1β, IL-8, IL-6, and TNF-a was noted. Consistent differences in toxicity between the nanoparticles from different materials were not observed. In conclusion, the results show that subway-related nanoparticles can cause DNA damage in cultured lung cells, but the inflammatory potential in terms of cytokine release was limited.
Collapse
Affiliation(s)
- Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Andrea Montano Montes
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ana T Juárez-Facio
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Micol Introna
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Anil Patel
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Divya Bharathi Manem
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Bozhena Tsyupa
- Brembo N.V., Materials Engineering & Laboratories, R&D, Stezzano, Bergamo, 24040, Italy
| | - Alessandro Mancini
- Brembo N.V., Materials Engineering & Laboratories, R&D, Stezzano, Bergamo, 24040, Italy
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Martins C, Teófilo V, Clemente M, Corda M, Fermoso J, Aguado A, Rodriguez S, Moshammer H, Kristian A, Ferri M, Costa-Ruiz B, Pérez L, Hanke W, Badyda A, Kepa P, Affek K, Doskocz N, Martín-Torrijos L, Mulayim MO, Martinez CM, Gómez A, González R, Cano I, Roca J, de Leede S, Viegas S. Sources, levels, and determinants of indoor air pollutants in Europe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178574. [PMID: 39855122 DOI: 10.1016/j.scitotenv.2025.178574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Clean air is a requirement for life, and the quality of indoor air is a health determinant since people spend most of their daily time indoors. The aim of this study was to systematically review the available evidence regarding the sources, determinants and concentrations of indoor air pollutants in a set of scenarios under study in K-HEALTHinAIR project. To this end, a systematic review was performed to review the available studies published between the years 2013-2023, for several settings (schools, homes, hospitals, lecture halls, retirement homes, public transports and canteens), conducted in Europe, where sources and determinants of the indoor pollutants concentrations was assessed. After a two-stage screening in abstract and full-text, 148 papers were included for data extraction. For particulate matter, carbon dioxide and volatile organic compounds, several emission sources were identified (occupancy, human activities, resuspension, cleaning products, disinfectants, craft activities, cooking, smoking), with ventilation, number of occupants, building characteristics, being considered as important determinants. This review made also possible to discuss some of the actions that are already in place or should be implemented in the future to prevent and control the presence of pollutants indoors.
Collapse
Affiliation(s)
- Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.
| | - Vânia Teófilo
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Marta Clemente
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Mariana Corda
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | | | | | | | - Hanns Moshammer
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | - Alexandra Kristian
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | | | | | | | | | - Artur Badyda
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Piotr Kepa
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Katarzyna Affek
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Nina Doskocz
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Laura Martín-Torrijos
- Department of Mycology at Real Jardín Botánico, CSIC (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Mehmet Oguz Mulayim
- Artificial Intelligence Research Institute (IIIA), CSIC, Campus de la UAB, Cerdanyola del Vallès 08193, Spain
| | | | - Alba Gómez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ruben González
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Isaac Cano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Josep Roca
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Simon de Leede
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Sauvain JJ, Wild P, Charreau T, Jouannique V, Sakthithasan K, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Are metals in exhaled breath condensate and urine associated with oxidative/nitrosative stress and metabolism-related biomarkers? Results from 303 randomly selected Parisian subway workers. ENVIRONMENT INTERNATIONAL 2025; 196:109325. [PMID: 39952202 DOI: 10.1016/j.envint.2025.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Subway particles can cause oxidative stress, with metals being a key factor. Only few epidemiological studies have examined the role of metal mixtures in this effect for subway workers. OBJECTIVES This cross-sectional study examined the relationship between metal concentrations in exhaled breath condensate (EBC) and urine, and biomarkers of oxidative/nitrosative stress and metabolism in subway workers. METHODS The study involved 303 randomly selected Parisian metro workers exposed to various levels of subway particles. Metals in EBC and urine were measured using ICP-MS, and biomarkers were analyzed through liquid chromatography-mass spectrometry. Factor analysis as dimension reduction strategy and cluster analysis to account for metal mixtures and multiple multi-media effect biomarkers was used along with multivariable linear regression analysis on factor variables adjusted for potential confounders. RESULTS Significant positive associations were observed between urinary metals and oxidative stress biomarkers, despite similar metal levels in workers and the general population. Metals in EBC were linked to nitrosative stress and other metabolites in EBC. Worker occupation correlated with small chain fatty acids in EBC and urinary levels of barium and titanium. Smoking was associated with effect biomarkers but not with exposure biomarkers. CONCLUSIONS Elevated metal levels in EBC and urine are associated with altered bronchopulmonary metabolites and increased systemic oxidative stress. While Ba and Ti may originate from brake wear, other metals identified in EBC and urine are not clearly related with subway particles and may be from non-occupational sources. Smoking showed a stronger relationship with the workers' oxidative stress status than occupation.
Collapse
Affiliation(s)
- J J Sauvain
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - P Wild
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - T Charreau
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - V Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - K Sakthithasan
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - A Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - G Suárez
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - N B Hopf
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - I Guseva Canu
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| |
Collapse
|
6
|
Luglio DG, Farrell KR, Gordon T. A pilot study of the cardiopulmonary effects in healthy volunteers after exposure to high levels of PM 2.5 in a New York City subway station. Part Fibre Toxicol 2024; 21:42. [PMID: 39379984 PMCID: PMC11460011 DOI: 10.1186/s12989-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Subway systems are becoming increasingly common worldwide transporting large populations in major cities. PM2.5 concentrations have been demonstrated to be exceptionally high when underground, however. Studies on the impact of subway PM exposure on cardiopulmonary health in the United States are limited. METHODS Healthy volunteers in New York City were exposed to a 2-h visit on the 9th Street Station platform on the Port Authority Trans-Hudson train system. Blood pressure, heart rate variability (HRV), spirometry, and forced impulse oscillometry were measured, and urine, blood spot, and nasal swab biosamples were collected for cytokine analysis at the end of the 2-h exposure period. These endpoints were compared against individual control measurements collected after 2-h in a "clean" control space. In addition to paired comparisons, mixed effects models with subject as a random effect were employed to investigate the effect of the PM2.5 concentrations and visit type (i.e., subway vs. control). RESULTS Mean PM2.5 concentrations on the platform and during the control visit were 293.6 ± 65.7 (SD) and 4.6 ± 1.9 µg/m3, respectively. There was no change in any of the health metrics, but there was a non-significant trend for SDNN to be lower after subway exposure compared to control exposure. Total symptomatic scores did increase post-subway exposure compared to reported values prior to exposure or after the control visit. No significant changes in cytokine concentrations in any specimen type were observed. Mixed-effects models mostly corroborated these paired comparisons. CONCLUSIONS Acute exposures to PM on a subway platform do not cause measurable cardiopulmonary effects apart from reductions in HRV and increases in symptoms in healthy volunteers. These findings match other studies that found little to no changes in lung function and blood pressure after exposure in underground subway stations. Future work should still target potentially more vulnerable populations, such as individuals with asthma or those who spend increased time underground on the subway such as transit workers.
Collapse
Affiliation(s)
- David G Luglio
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Kayla Rae Farrell
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Terry Gordon
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
8
|
Ramel-Delobel M, Peruzzi C, Coudon T, De Vito S, Fattoruso G, Praud D, Fervers B, Salizzoni P. Exposure to airborne particulate matter during commuting using portable sensors: Effects of transport modes in a French metropolis study case. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121400. [PMID: 38936028 DOI: 10.1016/j.jenvman.2024.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Outdoor exposure to particulate matter (PM2.5 and PM10) in urban areas can vary considerably depending on the mode of transport. This study aims to quantify this difference in exposure during daily travel, by carrying out a micro-sensor measurement campaign. The pollutant exposure was assessed simultaneously over predefined routes in order to allow comparison between different transport modes having the same starting and ending points. During the six-week measurement campaign, the average reference values for PM background concentrations were 13.72 and 17.92μg/m3 for the PM2.5 and PM10, respectively. The results revealed that the mode with the highest exposure to PM2.5 adjusted to background concentration (PM2.5Norm) was the bus (1.65) followed by metro (1.51), walking (1.33), tramway (1.31), car (1.09) and finally the bike (1.06). For PM10Norm, the tramway had the highest exposure (1.86), followed by walking (1.68), metro (1.65), bus (1.61), bike (1.43) and finally the car (1.39). The level of urbanization around the route and the presence of preferential lanes for public transportation influenced the concentration to which commuters were exposed. For the active modes (bike and walking), we observed frequent variations in concentrations during the trip, characterized by punctual peaks in concentration, depending on the local characteristics of road traffic and urban morphology. Fluctuations in particulate matter inside public transport vehicles were partly explained by the opening and closing of doors during stops, as well as the passenger flows, influencing the re-suspension of particles. The car was one of the least exposed modes overall, with the lowest concentration variability, although these concentrations can vary greatly depending on the ventilation parameters used. These results encourage measures to move the most exposed users away from road traffic, by developing a network of lanes entirely dedicated to cycling and walking, particularly in densely populated areas, as well as encouraging the renewal of motorized vehicles to use less polluting fuels with efficient ventilation systems.
Collapse
Affiliation(s)
- Marie Ramel-Delobel
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France; Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France.
| | - Cosimo Peruzzi
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France
| | - Thomas Coudon
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Saverio De Vito
- Italian National Agency for New Technologies (ENEA), Division for Photovoltaic and Smart Devices (TERIN-FSD), Piazzale E. Fermi 1, 80055 Portici (NA), Italy
| | - Grazia Fattoruso
- Italian National Agency for New Technologies (ENEA), Division for Photovoltaic and Smart Devices (TERIN-FSD), Piazzale E. Fermi 1, 80055 Portici (NA), Italy
| | - Delphine Praud
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France; Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (TO), Italy
| |
Collapse
|
9
|
Wang Z, Liu J, Yao M, He M, Shang W, Dong X. Indoor air quality and sick-building syndrome at a metro station in Tianjin, China. ENVIRONMENT INTERNATIONAL 2024; 187:108673. [PMID: 38663235 DOI: 10.1016/j.envint.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Metro systems play a crucial role in public transportation worldwide. Given that metro stations are unique built environments with a significant volume of daily commuters, ensuring a satisfactory air quality in these spaces becomes paramount. This study involved measurements of indoor air quality (IAQ), staff satisfaction, particulate matter (PM) chemical composition, and heavy metal health risks at a typical metro station in Tianjin over two seasons. Although the air exchange rate was sufficient to maintain a CO2 concentration less than 1000 ppm, the proportion of staff reporting no sick-building symptoms decreased from 83 % in spring to 25 % in winter. An average mass concentration of PM with an aerodynamic diameter smaller than 2.5 μm (PM2.5) of 68.0 ± 42.2 μg/m3 and an average PM1 mass concentration of 51.8 ± 33.3 μg/m3 were observed on the platform in winter. PM2.5 contained more metal in winter than in spring. PM2.5 in winter contained more metal in winter than in spring. With a lower relative humidity in winter, the coefficient of friction between railway wheels and rails increased, thus increasing particle emission. The carcinogenic risk of Cr on the platform was unacceptable. Moreover, the health risks induced by Ba should be investigated. The findings indicate that PM control at metro stationss, particularly on platforms in winter, should be emphasized.
Collapse
Affiliation(s)
- Zukun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mingyao Yao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Mingtong He
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Wenzhe Shang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xinyue Dong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Neukirchen C, Meiners T, Bendl J, Zimmermann R, Adam T. Automated SEM/EDX imaging for the in-depth characterization of non-exhaust traffic emissions from the Munich subway system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170008. [PMID: 38220016 DOI: 10.1016/j.scitotenv.2024.170008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A SEM/EDX based automated measurement and classification algorithm was tested as a method for the in-depth analysis of micro-environments in the Munich subway using a custom build mobile measurements system. Sampling was conducted at platform stations, to investigate the personal exposure of commuters to subway particulate matter during platform stays. EDX spectra and morphological features of all analyzed particles were automatically obtained and particles were automatically classified based on pre-defined chemical and morphological boundaries. Source apportionment for individual particles, such as abrasion processes at the wheel-brake interface, was partially possible based on the established particle classes. An average of 98.87 ± 1.06 % of over 200,000 analyzed particles were automatically assigned to the pre-defined classes, with 84.68 ± 16.45 % of particles classified as highly ferruginous. Manual EDX analysis further revealed, that heavy metal rich particles were also present in the ultrafine size range well below 100 nm.
Collapse
Affiliation(s)
- Carsten Neukirchen
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Thorsten Meiners
- Oxford Instruments GmbH, Borsigstraße 15 A, 652025 Wiesbaden, Germany
| | - Jan Bendl
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Department Environmental Health, Helmholtz Munich, Gmunder Str. 37, 81379 München, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Thomas Adam
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Department Environmental Health, Helmholtz Munich, Gmunder Str. 37, 81379 München, Germany
| |
Collapse
|
11
|
Park EJ, Yang MJ, Kang MS, Jo YM, Yoon C, Kim HB, Kim DW, Lee GH, Kwon IH, Park HJ, Kim JB. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements. Toxicology 2023; 496:153618. [PMID: 37611816 DOI: 10.1016/j.tox.2023.153618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With its increasing value as a means of public transportation, the health effects of the air in subway stations have attracted public concern. In the current study, we investigated the pulmonary toxicity of dust collected from an air purifier installed on the platform of the busiest subway station in Seoul. We found that the dust contained various elements which are attributable to the facilities and equipment used to operate the subway system. Particularly, iron (Fe), chromium (Cr), zirconium (Zr), barium (Ba), and molybdenum (Mo) levels were more notable in comparison with those in dust collected from the ventilation chamber of a subway station. To explore the health effects of inhaled dust, we first instilled via the trachea in ICR mice for 13 weeks. The total number of pulmonary macrophages increased significantly with the dose, accompanying hematological changes. Dust-laden alveolar macrophages and inflammatory cells accumulated in the perivascular regions in the lungs of the treated mice, and pulmonary levels of CXCL-1, TNF-α, and TGF-β increased clearly compared with the control. The CCR5 and CD54 level expressed on BAL cell membranes was also enhanced following exposure to dust, whereas the CXCR2 level tended to decrease in the same samples. In addition, we treated the dust to alveolar macrophages (known as dust cells), lysosomal and mitochondrial function decreased, accompanied by cell death, and NO production was rapidly elevated with concentration. Moreover, the expression of autophagy- (p62) and anti-oxidant (SOD-2)-related proteins increased, and the expression of inflammation-related genes was dramatically up-regulated in the dust-treated cells. Therefore, we suggest that dysfunction of alveolar macrophages may importantly contribute to dust-induced inflammatory responses and that the exposure concentrations of Cr, Fe, Mo, Zr, and Ba should be considered carefully when assessing the health risks associated with subway dust. We also hypothesize that the bound elements may contribute to dust-induced macrophage dysfunction by inhibiting viability.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea; Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, 17104, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, 28119, Republic of Korea
| | - Hyun-Bin Kim
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik-Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Hee-Jin Park
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
12
|
Azad S, Luglio DG, Gordon T, Thurston G, Ghandehari M. Particulate matter concentration and composition in the New York City subway system. ATMOSPHERIC POLLUTION RESEARCH 2023; 14:101767. [PMID: 37275568 PMCID: PMC10237451 DOI: 10.1016/j.apr.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the concentration and composition of particulate matter (PM2.5) in the New York City subway system. Realtime measurements, at a one-second cadence, and gravimetric measurements were performed inside train cars along 300 kilometers of nine subway lines, as well as on 333 platforms from 287 subway stations. The mean (±SD) PM2.5 concentration on the underground platforms was 142 ± 69 μg/m3 versus 29 ± 20 μg/m3 for aboveground stations. The average Concentrations inside train cars were 88 ± 14 μg/m3 when traveling through underground tunnels and platforms and 29 ± 31 μg/m3 while on aboveground tracks. The particle composition analysis of filtered samples was done using X-ray fluorescence (XRF), revealing that iron made up approximately 43% of the total PM2.5 mass on station platforms, around 126 times higher than the outdoor ambient iron concentration. Other trace elements include silicon, sulfur, copper, nickel, aluminum, calcium, barium, and manganese. Considering the very high iron content, the comparative analysis of the measured concentration versus the standards set by the Environmental Protection Agency (US EPA) is questionable since those limits are largely based on particulate matter from fossil fuel combustion. Health impact analysis of iron-based particles will complement the study results presented here.
Collapse
Affiliation(s)
- Shams Azad
- Department of Civil and Urban Engineering, New York University, Tandon School of Engineering, Brooklyn, New York, USA
| | - David G. Luglio
- Department of Medicine, New York University Langone Health, New York, New York, USA
| | - Terry Gordon
- Department of Medicine, New York University Langone Health, New York, New York, USA
| | - George Thurston
- Department of Medicine, New York University Langone Health, New York, New York, USA
| | - Masoud Ghandehari
- Department of Civil and Urban Engineering, New York University, Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
13
|
Yang J, Fan X, Zhang H, Zheng W, Ye T. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161781. [PMID: 36708828 DOI: 10.1016/j.scitotenv.2023.161781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Due to the rapidly increasing ridership and the relatively enclosed underground space, the indoor air quality (IAQ) in underground subway stations (USSs) has attracted more public attention. The air pollutants in USSs, such as particulate matter (PM), CO2 and volatile organic compounds (VOCs), are hazardous to the health of passengers and staves. Firstly, this paper presents a systematic review on the characteristics and sources of air pollutants in USSs. According to the review work, the concentrations of PM, CO2, VOCs, bacteria and fungi in USSs are 1.1-13.2 times higher than the permissible concentration limits specified by WHO, ASHRAE and US EPA. The PM and VOCs are mainly derived from the internal and outdoor sources. CO2 concentrations are highly correlated with the passenger density and the ventilation rate while the exposure levels of bacteria and fungi depend on the thermal conditions and the settled dust. Then, the online monitoring, fault detection and prediction methods of IAQ are summarized and the advantages and disadvantages of these methods are also discussed. In addition, the available control strategies for improving IAQ in USSs are reviewed, and these strategies are classified and compared from different viewpoints. Lastly, challenges of the IAQ management in the context of the COVID-19 epidemic and several suggestions for underground stations' IAQ management in the future are put forward. This paper is expected to provide a comprehensive guidance for further research and design of the effective prevention measures on air pollutants in USSs so as to achieve more sustainable and healthy underground environment.
Collapse
Affiliation(s)
- Junbin Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xianwang Fan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Huan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| | - Wandong Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China.
| | - Tianzhen Ye
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| |
Collapse
|
14
|
Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski MM, Pain CC, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AE. Characteristics of fine and ultrafine aerosols in the London underground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159315. [PMID: 36283528 DOI: 10.1016/j.scitotenv.2022.159315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM0.1), fine (PM0.1-2.5) and coarse (PM2.5-10) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5, PM2.5-10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 μg m-3) and PM2.5 (34 μg m-3) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1), highlight the need to improve the ventilation conditions.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland; School of Architecture, Southeast University, Nanjing, China.
| | - Juan C Zavala-Reyes
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK; Escuela Nacional de Estudios Superiores, Unidad Mérida, UNAM, Carretera Mérida-Tetiz, Km 4.5, Ucú, Yucatán, 97357, Mexico
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | | | - Gloria Young
- Department of Materials, Imperial College London, London, UK
| | - Ian Mudway
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Claire Dilliway
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Ramzi Lakhdar
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Sharon Mumby
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Christopher C Pain
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Kappelt N, Russell HS, Fessa D, Ryswyk KV, Hertel O, Johnson MS. Particulate air pollution in the Copenhagen metro part 1: Mass concentrations and ventilation. ENVIRONMENT INTERNATIONAL 2023; 171:107621. [PMID: 36493608 DOI: 10.1016/j.envint.2022.107621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The Copenhagen Metro comprises four lines, the M1, M2, M3 and M4, with 25 subterranean stations and an additional 14 stations above ground, serving ca. 80 million passengers annually. In this study we measure fine particulate matter (PM2.5) and carbon dioxide (CO2) concentrations in stations and in trains across the entire system. In partially underground lines, high PM2.5 concentrations with an average of 109 μg m-3 are found in below-ground stations. The observed correlation between PM2.5 concentration and distance between a station and a tunnel exit is attributed to ventilation via the piston effect. The piston effect via tunnel draught relief shafts was therefore found to be relatively limited. Filter samples of particulate matter are analysed using particle-induced X-ray emission and show an iron content of 88.6 % by mass which is quite different from above-ground particulate matter and consistent with particle production by train wheels, rails and brakes. The average concentration measured at the stations of a recently opened (2019) fully underground M3 closed loop line is 168 μg m-3, further demonstrating that while piston effect-driven ventilation is effective in close proximity to tunnel openings, it is relatively limited via tunnel draught relief shafts. Measurements onboard trains show even higher PM2.5 concentrations and the patterns in CO2 concentrations suggest carriage ventilation by tunnel air. Ventilation via doors during platform stops caused a drop in observed PM (and CO2) at stations, but the system is surprisingly polluted despite its recent construction. CO2 mixing ratios ranged from ambient to around 600 ppm. Measures should be taken to control PM levels using a combination of source control and increased clean air supply of the Copenhagen and other similar metro systems.
Collapse
Affiliation(s)
- Niklas Kappelt
- Department of Chemistry, Copenhagen University, DK-2100 Copenhagen, Denmark; Airlabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
| | - Hugo S Russell
- Airlabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark; Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
| | - Dafni Fessa
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
| | - Keith Van Ryswyk
- Air Health Science Division, Health Canada, Ottawa K1A 0K9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Ole Hertel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark; Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Matthew S Johnson
- Department of Chemistry, Copenhagen University, DK-2100 Copenhagen, Denmark; Airlabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Sheikh HA, Tung PY, Ringe E, Harrison RJ. Magnetic and microscopic investigation of airborne iron oxide nanoparticles in the London Underground. Sci Rep 2022; 12:20298. [PMID: 36522360 PMCID: PMC9755232 DOI: 10.1038/s41598-022-24679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Particulate matter (PM) concentration levels in the London Underground (LU) are higher than London background levels and beyond World Health Organization (WHO) defined limits. Wheel, track, and brake abrasion are the primary sources of particulate matter, producing predominantly Fe-rich particles that make the LU microenvironment particularly well suited to study using environmental magnetism. Here we combine magnetic properties, high-resolution electron microscopy, and electron tomography to characterize the structure, chemistry, and morphometric properties of LU particles in three dimensions with nanoscale resolution. Our findings show that LU PM is dominated by 5-500 nm particles of maghemite, occurring as 0.1-2 μm aggregated clusters, skewing the size-fractioned concentration of PM artificially to larger sizes when measured with traditional monitors. Magnetic properties are largely independent of the PM filter size (PM10, PM4, and PM2.5), and demonstrate the presence of superparamagnetic (< 30 nm), single-domain (30-70 nm), and vortex/pseudo-single domain (70-700 nm) signals only (i.e., no multi-domain particles > 1 µm). The oxidized nature of the particles suggests that PM exposure in the LU is dominated by resuspension of aged dust particles relative to freshly abraded, metallic particles from the wheel/track/brake system, suggesting that periodic removal of accumulated dust from underground tunnels might provide a cost-effective strategy for reducing exposure. The abundance of ultrafine particles identified here could have particularly adverse health impacts as their smaller size makes it possible to pass from lungs to the blood stream. Magnetic methods are shown to provide an accurate assessment of ultrafine PM characteristics, providing a robust route to monitoring, and potentially mitigating this hazard.
Collapse
Affiliation(s)
- H. A. Sheikh
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ UK
| | - P. Y. Tung
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ UK ,grid.5335.00000000121885934Department of Materials Sciences, University of Cambridge, Cambridge, CB3 0FS UK
| | - E. Ringe
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ UK ,grid.5335.00000000121885934Department of Materials Sciences, University of Cambridge, Cambridge, CB3 0FS UK
| | - R. J. Harrison
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ UK
| |
Collapse
|
17
|
Wong YJ, Shiu HY, Chang JHH, Ooi MCG, Li HH, Homma R, Shimizu Y, Chiueh PT, Maneechot L, Nik Sulaiman NM. Spatiotemporal impact of COVID-19 on Taiwan air quality in the absence of a lockdown: Influence of urban public transportation use and meteorological conditions. JOURNAL OF CLEANER PRODUCTION 2022; 365:132893. [PMID: 35781986 PMCID: PMC9234473 DOI: 10.1016/j.jclepro.2022.132893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 05/19/2023]
Abstract
The unprecedented outbreak of COVID-19 significantly improved the atmospheric environment for lockdown-imposed regions; however, scant evidence exists on its impacts on regions without lockdown. A novel research framework is proposed to evaluate the long-term monthly spatiotemporal impact of COVID-19 on Taiwan air quality through different statistical analyses, including geostatistical analysis, change detection analysis and identification of nonattainment pollutant occurrence between the average mean air pollutant concentrations from 2018-2019 and 2020, considering both meteorological and public transportation impacts. Contrary to lockdown-imposed regions, insignificant or worsened air quality conditions were observed at the beginning of COVID-19, but a delayed improvement occurred after April in Taiwan. The annual mean concentrations of PM10, PM2.5, SO2, NO2, CO and O3 in 2020 were reduced by 24%, 18%, 15%, 9.6%, 7.4% and 1.3%, respectively (relative to 2018-2019), and the overall occurrence frequency of nonattainment air pollutants declined by over 30%. Backward stepwise regression models for each air pollutant were successfully constructed utilizing 12 meteorological parameters (R2 > 0.8 except for SO2) to simulate the meteorological normalized business-as-usual concentration. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model simulated the fate of air pollutants (e.g., local emissions or transboundary pollution) for anomalous months. The changes in different public transportation usage volumes (e.g., roadway, railway, air, and waterway) moderately reduced air pollution, particularly CO and NO2. Reduced public transportation use had a more significant impact than meteorology on air quality improvement in Taiwan, highlighting the importance of proper public transportation management for air pollution control and paving a new path for sustainable air quality management even in the absence of a lockdown.
Collapse
Affiliation(s)
- Yong Jie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 520-0811, Japan
| | - Huan-Yu Shiu
- Graduate Institute of Environmental Engineering, National Taiwan University, 10617, Taiwan
| | - Jackson Hian-Hui Chang
- Department of Atmospheric Sciences, National Central University, 32001, Taiwan
- Preparatory Center for Science and Technology (PPST), Universiti Malaysia Sabah, 88400, Malaysia
| | - Maggie Chel Gee Ooi
- Institute of Climate Change, National University of Malaysia (UKM), Bangi, 43600, Malaysia
| | - Hsueh-Hsun Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 10617, Taiwan
| | - Ryosuke Homma
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 520-0811, Japan
| | - Yoshihisa Shimizu
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 520-0811, Japan
| | - Pei-Te Chiueh
- Graduate Institute of Environmental Engineering, National Taiwan University, 10617, Taiwan
| | - Luksanaree Maneechot
- Environmental Engineering and Disaster Management Program, School of Interdisciplinary Studies, Mahidol University Kanchanaburi Campus (MUKA), Kanchanaburi, 71150, Thailand
| | - Nik Meriam Nik Sulaiman
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Yue L, Qidian L, Jiawei W, Rou X, Miao H. Acute iron oxide nanoparticles exposure induced murine eosinophilic airway inflammation via TLR2 and TLR4 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:925-935. [PMID: 34982504 DOI: 10.1002/tox.23455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (Fe2 O3 NPs) is the main component of air pollution particles in urban rail transit environment. People are more exposed to Fe2 O3 NPs, however, the studies on relationship between Fe2 O3 NPs and respiratory health are limited. In the present study, acute airway inflammation caused by Fe2 O3 NPs and its possible mechanism were investigated. BALB/c mice were intratracheally challenged with different concentrations of Fe2 O3 NPs. Fe2 O3 NPs induced bronchial epithelial barrier function damage, infiltration of neutrophils and lymphocytes into the airway submucosa, secretion of mucus in the airway epithelium and elevated expression of eosinophil major basic protein (EMBP) in lungs. Compared with the control group, Fe2 O3 NPs increased eosinophils by 20 times in bronchoalveolar lavage fluid (BALF), and markedly increased eosinophils related cytokines and chemokines, including interleukin (IL) -5, IL-33, thymic stromal lymphopoietin (TSLP), monocyte chemotactic protein (MCP)-3, eotaxin, tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC). Furthermore, Fe2 O3 NPs up-regulated levels of IL-5, MCP-3, eotaxin, and KC in serum. In vitro studies showed that Fe2 O3 NPs increased the genes and proteins expression of Toll-like receptors (TLR)-2, TLR4, TNF receptor associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), nuclear factor (NF)-κB, and TNF-α in RAW267.4 cells. The downstream inflammatory cytokine protein expression and release such as TNF-α was significantly decreased after using TLR2/TLR4 inhibitor OxPAPC, but not MyD88 inhibitor ST2825. These results suggest that TLR2 and TLR4 played important role in Fe2 O3 NPs inducing acute eosinophilic airway inflammation in the murine lung.
Collapse
Affiliation(s)
- Liang Yue
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Li Qidian
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Wang Jiawei
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - Xue Rou
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| | - He Miao
- Department of Environmental Health, School of Public Health, China Medical University, Key Laboratory of Environmental Health Damage Research and Assessment, Liaoning Province, China
| |
Collapse
|
19
|
Chen Y, Zhang W, Dong C, Hutchinson SM, Feng H. Characteristics of iron-containing magnetic particles in household dust from an urban area: A case study in the megacity of Shanghai. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127212. [PMID: 34879540 DOI: 10.1016/j.jhazmat.2021.127212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In order to characterize the magnetic properties and trace sources of household dust particles, magnetic measurements, geochemical and SEM/TEM analyses were performed on vacuum dust from 40 homes in Shanghai, China. Iron-containing magnetic particles (IMPs) in the household dust were dominated by magnetite, while maghemite, hematite and metallic iron were also present. The IMPs were mainly composed of coarse-grained particles (e.g., >0.1 µm). Ultrafine superparamagnetic (SP) grains (<30 nm) increased proportionately with the abundance of the total IMPs. Household dust had more and coarser IMPs than background soil, but less and finer IMPs than street dust and industrial emissions (coal combustion and metallurgy). Metallic Fe and spherical IMPs, originating from brake wear abrasion and coal combustion, respectively, have been observed using the SEM/TEM. Contents of magnetic particles were positively correlated to Mo, Ni and Sb, while HIRM was associated with As, Mo, Pb and Sb. The multiple lines of evidence including magnetic measurements, geochemical and SEM/TEM analyses suggested that industrial and traffic emissions and street dust were dominant contributors to the IMPs. Such an approach can help to establish more precisely the sources of household dust particles and could be applied to other indoor contexts and further urban environments.
Collapse
Affiliation(s)
- Yinglu Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 201100, PR China
| | - Weiguo Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 201100, PR China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Simon M Hutchinson
- School of Science, Engineering and Environment, University of Salford, Gt. Manchester M5 4WT, UK
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
20
|
Ingo GM, Riccucci C, Pisani G, Pascucci M, D'Ercole D, Guerriero E, Boccaccini F, Falso G, Zambonini G, Paolini V, Di Carlo G. The vehicle braking systems as main source of inhalable airborne magnetite particles in trafficked areas. ENVIRONMENT INTERNATIONAL 2022; 158:106991. [PMID: 34991252 DOI: 10.1016/j.envint.2021.106991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Magnetite (Fe3O4) nano-particles (MNPs) have been found in human tissues and causally linked to serious illnesses. The possible negative role of MNPs has been not still fully ascertained even though MNPs might cause health effects due to their magnetic property, redox activity and surface charge. The origin of MNPs in human tissues still remains to be unambiguously identified since biological processes, natural phenomena and anthropogenic production have been proposed. According to this latter increasingly convincing hypothesis, anthropogenic MNPs might enter mainly in the human body via inhalation, penetrate deeply into the lungs and in the alveoli and also migrate into the blood circulation and gather in the extrapulmonary organs and central nervous system. In order to identify the releasing source of the potentially inhalable MNPs, we pioneered an innovative approach to rapidly investigate elemental profile and morphology of a large number of airborne micron and sub-micron-sized Fe-bearing particles (FePs). The study was performed by collecting a large amount of micron and sub-micron sized inhalable airborne FePs in trafficked and densely frequented areas of Rome (Italy). Then, we have investigated individually the elemental profile and morphology of the collected particles by means of high-spatial resolution scanning electron microscopy, energy dispersive spectroscopy and an automated software purposely developed for the metal-bearing particles analysis. On the basis of specific elemental tracing features, the investigation reveals that almost the total amount of the airborne FePs is released by the vehicle braking systems mainly in the form of magnetite. Furthermore, we point out that our approach might be more generally used to identify the releasing sources of different inorganic airborne particles and to contribute to establish more accurately the impact of specific natural or anthropogenic particles on the environment and human health.
Collapse
Affiliation(s)
- Gabriel M Ingo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy.
| | - Cristina Riccucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gianluca Pisani
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Marianna Pascucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Daniele D'Ercole
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Ettore Guerriero
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Francesca Boccaccini
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy; University of Rome "Sapienza", p.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Falso
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Gianpaolo Zambonini
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Valerio Paolini
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gabriella Di Carlo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| |
Collapse
|
21
|
Bista S, Dureau C, Chaix B. Personal exposure to concentrations and inhalation of black carbon according to transport mode use: The MobiliSense sensor-based study. ENVIRONMENT INTERNATIONAL 2022; 158:106990. [PMID: 34991251 DOI: 10.1016/j.envint.2021.106990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Epidemiological evidence suggests that motorized vehicle users have a higher air pollutant exposure (especially from vehicle exhaust) than active (walking or cycling) transport users. However, studies often relied on insufficiently diverse sample and ignored that minute ventilation has an effect on individuals' inhaled dose. This study examined commuters' breathing zone concentration and inhaled doses of black carbon (BC) when travelling by different transport modes in the Grand Paris region. METHODS Personal exposure to BC was continuously measured with MicroAethalometer (MicroAeth AE51) portable monitors strapped on participants' shoulder with tube inlet at the level of the neck (breathing zone), and inhaled doses were derived from several methods estimating ventilation [based on metabolic equivalents from accelerometry [METs], heart rate, and breathing rate]. Trip stages and transport modes were assessed from GPS and mobility survey data. Breathing zone concentrations and inhaled doses of BC were compared across transport modes at the trip stage level (n = 7495 for 283 participants) using linear mixed effect models with a random intercept at individual level. RESULTS Trip stages involving public transport and private motorized transport were associated with a 2.20 µg/m3 (95% CI: 1.99, 2.41) and 2.29 µg/m3 (95% CI: 2.10, 2.48) higher breathing zone concentration to BC than walking, respectively. Trip stages with other active modes had a 0.41 µg (95% CI: 0.25, 0.57) higher inhaled dose, while those involving public transport and private motorized transport had a 0.25 µg (95% CI: -0.35, -0.15) and 0.19 µg (95 %CI: -0.28, -0.10) lower inhaled dose of BC per 30 min than walking. CONCLUSION The ranking of transport modes in terms of personal exposure was markedly different when breathing zone concentrations and inhaled doses were considered. Future studies should take both into account to explore the relationship of air pollutants in transport microenvironments with physiological response.
Collapse
Affiliation(s)
- Sanjeev Bista
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France.
| | - Clélie Dureau
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| | - Basile Chaix
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| |
Collapse
|
22
|
Gonet T, Maher BA, Nyirő-Kósa I, Pósfai M, Vaculík M, Kukutschová J. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117808. [PMID: 34329055 DOI: 10.1016/j.envpol.2021.117808] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution has been associated with a variety of respiratory, cardiovascular and neurological problems, resulting in increased morbidity and mortality worldwide. Brake-wear emissions are one of the major sources of metal-rich airborne particulate pollution in roadside environments. Of potentially bioreactive metals, Fe (especially in its ferrous form, Fe2+) might play a specific role in both neurological and cardiovascular impairments. Here, we collected brake-wear particulate emissions using a full-scale brake dynamometer, and used a combination of magnetic measurements and electron microscopy to make quantitative evaluation of the magnetic composition and particle size of airborne emissions originating from passenger car brake systems. Our results show that the concentrations of Fe-rich magnetic grains in airborne brake-wear emissions are very high (i.e., ~100-10,000 × higher), compared to other types of particulate pollutants produced in most urban environments. From magnetic component analysis, the average magnetite mass concentration in total PM10 of brake emissions is ~20.2 wt% and metallic Fe ~1.6 wt%. Most brake-wear airborne particles (>99 % of particle number concentration) are smaller than 200 nm. Using low-temperature magnetic measurements, we observed a strong superparamagnetic signal (indicative of ultrafine magnetic particles, < ~30 nm) for all of the analysed size fractions of airborne brake-wear particles. Transmission electron microscopy independently shows that even the larger size fractions of airborne brake-wear emissions dominantly comprise agglomerates of ultrafine (<100 nm) particles (UFPs). Such UFPs likely pose a threat to neuronal and cardiovascular health after inhalation and/or ingestion. The observed abundance of ultrafine magnetite particles (estimated to constitute ~7.6 wt% of PM0.2) might be especially hazardous to the brain, contributing both to microglial inflammatory action and excess generation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Ilona Nyirő-Kósa
- MTA-PE Air Chemistry Research Group, 10 Egyetem Street, H-8200, Veszprém, Hungary
| | - Mihály Pósfai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, H8200, Hungary
| | - Miroslav Vaculík
- Nanotechnology Centre, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Kukutschová
- Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| |
Collapse
|
23
|
Wong JYY, Jones RR, Breeze C, Blechter B, Rothman N, Hu W, Ji BT, Bassig BA, Silverman DT, Lan Q. Commute patterns, residential traffic-related air pollution, and lung cancer risk in the prospective UK Biobank cohort study. ENVIRONMENT INTERNATIONAL 2021; 155:106698. [PMID: 34139591 PMCID: PMC8292218 DOI: 10.1016/j.envint.2021.106698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Commuting exposes millions of people to carcinogens from traffic-related air pollution (TRAP) but is seldomly considered in epidemiologic studies of lung cancer. In the prospective United Kingdom (UK) Biobank cohort study, we investigated associations between commute patterns, residential nitrogen dioxide concentrations (NO2; a surrogate for TRAP), and lung cancer risk. METHODS We analyzed 234,124 employed participants at baseline (2006-2010). There were 493 incident lung cancer cases diagnosed over an average 7-year follow-up. Subjects were cross-classified into exclusive categories of commute mode (automobile, public transportation, walking, cycling, active mixture, and other mixture) and frequency (regular: 1-4, often: ≥5 work-bound trips/week). Annual average residential NO2 concentrations in 2005-2007 were estimated with land use regression. Multivariable Cox regression was used to estimate associations between commute patterns, NO2 quartiles, and incident lung cancer. We conducted analyses stratified by NO2 (>, ≤median = 28.3 µg/m3) and potential confounders such as sex and smoking. RESULTS Compared to regular automobile use, commuting often by public transportation was associated with increased lung cancer risk (hazard ratio (HR) = 1.58, 95% confidence intervals (CI):1.08-2.33). Additionally, we found a positive exposure-response relationship with residential NO2 (HRQ2 = 1.21, 95 %CI: 0.90-1.62; HRQ3 = 1.48, 95 %CI: 1.10-1.99; HRQ4 = 1.58, 95 %CI: 1.13-2.23; p-trend = 3.1 × 10-3). The public transportation association was observed among those with higher NO2 (p-interaction = 0.02). Other commute categories were not associated with risk. CONCLUSIONS Commuters residing in high-NO2 areas who often use public transportation could have elevated lung cancer risk compared to regular automobile users. These results warrant investigations into which component(s) of public transportation contribute to the observed association with increased lung cancer risk.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Rena R Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Batel Blechter
- Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
24
|
Particle and metal exposure in Parisian subway: Relationship between exposure biomarkers in air, exhaled breath condensate, and urine. Int J Hyg Environ Health 2021; 237:113837. [PMID: 34482160 DOI: 10.1016/j.ijheh.2021.113837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Subway particulate toxicity results from in vitro and in vivo studies diverge and call for applied human research on outcomes from chronic exposures and potential exposure biomarkers. We aimed to (1) quantify airborne particulate matter (PM) concentrations (mass and number) and metal concentrations in exhaled breath condensate (EBC), urine, and PM; (2) investigate their associations (EBC vs. PM vs. urine); and (3) assess the relevance of EBC in biomonitoring. Nine subway workers in three jobs: station agents, locomotive operators and security guards were monitored during their 6-h shifts over two consecutive weeks. Six-hour weighed average mass concentrations expressed as PM10, PM2.5 and their metal concentrations were determined. Urine and EBC samples were collected pre- and post-shift. Ultrafine particle (UFP) number concentrations were quantified in PM and EBC samples. Metal concentrations in urine and EBC were standardized by creatinine and EBC volume, respectively, and log-transformed. Associations were investigated using Pearson correlation and linear mixed regression models, with participant's ID as random effect. PM concentrations were below occupational exposure limits (OEL) and varied significantly between jobs. Locomotive operators had the highest exposure (189 and 137 μg/m3 for PM10 and PM2.5, respectively), while station agents had the highest UFP exposure (1.97 × 104 particles/cm3). Five metals (Al, Fe, Zn, Cu, and Mn) in PM2.5 and three (Al, Fe, and Zn) in PM10 were above the limit of quantification (LOQ). Fe, Cu, Al and Zn were the most abundant by mass fraction in PM. In EBC, the metal concentrations in decreasing order were: Zn > Cu > Ni > Ba > Mn. Security guards had the highest EBC metal concentrations, and in particular Zn and Cu. Urinary metal concentrations in decreasing order were: Si > Zn > Mo > Ti > Cu > Ba ≈ Ni > Co. All urinary metal concentrations from the subway workers were similar to concentrations found in the general population. A statistically significant relationship was found for ultrafine particle number concentrations in PM and in EBC. Zn and Cu concentrations in post-shift EBC were associated with Zn and Cu concentrations in PM10 and with post-shift urinary Zn and Cu concentrations. Therefore, EBC appears a relevant matrix for assessing exposure to UFP in human biomonitoring when inhalation is a primary route of exposure. We found different temporal variation patterns between particle and metal exposures in three matrices (PM, urine, EBC) quantified daily over two full weeks in subway workers. These patterns might be related to metal oxidation, particulates' solubility and size as well as their lung absorption capabilities, which need to be further explored in toxicological research. Further research should also focus on understanding possible influences of low chronic exposures to subway particulates on health in larger cohorts.
Collapse
|
25
|
Van Ryswyk K, Kulka R, Marro L, Yang D, Toma E, Mehta L, McNeil-Taboika L, Evans GJ. Impacts of Subway System Modifications on Air Quality in Subway Platforms and Trains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11133-11143. [PMID: 34328323 DOI: 10.1021/acs.est.1c00703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Subway PM2.5 can be substantially sourced from the operation of the system itself. Improvements in subway air quality may be possible by examining the potential to reduce these emissions. To this end, PM2.5 was measured on the trains and station platforms of the Toronto subway system. A comparison with previously published data for this system reveals significant changes in below ground platform PM2.5. A reduction of nearly one-third (ratio (95% CI): 0.69 (0.63, 0.75)) in PM2.5 from 2011 to 2018 appears to have resulted from a complete modernization of the rolling stock on one subway line. In contrast, below ground platform PM2.5 for another line increased by a factor of 1.48 (95% CI; 1.42, 1.56). This increase may be related to an increase in emergency brake applications, the resolution of which coincided with a large decrease in PM2.5 concentrations on that line. Finally, platform PM2.5 in two newly opened stations attained, within one year of operation, typical concentrations of the neighboring platforms installed in 1963. Combined, these findings suggest that the production of platform PM2.5 is localized and hence largely freshly emitted. Further, PM2.5 changed across this subway system due to changes in its operation and rolling stock. Thus, similar interventions applied intentionally may prove to be equally effective in reducing PM2.5. Moreover, establishing a network of platform PM2.5 monitors is recommended to monitor ongoing improvements and identify impacts of future system changes on subway air quality. This would result in a better understanding of the relationship between the operations and air quality of subways.
Collapse
Affiliation(s)
- Keith Van Ryswyk
- Air Health Science Division, Health Canada, Ottawa K1A 0K9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa K1A 0K9, Canada
| | - Leonora Marro
- Population Studies Division, Health Canada, Ottawa K1A 0K9, Canada
| | - Dominik Yang
- Air Health Science Division, Health Canada, Ottawa K1A 0K9, Canada
| | - Elton Toma
- Rail Vehicle and Track Optimization Program, National Research Council Canada, Ottawa K1V 1S2, Canada
| | - Luckshya Mehta
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Leigh McNeil-Taboika
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| |
Collapse
|
26
|
Mineralogical and Chemical Tracing of Dust Variation in an Underground Historic Salt Mine. MINERALS 2021. [DOI: 10.3390/min11070686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the causes of the evolution of atmospheric dust composition in an open-to-public subterranean site (UNESCO-recognized historic mine) at increasing distances from the air intake. The role of the components imported with atmospheric air from the surface was compared with natural and anthropogenic sources of dust from inside the mine. Samples of deposited dust were directly collected from flat surfaces at 11 carefully selected sites. The morphological, mineralogical, and chemical characteristics were obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma spectroscopy (ICP). The study showed that the air in the underground salt mine was free of pollutants present in the ambient air on the surface. Most of the components sucked into the mine by the ventilation system from the surface (regular dust, particulate matter, gaseous pollutants, biogenic particles, etc.) underwent quick and instantaneous sedimentation in the close vicinity of the air inlet to the mine. The dust settled in the mine interior primarily consisted of natural geogenic particles, locally derived from the weathering of the host rock (halite, anhydrite, and aluminosilicates). This was confirmed by low values of enrichment factors (EF) calculated for minor and trace elements. Only one site, due to the tourist railroad and the associated local intensive tourist traffic, represented the anthropogenic sources of elevated concentrations of ferruginous particles and accompanied metals (P, Cr, Mn, Co, Ni, Cu, As, Mo, Cd, Sn, Sb, Pb, and W). The gravitational deposition of pollutants from these sources limits the effects of the emissions to the local range. The used methodology and the results are universal and might also apply to other mines, caves, or underground installations used for museums, tourists, or speleotherapeutic purposes.
Collapse
|
27
|
Chang L, Chong WT, Wang X, Pei F, Zhang X, Wang T, Wang C, Pan S. Recent progress in research on PM 2.5 in subways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:642-663. [PMID: 33889885 DOI: 10.1039/d1em00002k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nowadays, PM2.5 concentrations greatly influence indoor air quality in subways and threaten passenger and staff health because PM2.5 not only contains heavy metal elements, but can also carry toxic and harmful substances due to its small size and large specific surface area. Exploring the physicochemical and distribution characteristics of PM2.5 in subways is necessary to limit its concentration and remove it. At present, there are numerous studies on PM2.5 in subways around the world, yet, there is no comprehensive and well-organized review available on this topic. This paper reviews the nearly twenty years of research and over 130 published studies on PM2.5 in subway stations, including aspects such as concentration levels and their influencing factors, physicochemical properties, sources, impacts on health, and mitigation measures. Although many determinants of station PM2.5 concentration have been reported in current studies, e.g., the season, outdoor environment, and station depth, their relative influence is uncertain. The sources of subway PM2.5 include those from the exterior (e.g., road traffic and fuel oil) and the interior (e.g., steel wheels and rails and metallic brake pads), but the proportion of these sources is also unknown. Control strategies of PM mainly include adequate ventilation and filtration, but these measures are often inefficient in removing PM2.5. The impacts of PM2.5 from subways on human health are still poorly understood. Further research should focus on long-term data collection, influencing factors, the mechanism of health impacts, and PM2.5 standards or regulations.
Collapse
Affiliation(s)
- Li Chang
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Wen Tong Chong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Xinru Wang
- College of Emergency Technology and Management, North China Institute of Science and Technology, Hebei 065201, China
| | - Fei Pei
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xingxing Zhang
- Department of Energy, Forest and Built Environment, Dalarna University, Falun, 79188, Sweden
| | - Tongzhao Wang
- Rizhao Fire and Rescue Station, Rizhao, 276800, China
| | - Chunqing Wang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Jilin, 130118, China
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
28
|
Identification of High Personal PM2.5 Exposure during Real Time Commuting in the Taipei Metropolitan Area. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There has been an increase in the network of mass rapid transit (MRT) and the number of automobiles over the past decades in the Taipei metropolitan area, Taiwan. The effects of these changes on PM2.5 exposure for the residents using different modes of transportation are unclear. Volunteers measured PM2.5 concentrations while commuting in different modes of transportation using a portable PM2.5 detector. Exposure to PM2.5 (median (range)) was higher when walking along the streets (40 (10–275) µg/m3) compared to riding the buses (35 (13–65) µg/m3) and the cars (15 (8–80) µg/m3). PM2.5 concentrations were higher in underground MRT stations (80 (30–210) µg/m3) and inside MRT cars running in underground sections (80 (55–185) µg/m3) than those in elevated MRT stations (33 (15–35) µg/m3) and inside MRT cars running in elevated sections (28 (13–68) µg/m3) (p < 0.0001). Riding motorcycle also was associated with high PM2.5 exposure (75 (60–105 µg/m3), p < 0.0001 vs. walking). High PM2.5 concentrations were noted near the temples (588 ± 271 µg/m3) and in the underground food court of a night market (405 ± 238 µg/m3) where the eatery stalls stir-fried and grilled food (p < 0.0001 vs. walking). We conclude that residents in the Taipei metropolitan area may still be exposed to high PM2.5 during some forms of commuting, including riding underground MRT.
Collapse
|
29
|
Martins V, Correia C, Cunha-Lopes I, Faria T, Diapouli E, Manousakas MI, Eleftheriadis K, Almeida SM. Chemical characterisation of particulate matter in urban transport modes. J Environ Sci (China) 2021; 100:51-61. [PMID: 33279053 DOI: 10.1016/j.jes.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/12/2023]
Abstract
Traffic is a main source of air pollutants in urban areas and consequently daily peak exposures tend to occur during commuting. Personal exposure to particulate matter (PM) was monitored while cycling and travelling by bus, car and metro along an assigned route in Lisbon (Portugal), focusing on PM2.5 and PM10 (PM with aerodynamic diameter <2.5 and 10 µm, respectively) mass concentrations and their chemical composition. In vehicles, the indoor-outdoor interplay was also evaluated. The PM2.5 mean concentrations were 28 ± 5, 31 ± 9, 34 ± 9 and 38 ± 21 µg/m3 for bus, bicycle, car and metro modes, respectively. Black carbon concentrations when travelling by car were 1.4 to 2.0 times higher than in the other transport modes due to the closer proximity to exhaust emissions. There are marked differences in PM chemical composition depending on transport mode. In particular, Fe was the most abundant component of metro PM, derived from abrasion of rail-wheel-brake interfaces. Enhanced concentrations of Zn and Cu in cars and buses were related with brake and tyre wear particles, which can penetrate into the vehicles. In the motorised transport modes, Fe, Zn, Cu, Ni and K were correlated, evidencing their common traffic-related source. On average, the highest inhaled dose of PM2.5 was observed while cycling (55 µg), and the lowest in car travels (17 µg). Cyclists inhaled higher doses of PM2.5 due to both higher inhalation rates and longer journey times, with a clear enrichment in mineral elements. The presented results evidence the importance of considering the transport mode in exposure assessment studies.
Collapse
Affiliation(s)
- Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal.
| | - Carolina Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Inês Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Evangelia Diapouli
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Manousos Ioannis Manousakas
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Konstantinos Eleftheriadis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
30
|
Crocchianti S, Del Sarto S, Ranalli MG, Moroni B, Castellini S, Petroselli C, Cappelletti D. Spatiotemporal correlation of urban pollutants by long-term measurements on a mobile observation platform. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115645. [PMID: 33038632 DOI: 10.1016/j.envpol.2020.115645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We conducted a three-year campaign of atmospheric pollutant measurements exploiting portable instrumentation deployed on a mobile cabin of a public transport system. Size selected particulate matter (PM) and nitrogen monoxide (NO) were measured at high temporal and spatial resolution. The dataset was complemented with measurements of vehicular traffic counts and a comprehensive set of meteorological covariates. Pollutants showed a distinctive spatiotemporal structure in the urban environment. Spatiotemporal autocorrelations were analyzed by a hierarchical spatiotemporal statistical model. Specifically, particles smaller than 1.1 μm exhibited a robust temporal autocorrelation with those at the previous hour and tended to accumulate steadily during the week with a maximum on Fridays. The smallest particles (mean diameter 340 nm) showed a spatial correlation distance of ≈600 m. The spatial correlation distance reduces to ≈ 60 m for particle diameters larger than 1.1 μm, which also showed peaks at the stations correlated with the transport system itself. NO showed a temporal correlation comparable to that of particles of 5.0 μm of diameter and a correlating distance of 155 m. The spatial structure of NO correlated with that of the smallest sized particles. A generalized additive mixed model was employed to disentangle the effects of traffic and other covariates on PM concentrations. A reduction of 50% of the vehicles produces a reduction of the fine particles of -13% and of the coarse particle number of -7.5%. The atmospheric stability was responsible for the most significant effect on fine particle concentration.
Collapse
Affiliation(s)
- Stefano Crocchianti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, IT-06123, Perugia, Italy
| | - Simone Del Sarto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, IT-06123, Perugia, Italy
| | | | - Beatrice Moroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, IT-06123, Perugia, Italy
| | - Silvia Castellini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, IT-06123, Perugia, Italy
| | - Chiara Petroselli
- Faculty of Engineering and Physical Sciences, University of Southampton, 12 University Road, SO17 1BJ, Southampton, UK
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, IT-06123, Perugia, Italy.
| |
Collapse
|
31
|
Trechera P, Moreno T, Córdoba P, Moreno N, Zhuang X, Li B, Li J, Shangguan Y, Kandler K, Dominguez AO, Kelly F, Querol X. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122935. [PMID: 32540702 DOI: 10.1016/j.jhazmat.2020.122935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 05/24/2023]
Abstract
We focus on a comparison of the geochemistry and mineralogy patterns found in coal, deposited dust (DD), respirable deposited dust (RDD) and inhalable suspended dust (PM10) from a number of underground mines located in China, with an emphasis on potential occupational health relevance. After obtaining the RDD from DD, a toxicological analysis (oxidative potential, OP) was carried out and compared with their geochemical patterns. The results demonstrate: i) a dependence of RDD/DD on the moisture content for high rank coals that does not exist for low rank coals; ii) RDD enrichment in a number of minerals and/or elements related to the parent coal, the wear on mining machinery, lime gunited walls and acid mine drainage; and iii) the geochemical patterns of RDD obtained from DD can be compared with PM10 with relatively good agreement, demonstrating that the characterization of DD and RDD can be used as a proxy to help evaluate the geochemical patterns of suspended PM10. With regards to the toxicological properties of RDD, the Fe content and other by-products of pyrite oxidation, as well as that of anatase, along with Si, Mn and Ba, and particle size (among others), were highly correlated with Ascorbic Acid and/or Glutathione OP.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Natural Resources and Environment, Industrial and TIC Engineering (EMIT-UPC), 08242, Manresa, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Patricia Córdoba
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Natalia Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xinguo Zhuang
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Baoqing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Jing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Yunfei Shangguan
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Konrad Kandler
- Institute of Applied Geosciences, Technical University Darmstadt, 64287, Darmstadt, Germany
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Frank Kelly
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
32
|
Yu H, Gao Y, Zhou R. Oxidative Stress From Exposure to the Underground Space Environment. Front Public Health 2020; 8:579634. [PMID: 33194980 PMCID: PMC7609794 DOI: 10.3389/fpubh.2020.579634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
There are a growing number of people entering underground spaces. However, underground spaces have unique environmental characteristics, and little is known about their effects on human health. It is crucial to elucidate the effects of the underground space environment on the health of humans and other organisms. This paper reviews the effects of hypoxia, toxic atmospheric particles, and low background radiation in the underground space environment on living organisms from the perspective of oxidative stress. Most studies have revealed that living organisms maintained in underground space environments exhibit obvious oxidative stress, which manifests as changes in oxidants, antioxidant enzyme activity, genetic damage, and even disease status. However, there are few relevant studies, and the pathophysiological mechanisms have not been fully elucidated. There remains an urgent need to focus on the biological effects of other underground environmental factors on humans and other organisms as well as the underlying mechanisms. In addition, based on biological research, exploring means to protect humans and living organisms in underground environments is also essential.
Collapse
Affiliation(s)
- Hongbiao Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, China
| | - Yijie Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Lin YC, Li YC, Amesho KTT, Shangdiar S, Chou FC, Cheng PC. Chemical characterization of PM 2.5 emissions and atmospheric metallic element concentrations in PM 2.5 emitted from mobile source gasoline-fueled vehicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139942. [PMID: 32540664 DOI: 10.1016/j.scitotenv.2020.139942] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5), particularly from the in-use gasoline-fueled vehicles, is a leading air quality pollutant and the chemical composition of PM2.5 is vital to the practical issues of climate change, health effects, and pollution control policies, inter alia. These atmospheric fine particulate matters (PM2.5) emitted from the exhausts of mobile source gasoline-fueled vehicles constitute substantial risks to human health through inhalation, and most importantly, affect urban air quality. Therefore, in order to explicitly determine the inhalation risks of PM2.5 which could potentially contain a significant amount of chemicals and metallic elements (MEs) concentration, we investigated the chemical composition (comprising of carbonaceous species and metallic elements) of PM2.5 emissions from mobile source gasoline-fueled vehicles. To further examine the chemical composition and metallic elements concentration in PM2.5 from the exhausts of mobile source gasoline-fueled vehicles, we systematically investigated PM2.5 emission samples collected from the exhausts of fifteen (15) mobile source gasoline-fueled vehicles. Our study has equally also determined the chemical compositions based on carbonaceous species (organic carbon - OC and elemental carbon - EC). Furthermore, the concentrations of PM2.5 and metallic elements (Ca, Al, Zn, K, Ca, Fe, Mg and Cr) in PM2.5 were analyzed with the help of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The details of the tested gasoline-fueled vehicles cover the model years, consisting of the vehicles registered from 2000 to 2017 from several vehicle manufacturers (or brands) with various running mileages ranging from 123.4 to 575,844 km (average 123,105 km). Our results established that elemental carbon (EC) and organic carbon (OC) were the most significant concentrations of carbonaceous species. The concentration of metallic elements in PM2.5 and chemical characterization were studied by their relationship with atmospheric PM2.5 and the results showed that the metallic elements concentration in PM2.5 were in descending order as follows: Ca > Al > Zn > K > Fe > Mg > Cr. These results will help us to further understand how PM2.5 emissions from the exhausts of in-use gasoline-fueled vehicles contribute to both chemical and atmospheric metallic elements concentration in the ambient air.
Collapse
Affiliation(s)
- Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Ya-Ching Li
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Sumarlin Shangdiar
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Feng-Chih Chou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Cheng Cheng
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
34
|
Loxham M, Woo J, Singhania A, Smithers NP, Yeomans A, Packham G, Crainic AM, Cook RB, Cassee FR, Woelk CH, Davies DE. Upregulation of epithelial metallothioneins by metal-rich ultrafine particulate matter from an underground railway. Metallomics 2020; 12:1070-1082. [PMID: 32297622 DOI: 10.1039/d0mt00014k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Airborne particulate matter (PM) is a leading cause of mortality and morbidity. However, understanding of the range and mechanisms of effects of PM components is poor. PM generated in underground railways is rich in metals, especially iron. In the ultrafine (UFPM; <0.1 μm diameter) fraction, the combination of small size and metal enrichment poses an unknown health risk. This study aimed to analyse transcriptomic responses to underground UFPM in primary bronchial epithelial cells (PBECs), a key site of PM deposition. The oxidation state of iron in UFPM from an underground station was determined by X-ray absorption near edge structure (XANES) spectroscopy. Antioxidant response was assayed using a reporter cell line transfected with an antioxidant response element (ARE)-luciferase construct. Differentiated PBECs were exposed to UFPM for 6 h or 24 h for RNA-Seq and RT-qPCR analysis. XANES showed predominance of redox-active Fe3O4, with ROS generation confirmed by induction of ARE-luciferase expression. 6 h exposure of PBECs to UFPM identified 52 differentially expressed genes (DEGs), especially associated with epithelial maintenance, whereas 24 h exposure yielded 23 DEGs, particularly involved with redox homeostasis and metal binding. At both timepoints, there was upregulation of members of the metallothionein family, low molecular weight proteins with antioxidant activity whose main function is binding and homeostasis of zinc and copper ions, but not iron ions. This upregulation was partially inhibited by metal chelation or ROS scavenging. These data suggest differential regulation of responses to metal-rich UFPM depending on exposure period, and highlight novel pathways and markers of PM exposure, with the role of metallothioneins warranting further investigation.
Collapse
Affiliation(s)
- Matthew Loxham
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD. and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UKSO17 1BJ and Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UKSO16 7QF
| | - Jeongmin Woo
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD.
| | - Akul Singhania
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD.
| | - Natalie P Smithers
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD.
| | - Alison Yeomans
- Cancer Research UK Centre, Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UKSO16 6YD
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UKSO16 6YD
| | - Alina M Crainic
- National Centre for Advanced Tribology (nCATS), Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UKSO17 1BJ
| | - Richard B Cook
- National Centre for Advanced Tribology (nCATS), Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UKSO17 1BJ
| | - Flemming R Cassee
- Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Christopher H Woelk
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD.
| | - Donna E Davies
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD. and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Tremona Road, Southampton, UKSO16 6YD and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UKSO17 1BJ
| |
Collapse
|
35
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
36
|
Wen Y, Leng J, Shen X, Han G, Sun L, Yu F. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031084. [PMID: 32046319 PMCID: PMC7037944 DOI: 10.3390/ijerph17031084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Environmental health in subway stations, a typical type of urban underground space, is becoming increasingly important. Ventilation is the principal measure for optimizing the complex physical environment in a subway station. This paper narratively reviews the environmental and health effects of subway ventilation and discusses the relevant engineering, environmental, and medical aspects in combination. Ventilation exerts a notable dual effect on environmental health in a subway station. On the one hand, ventilation controls temperature, humidity, and indoor air quality to ensure human comfort and health. On the other hand, ventilation also carries the potential risks of spreading air pollutants or fire smoke through the complex wind environment as well as produces continuous noise. Assessment and management of health risks associated with subway ventilation is essential to attain a healthy subway environment. This, however, requires exposure, threshold data, and thereby necessitates more research into long-term effects, and toxicity as well as epidemiological studies. Additionally, more research is needed to further examine the design and maintenance of ventilation systems. An understanding of the pathogenic mechanisms and aerodynamic characteristics of various pollutants can help formulate ventilation strategies to reduce pollutant concentrations. Moreover, current comprehensive underground space development affords a possibility for creating flexible spaces that optimize ventilation efficiency, acoustic comfort, and space perception.
Collapse
Affiliation(s)
- Yueming Wen
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Jiawei Leng
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
- Correspondence: ; Tel.: +86-025-83790760
| | - Xiaobing Shen
- School of Public Health, Station and Train Health Institute, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210019, Jiangsu, China;
| | - Gang Han
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Lijun Sun
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| | - Fei Yu
- School of Architecture, Future Underground Space Institute, Southeast University, Nanjing 210019, Jiangsu, China; (Y.W.); (G.H.); (L.S.); (F.Y.)
| |
Collapse
|
37
|
Correia C, Martins V, Cunha-Lopes I, Faria T, Diapouli E, Eleftheriadis K, Almeida SM. Particle exposure and inhaled dose while commuting in Lisbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113547. [PMID: 31733963 DOI: 10.1016/j.envpol.2019.113547] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
While commuting, individuals are exposed to high concentrations of urban air pollutants that can lead to adverse health effects. This study aims to assess commuters' exposure to particulate matter (PM) when travelling by car, bicycle, metro and bus in Lisbon. Mass concentrations of PM2.5 and PM10 were higher in the metro. On the other hand, the highest BC and PN0.01-1 average concentrations were found in car and bus mode, respectively. In cars, the outdoor concentrations and the type of ventilation appeared to affect the indoor concentrations. In fact, the use of ventilation led to a decrease of PM2.5 and PM10 concentrations and to an increase of BC concentrations. The highest inhaled doses were mostly observed in bicycle journeys, due to the longest travel periods combined with enhanced physical activity and, consequently, highest inhalation rates.
Collapse
Affiliation(s)
- C Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal.
| | - V Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - I Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - T Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - E Diapouli
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Athens, 15310, Greece
| | - K Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Athens, 15310, Greece
| | - S M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| |
Collapse
|
38
|
Prediction of Aerosol Deposition in the Human Respiratory Tract via Computational Models: A Review with Recent Updates. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The measurement of deposited aerosol particles in the respiratory tract via in vivo and in vitro approaches is difficult due to those approaches’ many limitations. In order to overcome these obstacles, different computational models have been developed to predict the deposition of aerosol particles inside the lung. Recently, some remarkable models have been developed based on conventional semi-empirical models, one-dimensional whole-lung models, three-dimensional computational fluid dynamics models, and artificial neural networks for the prediction of aerosol-particle deposition with a high accuracy relative to experimental data. However, these models still have some disadvantages that should be overcome shortly. In this paper, we take a closer look at the current research trends as well as the future directions of this research area.
Collapse
|
39
|
Ngoc LTN, Lee Y, Chun HS, Moon JY, Choi JS, Park D, Lee YC. Correlation of α/γ-Fe 2O 3 nanoparticles with the toxicity of particulate matter originating from subway tunnels in Seoul stations, Korea. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121175. [PMID: 31561194 DOI: 10.1016/j.jhazmat.2019.121175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
According to the increasing concern about particulate matter (PM) pollution at subway systems, particularly its potentially severe effects on human health, this study investigated the constituents, characteristics, and toxicity of PM collected at underground subway stations in Seoul, Korea. It was found that α/γ-Fe2O3 NPs, which are considered as thermal products derived from the brake-wheel-rail interface, were the main components of PM (57.6% and 48% of PM10 and PM2.5, respectively). In addition, hydrothermally synthesized α/γ-Fe2O3 NPs, proposing to possess similar properties to those of Fe2O3 contained in PM, were used to investigate the correlation of these oxides with PM toxicity. In particular, the synthesized γ-Fe2O3 NPs induced a negligibly toxic, while the synthesized α-Fe2O3 NPs and PM showed remarkably toxic effects on HeLa cells and zebrafish embryos, specifically in reducing cell proliferation to 85% and 72% survival, causing high apoptosis of 29.8% and 29.3%, and inhibiting the development of embryos up to 60% and 8% after prolonged exposure, respectively. It is considered that α-Fe2O3 NPs were primarily responsible for the harmful effects of PM, resulting in significant damage to DNA due to their capacity of producing high reactive oxygen species (ROS) and, thus, deleterious effects on the human body.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do, 13120, Republic of Korea
| | - Yongil Lee
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Hang-Suk Chun
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul, 02876, Republic of Korea
| | - Jin Seok Choi
- Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
40
|
Maher BA. Airborne Magnetite- and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease. J Alzheimers Dis 2019; 71:361-375. [DOI: 10.3233/jad-190204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Figueroa-Lara JJ, Murcia-González JM, García-Martínez R, Romero-Romo M, Torres Rodríguez M, Mugica-Álvarez V. Effect of platform subway depth on the presence of Airborne PM 2.5, metals, and toxic organic species. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:427-436. [PMID: 31176078 DOI: 10.1016/j.jhazmat.2019.05.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
PM2.5 that have been related to public health risks, were collected during two seasons with High-Vol samplers in platforms of a Mexican subway station, which interconnects through transfers three lines having different depths. The objective was to study the influence of depth on the PM2.5 concentrations and their species. PM2.5 concentrations in cold-dry and warm-dry seasons presented statistical differences, being in average 57 and 66 μgm-3 respectively, in the shallower line 9; 90 μgm-3 and 111 μgm-3 in line 1; and 104 and 122 μgm-3in the deepest line 7. During the cold-dry season and warm-dry season PM2.5concentrations in the subway environment were respectively up to 3.5 times and up to 5 times greater than in the ambient air. Like PM2.5, metals analyzed with an OES-ICP presented higher concentrations in deeper lines as well as PAHs quantified with CG-MS, which ranged from 4.5 to 11.7 ngm-3. High PM2.5, metals and organic toxic concentrations found in deeper lines of the subway environment represent a risk for commuters endorsing the need for ventilation systems to reduce them. Zn, Pb, V and Ni in subway particles presented the highest solubility in artificial lysosomal fluid suggesting high bioavailability in the lung fluids.
Collapse
Affiliation(s)
- J J Figueroa-Lara
- Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180, C.P. 02200, Mexico
| | - J M Murcia-González
- Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180, C.P. 02200, Mexico
| | | | - M Romero-Romo
- Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180, C.P. 02200, Mexico
| | - M Torres Rodríguez
- Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180, C.P. 02200, Mexico
| | - V Mugica-Álvarez
- Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180, C.P. 02200, Mexico.
| |
Collapse
|
42
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
43
|
Current Status, Challenges and Resilient Response to Air Pollution in Urban Subway. ATMOSPHERE 2019. [DOI: 10.3390/atmos10080472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Subway air pollution mainly refers to inhalable particulate matter (PM) pollution, organic pollution, and microbial pollution. Based on the investigation and calculation of the existing researches, this paper summarizes the sources of air pollutants, chemical compositions, and driving factors of PM variations in subway. It evaluates the toxicity and health risks of pollutants. In this paper, the problems and challenges during the deployment of air pollution governance are discussed. Results show that the global PM compliance rate of subway is about 30%. Subway air pollution is endogenous, which means that pollutants mainly come from mechanical wear and building materials erosions. Particles are mainly metal particles, black carbon, and floating dust. The health risks of some chemical elements in the subway have reached critical levels. The variations of PM concentrations show spatial-temporal characteristics, which are mainly controlled by train age, brakes types, and environmental control systems. The authors then analyze the dynamics of interactions among government, companies and public during the air pollution governance by adding the following questions: (a) who pays the bill; (b) how to evaluate the cost-effectiveness of policies; (c) how the public moves from risk perception to actions; (d) how to develop clean air technology better so as to ultimately incentivize stakeholders and to facilitate the implementation of subway clean air programme in a resilient mode.
Collapse
|
44
|
Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground railway systems - a critical review of the evidence. Part Fibre Toxicol 2019; 16:12. [PMID: 30841934 PMCID: PMC6404319 DOI: 10.1186/s12989-019-0296-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exposure to ambient airborne particulate matter is a major risk factor for mortality and morbidity, associated with asthma, lung cancer, heart disease, myocardial infarction, and stroke, and more recently type 2 diabetes, dementia and loss of cognitive function. Less is understood about differential effects of particulate matter from different sources. Underground railways are used by millions of people on a daily basis in many cities. Poor air exchange with the outside environment means that underground railways often have an unusually high concentration of airborne particulate matter, while a high degree of railway-associated mechanical activity produces particulate matter which is physicochemically highly distinct from ambient particulate matter. The implications of this for the health of exposed commuters and employees is unclear. MAIN BODY A literature search found 27 publications directly assessing the potential health effects of underground particulate matter, including in vivo exposure studies, in vitro toxicology studies, and studies of particulate matter which might be similar to that found in underground railways. The methodology, findings, and conclusions of these studies were reviewed in depth, along with further publications directly relevant to the initial search results. In vitro studies suggest that underground particulate matter may be more toxic than exposure to ambient/urban particulate matter, especially in terms of endpoints related to reactive oxygen species generation and oxidative stress. This appears to be predominantly a result of the metal-rich nature of underground particulate matter, which is suggestive of increased health risks. However, while there are measureable effects on a variety of endpoints following exposure in vivo, there is a lack of evidence for these effects being clinically significant as may be implied by the in vitro evidence. CONCLUSION There is little direct evidence that underground railway particulate matter exposure is more harmful than ambient particulate matter exposure. This may be due to disparities between in vivo exposures and in vitro models, and differences in exposure doses, as well as statistical under powering of in vivo studies of chronic exposure. Future research should focus on outcomes of chronic in vivo exposure, as well as further work to understand mechanisms and potential biomarkers of exposure.
Collapse
Affiliation(s)
- Matthew Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 888, Level F, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK. .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK.
| | - Mark J Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
45
|
Čabanová K, Hrabovská K, Matějková P, Dědková K, Tomášek V, Dvořáčková J, Kukutschová J. Settled iron-based road dust and its characteristics and possible association with detection in human tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2950-2959. [PMID: 30499095 DOI: 10.1007/s11356-018-3841-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Settled road dust was examined to detect the presence of non-airborne submicron and nano-sized iron-based particles and to characterize these particles. Samples were collected from a road surface near a busy road junction in the city of Ostrava, Czech Republic, once a month from March to October. The eight collected samples were subjected to a combination of experimental techniques including elemental analysis, Raman microspectroscopy, scanning electron microscopy (SEM) analysis, and magnetometry. The data thereby obtained confirmed the presence of non-agglomerated spherical nano-sized iron-based particles, with average sizes ranging from 2 down to 490 nm. There are several sources in road traffic which generate road dust particles, including exhaust and non-exhaust processes. Some of them (e.g., brake wear) produce iron as the dominant metallic element. Raman microspectroscopy revealed forms of iron (mainly as oxides, Fe2O3, and mixtures of Fe2O3 and Fe3O4). Moreover, Fe3O4 was also detected in samples of human tissues from the upper and lower respiratory tract. In view of the fact that no agglomeration of those particles was found by SEM, it is supposed that these particles may be easily resuspended and represent a risk to human health due to inhalation exposure, as proved by the detection of particles with similar morphology and phase composition in human tissues.
Collapse
Affiliation(s)
- Kristina Čabanová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic.
| | - Kamila Hrabovská
- Department of Physics, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Petra Matějková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Kateřina Dědková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Vladimír Tomášek
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Jana Dvořáčková
- Faculty of Medicine, University of Ostrava, 703 00, Ostrava, Czech Republic
| | - Jana Kukutschová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| |
Collapse
|
46
|
Woo SH, Kim JB, Bae GN, Hwang MS, Tahk GH, Yoon HH, Kwon SB, Park D, Yook SJ. Size-dependent characteristics of diurnal particle concentration variation in an underground subway tunnel. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:740. [PMID: 30465289 DOI: 10.1007/s10661-018-7110-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Understanding characteristics of diurnal particle concentration variation in an underground subway tunnel is important to reduce subway passengers' exposure to high levels of toxic particle pollution. In this study, real-time particle monitoring for eight consecutive days was done at a shelter located in the middle of a one-way underground subway tunnel in Seoul, Republic of Korea, during the summer of 2015. Particle mass concentration was measured using a dust monitor and particle number concentration using an optical particle counter. From the diurnal variations in PM10, PM2.5, and PM1, concentrations of particles larger than 0.54 μm optical particle diameter were affected by train frequency whereas those of particles smaller than 0.54 μm optical particle diameter were not changed by train frequency. Number concentration of particles smaller than 1.15 μm optical particle diameter was dependent on outdoor ambient air particle concentration level, whereas that of particles larger than 1.15 μm optical particle diameter was independent of outdoor ambient air due to low ventilation system transmission efficiency of micrometer-sized particles. In addition, an equation was suggested to predict the diurnal particle concentration in an underground tunnel by considering emission, ventilation, and deposition effects.
Collapse
Affiliation(s)
- Sang-Hee Woo
- School of Mechanical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jong Bum Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gwi-Nam Bae
- Center for Particulate Air Pollution and Health, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Moon Se Hwang
- Technology Research Center, Seoul Metropolitan Rapid Transit Corporation, Seoul, 04806, Republic of Korea
| | - Gil Hun Tahk
- Technology Research Center, Seoul Metropolitan Rapid Transit Corporation, Seoul, 04806, Republic of Korea
| | - Hwa Hyun Yoon
- Technology Research Center, Seoul Metropolitan Rapid Transit Corporation, Seoul, 04806, Republic of Korea
| | - Soon-Bark Kwon
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang, 16105, Republic of Korea
| | - Duckshin Park
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang, 16105, Republic of Korea
| | - Se-Jin Yook
- School of Mechanical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
47
|
Lee Y, Lee YC, Kim T, Choi JS, Park D. Sources and Characteristics of Particulate Matter in Subway Tunnels in Seoul, Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2534. [PMID: 30424555 PMCID: PMC6267438 DOI: 10.3390/ijerph15112534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/17/2022]
Abstract
Hazards related to particulate matter (PM) in subway systems necessitate improvement of the air quality. As a first step toward establishing a management strategy, we assessed the physicochemical characteristics of PM in a subway system in Seoul, South Korea. The mean mass of PM10 and PM2.5 concentrations (n = 13) were 213.7 ± 50.4 and 78.4 ± 8.8 µg/m³, with 86.0% and 85.9% of mass concentration. Chemical analysis using a thermal⁻optical elemental/organic carbon (EC⁻OC) analyzer, ion chromatography (IC), and inductively coupled plasma (ICP) spectroscopy indicated that the chemical components in the subway tunnel comprised 86.0% and 85.9% mass concentration of PM10 and PM2.5. Fe was the most abundant element in subway tunnels, accounting for higher proportions of PM, and was detected in PM with diameters >94 nm. Fe was present mostly as iron oxides, which were emitted from the wheel⁻rail⁻brake and pantograph⁻catenary wire interfaces. Copper particles were 96⁻150 nm in diameter and were likely emitted via catenary wire arc discharges. Furthermore, X-ray diffraction analysis (XRD) showed that the PM in subway tunnels was composed of calcium carbonate (CaCO₃), quartz (SiO₂), and iron oxides (hematite (α-Fe₂O₃) and maghemite-C (γ-Fe₂O₃)). Transmission electron microscopy images revealed that the PM in subway tunnels existed as agglomerates of iron oxide particle clusters a few nanometers in diameter, which were presumably generated at the aforementioned interfaces and subsequently attached onto other PM, enabling the growth of aggregates. Our results can help inform the management of PM sources from subway operation.
Collapse
Affiliation(s)
- Yongil Lee
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Korea.
- Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon-si 16419, Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 seongnamdae-ro, Seongnam-si 13120, Korea.
| | - Taesung Kim
- Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon-si 16419, Korea.
| | - Jin Seok Choi
- Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon-si 34141, Korea.
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Korea.
| |
Collapse
|
48
|
Minguillón MC, Reche C, Martins V, Amato F, de Miguel E, Capdevila M, Centelles S, Querol X, Moreno T. Aerosol sources in subway environments. ENVIRONMENTAL RESEARCH 2018; 167:314-328. [PMID: 30092454 DOI: 10.1016/j.envres.2018.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
Millions of people use rail subway public transport around the world, despite the relatively high particulate matter (PM) concentrations in these underground environments, requiring the identification and quantification of the aerosol source contributions to improve the air quality. An extensive aerosol monitoring campaign was carried out in eleven subway stations in the Barcelona metro system, belonging to seven subway lines. PM2.5 samples were collected during the metro operating hours and chemically analysed to determine major and trace elements, inorganic ions, and total carbon. The chemical compositions of subway components such as brake pads, rail tracks and pantographs were also determined. The mean PM2.5 concentrations varied widely among stations, ranging from 26 µg m-3 to 86 µg m-3. Subway PM2.5 was mainly constituted by Fe2O3 (30-66%), followed by carbonaceous matter (18-37%) for the old stations, while for new stations equipped with Platform Screen Doors (PSD) these percentages go down to 21-44% and 15-30%, respectively. Both the absolute concentrations and the relative abundance of key species differed for each subway station, although with common patterns within a given subway line. This is a result of the different emission chemical profiles in different subway lines (using diverse types of brakes and/or pantographs). The co-emission of different sources poses a problem for their separation by receptor models. Nevertheless, receptor modelling (Positive Matrix Factorization) was applied resulting in ten sources, five of them subway-specific: RailWheel, RailWheel+Brake, Brake_A, Brake_B, Pb. The sum of their contributions accounted for 43-91% of bulk PM2.5 for the old stations and 21-52% for the stations with PSD. The decrease of the activity during the weekends resulted in a decrease (up to 56%) in the subway-specific sources contribution to the -already lower- bulk PM2.5 concentrations compared to weekdays. The health-related elements are mainly apportioned (> 60%) by subway sources.
Collapse
Affiliation(s)
- M C Minguillón
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain.
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - V Martins
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - E de Miguel
- Transports Metropolitans de Barcelona, TMB Santa Eulàlia, L'Hospitalet de Llobregat, Spain
| | - M Capdevila
- Transports Metropolitans de Barcelona, TMB Santa Eulàlia, L'Hospitalet de Llobregat, Spain
| | - S Centelles
- Transports Metropolitans de Barcelona, TMB Santa Eulàlia, L'Hospitalet de Llobregat, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| |
Collapse
|
49
|
Moustafa K. [Eating in public transportation: A behavior to avoid for health and sanitary purposes?]. Presse Med 2018; 47:606-610. [PMID: 30037720 DOI: 10.1016/j.lpm.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 03/28/2018] [Accepted: 05/30/2018] [Indexed: 10/28/2022] Open
Affiliation(s)
- Khaled Moustafa
- Manager of French arXiv (https://frenxiv.org), 75000 Paris, France.
| |
Collapse
|
50
|
Ganguly M, Dib S, Ariya PA. Purely Inorganic Highly Efficient Ice Nucleating Particle. ACS OMEGA 2018; 3:3384-3395. [PMID: 31458592 PMCID: PMC6641319 DOI: 10.1021/acsomega.7b01830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 05/31/2023]
Abstract
To evaluate the role of atmospheric heterogeneous reactions on the ice nucleation ability of airborne dust particles, we investigated the systematic study of ice nucleation microphysics with a suite of atmospherically relevant metals (10), halides (4), and oxyhalides (2). Within a minute, a kaolin-iron oxide composite (KaFe) showed efficient reactions with aqueous mercury salts. Among the different mercury salts tested, only HgCl2 reacting with KaFe generated HgKaFe, a highly efficient ice nucleating particle (HEIN). When added to water, HgKaFe caused water to freeze at much warmer temperatures, within a narrow range of -6.6 to -4.7 °C. Using a suite of optical spectroscopy, mass spectrometry, and microscopy techniques, we performed various experiments to decipher the physical and chemical properties of surface and bulk. KaFe was identified as a mixture of different iron oxides, namely, goethite, hematite, magnetite, and ε-Fe2O3, with kaolin. In HgKaFe, HgCl2 was reduced to Hg2Cl2 and iron was predominantly in maghemite form. Reduction of Fe2+ by NaBH4, followed by aerial oxidation, helped KaFe to be an exact precursor for the synthesis of HEIN HgKaFe. Kaolin served as a template for synthesizing iron oxide, opposing unwanted aggregation. No other metal or metal halide was found to have more efficient nucleating particles than HgCl2 with KaFe composite. The chelation of Hg(II) hindered the formation of HEIN. This study is useful for investigating the role of morphology and how inorganic chemical reactions on the surface of dust change morphology and thus ice nucleation activity. The understanding of the fundamentals of what makes a particle to be a good ice nucleating particle is valuable to further understand and predict the amount and types of atmospheric ice nucleating particles.
Collapse
Affiliation(s)
- Mainak Ganguly
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9, Canada
| | - Simon Dib
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Parisa A. Ariya
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9, Canada
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|