1
|
Antonopoulou M, Tzamaria A, Papas S, Efthimiou I, Vlastos D. Assessment of Potential Toxic Effects of Fungicide Fludioxonil on Human Cells and Aquatic Microorganisms. TOXICS 2025; 13:358. [PMID: 40423437 DOI: 10.3390/toxics13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/28/2025]
Abstract
Fludioxonil is a widely used fungicide that is frequently used to combat fungal plant diseases. Consequently, excessive concentrations of fludioxonil may enter and accumulate over time in aquatic systems, harming (micro) organisms in several ways. Thus, it is of great importance to evaluate the potential toxic effects of fludioxonil using bioassays. In the present study, various in vitro assays were used to assess the possible effects of fludioxonil in human cells and aquatic microorganisms. For the investigation of the toxic effects of fludioxonil on freshwater microalgae, Scenedesmus rubescens and Dunaliella tertiolecta were exposed to various environmentally relevant concentrations of the fungicide for a period of 96 h. Fludioxonil at 50-200 μg L-1 significantly limited the growth of both microalgae, especially in the first 24 h of the exposure, where inhibitions up to 82.34% were calculated. The toxicity of fludioxonil was further evaluated via the Microtox test, and the studied fungicide was found to be less toxic for the bacteria Aliivibrio fischeri. Regarding human cells, the fludioxonil's toxic and cyto-genotoxic effects were assessed using the Trypan blue exclusion test and the Cytokinesis Block MicroNucleus (CBMN) assay. Cell viability in all fludioxonil-treated concentrations was similar to control values according to the results of the Trypan blue exclusion test. However, the CBMN assay was used and revealed that fludioxonil had genotoxic potential in higher concentrations and exerted cytotoxic activity against human lymphocytes. Specifically, only the highest dose of fludioxonil, i.e., 10 μg mL-1, exerted genotoxic effects against human lymphocytes, whereas treatment with 0.5, 1, and 5 μg mL-1 did not lead to statistically significant induction of micronuclei (MN) frequencies compared with the control culture. However, fludioxonil-mediated cytotoxicity was statistically significant, which was demonstrated by the decreased CBPI (cytokinesis block proliferation index) values in all cases except for the lowest dose, i.e., 0.5 μg mL-1.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Sotiris Papas
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Ioanna Efthimiou
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Dimitris Vlastos
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
2
|
Putri VRM, Jung MH, Lee JY, Kwak MH, Mariyes TC, Kerbs A, Wendisch VF, Kong HJ, Kim YO, Lee JH. Fermentative aminopyrrolnitrin production by metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2024; 23:147. [PMID: 38783320 PMCID: PMC11112847 DOI: 10.1186/s12934-024-02424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.
Collapse
Grants
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
- R2024019 National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Korea
Collapse
Affiliation(s)
| | - Min-Hee Jung
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Ji-Young Lee
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Mi-Hyang Kwak
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Theavita Chatarina Mariyes
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea
| | - Anastasia Kerbs
- Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, BB21+, Kyungsung University, Busan, 48434, Republic of Korea.
| |
Collapse
|
3
|
Wu F, Liu Z, Wang J, Wang X, Zhang C, Ai S, Li J, Wang X. Research on aquatic microcosm: Bibliometric analysis, toxicity comparison and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134078. [PMID: 38518699 DOI: 10.1016/j.jhazmat.2024.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/03/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Recently, aquatic microcosms have attracted considerable attention because they can be used to simulate natural aquatic ecosystems. First, to evaluate the development of trends, hotspots, and national cooperation networks in the field, bibliometric analysis was performed based on 1841 articles on aquatic microcosm (1962-2022). The results of the bibliometric analysis can be categorized as follows: (1) Aquatic microcosm research can be summarized in two sections, with the first part focusing on the ecological processes and services of aquatic ecosystems, and the second focusing on the toxicity and degradation of pollutants. (2) The United States (number of publications: 541, proportion: 29.5%) and China (248, 13.5%) are the two most active countries. Second, to determine whether there is a difference between single-species and microcosm tests, that is, to perform different-tier assessments, the recommended aquatic safety thresholds in risk assessment [i.e., the community-level no effect concentration (NOECcommunity), hazardous concentrations for 5% of species (HC5) and predicted no effect concentration (PNEC)] were compared based on these tests. There was a significant difference between the NOECcommunity and HC5 (P < 0.05). Moreover, regression models predicting microcosm toxicity values were constructed to provide a reference for ecological systemic risk assessments based on aquatic microcosms.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- Offshore Environmental Technology & Services Limited, Beijing 100027, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
4
|
Nys C, De Schamphelaere KAC. Ecotoxicity of Lead to a Phytoplankton Community: Effects of pH and Phosphorus Addition and Implications for Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2684-2700. [PMID: 37638666 DOI: 10.1002/etc.5739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/06/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Ecological risk assessment and water quality criteria for lead (Pb) are increasingly making use of bioavailability-based approaches to account for the impact of toxicity-modifying factors, such as pH and dissolved organic carbon. For phytoplankton, which are among the most Pb-sensitive freshwater species, a Pb bioavailability model has previously been developed based on standard single-species exposures at a high phosphorus (P) concentration and pH range of 6.0 to 8.0. It is well known that P can affect metal toxicity to phytoplankton and that the pH of many surface waters can be above 8.0. We aimed to test whether the single-species bioavailability model for Pb could predict the influence of pH on Pb toxicity to a phytoplankton community at both low and high P supply. A 10-species phytoplankton community was exposed to Pb for 28 days at two different pH levels (7.2 and 8.4) and two different P supply levels (low and high, i.e., total P input 10 and 100 µg/L, respectively) in a full factorial 2 × 2 test design. We found that the effects of total Pb on three community-level endpoints (biodiversity, community functioning, and community structure) were highly dependent on both pH and P supply. Consistent lowest-observed-effect concentrations (LOECs) ranged between 21 and >196 µg total Pb/L and between 10 and >69 µg filtered Pb/L. Long-term LOECs were generally higher, that is, 69 µg total Pb/L (42 µg filtered Pb/L) or greater, across all endpoints and conditions, indicating recovery near the end of the exposure period, and suggesting the occurrence of acclimation to Pb and/or functional redundancy. The highest toxicity of Pb for all endpoints was observed in the pH 7.2 × low P treatment, whereas the pH 8.4 × low P and pH 8.4 × high P treatment were the least sensitive treatments. At the pH 7.2 × high P treatment, the algal community showed an intermediate Pb sensitivity. The effect of pH on the toxicity of filtered Pb could not be precisely quantified because for many endpoints no effect was observed at the highest Pb concentration tested. However, the long-term LOECs (filtered Pb) at low P supply suggest a decrease in Pb toxicity of at least 1.6-fold from pH 7.2 to 8.4, whereas the single-species algal bioavailability model predicted a 2.5-fold increase. This finding suggests that bioavailability effects of pH on Pb toxicity cannot be extrapolated as such from the single species to the community level. Overall, our data indicate that, although the single-species algal Pb bioavailability model may not capture pH effects on Pb ecotoxicity in multispecies systems, the bioavailability-based hazardous concentration for 5% of the species was protective of long-term Pb effects on the structure, function, and diversity of a phytoplankton community in a relevant range of pH and P conditions. Environ Toxicol Chem 2023;42:2684-2700. © 2023 SETAC.
Collapse
Affiliation(s)
- Charlotte Nys
- GhEnToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Gent, Belgium
- Arche Consulting, Gent, Belgium
| | - Karel A C De Schamphelaere
- GhEnToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Gent, Belgium
- SYRALUTION, Deinze, Belgium
| |
Collapse
|
5
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
6
|
Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156069. [PMID: 35605851 DOI: 10.1016/j.scitotenv.2022.156069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fludioxonil is widely used in the control of crop diseases because of its broad spectrum and high activity, but its presence is now common in waterways proximate to treated areas. This study examined the toxic effects and mechanisms of fludioxonil on the microalgal taxa Chlorella vulgaris. The results showed that fludioxonil limited the growth of C. vulgaris and the median inhibitory concentration at 96 h was 1.87 mg/L. Concentrations of 0.75 and 3 mg/L fludioxonil reduced the content of photosynthetic pigments in algal cells to different degrees. Fludioxonil induced oxidative damage by altering C. vulgaris antioxidant enzyme activities and increasing reactive oxygen species levels. Fludioxonil at 0.75 mg/L significantly increased the activity of antioxidant enzymes. The highest level of activity was 1.60 times that of the control group. Both fludioxonil treatment groups significantly increased ROS levels, with the highest increase being 1.90 times that of the control group. Transmission electron microscope showed that treatment with 3 mg/L fludioxonil for 96 h disrupted cell integrity and changed cell morphology, and flow cytometer analysis showed that fludioxonil induced apoptosis. Changes in endogenous substances indicated that fludioxonil negatively affects C. vulgaris via altered energy metabolism, biosynthesis of amino acids, and unsaturated fatty acids. This study elucidates the effects of fludioxonil on microalgae and the biological mechanisms of its toxicity, providing insights into the importance of the proper management of this fungicide.
Collapse
Affiliation(s)
- Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Luo Gong
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
7
|
Li J, Li S, Wang J, Huang D. Effects of tebufenpyrad on freshwater systems dominated by Neocaridina palmata, Physa fontinalis, and Ceratophyllum demersum. CHEMOSPHERE 2022; 303:135118. [PMID: 35643160 DOI: 10.1016/j.chemosphere.2022.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Tebufenpyrad are widely used for control leaf mites in orchard and may enter freshwater systems through runoff, spray drift, and so on. Few papers have reported the side effect of the pesticide on population dynamics of aquatic taxa such as shrimps, gastropods, macrophytes, phytoplankton, and bacteria. Here, we tested the effect of a single application of tebufenpyrad on Neocaridina palmata, Physa fontinalis, Ceratophyllum demersum, Simocephalus vetulus, Dolerocypris sinensis, and so on, by indoor systems. The TWA (Time-weighted average)-based highest no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for Neocaridina palmata, which were counted by the wet weight, were 0.67 and 2.33 μg/L, respectively, and the dose-related effect lasted 21 d. According to our study, chitobiase could be used to quantify the effects of the pesticide on shrimp despite the interference from P. fontinalis, which was finally corrected by employing of antibodies. The NOEC and LOEC were thus determined to be 1.41 and ≤ 5.64 μg/L, respectively, which were higher than the values that was counted by the wet weight. Principal component analysis (PCA) and principal response curve (PRC) investigation showed that the pesticide suppressed population of C. demersum, and phytoplankton, while the Physa fontinalis, S. vetulus, and D. sinensis were stimulated by the pesticide. Illumina MiSeq was used to determine the alteration in bacterial community within the systems. The results of PRC and PCA analyses showed that tebufenpyrad induced flora of nitrate reducing, nitrate denitrifying, thiosulfate oxidation, ureolysis, and methanol oxidation, while it suppressed flora of cellulolysis. Tebufenpyrad was found to have a negative effect on water quality indicators such as pH, DO, NO3-, NO2-, and SO42-, and a positive effect on PO43-, NH4+, and EC. This suggested that the tebufenpyrad led to water quality deterioration.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaonan Li
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jilin Wang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Daoshuai Huang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Sun J, Xiao PF, Yin XH, Zhang K, Zhu GN, Brock TCM. Species Sensitivity Distributions of Benthic Macroinvertebrates in Fludioxonil-Spiked Sediment Toxicity Tests. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:569-580. [PMID: 35460350 DOI: 10.1007/s00244-022-00933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The fungicide fludioxonil, given its physicochemical properties, potentially accumulates and persists in sediments. Fludioxonil has a widespread agricultural use to control various fungal diseases. Its residues may cause toxic effects to benthic aquatic fauna, thereby impacting ecosystem service functions of aquatic ecosystems. To assess the potential environmental effects of fludioxonil in the sediment compartment of edge-of-field surface waters, sediment-spiked single-species toxicity tests with benthic macroinvertebrates were performed. In all experiments artificial sediment was used with an organic carbon content of 2.43% on dry weight basis. The single-species tests were conducted with 8 benthic macroinvertebrates covering different taxonomic groups typical for the Yangtze River Delta, China. The 28d-EC10 and 28-LC10 values thus obtained were used to construct species sensitivity distributions (SSDs). In addition, our dataset was supplemented with 28d-EC10 and 28-LC10 values for 8 different benthic invertebrates from a study in the Netherlands that used field-collected sediment. Based on SSDs constructed with 28d-EC10 or 28d-LC10 values hazardous concentrations to 5% of the species tested (HC5's) were obtained. The HC5 values based on the toxicity tests from China were lower than those from the Netherlands, although 95% confidence bands overlapped. The HC5 values derived from the separate datasets from China and the Netherlands, as well as from the combined dataset, were compared to the Tier-3 Regulatory Acceptable Concentrations (RAC) for fludioxonil and the benthic invertebrate community derived from a sediment-spiked outdoor microcosm experiment conducted in the Netherlands. The HC5 values obtained appeared to be lower than this Tier-3 RAC when expressed in terms of total sediment concentration, but not always when expressed in terms of pore water concentrations.
Collapse
Affiliation(s)
- Jian Sun
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China
| | - Peng Fei Xiao
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou, 311800, China.
| | - Xiao Hui Yin
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China.
| | - Kun Zhang
- Center for Administration of Equine Disease-Free Zone in Tonglu County, Hang Zhou, 311500, China
| | - Guo Nian Zhu
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou, 311800, China
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
9
|
Mavriou Ζ, Alexandropoulou I, Melidis P, Karpouzas DG, Ntougias S. Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29597-29612. [PMID: 34542817 DOI: 10.1007/s11356-021-16452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Fludioxonil is a post-harvest fungicide contained in effluents produced by fruit packaging plants, which should be treated prior to environmental dispersal. We developed and evaluated an immobilized cell bioreactor, operating under microaerophilic conditions and gradually reduced hydraulic retention times (HRTs) from 10 to 3.9 days, for the biotreatment of fludioxonil-rich wastewater. Fludioxonil removal efficiency was consistently above 96%, even at the shortest HRT applied. A total of 12 transformation products were tentatively identified during fludioxonil degradation by using liquid chromatography coupled to quadrupole time-of-flight Mass spectrometry (LC-QTOF-MS). Fludioxonil degradation pathway was initiated by successive hydroxylation and carbonylation of the pyrrole moiety and disruption of the oxidized cyanopyrrole ring at the NH-C bond. The detection of 2,2-difluoro-2H-1,3-benzodioxole-4-carboxylic acid verified the decyanation and deamination of the molecule, whereas its conversion to the tentatively identified compound 2,3-dihydroxybenzoic acid indicated its defluorination. High-throughput amplicon sequencing revealed that HRT shortening led to reduced α-diversity, significant changes in the β-diversity, and a shift in the bacterial community composition from an initial activated sludge system typical community to a community composed of bacterial taxa like Clostridium, Oligotropha, Pseudomonas, and Terrimonas capable of performing advanced degradation and/or aerobic denitrification. Overall, the immobilized cell bioreactor operation under microaerophilic conditions, which minimizes the cost for aeration, can provide a sustainable solution for the depuration of fludioxonil-contaminated agro-industrial effluents.
Collapse
Affiliation(s)
- Ζografina Mavriou
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Ioanna Alexandropoulou
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132, Xanthi, Greece.
| |
Collapse
|
10
|
Dorn A, Kaiser C, Hammel K, Dalkmann P, Faber D, Trisna A, Hellpointner E, Telscher M, Lamshoeft M, Bruns E, Seidel E, Hollert H. What is the spatial-temporal behavior of a low, medium and high adsorptive compound in two contrasting natural sediments in OECD 218/219 test systems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151096. [PMID: 34743820 DOI: 10.1016/j.scitotenv.2021.151096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Artificial sediment used in studies according to OECD 218/219 (Sediment Water Chironomid Toxicity Test Using Spiked Sediment/Water) does not necessarily mirror the characteristics of natural sediments. To investigate the influence of sediment characteristics on the spatial-temporal behaviors of bixafen (KfOM = 2244 mL/g), fluopyram (KfOM = 162 mL/g) and N,N-dimethylsulfamide (KfOM ≈ 0 mL/g), experiments according to OECD 218/219 with two contrasting natural sediments were conducted. The silt loam sediment provided a high content of organic matter (OM) (13.1%), while the OM (0.45%) of the sandy sediment was low. Diffusion into (OECD 219) or out (OECD 218) of the sediment was dependent on the extent of adsorption, which is linked to the model compounds ́ adsorption affinities and the sediments ́ OM. Consequently, N,N-dimethylsulfamide showed unhindered mobility in each experimental set up, while the high adsorption affinities of fluopyram and bixafen limited the diffusion in the respective sediments. Therefore, in experiments with the silt loam sediment, both compounds revealed a limited mobility and either accumulated in the top 5 mm of the sediment (OECD 219) or remained homogenously distributed over the sediment depth (OECD 218). A greater mobility was observed within the sandy sediment.The influence of OM as found in a study using artificial sediment could be confirmed. Moreover, the applicability of a TOXSWA model was reassured to predict the measured concentrations at different sediment depths. TOXSWA is used in the regulatory exposure assessment to simulate the behavior of pesticides in surface waters. Calibration of three driving input parameters by inverse modelling (diffusion-, adsorption coefficient and OM) revealed no potential for improvement. The core sampling technique used and the model may contribute to a more realistic determination of concentration to which the Chironomid larvae are exposed to. This applies to water sediment test systems where the test organisms do not evenly inhabit the sediment.
Collapse
Affiliation(s)
- Alexander Dorn
- Institute of Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Christina Kaiser
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Klaus Hammel
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Philipp Dalkmann
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Daniel Faber
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Audrey Trisna
- Department of Chemical Engineering, CPE Lyon, 69616 Villeurbanne Cedex, France
| | - Eduard Hellpointner
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Markus Telscher
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Marc Lamshoeft
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Eric Bruns
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Erika Seidel
- Environmental Safety, Crop Science Division, Bayer AG, 40789 Monheim, Germany
| | - Henner Hollert
- Institute of Ecology, Evolution & Diversity, Goethe Universität, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Xu S, Jiang Y, Liu Y, Zhang J. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118057. [PMID: 34467883 DOI: 10.1016/j.envpol.2021.118057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics can stimulate the growth of model cyanobacterial species under pure culture conditions, but their influence on cyanobacterial blooms in natural aquatic ecosystems remains unclear. In this study, three commonly detected antibiotics (sulfamethoxazole, tetracycline, and ciprofloxacin) and their ternary mixture were proved to selectively stimulate (p < 0.05) the growth and photosynthetic activity of cyanobacteria in an aquatic microcosm at an environmentally relevant exposure dose of 300 ng/L under both oligotrophic and eutrophic conditions. Under the eutrophic condition, cyanobacteria reached a bloom density of 1.61 × 106 cells/mL in 15 days without antibiotics, while the cyanobacteria exposed to tetracycline, sulfamethoxazole, ciprofloxacin, and their ternary mixture exceeded this bloom density within only 10, 8, 7, and 6 days, respectively. Principal coordinate analysis indicated that the antibiotic contaminants accelerated the prokaryotic community succession towards the formation of a cyanobacterial bloom by promoting the dominance of Microcystis, Synechococcus, and Oscillatoria under the eutrophic condition. After 15 days of culture, the antibiotic exposure increased the density of cyanobacteria by 1.38-2.31-fold and 2.28-3.94-fold under eutrophic and oligotrophic conditions, respectively. Antibiotic exposure generated higher stimulatory effects on cyanobacterial growth under the oligotrophic condition, but the antibiotic(s)-treated cyanobacteria did not form a bloom due to nutrient limitation. Redundancy analysis indicated that the three target antibiotics and their ternary mixture affected the prokaryotic community structure in a similar manner, while tetracycline showed some differences compared to sulfamethoxazole, ciprofloxacin, and the ternary antibiotic mixture with regard to the regulation of the eukaryotic community structure. This study demonstrates that antibiotic contaminants accelerate the formation of cyanobacterial blooms in eutrophic lake water and provides insights into the ecological effects of antibiotics on aquatic microbial communities.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yunhan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
12
|
Geng Q, Sun P, Tang G, Li P, Zhai Y. Improved antifungal activity and reduced aquatic toxicity of fludioxonil by complexation with β-cyclodextrin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Liu Z, Zhang C, Xin Z, Tai P, Song C, Deng X. Comparing the Impacts of Sediment-Spiked Cadmium on Chironomidae Larvae in Laboratory Bioassays and Field Microcosms and the Implications for Field Validation of Site-Specific Threshold Concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2450-2462. [PMID: 34037263 DOI: 10.1002/etc.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Information on the effects of pollutants in sediments at an ecosystem level to validate current and proposed risk-assessment procedures is scarce. The most frequent criticism of these procedures is that responses of surrogate species in the laboratory are not representative of responses of natural populations. A tiered approach using both laboratory and microcosm exposures (96-h and 21-d laboratory bioassays and a 3-mo field microcosm) was conducted to compare the impacts of sediment-spiked cadmium on the mortality, development, and abundance of Chironomidae larvae. The 96-h and 21-d lethal concentrations of sediment-spiked Cd to 50% of the species Chironomus riparius were estimated to be 201.07 and 172.66 mg/kg, respectively. In the 21-d laboratory bioassay, the endpoints, including the development rate and emergence ratio, were compared, and the lowest-observed-effect concentration (LOEC) values were 325.8 and 10.7 mg/kg, respectively. The abundance, richness, and biomass of field-collected larvae were compared among the different treatments in the field microcosm, and it was found that the order of sensitivities using different endpoints was biomass (2.6/5.2 mg/kg of no-observed-effect concentration/LOEC) > diversity (10.7/21.2 mg/kg) > abundance (41.2/82.7 mg/kg). The toxicity values based on lethal/sublethal changes in the laboratory bioassays might not fully protect field organisms against damage from chemicals, such as Cd, unless an assessment factor of 5 is used. These findings highlight the need to conduct field validation of criteria/guidelines before they are introduced to protect organisms/ecosystems in the field and provide a preliminary template for future field validation of criteria elsewhere. Environ Toxicol Chem 2021;40:2450-2462. © 2021 SETAC.
Collapse
Affiliation(s)
- Zhihong Liu
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
| | - Chi Zhang
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
| | - Zhuohang Xin
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Changchun Song
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
| | - Xin Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
14
|
Yao S, Zhao Z, Lu W, Dong X, Hu J, Liu X. Evaluation of Dissipation Behavior, Residues, and Dietary Risk Assessment of Fludioxonil in Cherry via QuEChERS Using HPLC-MS/MS Technique. Molecules 2021; 26:molecules26113344. [PMID: 34199388 PMCID: PMC8199599 DOI: 10.3390/molecules26113344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
The chemical fungicide fludioxonil is widely used to control post-harvest fungal disease in cherries. This study was implemented to investigate the dissipation behaviours and residues of fludioxonil on cherries. A reliable and efficient analytical method was established. Cherry samples from four product areas were analyzed by QuEChERS and HPLC-MS/MS methods with acceptable linearity (R2 > 0.99), accuracy (recoveries of 81–94%), and precision (relative standard deviation of 2.5–11.9%). The limits of quantification (LOQs) and limits of detection (LODs) of cherries were 0.01 mg/kg and 0.005 mg/kg. The dissipation of fludioxonil on cherries followed first order kinetics with half-lives of 33.7–44.7 days. The terminal residues of fludioxonil were all lower than 5.00 mg/kg, which is the MRL recommended by the European Commission. According to Chinese dietary patterns and terminal residue distributions, the risk quotient (RQs) of fludioxonil was 0.61%, revealing that the evaluated cherries exhibited an acceptably low dietary risk to consumers.
Collapse
|
15
|
Brock TCM, Romão J, Yin X, Osman R, Roessink I. Sediment toxicity of the fungicide fludioxonil to benthic macroinvertebrates -evaluation of the tiered effect assessment procedure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110504. [PMID: 32220792 DOI: 10.1016/j.ecoenv.2020.110504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
28-Day sediment-spiked laboratory toxicity tests with eight benthic macroinvertebrates and the lipophilic fungicide fludioxonil were conducted to verify the proposed tiered sediment effect assessment procedure as recommended by the European Food Safety Authority (EFSA). The test species were the oligochaetes Lumbriculus variegatus and Tubifex tubifex, the insects Chironomus riparius and Caenis horaria, the crustaceans Hyalella azteca and Asellus aquaticus and the bivalves Corbicula fluminalis and Pisidium amnicum. Toxicity estimates were expressed in terms of total concentration of dry sediment as well as in pore water concentration. Field-collected sediment, also used in a previously performed sediment-spiked microcosm experiment, was used in tests with all species. L. variegatus and C. riparius had similar lowest 28d-L(E)C10 values when expressed in terms of total sediment concentration, but in terms of pore water concentration L. variegatus was more sensitive. Three of the six additional benthic test species (A. aquaticus, C. horaria, C. fluminalis) had 28d-EC10 values a factor of 2-6 lower than that of L. variegatus. Comparing different effect assessment tiers for sediment organisms, i.e. Tier-0 (Modified Equilibrium Partitioning approach), Tier-1 (Standard Test Species approach), Tier-2 (Species Sensitivity Distribution (SSD) approach) and Tier-3 (Model Ecosystem approach), it is concluded that the tiers based on sediment-spiked laboratory toxicity tests provide sufficient protection when compared with the Tier-3 Regulatory Acceptable Concentration (RAC). Differences between Tier-1 and Tier-2 RACs, however, appear to be relatively small and not always consistent, irrespective of expressing the RAC in terms of total sediment or pore water concentration. Derivation of RACs by means of the SSD approach may be a challenge, because it is difficult obtaining a sufficient number of valid chronic EC10 values with appropriate 95% confidence bands for sediment-dwelling macroinvertebrates. Therefore, this paper proposes a Tier-2 Weight-of-Evidence approach to be used in case an insufficient number of valid additional toxicity data is made available. Similar studies with pesticides that differ in fate properties and toxic mode-of-action are necessary for further validation of the tiered effect assessment approach for sediment organisms.
Collapse
Affiliation(s)
- Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - João Romão
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Current Address: Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Xiao Yin
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Current Address: Zhe Jiang Agriculture and Forestry University, College of Agricultural and Food Science, 88 North Road of Huan Cheng, Lin'an, Hangzhou, Zhe Jiang, 311300, China
| | - Rima Osman
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| |
Collapse
|
16
|
Wang Y, Xu C, Wang D, Weng H, Yang G, Guo D, Yu R, Wang X, Wang Q. Combined toxic effects of fludioxonil and triadimefon on embryonic development of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114105. [PMID: 32041085 DOI: 10.1016/j.envpol.2020.114105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Pesticides scarcely exist as individual compounds in the water ecosystem, but rather as mixtures of multiple chemicals at relatively low concentrations. In this study, we aimed to explore the mixture toxic effects of fludioxonil (FLU) and triadimefon (TRI) on zebrafish (Danio rerio) by employing different toxicological endpoints. Results revealed that the 96-h LC50 values of FLU to D. rerio at multiple developmental stages ranged from 0.055 (0.039-0.086) to 0.61 (0.33-0.83) mg L-1, which were less than those of TRI ranging from 3.08 (1.84-5.96) to 9.75 (5.99-14.78) mg L-1. Mixtures of FLU and TRI exerted synergistic effects on embryonic zebrafish. Activities of total superoxide dismutase (T-SOD) and catalase (CAT) were markedly altered in most of the individual and pesticide mixture treatments compared with the control. The expressions of 16 genes involved in oxidative stress, cellular apoptosis, immune system and endocrine system displayed that embryonic zebrafish were affected by the individual pesticides and their mixtures, and greater variations of four genes (ERɑ, Tnf, IL and bax) were found when exposed to pesticide mixtures compared with their individual compounds. Therefore, more studies on mixture toxicities among different pesticides should be taken as a priority when evaluating their ecological risk.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dongmei Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| |
Collapse
|
17
|
Höss S, Roessink I, Brock TCM, Traunspurger W. Response of a nematode community to the fungicide fludioxonil in sediments of outdoor freshwater microcosms compared to a single species toxicity test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135627. [PMID: 31785915 DOI: 10.1016/j.scitotenv.2019.135627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
When entering aquatic ecosystems, hydrophobic organic chemicals like the fungicide fludioxonil partition to the sediment compartment where they pose potential risks to benthic invertebrates. To assess the ecological risk for sediment-dwelling invertebrates, nematodes are a suitable organism group, as they are abundantly present and possess key positions in the benthic food web. Therefore, the toxicity of the fungicide fludioxonil to nematodes was assessed in a standardized sediment toxicity test with Caenorhabditis elegans (ISO 10872), as well as in an outdoor sediment-spiked microcosm test system. In the microcosms, effects on the nematode species composition were studied, while exposure concentrations of fludioxonil were monitored in total sediment and pore water. Toxic effects on nematodes were better predicted using concentrations in pore water than total sediment concentrations. In laboratory single species tests, fludioxonil showed considerably lower toxicity in spiked field-collected sediment, compared to artificial ISO-sediments. Applying an assessment factor of 10 to the C. elegans 96-h EC10, a Tier-1 RACNematode of 7.99 mg kg-1 dry artificial sediment (corresponding to 69 μg l-1 in pore water) appeared to be protective for nematode communities in microcosms that showed no response in total abundance and species composition up to 39.9 mg fludioxonil kg-1 dry sediment (corresponding to 392 μg l-1 in pore water).
Collapse
Affiliation(s)
- S Höss
- Department of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany.
| | - I Roessink
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - T C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - W Traunspurger
- Department of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
18
|
Rico A, Brock TCM, Daam MA. Is the Effect Assessment Approach for Fungicides as Laid Down in the European Food Safety Authority Aquatic Guidance Document Sufficiently Protective for Freshwater Ecosystems? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2279-2293. [PMID: 31211455 DOI: 10.1002/etc.4520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
In Europe, the European Food Safety Authority aquatic guidance document describes the procedures for the derivation of regulatory acceptable concentrations (RACs) for pesticides in edge-of-field surface waters on the basis of tier-1 (standard test species), tier-2 (geometric mean and species sensitivity distributions [SSDs]), and tier-3 (model ecosystem studies) approaches. In the present study, the protectiveness of such a tiered approach was evaluated for fungicides. Acute and chronic RACs for tier-1 and tier-2B (SSDs) were calculated using toxicity data for standard and additional test species, respectively. Tier-3 RACs based on ecological thresholds (not considering recovery) could be derived for 18 fungicides. We show that tier-1 RACs, in the majority of cases, are more conservative than RACs calculated based on model ecosystem experiments. However, acute tier-2B RACs do not show a sufficient protection level compared with tier-3 RACs from cosm studies that tested a repeated pulsed exposure regime or when relatively persistent compounds were tested. Chronic tier-2B RACs showed a sufficient protection level, although they could only be evaluated for 6 compounds. Finally, we evaluated the suitability of the calculated RACs for 8 compounds with toxicity data for fungi. The comparison shows that the current RACs for individual fungicides, with a few exceptions (e.g., tebuconazole), show a sufficient protection level for structural and functional fungal endpoints. However, more data are needed to extend this comparison to other fungicides with different modes of action. Environ Toxicol Chem 2019;38:2279-2293. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Andreu Rico
- Madrid Institute of Advanced Studies on Water (IMDEA Water Institute), Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel A Daam
- Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Caparica, Portugal
| |
Collapse
|
19
|
Apell JN, Pflug NC, McNeill K. Photodegradation of Fludioxonil and Other Pyrroles: The Importance of Indirect Photodegradation for Understanding Environmental Fate and Photoproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11240-11250. [PMID: 31486641 DOI: 10.1021/acs.est.9b03948] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fludioxonil is a pyrrole-containing pesticide whose registration as a plant protection product is currently under review in the United States and Europe. There are concerns over its potential persistence and toxicity in the aquatic environment; however, the pyrrole moiety represents a potential reaction site for indirect photodegradation. In this study, the direct and indirect photodegradation of fludioxonil, along with pyrrole, 3-cyanopyrrole, and 3-phenylpyrrole, were investigated. Results showed that pyrrole moieties are capable of undergoing direct photoionization and sensitized photooxidation to form radical cation species, which then likely deprotonate and react with dissolved oxygen. Additionally, pyrrole moieties can undergo reactions with singlet oxygen (1O2). Furthermore, the presence of electron-withdrawing or -donating substituents substantially impacted the reaction rate with 1O2 as well as the one-electron oxidation potential of the pyrrole that dictates reactions with triplet states of dissolved organic matter (3CDOM*). For fludioxonil, which can undergo both direct and indirect photodegradation, the reaction rate constant with 1O2 alone resulted in a predicted t1/2 < 2 days in waters under sunlit near-surface conditions, suggesting it will not be persistent in aquatic systems. These results are useful for evaluating the environmental fate of fludioxonil as well as other pyrrole compounds.
Collapse
Affiliation(s)
- Jennifer N Apell
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| | - Nicholas C Pflug
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| |
Collapse
|
20
|
Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, de la Barrera B, Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1435-1449. [PMID: 29939451 PMCID: PMC6635952 DOI: 10.1002/eap.1742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 05/29/2023]
Abstract
Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.
Collapse
Affiliation(s)
- Marie Simonin
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Benjamin P Colman
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Steven M Anderson
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Ryan S King
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Baylor University, Waco, Texas, 76798, USA
| | - Matthew T Ruis
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Astrid Avellan
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15289, USA
| | - Christina M Bergemann
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Brittany G Perrotta
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Baylor University, Waco, Texas, 76798, USA
| | - Nicholas K Geitner
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Mengchi Ho
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Belen de la Barrera
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Jason M Unrine
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40526, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15289, USA
| | - Curtis J Richardson
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Emily S Bernhardt
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|