1
|
Huang M, Hou C, Zhang Q, Yao D, Hu S, Wang G, Gao S. Tissue-specific accumulation, depuration and histopathological effects of 3,6-dichlorocarbazole and 2,7-dibromocarbazole in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106803. [PMID: 38103395 DOI: 10.1016/j.aquatox.2023.106803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Although polyhalogenated carbazoles have been detected with increasing frequency in aquatic ecosystems, their bioaccumulation in fish and corresponding pathological effects related to bioaccumulation are still unclear. Here, we investigated the tissue-specific accumulation, depuration, and histopathological effects of two typical PHCZs, 3,6-dichlorocarbazole (36-CCZ) and 2,7-dibromocarbazole (27-BCZ), in adult zebrafish at three levels (0, 0.15 μg/L (5 × environmentally relevant level), and 50 μg/L (1/10 LC50). The lowest concentrations of 36-CCZ (1.2 μg/g ww) and 27-BCZ (1.4 μg/g ww) were observed in muscle, and the greatest concentrations of 36-CCZ (3.6 μg/g ww) and 27-BCZ (4 μg/g ww) were detected in intestine among the tested tissues. BCFww of 36-CCZ and 27-BCZ in zebrafish ranged from 172.9 (muscle) to 606.6 (intestine) and 285.2 (muscle) to 987.5 (intestine), respectively, indicating that both 36-CCZ and 27-BCZ have high potential of bioaccumulation in aquatic system. The 0.15 μg/L level of 36-CCZ or 27-BCZ caused lipid accumulation in liver, while 50 μg/L of 36-CCZ or 27-BCZ induced liver lesions such as fibrous septa, cytolysis, and nuclear dissolution. Brain damage such as multinucleated cells and nuclear solidification were only observed at 50 μg/L of 27-BCZ. This study provided valuable information in assessing the health and ecological risks of 36-CCZ and 27-BCZ.
Collapse
Affiliation(s)
- Mengyao Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunchuang Hou
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qiaoyun Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dunfan Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shengchao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Kochetkov N, Smorodinskaya S, Vatlin A, Nikiforov-Nikishin D, Nikiforov-Nikishin A, Danilenko V, Anastasia K, Reznikova D, Grishina Y, Antipov S, Marsova M. Ability of Lactobacillus brevis 47f to Alleviate the Toxic Effects of Imidacloprid Low Concentration on the Histological Parameters and Cytokine Profile of Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:12290. [PMID: 37569666 PMCID: PMC10418720 DOI: 10.3390/ijms241512290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
In the present article, the possible mitigation of the toxic effect of imidacloprid low-concentration chronic exposure on Danio rerio by the probiotic strain Lactobacillus brevis 47f (1 × 108 CFU/g) was examined. It was found that even sublethal concentration (2500 µg/L) could lead to the death of some fish during the 60-day chronic experiment. However, the use of Lactobacillus brevis 47f partially reduced the toxic effects, resulting in an increased survival rate and a significant reduction of morphohistological lesions in the intestines and kidneys of Danio rerio. The kidneys were found to be the most susceptible organ to toxic exposure, showing significant disturbances. Calculation of the histopathological index, measurement of morphometric parameters, and analysis of principal components revealed the most significant parameters affected by the combined action of imidacloprid and Lactobacillus brevis 47f. This effect of imidacloprid and the probiotic strain had a multidirectional influence on various pro/anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8). Therefore, the results suggest the possibility of further studying the probiotic strain Lactobacillus brevis 47f as a strain that reduces the toxic effects of xenobiotics. Additionally, the study established the possibility of using imidacloprid as a model toxicant to assess the detoxification ability of probiotics on the kidney and gastrointestinal tract of fish.
Collapse
Affiliation(s)
- Nikita Kochetkov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Svetlana Smorodinskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Aleksey Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Dmitry Nikiforov-Nikishin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Alexei Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Valery Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Klimuk Anastasia
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Diana Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Yelena Grishina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Sergei Antipov
- Department of Biophysics and Biotechnology, Voronezh State University, University Square, 1, 394063 Voronezh, Russia;
| | - Maria Marsova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| |
Collapse
|
4
|
Noshair I, Kanwal Z, Jabeen G, Arshad M, Yunus FUN, Hafeez R, Mairaj R, Haider I, Ahmad N, Alomar SY. Assessment of Dietary Supplementation of Lactobacillus rhamnosus Probiotic on Growth Performance and Disease Resistance in Oreochromis niloticus. Microorganisms 2023; 11:1423. [PMID: 37374925 DOI: 10.3390/microorganisms11061423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Probiotics play a significant role in aquaculture by improving the growth, health, and survival rate of fish against pathogenic organisms. In the present study, we have evaluated the effects of a Lactobacillus rhamnosus (L. rhamnosus) probiotic on growth performance and disease resistance in Oreochromis niloticus (O. niloticus) fingerlings. Four different concentrations of L. rhamnosus (T1: 0.5 × 1010, T2: 1 × 1010, T3: 1.5 × 1010, and T4: 2 × 1010 CFU/kg feed) were administered to fish over a period of three months. L. rhamnosus treated fish revealed a high growth increment as compared to the control, and the values of macromolecules (amino acids, fatty acids, and carbohydrates) varied significantly among the treated and control groups. Levels of thyroid hormones were noted to be high in the probiotic-treated groups. A challenge assay was performed with Aeromonas hydrophila (A. hydrophila). The optimum calculated concentration of probiotics from the growth assay (1.5 × 1010 CFU/kg feed) was used for the challenge assay. Fish were divided into four groups as follows: control (Con), probiotic-treated (PL), infected (I), and infected + probiotic-treated (I + PL) groups. Significant variations in hematological parameters were observed among control and treated groups. Histopathological changes were recorded in infected fish, while the infected + probiotic-treated group showed less deformations indicating the positive effect of the probiotic supplementation. The survival rate of fish was also better in the probiotic-treated group. Based on these findings, we conclude that probiotic supplementation enhances the growth and improves immunity of O. niloticus. Therefore, we propose that probiotics can be used as promising feed supplements for promoting fish production and disease resistance in aquaculture.
Collapse
Affiliation(s)
- Iqra Noshair
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Mateen Arshad
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Fakhar-Un-Nisa Yunus
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ramsha Hafeez
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rida Mairaj
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Imran Haider
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 Amsterdam, The Netherlands
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Yancheva V, Georgieva E, Velcheva I, Iliev I, Stoyanova S, Vasileva T, Bivolarski V, Todorova-Bambaldokova D, Zulkipli N, Antal L, Nyeste K. Assessment of the exposure of two pesticides on common carp (Cyprinus carpio Linnaeus, 1758): Are the prolonged biomarker responses adaptive or destructive? Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109446. [PMID: 36030007 DOI: 10.1016/j.cbpc.2022.109446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
Chlorpyrifos (CPF) and cypermethrin (CYP) are two insecticides that have a proven negative effect on non-target aquatic organisms when they enter the surface waters. However, literature on the comparative effects of these pesticides on important aquaculture fish species, such as common carp (Cyprinus carpio Linnaeus, 1758) is not yet scientifically detailed, especially over the long-term. The idea of conducting a long-term exposure is to find out how the observed biomarkers would change compared to the short-term exposure. In the natural environment, toxicants are not present alone, but in combination. By monitoring the long-term impact of individual substances, the state of aquatic ecosystems exposed to various toxicants could be predicted. Thus, this study aimed to evaluate the toxicity of different concentrations of CYP (0.0002, 0.0003, and 0.0006 μg/L) and CPF (0.03, 0.05, and 0.10 μg/L) in 50-L glass tanks on C. carpio, exposed for 30 days under laboratory conditions. A set of histological and biochemical biomarkers in the gills and liver were applied with the chemical analyses of water and fish organs. Furthermore, the condition and hepatosomatic index were calculated to assess the physiological status of the treated carps. The behavioral responses were also monitored, and the respiration rate was analyzed. The results suggest that CYP had a more prominent effect on the histological structure of fish organs, biochemical responses of anti-oxidant enzymes, behavior, and respiration rate compared to the effect of CPF. In addition, the results also indicate that the liver is more susceptible to chronic and chemically induced cellular stress compared to the gills, with overall destructive changes in the histological biomarkers rather than adaptive. Regardless of the scenario, our results provide novel insights into pesticide exposure and the possible biological impacts on economically important freshwater fish, exposed to lower CYP and CPF concentrations, based on the EU legislation (maximum allowable concentrations, MAC-EQS).
Collapse
Affiliation(s)
- Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Elenka Georgieva
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Iliana Velcheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Stela Stoyanova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | | | - Nurfatin Zulkipli
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - László Antal
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary.
| | - Krisztián Nyeste
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Impact of Yeast Fermented Poultry by-Product Meal on Growth, Digestive Enzyme Activities, Intestinal Morphometry and Immune Response Traits of Common Carp (Cyprinus carpio). ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
The current study was carried out to investigate the effects of Saccharomyces cerevisiae-fermented poultry by product meal (PBM) on growth performance, micromorphological, and immunological changes in common carp. Five experimental diets were prepared to include fermented PBM at 0, 5, 10, 15, and 20 % level in the diet of common carp (4.91±0.01 g). The fish were reared for 90 days on these diets. The obtained results revealed that yeast fermented PBM significantly changed the final body weight (FBW), weight gain (WG), specific growth rate (SGR), feed intake (FI), and feed conversion ratio (FCR) of the fish in a dose dependent manner (P<0.05). Fish fed 20 % fermented PBM showed the highest FBW, WG, SGR, FI, and lowest FCR. However, whole body composition did not vary significantly among fish fed different diets (P>0.05). Dietary yeast fermented PBM at 10 and 20 % level significantly increased the lipase, amylase, and protease activities than the other groups (P<0.05). The anterior, middle, and posterior intestinal villus length was significantly increased in fish fed fermented PBM at 15 and 20 % level when compared to the other groups (P<0.05). The number of goblet cells was significantly increased in the middle section of intestine in fish fed yeast fermented PBM at 20 % level, while in the posterior region of intestine the number of goblet cells was significantly increased in fish fed yeast fermented PBM at 15 and 20 % level (P<0.05). The histomorphology of intestine showed an increased length, branching and density of intestinal villi in fish fed yeast fermented PBM diets. Most of the measured blood parameters showed insignificant (P>0.05) differences except for Hb, RBCs, WBCs, total blood protein, and globulin which were significantly affected by the inclusion of yeast fermented PBM (P<0.05). Lysozyme activity was significantly increased in fish fed yeast fermented PBM at 5, 10, and 15 % level, while the phagocytic activity and phagocytic index were significantly increased at 20 % level when compared to the control groups (P<0.05). It is concluded from this study that inclusion of yeast fermented PBM in the diet of common carp at 15-20% level increased digestive enzyme activities, immune function and growth of the fish.
Collapse
|
7
|
Dane H, Şi Şman T. A morpho-histopathological study in the digestive tract of three fish species influenced with heavy metal pollution. CHEMOSPHERE 2020; 242:125212. [PMID: 31677508 DOI: 10.1016/j.chemosphere.2019.125212] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
In this study, the digestive tract of three freshwater fish species (Capoeta capoeta, Alburnus mossulensis and Squalius cephalus) was examined using a morpo-histopathological technique. Sediment and fish samples were taken from selected four stations in the Karasu River (Erzurum, Turkey) between June and September in 2015-2016. In water and sediment samples, the concentrations of some metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr and Pb) were determined. Histopathological changes in digestive tract were determined by histopathological alterations index (HAI). Intestinal coefficient (IC) and condition factor (CF), which are general indicators of exposure to environmental stress, were calculated for each fish. The highest CF was observed at the least contaminated site of the gradient. C. capoeta showed the highest values of IC among species. The detected abnormalities were infiltration, swelling, gastric degenerations, vacuolization, congestion, epithelial degenerations, hyperplasia, fibrosis and fusion at polluted site fish. It was also observed that the HAI and IC values in fish varied significantly from site to site. The results showed that the content of heavy metals in the river water and sediment may affect the health status of the fish species.
Collapse
Affiliation(s)
- Hatice Dane
- Department of Biology, Faculty of Sciences, Atatürk University, Erzurum, Turkey.
| | - Turgay Şi Şman
- Department of Biology, Faculty of Sciences, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
8
|
Büyüksoylu S, Özgür ME, Gül CC, Taşlıdere A, Aydemir S, Erdoğan S. An investigation of histopathological changes and bioaccumulation in tissues of rainbow trout ( Oncorhynchus mykiss) after exposure to dodine. Drug Chem Toxicol 2020; 45:537-547. [PMID: 32102573 DOI: 10.1080/01480545.2020.1730884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this research is to determine ecotoxicological effects of dodine (n-dodecylguanidini acetate) on aquatic environments. Though dodine is widely used as a fungicide in agriculture, but there is no much data about its ecotoxicology. In this regard, we investigated bioaccumulation levels and histological alterations on the tissues of muscle, liver and gills in Rainbow Trout (Oncorhynchus mykiss) against different doses (0.01, 0.1, 0.5 and 1 mg/L) of Dodine exposure. The tissues of fish were extracted according to QUECHERS method and analyzed by mass spectrometer (LC-MS-MS). Neither of the applied dodine doses resulted in killing 50% of the total individuals in the experimental groups. However, 48 hours after doses, behaviors such as instability, anomaly in swimming or sudden jumping movements were observed. Histological results of the study showed deteriorations of the radiological pattern of hepatocytes, sinusoidal dilatations, hemorrhages, edemas, mononuclear cell infiltrations, vascular congestions, hyperplasia and hypertrophy in liver, gill and muscle tissues. Accumulation of dodine in tissues correlated with increase of dose. The maximum level of active substance accumulation in tissues were measured 96 hours after application of 1 mg/L dodine dose -in order- in gills, muscles and liver. The accumulations were statistically significant (p < 0.05) when compared with control group.
Collapse
Affiliation(s)
- Semih Büyüksoylu
- Faculty of Pharmacy, Department of Analytical Chemistry, İnönü University, Malatya, Turkey
| | - Mustafa Erkan Özgür
- Faculty of Fishery, Department of Aquaculture, Malatya Turgut Özal University, Malatya, Turkey
| | - Cemile Ceren Gül
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey
| | - Aslı Taşlıdere
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey
| | - Songül Aydemir
- Faculty of Art and Science, Department of Biology, İnönü University, Malatya, Turkey
| | - Selim Erdoğan
- Faculty of Pharmacy, Department of Analytical Chemistry, İnönü University, Malatya, Turkey
| |
Collapse
|
9
|
Matulić D, Barišić J, Aničić I, Tomljanović T, Safner R, Treer T, Gao J, Glojnarić I, Čož-Rakovac R. Growth, health aspects and histopathology of brown bullhead (Ameiurus nebulosus L.): replacing fishmeal with soybean meal and brewer's yeast. Sci Rep 2020; 10:1104. [PMID: 31980692 PMCID: PMC6981201 DOI: 10.1038/s41598-020-57722-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/28/2019] [Indexed: 11/09/2022] Open
Abstract
A ten-week feeding trial was carried out to investigate the effects of replacing fishmeal (FM) with soybean meal (SBM) and brewer's yeast (BY) on growth performance, blood parameters, oxidative stress and micromorphology of liver and intestines in brown bullhead (Ameiurus nebulosus L.). Fish were fed nine feeds in which FM was replaced with 25%, 50%, 75% and 100% SBM (K1, K2, K3 and K4) and 17% + 8%, 42% + 8%, 67% + 8% and 92% + 8% of SBM/BY combination (K5, K6, K7, K8). Growth indices showed greater outcomes for the K2 group in comparison to all other groups. A decrease in plasma cholesterol and triglycerides concentrations was found after FM replacement. Activity of SOD was higher in groups K4, K7 and K8. The early inflammatory indications with abnormal vacuolization of lamina propria and basal epithelium were present in diets K4 and K8. Hepatocytes were irregular in shape with signs of inflammatory reaction in diet K8. A decreased perimeter of hepatocyte nuclei was detected in all experimental diets when compared with the control. This study demonstrates that the optimal replacement of FM with SBM/BY in brown bullhead diets contains up to 50% of FM replaced with SBM in order to obtain advantageous growth performance and adequate health condition.
Collapse
Affiliation(s)
- Daniel Matulić
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia.
| | - Josip Barišić
- Laboratory for biotechnology in aquaculture, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivica Aničić
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Tea Tomljanović
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Roman Safner
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Tomislav Treer
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Jian Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | | | | |
Collapse
|
10
|
Mijošek T, Filipović Marijić V, Dragun Z, Krasnići N, Ivanković D, Erk M. Evaluation of multi-biomarker response in fish intestine as an initial indication of anthropogenic impact in the aquatic karst environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1079-1090. [PMID: 30743905 DOI: 10.1016/j.scitotenv.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
In order to assess the extent of existing anthropogenic influence on biota of the vulnerable karst ecosystem of the Krka River, multi-biomarker approach was applied in the intestinal tissue of brown trout Salmo trutta Linnaeus, 1758. Biomarkers of the general stress (total cytosolic proteins), oxidative stress (malondialdehyde), antioxidant capacity (catalase activity, total glutathione) and of an exposure and effect of contaminants, especially metals (metallothionein) and organophosphorous pesticides and metals (acetylcholine esterase activity) were compared in the intestine of fish from the reference site (river source) and downstream of the technological and municipal wastewater impacted site (town of Knin) in two seasons, October 2015 and May 2016. Biological response was additionally evaluated by metal/metalloid concentrations in intestinal cytosol. Site-specific differences were observed as significantly higher As, Ca, Co, Cu, Se and Sr concentrations in intestinal cytosol of fish from the contaminated compared to the reference site. Significant seasonal differences existed for Ni, Cd, Mo, Cs and Na, with higher levels in autumn, following the trend of most of the dissolved metal levels in the river water. Impact of improperly treated wastewaters was also confirmed by significantly increased levels of glutathione, total proteins and Foulton condition indices, with 1.5, 1.13 and 1.12 times higher average values in fish from that site compared to the river source, respectively. The other biomarkers showed similar trend and pointed to specific biological changes regarding oxidative stress or metal exposure in fish from the anthropogenically impacted site, especially in autumn, but without significant differences. Thus, the anthropogenic impact still seems to be only moderate, although cytosolic metals and most of the biomarkers in fish intestine were confirmed as initial indicators of pollution impact, which pointed to the need of continuous monitoring of the Krka River in order to protect this natural karst world phenomenon.
Collapse
Affiliation(s)
- Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|