1
|
Bellot P, Brischoux F, Fritsch C, Lièvre L, Ribout C, Angelier F. Chronic exposure to tebuconazole impairs offspring growth and survival in farmland birds: An experiment in captive house sparrows. ENVIRONMENTAL RESEARCH 2025; 275:121321. [PMID: 40058553 DOI: 10.1016/j.envres.2025.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
European farmland bird populations have declined by over 60% in 40 years, with the use of pesticides suspected to be one of the main causes of this decline. However, it remains difficult to test the impact of these pesticides in field studies due to confounding environmental variables that can also affect avian wildlife (e.g., food resources, habitat fragmentation and alteration). Triazoles are a family of fungicides that are ubiquitous in agro-ecosystems due to their use on a wide range of crops. Triazoles are suspected to affect non-target avian species by disrupting key physiological mechanisms and by detrimentally affecting their reproduction. In this captive study, we experimentally investigated the effect of the most commonly used triazole fungicides (i.e., tebuconazole) on the reproduction of an avian species representative of farmlands, the house sparrow (Passer domesticus). We examined the impacts of tebuconazole at realistic concentrations (550 μg.L-1 in drinking water to achieve ∼ 60 pg g-1 in plasma of sparrows) under controlled conditions on multiple indicators of breeding performance (clutch size, hatching success, chick growth and survival). We found that chronic exposure to tebuconazole (9 months, including the breeding period) significantly altered the reproduction of sparrows. Although clutch size and hatching success were not affected by tebuconazole, chicks from the exposed group showed reduced growth and a higher mortality rate. Interestingly, these effects were exacerbated in female chicks, highlighting a sex-dependent effect of tebuconazole on sparrow offspring. This study demonstrates that tebuconazole can be detrimental to the reproduction of farmland birds. Further studies are now required to distinguish the direct effects of tebuconazole (toxic and sublethal effects on the developing chick/embryo) from the indirect ones (alteration of egg quality and parental care).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgone Franche-Comté, Université de Franche-Comté, F-25000, Besançon, France
| | - Loula Lièvre
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
2
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2893-2955. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
3
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
4
|
Fernández-Vizcaíno E, Mougeot F, Cabodevilla X, Fernández-Tizón M, Mateo R, Madeira MJ, Ortiz-Santaliestra ME. Diet and Spatial Ecology Influence Red-Legged Partridge Exposure to Pesticides Used as Seed Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14861-14870. [PMID: 37747849 PMCID: PMC10569034 DOI: 10.1021/acs.est.3c03905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Seed treatment with pesticides is an extended agricultural practice with a high risk to granivorous birds that consume those seeds. To characterize that risk, it is necessary to understand the ecological factors that determine the exposure chances of birds to treated seeds. We investigated how pesticide uptake by red-legged partridges was related to cultivated plant ingestion and to the use of recently sown fields. We analyzed pesticide residues in 144 fecal samples from 32 flocks and determined the plant diet composition using DNA metabarcoding. Habitat use was studied through the monitoring of 15 GPS-tagged partridges. We confirmed, through the analysis of seeds, that >80% of cereal fields from the area had seeds treated with triazole fungicides. Tebuconazole was detected in 16.6% of partridges' feces. During the sowing season, cultivated plants accounted for half of the plant diet, but no association was found between cultivated plant consumption and pesticide intake. GPS tracking revealed that tebuconazole was detected in feces when partridges had recently used sown fields, whereas nonexposed partridges showed no overlap with recently sown areas. Our results highlight the need to incorporate field ecology into the characterization of pesticide exposure to improve the efficacy of environmental risk assessment.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - François Mougeot
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Xabier Cabodevilla
- Conservation
Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia
(CTFC), km 2, Solsona 25280, Spain
- Terrestrial
Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Calle Darwin 2, Madrid 28049, Spain
| | - Mario Fernández-Tizón
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Rafael Mateo
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - María J. Madeira
- Department
of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Alava, Spain
| | - Manuel E. Ortiz-Santaliestra
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| |
Collapse
|
5
|
Pang X, Li J, Xu P, Yang W, Huang L, Zhang S, Yu Z, Ye Q. Environmental fate and metabolism of the systemic triazolinthione fungicide prothioconazole in different aerobic soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130583. [PMID: 37055988 DOI: 10.1016/j.jhazmat.2022.130583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
As a best-selling triazolinthione fungicide, prothioconazole (PTZ) has been widely used worldwide and has aroused concern about its environmental effect. This study used phenyl-UL-14C-labeled PTZ and an improved fate model to investigate the fate and metabolism of this fungicide in aerobic soil. During 120 d of incubation, PTZ rapidly transformed into metabolites and bound residues, with a half-life (DT50) of less than 1 d. After 120 d, approximately 45-55% of PTZ formed bound residues, and the extractable metabolite residues were gradually degraded over time. Approximately 19%, 44% and 27% of phenyl-UL-14C-PTZ was mineralized in red soil, fluvo-aquic soil and cinnamon soil, respectively, but only approximately 3% was mineralized in black soil. Five metabolites were identified and confirmed, and a possible metabolic pathway for phenyl-UL-14C-PTZ in soil was proposed. Based on the correlation analysis between soil properties and model rate constants, soil properties exerted important effects on PTZ transformation. These results will provide basic data for environmental risk assessments and removal of the PTZ pollutant and suggest that the soil type should be considered in the selection and application of pesticides.
Collapse
Affiliation(s)
- Xingyan Pang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Jiaoyang Li
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Pengfei Xu
- Shanghai Qizhen Environmental Technology Co., Ltd., 659 Maoyuan Rd., Shanghai 201403, PR China.
| | - Wenjun Yang
- Shanghai Qizhen Environmental Technology Co., Ltd., 659 Maoyuan Rd., Shanghai 201403, PR China.
| | - Lei Huang
- Shanghai Qizhen Environmental Technology Co., Ltd., 659 Maoyuan Rd., Shanghai 201403, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Shanghai Qizhen Environmental Technology Co., Ltd., 659 Maoyuan Rd., Shanghai 201403, PR China.
| |
Collapse
|
6
|
Angelier F, Prouteau L, Brischoux F, Chastel O, Devier MH, Le Menach K, Martin S, Mohring B, Pardon P, Budzinski H. High contamination of a sentinel vertebrate species by azoles in vineyards: a study of common blackbirds (Turdus merula) in multiple habitats in western France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120655. [PMID: 36410596 DOI: 10.1016/j.envpol.2022.120655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Azoles represent the most used family of organic fungicides worldwide and they are used in agriculture to circumvent the detrimental impact of fungi on yields. Although it is known that these triazoles can contaminate the air, the soil, and the water, field data are currently and dramatically lacking to assess if, and to what extent, the use of triazoles could contaminate non-target wild vertebrate species, notably in agroecosystems. In this study, we aimed to document for the first time the degree of blood contamination of a generalist wild bird species by multiple azoles which are used for plant protection and fungi pest control in various habitats. We deployed passive air samplers and captured 118 Common blackbirds (Turdus merula) in an agroecosystem (vineyard), a protected forest, and a city in western France. We collected blood and analyzed the plasma levels of 13 triazoles and 2 imidazoles. We found that a significant percentage of blackbirds living in vineyards have extremely high plasma levels of multiple azoles (means (pg.g-1); tebuconazole: 149.23, difenoconazole: 44.27, fenbuconazole: 239.38, tetraconazole: 1194.16), while contamination was very limited in the blackbirds from the protected forest and absent in urban blackbirds. Interestingly, we also report that the contamination of blackbirds living in vineyard was especially high at the end of Spring and the beginning of Summer and this matches perfectly with the results from the passive air samplers (i.e., high levels of azoles in the air of vineyards during June and July). However, we did not find any correlation between the levels of plasma contamination by azoles and two simple integrative biomarkers of health (feather density and body condition) in this sentinel species. Future experimental studies are now needed to assess the potential sub-lethal effects of such levels of contamination on the physiology of non-target vertebrate species.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France.
| | - Louise Prouteau
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | - Olivier Chastel
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | | | - Karyn Le Menach
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Stéphan Martin
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Bertille Mohring
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Environmental and Marine Biology, Åbo Akademi University, FI-20250, Turku, Finland
| | - Patrick Pardon
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Hélène Budzinski
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
7
|
Bellot P, Brischoux F, Fritsch C, Goutte A, Alliot F, Rocchi S, Angelier F. Evidence of environmental transfer of tebuconazole to the eggs in the house sparrow (Passer domesticus): An experimental study. CHEMOSPHERE 2022; 308:136469. [PMID: 36116623 DOI: 10.1016/j.chemosphere.2022.136469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Many farmland birds spend a significant part of their life cycle in agroecosystems, which may chronically expose them to pesticides. We experimentally tested whether exposure to environmental concentrations of tebuconazole could induce a contamination of the eggs in an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for seven months to tebuconazole through drinking water. Eggs were opportunistically collected for the determination of tebuconazole concentration by Liquid Chromatography coupled to tandem Mass Spectrometry in eggs. We found that eggs from exposed parents all contained tebuconazole with a mean concentration of 1.52 ng g-1 dry weight. In eggs from control parents, the tebuconazole concentration was below the limit of quantification (0.23 ng g-1 dry weight) for 11 out of 13 eggs. Thus, our study demonstrates for the first time that environmental exposure of female birds to tebuconazole can translate into egg contamination by this fungicide.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Aurélie Goutte
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France; Service de Parasitologie-Mycologie, CHU Jean Minjoz, 25000, Besançon, France
| | - Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
8
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
9
|
Badry A, Schenke D, Brücher H, Chakarov N, Grünkorn T, Illner H, Krüger O, Marczak T, Müskens G, Nachtigall W, Zollinger R, Treu G, Krone O. Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60908-60921. [PMID: 35435551 PMCID: PMC9427910 DOI: 10.1007/s11356-022-20089-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classified as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. ΣAR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofloxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany.
Collapse
Affiliation(s)
- Alexander Badry
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institut, Königin-Luise-Straße 19, 14195, Berlin, Germany
| | - Helmut Brücher
- Wiesenweihenschutz Brandenburg, Hauptstraße 11, 14913, Rohrbeck, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Hubertus Illner
- Arbeitsgemeinschaft Biologischer Umweltschutz/Biologische Station Soest, Teichstraße 19, 59505, Bad Sassendorf, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Gerard Müskens
- Müskens Fauna, van Nispenstraat 4, 6561 BG, Groesbeek, The Netherlands
| | | | - Ronald Zollinger
- Natuurplaza, P.O. Box 1413, NL-6501, BK, Nijmegen, The Netherlands
| | - Gabriele Treu
- Department Chemicals, Umweltbundesamt, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
10
|
Fernández-Vizcaíno E, Ortiz-Santaliestra ME, Fernández-Tizón M, Mateo R, Camarero PR, Mougeot F. Bird exposure to fungicides through the consumption of treated seeds: A study of wild red-legged partridges in central Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118335. [PMID: 34637835 DOI: 10.1016/j.envpol.2021.118335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sown seeds are a key component of many farmland birds' diets due to natural food shortages in autumn and winter. Because these seeds are often treated with pesticides, their ingestion by birds can result in toxic effects. For risk assessment, data on treated seed toxicity should be combined with information about exposure risk for wild birds and the factors that modulate it. We characterized the exposure of red-legged partridges to pesticide-treated seeds through the analysis of digestive contents of birds shot by hunters (n = 194) in an agricultural region in central Spain. We measured the contribution of sown seeds to the partridges' diet and how it related to pesticide exposure. Moreover, we evaluated the influence of landscape composition on the intake of sown seeds and pesticides by partridges. During peak sowing time, seeds constituted half (50.7%) of the fresh biomass ingested by partridges, which consumed mostly winter cereal seeds (42.3% of biomass). Residues of seven fungicides and one insecticide (active ingredients) were detected in 33.0% of birds. The presence of pesticides in digestive contents was linked to the ingestion of cereal sown seeds. Moreover, dietary exposure of birds to pesticides was modulated by landscape characteristics, being lower in areas with heterogeneous landscapes, greater habitat mosaic and more natural vegetation. The estimated dietary intake of pesticides resulting from our field observations, in combination with experimental data on pesticide toxicity, raise concerns about the risks that pesticide-treated cereal seeds pose to granivorous bird populations. Our results highlight the importance of farming landscape composition and diversification, which should be considered as a priority in the agricultural policy to mitigate pesticide risks to farmland birds through the consumption of treated seeds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain.
| | | | - Mario Fernández-Tizón
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| |
Collapse
|
11
|
Moreau J, Monceau K, Crépin M, Tochon FD, Mondet C, Fraikin M, Teixeira M, Bretagnolle V. Feeding partridges with organic or conventional grain triggers cascading effects in life-history traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116851. [PMID: 33711629 DOI: 10.1016/j.envpol.2021.116851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Farmland birds are declining across Europe and North America and the research of factors behind is the subject of extensive researches. Agricultural intensification is now recognized as a major factor governing the loss of biodiversity with strong evidence that pesticides induced direct bird mortality at a high dose. However, less attention has been given to the long-term effects of chronic exposure to low dose of pesticides. Here, we used an experimental procedure in which grey partridges were fed with untreated grains obtained from either organic (no pesticide) or conventional agriculture (with pesticide) for 26 weeks, thus strictly mimicking wild birds foraging on fields. We then examined a suite of life-history traits (ecophysiological and behavioural) that may ultimately, influence population dynamics. We show for the first time that ingesting low pesticide doses over a long period has long-term consequences on several major physiological pathways without inducing differential mortality. Compared to control partridges, birds exposed to chronic doses i) had less developed carotenoid-based ornaments due to lower concentrations of plasmatic carotenoids, ii) had higher activated immune system, iii) showed signs of physiological stress inducing a higher intestinal parasitic load, iv) had higher behavioural activity and body condition and v) showed lower breeding investment. Our results are consistent with a hormetic effect, in which exposure to a low dose of a chemical agent may induce a positive response, but our results also indicate that breeding adults may show impaired fitness traits bearing population consequences through reduced breeding investment or productivity. Given the current scale of use of pesticides in agrosystems, we suggest that such shifts in life-history traits may have a negative long-term impact on wild bird populations across agrosystems. We stress that long-term effects should no longer be ignored in pesticide risk assessment, where currently, only short-term effects are taken into account.
Collapse
Affiliation(s)
- Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France; Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France.
| | - Karine Monceau
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Malaury Crépin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Flavie Derouin Tochon
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Cécilia Mondet
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Marie Fraikin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| |
Collapse
|
12
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Birds feeding on tebuconazole treated seeds have reduced breeding output. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116292. [PMID: 33388683 DOI: 10.1016/j.envpol.2020.116292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
13
|
Lennon RJ, Shore RF, Pereira MG, Peach WJ, Dunn JC, Arnold KE, Brown CD. High prevalence of the neonicotinoid clothianidin in liver and plasma samples collected from gamebirds during autumn sowing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140493. [PMID: 32629254 DOI: 10.1016/j.scitotenv.2020.140493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Since neonicotinoid insecticides were introduced to the agricultural market, evidence of the negative impacts of these systemic compounds on non-target species has accumulated. Birds are one of the largest groups of species to inhabit farmland, but the extent of neonicotinoid exposure in avian communities is poorly understood and very little is known about how any exposure may affect wild birds. Here, free-living gamebirds were used as a model group to measure the extent of avian exposure to the neonicotinoid clothianidin via seed treatment. During a typical sowing period of winter cereals treated with clothianidin, blood and liver samples were collected simultaneously from individual hunted gamebird carcasses, both pre- (n = 18) and post-sowing (n = 57) and were analysed for clothianidin via LC/MS-MS. Body weight, fat score and faecal parasite load were also quantified in the birds to ascertain whether any of these health parameters were associated with clothianidin exposure under field conditions. Clothianidin was detected in 6% of individuals sampled pre-sowing and 89% of individuals sampled post-sowing. The frequency of clothianidin detection in plasma samples and the concentration of clothianidin in liver and plasma samples decreased significantly between the first week and 2-4 weeks post-sowing. Faecal parasite load was positively associated with concentrations of clothianidin in the liver (but not plasma) of partridge species, but there was no association between clothianidin concentration and fat score or body weight, for either sample type. This study provides clear evidence that treated seed is a source of pesticide exposure for gamebirds following autumn sowing. These findings have implications for gamebirds worldwide where seed treatments are in use, and will aid the design of any future avian biomonitoring studies for agrochemical compounds.
Collapse
Affiliation(s)
- Rosie J Lennon
- Department of Environment and Geography, The University of York, Heslington, York, United Kingdom.
| | - Richard F Shore
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom
| | - Will J Peach
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, Bedfordshire, United Kingdom
| | - Jenny C Dunn
- School of Life Sciences, Joseph Banks Laboratories, The University of Lincoln, Lincoln, United Kingdom
| | - Kathryn E Arnold
- Department of Environment and Geography, The University of York, Heslington, York, United Kingdom
| | - Colin D Brown
- Department of Environment and Geography, The University of York, Heslington, York, United Kingdom
| |
Collapse
|
14
|
Ortiz-Santaliestra ME, Alcaide V, Camarero PR, Mateo R, Mougeot F. Egg Overspray with Herbicides and Fungicides Reduces Survival of Red-Legged Partridge Chicks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12402-12411. [PMID: 32911930 DOI: 10.1021/acs.est.0c04203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Within the environmental risk assessment conducted for pesticide registration in the European Union (EU), avian reproductive toxicity is characterized after exposing adults. However, eggs of ground-nesting species can be exposed when pesticide applications occur during laying or incubation. We simulated environmentally realistic exposure of red-legged partridge (Alectoris rufa) eggs to an herbicide (2,4-D) and a fungicide (tebuconazole) applied to winter cereal crops during the breeding season of most farmland birds. We analyzed the effects on hatching success, offspring survival, and physiology. Exposure by overspray led to greater pesticide accumulation in the eggshell or content than exposure through contact with treated soil (3.1-13.7 times higher, depending on the pesticide and target sample). Egg overspray with tebuconazole significantly increased chick mortality, which was 26% higher than that of controls. 2,4-D caused a similar but a close to significant increase (chick mortality 24% higher than controls). Exposure to either pesticide through contact with treated soils did not affect chick survival but altered some biochemical parameters posthatching. Our experiment shows that egg spraying with pesticides should be considered as a relevant exposure scenario in risk assessment procedures, given its potential to affect the reproductive success of ground-nesting farmland birds.
Collapse
Affiliation(s)
- Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Vicente Alcaide
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla la Mancha (IRIAF) JCCM, Centro de Investigación Agroambiental El Chaparrillo, Carretera de Porzuna s/n, 13071 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
15
|
Rial-Berriel C, Acosta-Dacal A, Zumbado M, Luzardo OP. Micro QuEChERS-based method for the simultaneous biomonitoring in whole blood of 360 toxicologically relevant pollutants for wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139444. [PMID: 32485368 DOI: 10.1016/j.scitotenv.2020.139444] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 05/15/2023]
Abstract
This work presents the optimization, validation, and verification of a miniaturized method for the determination of 360 environmental pollutants that are of toxicological concern for wildlife. The method implies a one-step QuEChERS-based extraction of 250 μl whole blood using acidified acetonitrile, followed by two complementary analyses by LC-MS/MS and GC-MS/MS. The optimized conditions allow the simultaneous determination of the major persistent organic pollutants, a wide range of plant protection products, rodenticides, pharmaceuticals, and a suite of metabolites that can be used as biomarkers of exposure. The method is very sensitive, and 95% of the pollutants can be detected at concentrations below 1.5 ng/ml. The method was applied to a series of 148 samples of nocturnal and diurnal wild raptors collected during field ecological studies in 2018 and 2019. Fifty-one different contaminants were found in these samples, with a median value of 7 contaminants per sample. As expected, five of the six contaminants that were detected in >50% of the samples were persistent or semi-persistent organic pollutants. However, it is striking the high frequency of detection of some non-persistent pollutants, such as 2-phenylphenol, benalaxyl, metaflumizone, diphenylamine, brodifacoum or levamisole, indicating the penetration of these chemicals into the food chains. The toxicological significance of all these findings should be studied in depth in future research. However, the results clearly demonstrated that the approach developed provides reliable, simple, and rapid determination of a wide range of pollutants in wildlife and makes it very useful to obtain valuable data in biomonitoring studies with only small amounts of sample.
Collapse
Affiliation(s)
- Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Study Group on Wild Animal Conservation Medicine (GEMAS), Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Study Group on Wild Animal Conservation Medicine (GEMAS), Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| |
Collapse
|
16
|
Badry A, Krone O, Jaspers VLB, Mateo R, García-Fernández A, Leivits M, Shore RF. Towards harmonisation of chemical monitoring using avian apex predators: Identification of key species for pan-European biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139198. [PMID: 32422436 DOI: 10.1016/j.scitotenv.2020.139198] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 05/09/2023]
Abstract
Biomonitoring in raptors can be used to study long-term and large-scale changes in environmental pollution. In Europe, such monitoring is needed to assess environmental risks and outcomes of chemicals regulation, which is harmonised across the European Union. To be effective, the most appropriate sentinels need to be monitored. Our aim was to identify which European raptor species are the likely most appropriate biomonitors when pollutant quantification is based on analysing tissues. Our current study was restricted to terrestrial exposure pathways and considered four priority pollutant groups: toxic metals (lead and mercury), anticoagulant rodenticides, pesticides and medicinal products. We evaluated information on the distribution and key ecological traits (food web, foraging trait, diet, preferred habitat, and migratory behaviour) of European raptors to identify the most appropriate sentinel species. Common buzzard (Buteo buteo) and/or tawny owl (Strix aluco) proved the most suitable candidates for many of the pollutants considered. Moreover, they are abundant in Europe, enhancing the likelihood that samples can be collected. However, other species may be better sentinels for certain pollutants, such as the golden eagle (Aquila chrysaetos) for lead, the northern goshawk (Accipiter gentilis) for mercury across areas including Northern Europe, and vultures (where they occur in Europe) are likely best suited for monitoring non-steroidal anti-inflammatory drugs (NSAIDs). Overall, however, we argue the selection of candidate species for widescale monitoring of a range of pollutants can be reduced to very few raptor species. We recommend that the common buzzard and tawny owl should be the initial focus of any pan-European raptor monitoring. The lack of previous widespread monitoring using these species suggests that their utility as sentinels for environmnetal pollution has not been widely recognised. Finally, although the current study focussed on Europe, our trait-based approach for identifying raptor biomonitors can be applied to other continents and contaminants.
Collapse
Affiliation(s)
- Alexander Badry
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| | - Antonio García-Fernández
- Toxicology and Risk Assessment Group, Department of Health Sciences, University of Murcia, Espinardo Campus, 30100 Murcia, Spain
| | - Madis Leivits
- Chair of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Richard F Shore
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg LA1 4AP, UK
| |
Collapse
|
17
|
Tassin de Montaigu C, Goulson D. Identifying agricultural pesticides that may pose a risk for birds. PeerJ 2020; 8:e9526. [PMID: 32832262 PMCID: PMC7413080 DOI: 10.7717/peerj.9526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/21/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, we analyze changing patterns of pesticide use in agriculture in Great Britain over the 1990-2016 period, with respect to the risk they pose to birds. The weight of pesticides applied decreased by 51% between 1990 and 2016, but the area treated increased by 63% over the same period. Over this period, there has been considerable turnover in the pesticides used. The European Union (including Great Britain until 2020) has restricted or banned many pesticides for agricultural use, including organophosphates and carbamates. However, new generations of active substances have been introduced, such as the neonicotinoids, some of which have since been banned. In this analysis, we estimate the annual 'toxic load' of agricultural pesticide use in Great Britain for birds, measured as the total number of LD50 doses for corn buntings, Emberiza calandra. We have previously performed similar analyses for bees, for which the total toxic load increased six-fold during this period. In contrast, for birds the total toxic load fell by 80.5%, although still correspond to 8.3e+11 corn bunting LD50 doses in 2016. The decrease in toxicity is largely due to declining use of highly toxic organophosphates in recent years. We identify the pesticides in current use that may pose the highest risk to birds, which include a mix of insecticides, herbicides, fungicides, molluscicides, acaricides and plant growth regulators. The insecticide ethoprop was ranked highest in 2016, with a toxic load of 71 billion potential corn bunting kills. Some of the other chemicals presenting a high toxic load, such as the herbicide chlormequat, are not highly toxic to birds (in terms of LD50) but are used in very large quantities. However, it is important to stress that, in reality, only a tiny proportion of pesticides applied will be ingested by birds, and this will vary according to timing and method of application, persistence of the active substance and many other factors. We further note that impacts of pesticides on birds might often be indirect, for example via depleting their food supply, and that sublethal impacts may occur at much lower doses than the LD50, neither of which do we investigate here. Nonetheless, we suggest that this is a useful approach to highlight pesticides that might be worth closer study with regard to possible impacts.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| |
Collapse
|
18
|
Lennon RJ, Isaac NJB, Shore RF, Peach WJ, Dunn JC, Pereira MG, Arnold KE, Garthwaite D, Brown CD. Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England. PLoS One 2019; 14:e0223093. [PMID: 31574132 PMCID: PMC6772096 DOI: 10.1371/journal.pone.0223093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/14/2019] [Indexed: 01/12/2023] Open
Abstract
Over the last 20 years, a new group of systemic insecticides-the neonicotinoids-has gained prominence in arable systems, and their application globally has risen year on year. Previous modelling studies using long-term data have suggested that neonicotinoid application has had a detrimental impact on bird populations, but these studies were either limited to a single species or neglected to analyse specific exposure pathways in conjunction with observed population trends. Using bird abundance data, neonicotinoid usage records and cropping data for England at a 5x5 km resolution, generalised linear mixed models were used to test for spatio-temporal associations between neonicotinoid use and changes in the populations of 22 farmland bird species between 1994 and 2014, and to determine whether any associations were explained by dietary preferences. We assigned farmland bird species to three categories of dietary exposure to neonicotinoids based on literature data for species diets and neonicotinoid residues present in dietary items. Significant estimates of neonicotinoid-related population change were obtained for 13 of the 22 species (9 positive effects, 4 negative effects). Model estimates for individual species were not collectively explained by dietary risk categories, so dietary exposure to neonicotinoids via ingestion of treated seeds and seedlings could not be confirmed as a causal factor in farmland bird declines. Although it is not possible to infer any generic effect of dietary exposure to neonicotinoids on farmland bird populations, our analysis identifies three species with significant negative estimates that may warrant further research (house sparrow Passer domesticus, skylark Alauda arvensis and red-legged partridge Alectoris rufa). We conclude that there was either no consistent effect of dietary exposure to neonicotinoids on farmland bird populations in England, or that any over-arching effect was not detectable using our study design. The potential for indirect effects of insecticide use on bird populations via reduced food availability was not considered here and should be a focus for future research.
Collapse
Affiliation(s)
- Rosie J. Lennon
- Department of Environment and Geography, University of York, York, England, United Kingdom
- * E-mail:
| | - Nick J. B. Isaac
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, England, United Kingdom
| | - Richard F. Shore
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, England, United Kingdom
| | - Will J. Peach
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, Bedfordshire, England, United Kingdom
| | - Jenny C. Dunn
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, England, United Kingdom
| | - M. Glória Pereira
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, England, United Kingdom
| | - Kathryn E. Arnold
- Department of Environment and Geography, University of York, York, England, United Kingdom
| | - David Garthwaite
- Fera Science Ltd., National Agri-food Innovation Campus, Sand Hutton, York, England, United Kingdom
| | - Colin D. Brown
- Department of Environment and Geography, University of York, York, England, United Kingdom
| |
Collapse
|
19
|
Lacroux C, Guma N, Krief S. Facial dysplasia in wild forest olive baboons (Papio anubis) in Sebitoli, Kibale National Park, Uganda: Use of camera traps to detect health defects. J Med Primatol 2019; 48:143-153. [PMID: 30941780 DOI: 10.1111/jmp.12408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/25/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Primate populations are in decline, mainly affected by agriculture leading to habitat loss, fragmentation but also chemical pollution. Kibale National Park (Uganda), Sebitoli forest, surrounded by tea and crop fields, is the home range of chimpanzees presenting congenital facial dysplasia. This study aimed to identify to what extent the same phenotypical features are observed in baboons (Papio anubis) of this area. METHODS A total of 25 390 clips recorded by 14 camera traps between January 2017 and April 2018 were analyzed. RESULTS We identified 30 immature and adult baboons of both sexes with nose and lip deformities. They were more frequently observed in the northwestern part of the area. CONCLUSIONS A possible effect of pesticides used in crops at the border of their habitat is suspected to alter the embryonic development. This study emphasizes the importance of non-invasive methods to detect health problems in wild primates that can act as sentinels for human health.
Collapse
Affiliation(s)
- Camille Lacroux
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Hommes, et Environnements, Musée de l'Homme, Museum national d'Histoire naturelle, Paris, France.,Sebitoli Chimpanzee Project, Projet pour la Conservation des Grands Singes, Fort Portal, Uganda
| | - Nelson Guma
- Uganda Wildlife Authority, Fort Portal, Uganda
| | - Sabrina Krief
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Hommes, et Environnements, Musée de l'Homme, Museum national d'Histoire naturelle, Paris, France.,Sebitoli Chimpanzee Project, Projet pour la Conservation des Grands Singes, Fort Portal, Uganda
| |
Collapse
|
20
|
Khalid NHA, Rasid NNA, Mohd.Sam AR, Lim NHAS, Ismail M, Zardasti L, Mohamed A, Majid ZA, Ariffin NF. Characterization of palm oil fuel ash and eggshell powder as partial cement replacement in concrete. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/431/3/032002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Krief S, Berny P, Gumisiriza F, Gross R, Demeneix B, Fini JB, Chapman CA, Chapman LJ, Seguya A, Wasswa J. Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:647-656. [PMID: 28454037 DOI: 10.1016/j.scitotenv.2017.04.113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Prenatal exposure to environmental endocrine disruptors can affect development and induce irreversible abnormalities in both humans and wildlife. The northern part of Kibale National Park, a mid-altitude rainforest in western Uganda, is largely surrounded by industrial tea plantations and wildlife using this area (Sebitoli) must cope with proximity to human populations and their activities. The chimpanzees and baboons in this area raid crops (primarily maize) in neighboring gardens. Sixteen young individuals of the 66 chimpanzees monitored (25%) exhibit abnormalities including reduced nostrils, cleft lip, limb deformities, reproductive problems and hypopigmentation. Each pathology could have a congenital component, potentially exacerbated by environmental factors. In addition, at least six of 35 photographed baboons from a Sebitoli troop (17%) have similar severe nasal deformities. Our inquiries in villages and tea factories near Sebitoli revealed use of eight pesticides (glyphosate, cypermethrin, profenofos, mancozeb, metalaxyl, dimethoate, chlorpyrifos and 2,4-D amine). Chemical analysis of samples collected from 2014 to 2016 showed that mean levels of pesticides in fresh maize stems and seeds, soils, and river sediments in the vicinity of the chimpanzee territory exceed recommended limits. Notably, excess levels were found for total DDT and its metabolite pp'-DDE and for chlorpyrifos in fresh maize seeds and in fish from Sebitoli. Imidacloprid was detected in coated maize seeds planted at the edge the forest and in fish samples from the Sebitoli area, while no pesticides were detected in fish from central park areas. Since some of these pesticides are thyroid hormone disruptors, we postulate that excessive pesticide use in the Sebitoli area may contribute to facial dysplasia in chimpanzees and baboons through this endocrine pathway. Chimpanzees are considered as endangered by IUCN and besides their intrinsic value and status as closely related to humans, they have major economic value in Uganda via ecotourism. Identifying and limiting potential threats to their survival such be a conservation priority.
Collapse
Affiliation(s)
- Sabrina Krief
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie et ethnobiologie, Hommes, et Environnements, Museum national d'Histoire naturelle, Musée de l'Homme, 17 place du Trocadéro, 75016 Paris, France; Great Ape Conservation Project (GACP), Sebitoli Research Station, Kibale National Park, Fort Portal, Uganda.
| | - Philippe Berny
- VetAgroSup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France.
| | | | - Régine Gross
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie et ethnobiologie, Hommes, et Environnements, Museum national d'Histoire naturelle, Musée de l'Homme, 17 place du Trocadéro, 75016 Paris, France; Great Ape Conservation Project (GACP), Sebitoli Research Station, Kibale National Park, Fort Portal, Uganda
| | - Barbara Demeneix
- UMR 7221, Evolution of Endocrine Regulations, Museum national d'Histoire naturelle, 57 rue Cuvier, 75005 Paris, France.
| | - Jean Baptiste Fini
- UMR 7221, Evolution of Endocrine Regulations, Museum national d'Histoire naturelle, 57 rue Cuvier, 75005 Paris, France.
| | - Colin A Chapman
- Department of Anthropology, and McGill School of Environment, 855 Sherbrooke Street West, McGill University, Montréal, Québec H3A 2T7, Canada; Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York 10460, USA.
| | - Lauren J Chapman
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.
| | | | - John Wasswa
- Department of Chemistry, Makerere University, Kampala, Uganda
| |
Collapse
|
22
|
Devillers J, Devillers H, Bro E, Millot F. Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridge. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:889-911. [PMID: 29206499 DOI: 10.1080/1062936x.2017.1402449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
A suite of models is proposed for estimating the risk of pesticides against the grey partridge (Perdix perdix) and their clutches. Radio-tracked data of females, description and location of the clutches, and data on the pesticide treatments during the laying periods of the partridges were used as basic information. Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) modelling allowed us to characterize the pesticides by their 1-octanol/water partition coefficient (log P), vapour pressure, primary and ultimate biodegradation potential, acute toxicity (LD50) on P. perdix, and endocrine disruption potential. From these physicochemical and toxicological data, the system of integration of risk with interaction of scores (SIRIS) method was used to design scores of risk for pesticides, alone or in mixture. A program, written in R (version 3.1.1), called Simulation of Toxicity in Perdix perdix (SimToxPP), was designed for estimating the risk of substances, considered alone or in mixture, against the grey partridge during breeding. The software tool is flexible enough to simulate realistic in situ scenarios. Different examples of applications are shown. The advantages and limitations of the approach are briefly discussed.
Collapse
Affiliation(s)
| | - H Devillers
- b Micalis Institute, INRA, University Paris-Saclay , Jouy-en-Josas , France
| | - E Bro
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| | - F Millot
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| |
Collapse
|
23
|
Corcellas C, Andreu A, Máñez M, Sergio F, Hiraldo F, Eljarrat E, Barceló D. Pyrethroid insecticides in wild bird eggs from a World Heritage Listed Park: A case study in Doñana National Park (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:321-330. [PMID: 28551562 DOI: 10.1016/j.envpol.2017.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Recent studies demonstrated that the common pyrethroid insecticides are present in aquatic biota tissues. In this study, 123 samples of unhatched eggs of 16 wild bird species collected from 2010 to 2012 in Doñana National and Natural Park were analysed to determine 13 pyrethroids. This study represents the first time that pyrethroids are detected in tissues of terrestrial biota, 93% of these samples being positive to those pollutants. Levels of total pyrethroids ranged from not detected to 324 ng g-1 lw. The samples were characterized by stable isotope analysis. Species with diets based on anthropogenic food showed higher levels of pyrethroids and lower values of δ15N. Finally, we characterized the isomers of pyrethroids and discerned some isomeric- and enantiomeric-specific accumulations. In particular, tetramethrin and cyhalothrin showed an enantiomeric-selective accumulation of one enantiomer, highlighting the need to assess toxicological effects of each enantiomer separately to be able to make a correct risk assessment of pyrethroids in birds.
Collapse
Affiliation(s)
- Cayo Corcellas
- Water and Soil Quality Research Group, Dep. of Environmental Chemistry (IDAEA-CSIC), Barcelona, Spain
| | - Ana Andreu
- Natural Processes Monitoring Team, Estación Biológica de Doñana (EBD-CSIC), c/Américo Vespucio s/n, 41092 Seville, Spain
| | - Manuel Máñez
- Natural Processes Monitoring Team, Estación Biológica de Doñana (EBD-CSIC), c/Américo Vespucio s/n, 41092 Seville, Spain
| | - Fabrizio Sergio
- Department of Applied Biology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Fernando Hiraldo
- Department of Applied Biology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Dep. of Environmental Chemistry (IDAEA-CSIC), Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Dep. of Environmental Chemistry (IDAEA-CSIC), Barcelona, Spain; Catalan Institute for Water Research (ICRA), Girona, Spain
| |
Collapse
|
24
|
Mateo R, Petkov N, Lopez-Antia A, Rodríguez-Estival J, Green AJ. Risk assessment of lead poisoning and pesticide exposure in the declining population of red-breasted goose (Branta ruficollis) wintering in Eastern Europe. ENVIRONMENTAL RESEARCH 2016; 151:359-367. [PMID: 27529395 DOI: 10.1016/j.envres.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 05/27/2023]
Abstract
The red-breasted goose Branta ruficollis is a globally threatened species (IUCN Vulnerable) and the only European goose species currently in decline. Working on the wintering grounds on the Black Sea Coast, we address two potential causes of decline of this species for the first time: lead poisoning, and contamination from pesticides. We quantified the densities of spent Pb shot in three wetlands used by the geese in north-east Bulgaria, and analysed the Pb concentration in the faeces of red-breasted geese and the more abundant greater white-fronted geese Anser albifrons, using Al concentration as an indicator of soil ingestion. Pb shot densities in sediments were low, and we found no evidence for Pb shot ingestion in red-breasted geese. On the other hand, we found that the geese were feeding on wheat whose seeds were treated with four fungicides: thiram, tebuconazole, difenoconazole and fludioxonil, and the two first were even detected in geese faecal samples. Using data on the daily food intake, we estimated the exposure levels of the geese to these fungicides, both by measuring the concentrations remaining on seeds and by estimating the amount used to coat the seeds at the time of sowing. We found that the exposure rates estimated during the sowing period for both geese species can exceed the recognized hazardous doses for thiram, and to a lesser extent for tebuconazole, which indicates that some pesticides may be playing a previously overlooked role in the decline of red-breasted geese.
Collapse
Affiliation(s)
- Rafael Mateo
- Group of Wildlife Toxicology, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Nikolai Petkov
- Bulgarian Society for the Protection of Birds, Yavorov Complex, bl 71, entr.4, BG-1111 Sofia, Bulgaria
| | - Ana Lopez-Antia
- Group of Wildlife Toxicology, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Jaime Rodríguez-Estival
- Group of Wildlife Toxicology, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Américo Vespucio s/n, 41092 Seville, Spain
| |
Collapse
|
25
|
Bro E, Devillers J, Millot F, Decors A. Residues of plant protection products in grey partridge eggs in French cereal ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9559-73. [PMID: 26841780 PMCID: PMC4871908 DOI: 10.1007/s11356-016-6093-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 05/13/2023]
Abstract
The contamination of the eggs of farmland birds by currently used plant protection products (PPPs) is poorly documented despite a potential to adversely impact their breeding performance. In this context, 139 eggs of 52 grey partridge Perdix perdix clutches, collected on 12 intensively cultivated farmlands in France in 2010-2011, were analysed. Given the great diversity of PPPs applied on agricultural fields, we used exploratory GC/MS-MS and LC/MS-MS screenings measuring ca. 500 compounds. The limit of quantification was 0.01 mg/kg, a statutory reference. A total of 15 different compounds were detected in 24 clutches. Nine of them have been used by farmers to protect crops against fungi (difenoconazole, tebuconazole, cyproconazole, fenpropidin and prochloraz), insects (lambda-cyhalothrin and thiamethoxam/clothianidin) and weeds (bromoxynil and diflufenican). Some old PPPs were also detected (fipronil(+sulfone), HCH(α,β,δ isomers), diphenylamine, heptachlor(+epoxyde), DDT(Σisomers)), as well as PCBs(153, 180). Concentrations ranged between <0.01 and 0.05 mg/kg but reached 0.067 (thiamethoxam/clothianidin), 0.11 (heptachlor + epoxyde) and 0.34 (fenpropidin) mg/kg in some cases. These results testify an actual exposure of females and/or their eggs to PPPs in operational conditions, as well as to organochlorine pollutants or their residues, banned in France since several years if not several decades, that persistently contaminate the environment.Routes of exposure, probability to detect a contamination in the eggs, and effects on egg/embryo characteristics are discussed with regard to the scientific literature.
Collapse
Affiliation(s)
- Elisabeth Bro
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France.
| | - James Devillers
- Centre de Traitement de l'Information Scientifique, 3 chemin de la Gravière, 69140, Rillieux La Pape, France
| | - Florian Millot
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France
| | - Anouk Decors
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France
| |
Collapse
|
26
|
Devillers J, Bro E, Millot F. Prediction of the endocrine disruption profile of pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:831-852. [PMID: 26548639 DOI: 10.1080/1062936x.2015.1104809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Numerous manmade chemicals released into the environment can interfere with normal, hormonally regulated biological processes to adversely affect the development and reproductive functions of living species. Various in vivo and in vitro tests have been designed for detecting endocrine disruptors, but the number of chemicals to test is so high that to save time and money, (quantitative) structure-activity relationship ((Q)SAR) models are increasingly used as a surrogate for these laboratory assays. However, most of them focus only on a specific target (e.g. estrogenic or androgenic receptor) while, to be more efficient, endocrine disruption modelling should preferentially consider profiles of activities to better gauge this complex phenomenon. In this context, an attempt was made to evaluate the endocrine disruption profile of 220 structurally diverse pesticides using the Endocrine Disruptome simulation (EDS) tool, which simultaneously predicts the probability of binding of chemicals on 12 nuclear receptors. In a first step, the EDS web-based system was successfully applied to 16 pharmaceutical compounds known to target at least one of the studied receptors. About 13% of the studied pesticides were estimated to be potential disruptors of the endocrine system due to their high predicted affinity for at least one receptor. In contrast, about 55% of them were unlikely to be endocrine disruptors. The simulation results are discussed and some comments on the use of the EDS tool are made.
Collapse
Affiliation(s)
| | - E Bro
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| | - F Millot
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| |
Collapse
|
27
|
Liquid chromatography-tandem mass spectrometry determination for multiclass pesticides from insect samples by microwave-assisted solvent extraction followed by a salt-out effect and micro-dispersion purification. Anal Chim Acta 2015; 891:160-70. [DOI: 10.1016/j.aca.2015.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 11/18/2022]
|
28
|
Saxena A, Devillers J, Bhunia S, Bro E. Modelling inhibition of avian aromatase by azole pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:757-82. [PMID: 26535448 PMCID: PMC4673582 DOI: 10.1080/1062936x.2015.1090749] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/26/2015] [Indexed: 05/26/2023]
Abstract
The potential effects of pesticides and their metabolites on the endocrine system are of major concern to wildlife and human health. In this context, the azole pesticides have earned special attention due to their cytochrome P450 aromatase inhibition potential. Cytochrome P450 aromatase (CYP19) catalyses the conversion of androstenedione and testosterone into oestrone and oestradiol, respectively. Thus, aromatase modulates the oestrogenic balance essential not only for females, but also for male physiology, including gonadal function. Its inhibition affects reproductive organs, fertility and sexual behaviour in humans and wildlife species. Several studies have shown that azole pesticides are able to inhibit human and fish aromatases but the information on birds is lacking. Consequently, it appeared to be of interest to estimate the aromatase inhibition of azoles in three different avian species, namely Gallus gallus, Coturnix coturnix japonica and Taeniopygia guttata. In the absence of the crystal structure of the aromatase enzyme in these bird species, homology models for the individual avian species were constructed using the crystal structure of human aromatase (hAr) (pdb: 3EQM) that showed high sequence similarity for G. gallus (82.0%), T. guttata (81.9%) and C. japonica (81.2%). A homology model with Oncorhynchus mykiss (81.9%) was also designed for comparison purpose. The homology-modelled aromatase for each avian and fish species and crystal structure of human aromatase were selected for docking 46 structurally diverse azoles and related compounds. We showed that the docking behaviour of the chemicals on the different aromatases was broadly the same. We also demonstrated that there was an acceptable level of correlation between the binding score values and the available aromatase inhibition data. This means that the homology models derived on bird and fish species can be used to approximate the potential inhibitory effects of azoles on their aromatase.
Collapse
Affiliation(s)
| | | | - S.S. Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - E. Bro
- Research Department, National Game and Wildlife Institute (ONCFS), Le Perray en Yvelines, France
| |
Collapse
|