1
|
Terrazas-Salgado L, Betancourt-Lozano M, García-Gasca A, Alvarado-Cruz I. Environmental concentrations of glyphosate through direct or parental exposure alter nervous system development and reduce the fertility rate in zebrafish. Neurotoxicology 2025; 108:169-179. [PMID: 40187569 DOI: 10.1016/j.neuro.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
N-(phosphonomethyl)glycine (glyphosate) is the most widely used herbicide worldwide. Although it has been extensively studied, few studies use realistic environmental concentrations to assess its potential effects on fish embryos and larvae. This work aims to evaluate potential neurotoxic and reproductive effects of realistic concentrations of glyphosate in non-target aquatic species using zebrafish larvae. Biological and reproductive biomarkers (condition factor, hepatic and gonadic indices, and fertility rate) were evaluated for adults exposed to 0, 10, 100, and 1000 µg/L, while a transcriptomic comparison was carried out for larvae from both exposure scenarios at 1000 µg/L. The fertility rate of exposed parents decreased with increasing glyphosate concentration, while gonadosomatic (GSI) and hepatosomatic (HIS) indices of females treated with 100 µg/L glyphosate were significantly higher in glyphosate-exposed fish compared to the control group; however, glyphosate treatment did not significantly change GSI or HSI in males. Transcriptomic analysis in larvae showed that glyphosate could alter developmental and metabolic processes, targeting the nervous system in both exposure schemes. The ability of glyphosate to alter the development of the nervous system in larvae of exposed parents suggests that exposure to gametes could produce intergenerational alterations, with potential ecotoxicological implications that remain to be determined.
Collapse
Affiliation(s)
- Luis Terrazas-Salgado
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa 82100, Mexico
| | | |
Collapse
|
2
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
3
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
4
|
Ahmed SAA, Ahmed AAA, Elshopakey GE, Younis EM, Abdelwarith AA, Saad MF, Davies SJ, Ibrahim RE, Edrees A. Alleviative potential of dietary essential oils against nickel toxicity triggers neurobehavioral abnormalities, biochemical dysfunction, and histopathological alterations in Nile tilapia. Vet Res Commun 2025; 49:107. [PMID: 39964622 DOI: 10.1007/s11259-025-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Nickel (Ni) as a waterborne metal pollutant is widespread and harms fish health. In this study, the effects of fortifying diets with 0.1% Melaleuca alternifolia (MO) and 0.1% Ocimum basilicum (BO) essential oils on behaviors, neurotransmitters, liver and kidney functions, biochemical indices, and tissue histological features were studied in Nile tilapia (Oreochromis niloticus) under Ni exposure conditions. A total of 240 fish (27.92 ± 0.22 g) were equally classified into six groups, each with four replicates of 10 fish. The control, MO, and BO groups were fed basal control, 0.1% MO, and 0.1% BO diets, respectively, and reared in Ni-free water. The Ni, Ni + MO, and Ni + BO groups were reared in Ni-medium at a concentration of 3.6 mg/L and fed the same feeding regime as the control, MO, and BO groups, respectively. Ni exposure induced behavioral alterations, including lowered foraging (coefficients of variation, CV = 2.73-14.29%), swimming (CV = 2.95-19.23%), mouth pushing (CV = 9.12-29.37%), spreading of the tail (CV = 3.13-17.32%), and approach (CV = 3.53-11.27%) patterns but increased surfacing (CV = 11.39-23.33%) and resting (CV = 7.14-25%) behaviors. Increased mortality (CV > 30%) and hepato-renal indicators were consequences of Ni exposure. The Ni exposure also depressed brain acetylcholine esterase (AChE) (CV = 0.54-1.10), blood total protein (CV = 3.23-21.87%), albumin (CV = 1.62-13.47%), and globulin (CV = 1.91-24.72%). Histopathological changes were observed in the brain, gills, liver, kidney, and muscle, with detectable Ni residues in the muscle of Nile tilapia. Dietary supplementation with 0.1% MO and/or 0.1% BO significantly improved behavior patterns, blood proteins, and AChE levels under Ni exposure conditions. Hepato-renal indicators and the histology of the studied organs were enhanced, and the residual Ni level was reduced by feeding on the tested diets. Based on the current results, it was concluded that essential oils (0.1% BO and/or 0.1% MO) diets could mitigate the harmful effects caused by Ni exposure in Nile tilapia, which might enhance their future application as effective feed additive candidates in aquaculture.
Collapse
Affiliation(s)
- Shaimaa A A Ahmed
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Ali Adel Ali Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Azzaytuna University, Tarhuna, Libya
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Diseases, Faculty of Veterinary Medicine, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mai Farag Saad
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1, Galway, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Asmaa Edrees
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-suef University, PO Box 62511, Beni-Suef, Egypt
| |
Collapse
|
5
|
Gusso D, da Silva Gobbo MO, Rübensam G, Bonan CD. Oxytetracycline and Florfenicol Association Affects Zebrafish Larvae Behavioral Repertoire. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:167-177. [PMID: 39873737 DOI: 10.1007/s00244-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Oxytetracycline (OTC) and Florfenicol (FF) are prevalent antibiotics choices in both fish production and livestock farming. A comprehensive understanding of their effects is paramount for effective control of their use and for elucidating their physiological and pharmacological implications. In our investigation, zebrafish larvae were subjected to varying concentrations of OTC, FF or a combination of OTC + FF during 96 h. We observed behavioral alterations in the group exposed to OTC + FF. These fish displayed increased mobility, spent more time in the central zone, exhibited reduced turn angles, and experienced an impaired optomotor response. Coincidentally, our data provided evidence of reduced anxiety-like behavior in zebrafish larvae treated with OTC and FF, while also demonstrating the adverse effects of antibiotics on the optomotor response. Anxiety-like behavior plays an important role in species survival, acting as a key mechanism for adaptation and protection. The absence of such behavior can increase organism vulnerability in the environment. Thus, this study showed the behavioral consequences of OTC and FF exposure in zebrafish larvae, highlighting the impact of the combined toxicity of these antibiotics.
Collapse
Affiliation(s)
- Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil.
| | - Marilia Oberto da Silva Gobbo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil
| | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Prédio 12D, Sala 301, Porto Alegre, RS, 90619-900, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Hong S, Wu S, Wan Z, Wang C, Guan X, Fu M, Liu C, Wu T, Zhong G, Zhou Y, Xiao Y, You Y, Chen S, Wang Y, Zhao H, Zhang Y, Lin J, Bai Y, Guo H. Associations between multiple metals exposure and cognitive function in the middle-aged and older adults from China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 263:120038. [PMID: 39305974 DOI: 10.1016/j.envres.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
The rapidly rising risk of cognitive decline is a serious challenge for the elderly. As the wide-distributed environmental chemicals, the effects of metals exposure on cognitive function have attracted much attention, but the results remain inclusive. This study aimed to investigate the roles of multiple metals co-exposure on cognition. We included a total of 6112 middle-aged and older participants, detected their plasma levels of 23 metals by using inductively coupled plasma mass spectrometry, and assessed their cognitive function by using the Mini-Mental State Examination (MMSE). The results showed that increased plasma levels of iron (Fe) and zinc (Zn) were positively associated with MMSE score, but the increased levels of nickel (Ni) and lead (Pb) were associated with decreased MMSE score (all FDR < 0.05). Subjects exposed to both high levels of Ni and Pb showed the lowest MMSE score [β (95% CI) = -0.310 (-0.519, -0.100)], suggesting that Ni and Pb had a synergistic toxic effect on cognitive function. In addition, the hazardous roles of Ni and Pb were mainly found among subjects with low plasma level of Zn, but were not significant among those with high-Zn level [Ni: β (95% CI) = -0.281 (-0.546, -0.015) vs. -0.146 (-0.351, 0.058); Pb: β (95% CI) = -0.410 (-0.651, -0.169) vs. -0.060 (-0.275, 0.155)], which suggested that Zn could attenuate the adverse effects of Pb and Ni on cognitive function. The cognitive function was gradually decreased among subjects with increased number of adverse exposures to the above four metals (Ptrend < 0.001). In conclusion, our findings revealed the individual, interactive, and combined effects of Fe, Ni, Pb, and Zn on cognitive function, which may provide new perspectives on cognitive protection, but further prospective cohort studies and biological researches are needed to validate these findings.
Collapse
Affiliation(s)
- Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sheng Wu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430015, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511416, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
8
|
Ladumor R, Pandya H, Thakkar M, Mehta D, Paithankar P, Alfarraj S, Ansari MJ, Pandya P, Yadav VK, Sahoo DK, Patel A. Environmentally relevant concentrations of nickel and imidacloprid induce reproductive toxicity in earthworm (Eisenia fetida fetida). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109964. [PMID: 38885748 DOI: 10.1016/j.cbpc.2024.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The current research investigates individual and combined toxicity effects of nickel (Ni) and imidacloprid (IMI) on earthworm species Eisenia fetida fetida. Employing standardized toxicity parameters, we assessed the impact of environmentally relevant concentrations (ERC) of Ni, IMI, and their mixtures on key biomarkers and reproductive fitness of earthworms. Our findings reveal concentration-dependent responses with discernible adverse effects on physiological parameters. The ERC obtained for Ni was 0.095 ppm, and for imidacloprid was 0.01 ppm. Two concentrations (ERC and 1/5th) of both toxicants (individually and in combinations) were further given for 14 days, and parameters like avoidance behaviour, antioxidants, histology, and metabolomic profile were observed. The behaviour of earthworms was noted, where at 24-48 h, it was found to be in control soil, while later, at 72-96 h, they migrated to toxicants-treated soil. Levels of antioxidants (superoxide dismutase, catalase, reduced glutathione, ascorbic acid), lipid peroxidation, and lactate dehydrogenase were elevated in the testis, spermatheca, ovary, and prostate gland in a high concentration of Ni + IMI. Histological studies showed more vacuolization and disruption of epithelium that was increased in the prostate gland of the Ni + IMI high group, decreased number of spermatids, and damaged cell architecture was noted in testis and spermatheca of the Ni + IMI high group. The highest number of metabolites was found in Ni exposed group (181), followed by IMI (131) and Control (125). Thus, this study sheds light on the ecotoxicological effects of combinational exposure of these contaminants on an essential soil-dwelling organism, where IMI was more toxic than Ni, and both toxicants decreased earthworm reproductive fecundity.
Collapse
Affiliation(s)
- Rahul Ladumor
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Helly Pandya
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Mansi Thakkar
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Drashti Mehta
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Priya Paithankar
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Parth Pandya
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India.
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| |
Collapse
|
9
|
Haridevamuthu B, Sudhakaran G, Pachaiappan R, Kathiravan MK, Manikandan K, Almutairi MH, Almutairi BO, Arokiyaraj S, Arockiaraj J. Daidzein ameliorates nonmotor symptoms of manganese-induced Parkinsonism in zebrafish model: Behavioural and biochemical approach. Br J Pharmacol 2024; 181:2947-2963. [PMID: 38679467 DOI: 10.1111/bph.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism. EXPERIMENTAL APPROACH Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ. KEY RESULTS DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection. CONCLUSION AND IMPLICATIONS DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Muthu Kumaradoss Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Krishnan Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| |
Collapse
|
10
|
Chen X, Li Y, Qin Z. Developing a novel quantitative parameter for characterizing spatial distribution of fish following exposure to chemicals and wastewater: Behavioral Gini coefficient. J Environ Sci (China) 2024; 141:129-138. [PMID: 38408814 DOI: 10.1016/j.jes.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 02/28/2024]
Abstract
While the spatial distribution pattern of fish is increasingly used for toxicological test of chemicals or wastewater, no ideal parameter is available for quantitative assessment of spatial distribution, especially uneven distribution with multiple hotspots. Here, to develop a quantitative assessment parameter for spatial distribution, the zebrafish were exposed to ethanol, pentylenetetrazole (PTZ), paraquat dichloride (paraquat) and wastewater, followed by a behavioral test in a narrow tank. Behavioral data was acquired and analyzed by idTracker and MATLAB. By comparing the effects of all treatments on behavior parameters, we confirmed that the spatial distribution was more easily altered rather than general locomotor parameters, e.g. 0.7-70 mg/L PTZ and 5-20 mg/L paraquat being effective for altering spatial distribution but having little effects on general locomotor parameters. Based on the heatmap, i.e., the cumulative proportion of grids and that of frequency in grids, we calculated the behavioral Gini coefficient (Gb) for quantitative assessment of fish spatial distribution. The Gini coefficient ranged from zero to 1, with larger values meaning poorer evenness of spatial distribution. Of note, Gb showed smaller coefficient of variations (CV) with 3%-19% between replicate tanks in all treatments than the highest frequency (4%-79%), displaying well robustness. Especially, Gb addressed the challenge of the complicated heatmap with multiple hotspots. Overall, the behavioral Gini coefficient we established is an ideal parameter to quantitatively assess spatial distribution of fish shoal, which is expected to be applied in toxicity testing for chemicals and wastewater and automatic quality monitoring for surface water and aquaculture water.
Collapse
Affiliation(s)
- Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
12
|
Islam MA, Lopes I, Domingues I, Silva DCVR, Blasco J, Pereira JL, Araújo CVM. Behavioural, developmental and biochemical effects in zebrafish caused by ibuprofen, irgarol and terbuthylazine. CHEMOSPHERE 2023; 344:140373. [PMID: 37806324 DOI: 10.1016/j.chemosphere.2023.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 μg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 μg/L for both ibuprofen and irgarol and 500 μg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 μg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 μg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Management and Conservation of the Sea, University of Cadiz, 11510, Puerto Real, Spain.
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Daniel C V R Silva
- Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá, 68507-590, Pará, Brazil; Institute of Natural Resources, Federal University of Itajubá (UNIFEI), Laboratory of Limnology and Ecotoxicolo Gy, Itajubá, 37500-903, Minas Gerais, Brazil.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - Joana Luísa Pereira
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| |
Collapse
|
13
|
Zhang S, Zhang J, Wu L, Chen L, Niu P, Li J. Glutamine supplementation reverses manganese neurotoxicity by eliciting the mitochondrial unfolded protein response. iScience 2023; 26:107136. [PMID: 37408687 PMCID: PMC10318524 DOI: 10.1016/j.isci.2023.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Excessive exposure to manganese (Mn) can cause neurological abnormalities, but the mechanism of Mn neurotoxicity remains unclear. Previous studies have shown that abnormal mitochondrial metabolism is a crucial mechanism underlying Mn neurotoxicity. Therefore, improving neurometabolic in neuronal mitochondria may be a potential therapy for Mn neurotoxicity. Here, single-cell sequencing revealed that Mn affected mitochondrial neurometabolic pathways and unfolded protein response in zebrafish dopaminergic neurons. Metabolomic analysis indicated that Mn inhibited the glutathione metabolic pathway in human neuroblastoma (SH-SY5Y) cells. Mechanistically, Mn exposure inhibited glutathione (GSH) and mitochondrial unfolded protein response (UPRmt). Furthermore, supplementation with glutamine (Gln) can effectively increase the concentration of GSH and triggered UPRmt which can alleviate mitochondrial dysfunction and counteract the neurotoxicity of Mn. Our findings highlight that UPRmt is involved in Mn-induced neurotoxicity and glutathione metabolic pathway affects UPRmt to reverse Mn neurotoxicity. In addition, Gln supplementation may have potential therapeutic benefits for Mn-related neurological disorders.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
15
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
16
|
Xiang J, Guo RY, Wang T, Zhang N, Chen XR, Li EC, Zhang JL. Brain metabolite profiles provide insight into mechanisms for behavior sexual dimorphisms in zebrafish (Danio rerio). Physiol Behav 2023; 263:114132. [PMID: 36801416 DOI: 10.1016/j.physbeh.2023.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The zebrafish (Danio rerio) has historically been a useful model for research in genetics, ecology, biology, toxicology, and neurobehavior. Zebrafish have been demonstrated to have brain sexual dimorphism. However, the sexual dimorphism of zebrafish behavior demands our attention, particularly. To evaluate the behavior and brain sexual dimorphisms in zebrafish, this study assessed sex differences in adult D. rerio in four behavioral domains, including aggression, fear, anxiety, and shoaling, and further compared with metabolites in the brain tissue of females and males. Our findings showed that aggression, fear, anxiety and shoaling behaviors were significantly sexually dimorphic. Interestingly, we also show through a novel data analysis method, that the female zebrafish exhibited significantly increased shoaling behavior when shoaled with male zebrafish groups and, for the first time, we offer evidence that male shoals are beneficial in dramatically alleviating anxiety in zebrafish. In addition, there were significant changes in metabolites in zebrafish brain tissue between the sexes. Furthermore, zebrafish behavioral sexual dimorphism may be associated with brain sexual dimorphism, with significant differences in brain metabolites. Therefore, to prevent the influence or even bias of behavioral sex differences on results, it is suggested that behavioral studies or behavioral-based other relevant investigations consider sexual dimorphism of behavior and brain.
Collapse
Affiliation(s)
- Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ting Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xian-Rui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
17
|
Fattorini N, Lovari S, Franceschi S, Chiatante G, Brunetti C, Baruzzi C, Ferretti F. Animal conflicts escalate in a warmer world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161789. [PMID: 36716887 DOI: 10.1016/j.scitotenv.2023.161789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The potential for climate change to affect animal behaviour is widely recognized, yet its possible consequences on aggressiveness are still unclear. If warming and drought limit the availability of food resources, climate change may elicit an increase of intraspecific conflicts stemming from resource competition. By measuring aggressivity indices in a group-living, herbivorous mammal (the Apennine chamois Rupicapra pyrenaica ornata) in two sites differing in habitat quality, and coupling them with estimates of plant productivity, we investigated whether harsh climatic conditions accumulated during the growing season influenced agonistic contests at feeding via vegetation-mediated effects, and their interaction with the site-specific habitat quality. We focused on females, which exhibit intra-group contest competition to access nutritious food patches. Accounting for confounding variables, we found that (1) the aggression rate between foraging individuals increased with the warming accumulated over previous weeks; (2) the probability to deliver more aggressive behaviour patterns toward contestants increased with decreasing rainfall recorded in previous weeks; (3) the effects of cumulative warming and drought on aggressivity indices occurred at time windows spanning 15-30 days, matching those found on vegetation productivity; (4) the effects of unfavourable climatic conditions via vegetation growth on aggressivity were independent of the site-specific habitat quality. Simulations conducted on our model species predict a ~50 % increase in aggression rate following the warming projected over the next 60 years. Where primary productivity will be impacted by warming and drought, our findings suggest that the anticipated climate change scenarios may trigger bottom-up consequences on intraspecific animal conflicts. This study opens the doors for a better understanding of the multifactorial origin of aggression in group-living foragers, emphasising how the escalation of agonistic contests could emerge as a novel response of animal societies to ongoing global warming.
Collapse
Affiliation(s)
- Niccolò Fattorini
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Sandro Lovari
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; Maremma Natural History Museum, Strada Corsini 5, 58100 Grosseto, Italy
| | - Sara Franceschi
- Department of Economics and Statistics, University of Siena, Piazza San Francesco 8, 53100 Siena, Italy
| | - Gianpasquale Chiatante
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Brunetti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Carolina Baruzzi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; Department of Wildlife Ecology and Conservation, North Florida Research and Education Center, University of Florida, 155 Research Rd., Quincy, FL 32351, USA
| | - Francesco Ferretti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
18
|
Nabinger DD, Altenhofen S, Buatois A, Facciol A, Peixoto JV, da Silva JMK, Chatterjee D, Rübensam G, Gerlai R, Bonan CD. Acute administration of a dopamine D2/D3 receptor agonist alters behavioral and neural parameters in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110753. [PMID: 36934998 DOI: 10.1016/j.pnpbp.2023.110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The dopaminergic neurotransmitter system is implicated in several brain functions and behavioral processes. Alterations in it are associated with the pathogenesis of several human neurological disorders. Pharmacological agents that interact with the dopaminergic system allow the investigation of dopamine-mediated cellular and molecular responses and may elucidate the biological bases of such disorders. Zebrafish, a translationally relevant biomedical research organism, has been successfully employed in prior psychopharmacology studies. Here, we evaluated the effects of quinpirole (dopamine D2/D3 receptor agonist) in adult zebrafish on behavioral parameters, brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Zebrafish received intraperitoneal injections of 0.5, 1.0, or 2.0 mg/kg quinpirole or saline (control group) twice with an inter-injection interval of 48 h. All tests were performed 24 h after the second injection. After this acute quinpirole administration, zebrafish exhibited decreased locomotor activity, increased anxiety-like behaviors and memory impairment. However, quinpirole did not affect social and aggressive behavior. Quinpirole-treated fish exhibited stereotypic swimming, characterized by repetitive behavior followed by immobile episodes. Moreover, quinpirole treatment also decreased the number of BDNF-immunoreactive cells in the zebrafish brain. Analysis of neurotransmitter levels demonstrated a significant increase in glutamate and a decrease in serotonin, while no alterations were observed in dopamine. These findings demonstrate that dopaminergic signaling altered by quinpirole administration results in significant behavioral and neuroplastic changes in the central nervous system of zebrafish. Thus, we conclude that the use of quinpirole administration in adult zebrafish may be an appropriate tool for the analysis of mechanisms underlying neurological disorders related to the dopaminergic system.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia (INTOX), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
20
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
21
|
Physical exercise prevents behavioral alterations in a reserpine-treated zebrafish: A putative depression model. Pharmacol Biochem Behav 2022; 220:173455. [PMID: 36063969 DOI: 10.1016/j.pbb.2022.173455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
Major depressive disorder (MDD) has increasingly reached the world population with an expressive increase in recent years due to the COVID-19 pandemic. Here we used adult zebrafish (Danio rerio) as a model to verify the effects of reserpine on behavior and neurotransmitter levels. We observed an increase in the immobile time and time spent in the bottom zone of the tank in reserpine-exposed animals. The results demonstrated a decrease in distance traveled and velocity. Reserpine exposure did not induce changes in memory and social interaction compared to the control group. We also evaluated the influence of exposure to fluoxetine, a well-known antidepressant, on the behavior of reserpine-exposed animals. We observed a reversal of behavioral alterations caused by reserpine. To verify whether behavioral alterations in the putative depression model induced by reserpine could be prevented, the animals were subjected to physical exercise for 6 weeks. The results showed a protective effect of the physical exercise against the behavioral changes caused by reserpine in zebrafish. In addition, we observed a reduction in dopamine and serotonin levels and an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the brain. Physical exercise was able to prevent the changes in dopamine and serotonin levels, reinforcing that the preventive effect promoted by physical exercise is related to the modulation of neurotransmitter levels. Our findings showed that reserpine was effective in the induction of a putative depression model in zebrafish and that physical exercise may be an alternative to prevent the effects induced by reserpine.
Collapse
|
22
|
Nemiche S, Ait Hamadouche N, Nemmiche S, Fauconnier ML, Tou A. Ameliorative or corrective effects of Fig " Ficus carica" extract on nickel-induced hepatotoxicity in Wistar rats. Toxicol Res 2022; 38:311-321. [PMID: 35874505 PMCID: PMC9247128 DOI: 10.1007/s43188-021-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Many heavy metals and metalloids (e.g., Pb, Cd, and Ni) can contaminate the environment and cause severe health problems. Through this study, investigated the possible corrective effects of Ficus carica extract (FCE) against nickel (Ni) induced stress response and damage on the liver of rats. Male Wistar rats were divided into four groups (8 rats per group) and co-treated with FCE (350 mg/kg) and exposed to Nickel chloride (10 mg/kg) for 4 weeks. The volatile compounds of FCE were characterized by solid phase micro-extraction (SPME) coupled with GC-MS, and the biochemical parameters of stress were determined. The SPME-GC/MS analysis of FCE indicated the presence of thirty (30) phyto-bioactive compounds including alcohols, aldehydes, organic acids, ketones, furans, terpenes, ester and others. The best capacity for scavenging DPPH free radicals and metal chelating were found with the IC50 values of 0.49 and 2.91 mg/mL, respectively. Ni induced damage to various macromolecules. Malondialdehyde, protein carbonyls, alanine aminotransferase and gamma glutamyl transferarse levels were significantly increased in Ni exposed group compared to control group and co-treatment with FCE reduced the levels of these parameters. In conclusion, current findings showed that Ni-induced oxidative damage and the administration of FCE can improve correct and restore the alteration in the rat liver.
Collapse
Affiliation(s)
- Souhila Nemiche
- Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - Nadia Ait Hamadouche
- Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - Saïd Nemmiche
- Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem, 27000 Mostaganem, Algeria
| | - Marie-Laure Fauconnier
- Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Abdenacer Tou
- Service of Pathology, University Hospital of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
| |
Collapse
|
23
|
Role of the nucleoside-metabolizing enzymes on pain responses in zebrafish larvae. Neurotoxicol Teratol 2022; 93:107109. [PMID: 35777679 DOI: 10.1016/j.ntt.2022.107109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5'-nucleotidase inhibitor adenosine 5'-(α,β-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)-adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.
Collapse
|
24
|
Zaluski AB, Wiprich MT, de Almeida LF, de Azevedo AP, Bonan CD, Vianna MRM. Atrazine and Diuron Effects on Survival, Embryo Development, and Behavior in Larvae and Adult Zebrafish. Front Pharmacol 2022; 13:841826. [PMID: 35444550 PMCID: PMC9014172 DOI: 10.3389/fphar.2022.841826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Atrazine and Diuron are widely used herbicides. The use of pesticides contaminates the aquatic environment, threatening biodiversity and non-target organisms such as fish. In this study, we investigated the effects of acute exposure for 96 h hours to atrazine and diuron commercial formulations in zebrafish (Danio rerio, wild-type AB) embryos and larvae and adult stages. We observed a significant concentration-dependent survival decrease and hatching delays in animals exposed to both herbicides and in the frequency of malformations compared to the control groups. Morphological defects included cardiac edema, tail reduction, and head malformation. At 7 days post-fertilization (dpf), atrazine exposure resulted in a reduction in the head length at 2, 2.5, and 5 mg/L and increased the ocular distance at 1, 2, 2.5, and 5 mg/L atrazine when compared to controls. At the same age, diuron increased the ocular distance in animals exposed to diuron (1.0 and 1.5 mg/L) and no effects were observed on the head length. We also evaluated a behavioral repertoire in larvae at 7 dpf, and there were no significant differences in distance traveled, mean speed, time in movement, and thigmotaxis for atrazine and diuron when animals were individually placed in a new environment. The cognitive ability of the larvae was tested at 7 dpf for avoidance and optomotor responses, and neither atrazine nor diuron had significant impacts when treated groups were compared to their corresponding controls. Adults’ behavior was evaluated 7 and 8 days after the end of the acute herbicide exposure. Exploration of a new environment and associated anxiety-like parameters, social interaction, and aggressiveness were not altered. Our results highlight the need for further studies on the sublethal effects of both herbicides and the consideration of the effects of commercial formulas vs. isolated active ingredients. It also emphasizes the need to take sublethal effects into consideration when establishing the environmental limits of residues.
Collapse
Affiliation(s)
- Amanda B Zaluski
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Melissa T Wiprich
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza F de Almeida
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa P de Azevedo
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica R M Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
26
|
Varshney S, Gora AH, Siriyappagouder P, Kiron V, Olsvik PA. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127623. [PMID: 34742612 DOI: 10.1016/j.jhazmat.2021.127623] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 05/26/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is the most widely used antioxidant in automobile tyres and many rubber products. We investigated the impact of 6PPD and 6PPD quinone on acute toxicity, morphology, swimming behaviour, heart rate, and oxygen consumption in zebrafish larvae. Zebrafish embryos were exposed to 6PPD and 6PPD quinone at concentrations of 1, 10, and 25 µg/L during the development period of 1-96 hpf. In the present study, 6PPD quinone was found to be toxic to zebrafish larvae with a 24 h LC50 of 308.67 µg/L. No significant mortality was observed at any of the tested concentrations. A dose-dependent reduction in swimming performance was observed in the exposed larvae at 116 hpf for both toxicants. Overall, our study shows that exposure of zebrafish embryos to 6PPD and 6PPD quinone at environmentally relevant concentrations (1 µg/L) does not affect its behaviour. However, exposure to higher but still sublethal concentrations of 6PPD and 6PPD quinone (10 and 25 µg/L) can affect behavioural endpoints. These findings reveal the toxicity of 6PPD and 6PPD quinone to early life stages of fish.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
27
|
Makaras T, Stankevičiūtė M. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14479-14496. [PMID: 34617211 DOI: 10.1007/s11356-021-16783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and have become well established as role model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni, and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). The performed behavioural analysis showed the main effect on the interaction between time, species, and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species' responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after a 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitius as model species for aquatic biomonitoring and environmental risk assessments.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania.
| | | |
Collapse
|
28
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Bonan CD. Long-lasting behavioral effects of quinpirole exposure on zebrafish. Neurotoxicol Teratol 2021; 88:107034. [PMID: 34600099 DOI: 10.1016/j.ntt.2021.107034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/11/2023]
Abstract
The human brain matures into a complex structure, and to reach its complete development, connections must occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological disorders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development (24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic movements and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the early life stages of development led to late alterations in behavioral parameters of adult zebrafish.
Collapse
Affiliation(s)
- Debora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Altenhofen S, Bonan CD. Zebrafish as a tool in the study of sleep and memory-related disorders. Curr Neuropharmacol 2021; 20:540-549. [PMID: 34254919 DOI: 10.2174/1570159x19666210712141041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about "Why we need to sleep?" among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the "rebound sleep effect" phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring. Amino Acids 2021; 53:1153-1167. [PMID: 34156542 DOI: 10.1007/s00726-021-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
An increase in plasma L-methionine (Met) levels, even if transitory, can cause important toxicological alterations in the affected individuals. Met is essential in the regulation of epigenetic mechanisms and its influence on the subsequent generation has been investigated. However, few studies have explored the influence of a temporary increase in Met levels in parents on their offspring. This study evaluated the behavioral and neurochemical effects of parental exposure to high Met concentration (3 mM) in zebrafish offspring. Adult zebrafish were exposed to Met for 7 days, maintained for additional 7 days in tanks that contained only water, and then used for breeding. The offspring obtained from these fish (F1) were tested in this study. During the early stages of offspring development, morphology, heart rate, survival, locomotion, and anxiety-like behavior were assessed. When these animals reached the adult stage, locomotion, anxiety, aggression, social interaction, memory, oxidative stress, and levels of amino acids and neurotransmitters were analyzed. F1 larvae Met group presented an increase in the distance and mean speed when compared to the control group. F1 adult Met group showed decreased anxiety-like behavior and locomotion. An increase in reactive oxygen species was also observed in the F1 adult Met group whereas lipid peroxidation and antioxidant enzymes did not change when compared to the control group. Dopamine, serotonin, glutamate, and glutathione levels were increased in the F1 adult Met group. Taken together, our data show that even a transient increase in Met in parents can cause behavioral and neurochemical changes in the offspring, promoting transgenerational effects.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências de Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681-Prédio 12, Bloco D, Sala 301, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Gerlai R, Bonan CD. Feeding status alters exploratory and anxiety-like behaviors in zebrafish larvae exposed to quinpirole. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110179. [PMID: 33212194 DOI: 10.1016/j.pnpbp.2020.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
The dysfunction of dopaminergic signaling is associated with several neurological disorders. The use of pharmacological agents that interact with this signaling system may be employed to understand mechanisms underlying such disorders. Nutritional status can impact dopamine reuptake, receptor affinity, transporter activity, and the effects of drugs that bind to dopamine receptors or interact with dopaminergic system. Here we evaluated the effects of quinpirole (a dopamine D2/D3 receptor agonist) exposure on fed and non-fed zebrafish larvae. Zebrafish larvae (6 days post-fertilization, dpf) were exposed to quinpirole (5.5, 16.7, and 50.0 μM) or water (control group) for one hour. To evaluate the effect of feeding status on quinpirole exposure, the experiments were performed on fed and non-fed animals, a between subject experimental design. Both fed and non-fed quinpirole treated larvae exhibited increased erratic movements compared to controls in an open tank exploration task. No alterations were observed on the main parameters of exploratory behavior and swim activity for non-fed larvae treated with quinpirole compared to controls. However, fed animals exposed to quinpirole exhibited increased locomotor activity, anxiety-like behavior, and repetitive circular movements when compared to controls and non-fed exposed animals. In addition, we observed quinpirole exposure to have no effects on morphological parameters and heartbeat, but to impair optomotor responses in both fed and non-fed larvae compared to control. We also found quinpirole effects to interact with feeding status, as quinpirole-treated fed larvae improved while quinpirole treated non-fed larvae impaired their avoidance reaction towards an aversive stimulus. These results indicate that the behavioral effects of quinpirole exposure depended upon feeding status. They showed that consumption of food, a naturally rewarding stimulus known to engage the dopaminergic system, made this neurotransmitter system more susceptible to quinpirole's effects.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111905. [PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Nurul Amirah Che Zakaria
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Afifah Hanun Ismail
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Yang Y, Yu Y, Zhou R, Yang Y, Bu Y. The effect of combined exposure of zinc and nickel on the development of zebrafish. J Appl Toxicol 2021; 41:1765-1778. [PMID: 33645740 DOI: 10.1002/jat.4159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022]
Abstract
Excessive accumulation of Zn2+ or Ni2+ can cause various problems to aquatic animals. In this study, the developmental toxicity induced by individual or combined exposure of Zn2+ and Ni2+ to zebrafish embryos and larvae were evaluated to better understand the interaction between Zn2+ and Ni2+ . Both of individual and combined exposure of Zn2+ and Ni2+ could cause obvious developmental toxicity, which mainly occurred after hatching, at a concentration-dependent manner. The calculated 168-h LC50 were 2.79 mg/L for Zn2+ and 7.44 mg/L for Ni2+ . The interaction of Zn2+ and Ni2+ based on mortality was found to be an antagonism. Various malformations, including tail curving, spinal curvature, pericardial edema, and yolk sac edema, were observed with significant effects on body length and heartbeat rates after exposure of Zn2+ and Ni2+ . Meanwhile, some genes related to cardiovascular development and bone formation were mainly down-regulated by the individual and combined exposure of Zn2+ and Ni2+ . The individual exposure was more toxic than combined exposure because the interaction of Zn2+ and Ni2+ was determined to be an antagonism. The down-regulation of genes related to cardiovascular development and bone formation may contribute to the observed malformation and decreases of body length and heartbeat rates.
Collapse
Affiliation(s)
- Yongmeng Yang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
- Guangdong University of Technology, Synergy Innovation Institute of GDUT, Shantou, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| | - Rong Zhou
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| | - Yan Yang
- Guangdong University of Technology, Synergy Innovation Institute of GDUT, Shantou, China
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|
35
|
Lee JY, Park S, Lim W, Song G. Picolinafen exerts developmental toxicity via the suppression of oxidative stress and angiogenesis in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104734. [PMID: 33357556 DOI: 10.1016/j.pestbp.2020.104734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Picolinafen, a phytoene desaturase-inhibiting herbicide, has been used since 2001 to control the growth of broadleaf weeds. Picolinafen has lower solubility and volatility, and shows lower toxicity to non-target insect species than other types of herbicide. Although picolinafen has been detected in lakes near urban environments and induces chronic toxicity in the mammals, birds, and some aquatic organisms, no study has investigated the toxicity or mode of action of picolinafen in zebrafish. In this study, we demonstrated the lethality and acute LC50 value of picolinafen towards zebrafish embryos. Picolinafen hampered the development of embryos by the induction of morphological abnormalities via apoptosis. Additionally, picolinafen suppressed the generation of reactive oxygen species and angiogenesis. Also, the angiogenesis related genes, flt1 and flt4 mRNA expression was decreased in zebrafish embryos. This study provides a mechanistic understanding of the developmental toxicity of picolinafen in vertebrates.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
37
|
Gao Y, Xie Z, Feng M, Feng J, Zhu L. A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111043. [PMID: 32888597 DOI: 10.1016/j.ecoenv.2020.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Intraspecific difference in toxicity brings uncertainty to ecological risk assessment (ERA) and water quality criteria (WQC) of chemicals. Here, we compared intraspecies sensitivity to toxicants for Mesocyclops leuckarti of which toxicity data was obtained from published literatures, and zebrafish Danio rerio of which toxicity data was done in this study). Due to the internal concentration of chemicals not measured, simplified toxicokinetic-toxicodynamic (TK-TD) models were used, and we investigated whether TK-TD parameters estimated by Bayesian method might represent the differences in sensitivity between life-stages of 2 species. The results demonstrated that the difference in TK-TD parameters (background mortality m0, no effect concentration NEC, the killing rate ks, and the dominant rate kd) could represent the toxicity difference between life-stages of individual species. The TK-TD model could predict toxicity in individual species (Cyprinus carpio L., Enchytraeus crypticus, Folsomia candida, Hyalella Azteca) exposed to different chemical concentrations and successfully extrapolate toxicity between different life stages of Mesocyclops leuckarti and Danio rerio by scaling several TK-TD parameters. The modified TK-TD model on the extrapolation toxicity of chemicals between life stages for species could be useful for the ERA and for deriving and revising WQC for chemicals.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhicheng Xie
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Mingfeng Feng
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
38
|
Wiprich MT, Zanandrea R, Altenhofen S, Bonan CD. Influence of 3-nitropropionic acid on physiological and behavioral responses in zebrafish larvae and adults. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108772. [PMID: 32353558 DOI: 10.1016/j.cbpc.2020.108772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
Long-term treatment with 3-nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce symptoms and biochemical characteristics of Huntington's disease (HD). Our study evaluated the effects of 3-NPA on the physiological and behavioral responses in zebrafish larvae and adults. Larvae exposed to 0.1, 0.2, or 0.5 mM 3-NPA exhibited an increase in heart rate at 2- and 5-days post-fertilization (dpf). There was a decrease in the ocular distance at 5 dpf with 0.05 mM 3-NPA treatment. However, 3-NPA did not alter larval locomotor parameters. Adult zebrafish received 3-NPA intraperitoneal injections (a total of seven injections at doses 10, 20, or 60 mg/kg every 96 h) and showed a decrease in body weight , locomotion and aggressive behavior. No changes were observed in anxiety-like behavior and social interaction between 3-NPA-exposed animals and control groups. However, 3-NPA-treated animals (at 60 mg/kg) demonstrated impaired long-term aversive memory. Overall, 3-NPA exposure induced morphological and heart rate alterations in zebrafish larvae. Additionally, our study showed behavioral changes in zebrafish that were submitted to long-term 3-NPA treatment, which could be related to HD symptoms.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Sun Z, Gong C, Ren J, Zhang X, Wang G, Liu Y, Ren Y, Zhao Y, Yu Q, Wang Y, Hou J. Toxicity of nickel and cobalt in Japanese flounder. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114516. [PMID: 32283401 DOI: 10.1016/j.envpol.2020.114516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC50) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC50 was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.
Collapse
Affiliation(s)
- Zhaohui Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Chunguang Gong
- Ocean Collage, Agricultural University of Hebei, Qinhuangdao, 066009, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Xiaoyan Zhang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufeng Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yaxian Zhao
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Qinghai Yu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Jilun Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, 100141, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
40
|
Gusso D, Reolon GK, Gonzalez JB, Altenhofen S, Kist LW, Bogo MR, Bonan CD. Pyriproxyfen Exposure Impairs Cognitive Parameters and Alters Cortisol Levels in Zebrafish. Front Behav Neurosci 2020; 14:103. [PMID: 32625070 PMCID: PMC7313640 DOI: 10.3389/fnbeh.2020.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Pyriproxyfen is one of the most used larvicides and insecticides; it acts as an analog of juvenile insect hormone (a growth regulator). It is highly toxic during all stages of mosquito development, suppresses metamorphosis, and interferes in insect reproduction and proliferation. Pyriproxyfen and its main metabolite have been shown to affect brain development in rodents. This compound is employed mainly to eliminate outbreaks of the genus Aedes, even in potable water. Despite the increasing number of toxicological studies about larvicides and insecticides-with an indication of continuous use-there have been few studies about the effects of pyriproxyfen in non-target species such as fish. This study evaluated the effects of pyriproxyfen on behavioral, cognitive, and endocrine parameters in zebrafish. We exposed adult zebrafish to different pyriproxyfen (Pestanal®) concentrations (0.125, 0.675, and 1.75 mg/l) for 96 h. We analyzed behavioral parameters, memory, cortisol levels, and gene expression of glucocorticoid receptor (gr) and corticotrophin-releasing factor (crf) after pyriproxyfen exposure. This exposure did not alter locomotion (distance or mean speed), anxiety-like behavior (latency to enter to the top zone of the tank or time in the top zone of the tank), and social or aggressive behavior. However, there was impaired inhibitory avoidance memory at all tested pyriproxyfen concentrations. Cortisol levels were reduced in exposed groups when compared to control or vehicle. However, gr and crf gene expression in pyriproxyfen-treated animals were unaltered when compared to control or vehicle groups. Taken together, these findings indicate that pyriproxyfen may induce cognitive impairment and altered cortisol levels in zebrafish, a non-target species.
Collapse
Affiliation(s)
- Darlan Gusso
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Kellermann Reolon
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Brum Gonzalez
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefani Altenhofen
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mauricio Reis Bogo
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Withdrawal Effects Following Methionine Exposure in Adult Zebrafish. Mol Neurobiol 2020; 57:3485-3497. [PMID: 32533465 DOI: 10.1007/s12035-020-01970-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Methionine (Met) has important functions for homeostasis of various species, including zebrafish. However, the increased levels of this amino acid in plasma, a condition known as hypermethioninemia, can lead to cell alterations. Met is crucial for the methylation process and its excesses interfere with the cell cycle, an effect that persists even after the removal of this amino acid. Some conditions may lead to a transient increase of this amino acid with unexplored persistent effects of Met exposure. In the present study, we investigated the behavioral and neurochemical effects after the withdrawal of Met exposure. Zebrafish were divided into two groups: control and Met-treated group (3 mM) for 7 days and after maintained for 8 days in tanks containing only water. In the eighth day post-exposure, we evaluated locomotion, anxiety, aggression, social interaction, and memory, as well as oxidative stress parameters, amino acid, and neurotransmitter levels in the zebrafish brain. Our results showed that 8 days after Met exposure, the treated group showed decreased locomotion and aggressive responses, as well as impaired aversive memory. The Met withdrawal did not change thiobarbituric acid reactive substances, reactive oxygen species, and nitrite levels; however, we observed a decrease in antioxidant enzymes superoxide dismutase, catalase, and total thiols. Epinephrine and cysteine levels were decreased after the Met withdrawal whereas carnitine and creatine levels were elevated. Our findings indicate that a transient increase in Met causes persistent neurotoxicity, observed by behavioral and cognitive changes after Met withdrawal and that the mechanisms underlying these effects are related to changes in antioxidant system, amino acid, and neurotransmitter levels.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Zimmermann Prado Rodrigues G, Staudt LBM, Moreira MG, Dos Santos TG, de Souza MS, Lúcio CJ, Panizzon J, Kayser JM, Simões LAR, Ziulkoski AL, Bonan CD, de Oliveira DL, Gehlen G. Histopathological, genotoxic, and behavioral damages induced by manganese (II) in adult zebrafish. CHEMOSPHERE 2020; 244:125550. [PMID: 32050344 DOI: 10.1016/j.chemosphere.2019.125550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Manganese is a metal often found as an environmental pollutant and very associated with neurological disorders when in high concentrations. However, little is known about the effects that this contaminant can cause when in environmentally relevant concentrations and occurrence, that is, much lower than those commonly studied. So, the aim of the study was to evaluate the effects that environmentally relevant concentrations of this metal would cause in different zebrafish organs (brain, liver, and blood). Acute 96-h and chronic 30-day exposures were performed using the manganese chloride salt as a pollutant. Behavioral alterations of anxiogenic type were observed in the animals after chronic exposures to 4.0 mg L-1 MnCl2, which traveled a greater distance at the bottom of the aquarium. This may be associated with neuronal damages in the telencephalic region responsible for motor and cognitive activity of the fish, observed in animals from the same exposure. In addition, hepatic histopathological damage as vacuolization of hepatocytes and genotoxic damage, identified by comet assay and micronucleus test, was also observed after acute and chronic exposure, especially at the highest pollutant concentrations (8.0 and 16.0 mg L-1 in acute exposure, and 4.0 mg L-1 in chronic exposure. The study reinforces the risk that environmental pollutants pose to the ecosystem, even in low concentrations.
Collapse
Affiliation(s)
| | | | | | - Thainá Garbino Dos Santos
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | | | | | - Jenifer Panizzon
- Bacherol's Degree in Biological Science, Feevale University, Brazil
| | | | | | - Ana Luiza Ziulkoski
- Post Graduation Program in Environmental Quality, Feevale University, Brazil
| | - Carla Denise Bonan
- Post Graduation Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Diogo Losch de Oliveira
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, Brazil.
| |
Collapse
|
43
|
Chronic Exposure to Low Concentration Lead Chloride-Induced Anxiety and Loss of Aggression and Memory in Zebrafish. Int J Mol Sci 2020; 21:ijms21051844. [PMID: 32156000 PMCID: PMC7084271 DOI: 10.3390/ijms21051844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Lead and lead-derived compounds have been extensively utilized in industry, and their chronic toxicity towards aquatic animals has not been thoroughly addressed at a behavioral level. In this study, we assessed the risk of exposure to lead at a waterborne environmental concentration in adult zebrafish by behavioral and biochemical analyses. Nine tests, including three-dimension (3D) locomotion, novel tank exploration, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity, color preference, and a short-term memory test, were performed to assess the behavior of adult zebrafish after the exposure to 50 ppb PbCl2 for one month. The brain tissues were dissected and subjected to biochemical assays to measure the relative expression of stress biomarkers and neurotransmitters to elucidate the underlying mechanisms for behavioral alterations. The results of the behavioral tests showed that chronic exposure to lead could elevate the stress and anxiety levels characterized by elevated freezing and reduced exploratory behaviors. The chronic exposure to PbCl2 at a low concentration also induced a sharp reduction of aggressiveness and short-term memory. However, no significant change was found in predator avoidance, social interaction, shoaling, or color preference. The biochemical assays showed elevated cortisol and reduced serotonin and melatonin levels in the brain, thus, altering the behavior of the PbCl2-exposed zebrafish. In general, this study determined the potential ecotoxicity of long-term lead exposure in adult zebrafish through multiple behavioral assessments. The significant findings were that even at a low concentration, long-term exposure to lead could impair the memory and cause a decrease in the aggressiveness and exploratory activities of zebrafish, which may reduce their survival fitness.
Collapse
|
44
|
Wang G, Xia X, Yang J, Tariq M, Zhao J, Zhang M, Huang K, Lin K, Zhang W. Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121169. [PMID: 31520931 DOI: 10.1016/j.jhazmat.2019.121169] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Nickel (Ni) contamination in soils, at high concentrations, is considered to be very common. Knowledge of the total content of Ni is frequently insufficient to estimate environmental risk. Our explored findings showed that the earthworms adding reduced the available Ni, along with the superior performance of HCl than CaCl2. The bioaccumulation of Ni in earthworms was aggravated with increasing Ni dosage and exposure time. Bioaccumulation factor was significantly correlated with the extractable Ni, which was the most suitable predicting the variations of Ni bioavailability. LC50 of earthworms on 7 and 14 days were 1202.444 mg kg-1 and 1069.324 mg kg-1, respectively along with the recovery rate in 500 mg kg-1 Ni polluted soil reached up to 92.5%. Earthworms' respiration was sensitive presenting a significant dose-effect relationship with the Ni concentration. Five biochemical indices in earthworms were induced along with the relevance of a dose- and time-response pattern. Additionally, histological damage in earthworm's body wall, intestine and seminal vesicles were observed under high level of Ni exposure. Overall, we believe that our current study will open a new window for deeper insights into the potential availability of Ni along with other associated metals on the function of soil ecosystem.
Collapse
Affiliation(s)
- Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
45
|
Adedara IA, Adegbosin AN, Abiola MA, Odunewu AA, Owoeye O, Owumi SE, Farombi EO. Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103294. [PMID: 31734518 DOI: 10.1016/j.etap.2019.103294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Environmental and occupational exposure to metal mixtures due to various geogenic and anthropogenic activities poses a health threat to exposed organisms. The outcome of systemic interactions of metals is a topical area of research because it may cause either synergistic or antagonistic effect. The present study investigated the impact of co-exposure to environmentally relevant concentrations of waterborne nickel (75 and 150 μg NiCl 2 L-1) and zinc (100 and 200 μg ZnCl2 L-1) mixtures on neurobehavioural performance of rats. Locomotor, motor and exploratory activities were evaluated using video-tracking software during trial in a novel arena and thereafter, biochemical and histological analyses were performed using the cerebrum, cerebellum and liver. Results indicated that zinc significantly (p < 0.05) abated the nickel-induced locomotor and motor deficits as well as improved the exploratory activity of exposed rats as verified by track plots and heat map analyses. Moreover, zinc mitigated nickel-mediated decrease in acetylcholinesterase activity, elevation in biomarkers of liver damage, levels of reactive oxygen and nitrogen species as well as lipid peroxidation in the exposed rats when compared with control. Additionally, nickel mediated decrease in antioxidant enzyme activities as well as the increase in tumour necrosis factor alpha, interleukin-1 beta and caspase-3 activity were markedly abrogated in the cerebrum, cerebellum and liver of rats co-exposed to nickel and zinc. Histological and histomorphometrical analyses evinced that zinc abated nickel-mediated neurohepatic degeneration as well as quantitative reduction in the widest diameter of the Purkinje cells and the densities of viable granule cell layer of dentate gyrus, pyramidal neurones of cornu ammonis 3 and cortical neurons in the exposed rats. Taken together, zinc abrogated nickel-induced neurohepatic damage via suppression of oxido-inflammatory stress and caspase-3 activation in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo N Adegbosin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Abiola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ajibola A Odunewu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
46
|
Jijie R, Solcan G, Nicoara M, Micu D, Strungaru SA. Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134299. [PMID: 31505357 DOI: 10.1016/j.scitotenv.2019.134299] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In natural environments, the aquatic organisms are exposed to complex mixtures of chemicals which may originate from natural sources or from anthropogenic activities. In this context, the aim of the study was to assess the potential effects that might occur when aquatic organisms are simultaneously exposed to multiple chemicals. For that, we have studied the acute effects of cadmium (0.2 μg L-1), nickel (10 μg L-1) and deltamethrin (2 μg L-1) as individual toxicants and as mixture on the behavioral responses, oxidative stress (SOD and GPx), body electrolytes and trace metals profiles of zebrafish (Danio rerio). So far the scientific literature did not report about the combined effects of pesticides and toxic metals on zebrafish behavior using a 3D tracking system. Compared with other studies, in the present paper we investigated the acute effects of two heavy metals associated with a pesticide on zebrafish, in the range of environmentally relevant concentrations. Thus, the environmental concentrations of cadmium and nickel in three rivers affected by urban activities and one river with protected areas as background control were measured. The observations that resulted in our study demonstrated that deltamethrin toxicity was significantly decreased in some of the behavioral variables and oxidative stress when combined with CdNi mixture. Consequently, our study supports previous works concerning the combined toxicity of environmental chemicals since their simultaneous presence in the aqueous environment may lead to higher or lower toxicological effects on biota than those reported from a single pollutant. Therefore, the evaluation of toxic effects of a single contaminant does not offer a realistic estimate of its impact against aqueous ecosystems. This study also supports the idea that the interactions between different chemical compounds which do not exceed the maximum permitted limits in environment may have benefits for aquatic life forms or be more toxic.
Collapse
Affiliation(s)
- Roxana Jijie
- Alexandru Ioan Cuza University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Gheorghe Solcan
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mircea Nicoara
- Alexandru Ioan Cuza University of Iași, Doctoral School of Geosciences, Faculty of Geography-Geology, B-dul Carol I, 700505 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania.
| | - Dragos Micu
- Romanian Waters National Authority, Dobrogea - Black Sea Basin Administration, Mircea cel Batran Blvd. 127, RO-900592 Constanta, Romania
| | - Stefan-Adrian Strungaru
- Alexandru Ioan Cuza University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania; Alexandru Ioan Cuza University of Iași, Doctoral School of Geosciences, Faculty of Geography-Geology, B-dul Carol I, 700505 Iasi, Romania.
| |
Collapse
|
47
|
Amoatey P, Baawain MS. Effects of pollution on freshwater aquatic organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1272-1287. [PMID: 31486195 DOI: 10.1002/wer.1221] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 05/24/2023]
Abstract
This paper presents the reviews of scientific papers published in 2018 issues on the effects of anthropogenic pollution on the aquatic organisms dwelling in freshwater ecosystem at global scale. The first part of the study provides the summary of relevant literature reviews followed by field and survey based studies. The second part is based on categories of different classes/sources of pollutants which affect freshwater organism. This is composed of several sections including metals and metalloids, wastewater and effluents, sediments, nutrients, pharmaceuticals, polycyclic aromatic hydrocarbons, flame retardants, persistent organic pollutants, pharmaceuticals and illicit drugs, emerging contaminants, pesticides, herbicides, and endocrine disruptors. The final part of the study highlights the reviews of published research work on new pollutants such as microplastics and engineered nanoparticles which affect the freshwater organisms. PRACTITIONER POINTS: Heavy metals concentrations should be assessed at nano-scale in aquatic environment. Air pollutants could have long-term effects on freshwater ecosystem. Future studies should focus on bioremediations of freshwater pollution.
Collapse
Affiliation(s)
- Patrick Amoatey
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mahad Said Baawain
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
48
|
Tipping E, Stockdale A, Lofts S. Systematic analysis of freshwater metal toxicity with WHAM-F TOX. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:128-137. [PMID: 31103734 DOI: 10.1016/j.aquatox.2019.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/14/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
We used the WHAM chemical speciation model and the WHAM-FTOX toxicity model to analyse the published results of laboratory toxicity experiments covering 52 different freshwater biological test species and 24 different metals, a total of 2037 determinations of EC50 with accompanying data on solution composition. The key extracted parameter was αM, the parameter in WHAM-FTOX that characterises the toxic potency of a metal on the basis of its estimated metabolically active body burden. For 16 data sets applying to metal-test species pairs with appreciable variations in solution composition, values of EC50 back-calculated from averaged values of αM showed significantly (p < 0.001) less deviation from the measured EC50 values than did the simple average EC50, confirming that the modelling calculations could account for some of the dependence of toxicity on chemical speciation. Data for different exposure times permitted a simple parameterisation of temporal effects, enabling values of αM,max (values at infinite exposure time) to be obtained, and the effects of different exposure times to be factored out for further analysis. Comparison of averaged values of αM,max for different metals showed little difference among major taxa (invertebrates, plants, and vertebrates). For Cd, Cu, Ni and Zn (the four metals with most data) there were significant differences among αM,max values for different species, but within-species variabilities were greater. Reasonably similar species sensitivity distributions of standardised αM,max applied to Cd, Cu, Ni and Zn. The average values, over all species, of αM,max increased in the order Al < lanthanides < Zn ∼ UO2 < Ni ∼ Cu < Pb < Cd < Ag. Considering all the αM,max values, there was a strong dependence (r2 = 0.56, p < 0.001) on Pearson's hardness-softness categories, and a slightly stronger relationship (r2 = 0.59) if ionic radius was included in the statistical model, indicating that softer, larger cations are the most effective toxicants.
Collapse
Affiliation(s)
- E Tipping
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom.
| | - A Stockdale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - S Lofts
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| |
Collapse
|
49
|
Krzykwa JC, Saeid A, Jeffries MKS. Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:521-529. [PMID: 30557710 DOI: 10.1016/j.ecoenv.2018.11.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 05/23/2023]
Abstract
Fish embryos are increasingly being utilized in aquatic toxicity testing, as evidenced by the Organisation for Economic Co-operation and Development's approval of the fish embryo acute toxicity (FET) test. However, the FET test only allows for the estimation of acute toxicity, whereas other test methods such as the larval growth and survival (LGS) test allow for the estimation of both acute and chronic toxicity. Additionally, it has been demonstrated that the FET test is less sensitive than other test methods for some neurotoxic compounds. To address these limitations, efforts to identify sublethal endpoints that increase FET test sensitivity and allow for the prediction of sublethal adverse effects have begun. As such, the objectives of the current study were 1) to compare estimated LC50 values from the FET and LGS test for three known neurotoxicants: fluoride (F), nickel (Ni), and cadmium (Cd) and 2) to evaluate the responsiveness of potential sublethal endpoints for the FET test related to growth (i.e., wet weight and snout-vent length), neurological development (i.e., spontaneous contraction frequency and eye size), and cardiovascular function (i.e., heart rate and pericardial area). The calculated LC50 values from the F and Cd FET test were significantly higher than those from the LGS test, demonstrating that the FET test is less sensitive than the LGS test for neurotoxic compounds. Only Cd exposure resulted in alterations in any of the sublethal endpoints investigated. Embryos/eleutheroembryos exposed to Cd displayed alterations in length, eye size, and pericardial area at concentrations five-fold less than the estimated LC50 value, suggesting that for Cd the inclusion of these sublethal endpoints would improve the sensitivity of the FET test. Overall, these results provide evidence that for some neurotoxicants, the inclusion of sublehtal endpoints may improve the utility of the FET test; however, further research utilizing a broader range of neurotoxicants with differing mechanisms of action, is needed to fully establish such endpoints in the context of routine FET test.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Asal Saeid
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | | |
Collapse
|
50
|
Altenhofen S, Nabinger DD, Bitencourt PER, Bonan CD. Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:1117-1123. [PMID: 30682746 DOI: 10.1016/j.envpol.2018.11.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Dichlorvos (2,2-dichlorovinyl-dimethylphosphate), an organophosphorus pesticide used for indoor insect and livestock parasite control, is among the most common commercially available pesticides. However, there are significant concerns over its toxicity, especially due to its relative stability in water, soil, and air. Zebrafish, an important developmental model, has been used for studying the effects of toxic compounds. The aim of this study was to evaluate the exposure to dichlorvos at early life stages (1 h postfertilization - 7 days postfertilization) in the zebrafish and its toxicological effects during the development, through morphological (7 days postfertilization), locomotor and social behavior analysis (7, 14, 30, 70, and 120 days postfertilization). Dichlorvos (1, 5, and 10 mg/L) exposure reduced the body length and heartbeat rate at 7 days postfertilization (dpf), as well as the surface area of the eyes (5 and 10 mg/L). The avoidance behavior test showed a significant decrease in escape responses at 7 (1, 5, and 10 mg/L) and 14 (5 and 10 mg/L) dpf zebrafish. The evaluation of larval exploratory behavior showed a reduction in distance traveled, mean speed (1, 5, and 10 mg/L) and time mobile (10 mg/L) between control and dichlorvos groups. In addition, the analysis performed on adult animals showed that the changes in distance traveled and mean speed remained reduced in 30 (1, 5, and 10 mg/L) and 70 dpf (5 and 10 mg/L), recovering values similar to the control at 120 dpf. The social behavior of zebrafish was not altered by exposure to dichlorvos in the early stages of development. Thus, the exposure to organophosphorus compounds at early stages of development induces an increased susceptibility to behavioral and neuronal changes that could be associated with several neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Débora Dreher Nabinger
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Paula Eliete Rodrigues Bitencourt
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|