1
|
Zhang Q, Xu Y, Yang H, Zhao M, Li W. Performance and underlying mechanisms of zero-valent iron and percarbonate co-regulation for improved volatile fatty acids production from food waste anaerobic fermentation. BIORESOURCE TECHNOLOGY 2025; 431:132645. [PMID: 40349793 DOI: 10.1016/j.biortech.2025.132645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Anaerobic biorefining of food waste (FW) into volatile fatty acids (VFAs) is typically limited by substrate recalcitrance and acid-induced stress. In this study, co-regulation with percarbonate (SPC) and zero-valent iron (ZVI) resulted in a maximum VFAs concentration of 28,317.9 mg COD/L, compared to only 3,986.4 mg COD/L in the control. SPC/ZVI treatment facilitated FW solubilization, enhanced substrate biodegradability, and alleviated acid inhibition. These changes promoted the enrichment of functional bacteria (e.g., Megasphaera and Clostridium) and stimulated key metabolic pathways and gene expression (e.g., fabG and por) involved in VFAs biosynthesis. Together with the provision of bioavailable organics and improved fermentation conditions, activation of stress defense systems in functional bacteria (e.g., katG and kdpA) counteracted the acid and oxidative stress in the SPC/ZVI system, thereby preserving metabolic activity for VFAs production. This study presents a dual modulation strategy to enhance FW fermentation, offering valuable insights for efficient resource recovery from FW.
Collapse
Affiliation(s)
- Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Yuke Xu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Han Yang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Minjun Zhao
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Wenzhuo Li
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| |
Collapse
|
2
|
Wongfaed N, Sittijunda S, O-Thong S, Kongjan P, Jariyaboon R, Plangklang P, Reungsang A. Enhancement of dark fermentative hydrogen production using metal-modified biochar from sugarcane residues: Optimization, characterization, and metabolic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125047. [PMID: 40106981 DOI: 10.1016/j.jenvman.2025.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/03/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the enhancement of dark fermentative hydrogen production (HP) using metal-modified biochars derived from sugarcane bagasse (SB) and sugarcane leaves (SL). The biochars were modified with Fe and Ni, with optimal conditions identified through Box-Behnken Design as 6.09 g/L biochar: SB, 5.38 g/L biochar: SL + Fe, and 7.66 g/L biochar: SL + Ni. This optimization achieved a maximum hydrogen yield of 108.77 mL-hydrogen (H2)/g-glucose, a 58.77 % increase over the control. Metal modification enhanced biochar surface properties and selectively enriched H2-producing bacteria, particularly Clostridium sensu stricto 1 and Paraclostridium sp. Metabolic pathway analysis showed enhanced glucose catabolism and increased H2-producing enzyme abundance. The study demonstrates that sugarcane-derived biochar can effectively enhance bio-HP, though careful optimization of metal concentrations is crucial to avoid inhibitory effects.
Collapse
Affiliation(s)
- Nantharat Wongfaed
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Prawit Kongjan
- Chemistry Division, Department of Science, Faculty of Science and Technology, Prince of Songkhla University, Pattani, 94000, Thailand
| | - Rattana Jariyaboon
- Chemistry Division, Department of Science, Faculty of Science and Technology, Prince of Songkhla University, Pattani, 94000, Thailand
| | - Pensri Plangklang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
3
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
4
|
Hu C, Yang Z, Chen Y, Tang J, Zeng L, Peng C, Chen L, Wang J. Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:417. [PMID: 39240407 DOI: 10.1007/s10653-024-02190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.
Collapse
Affiliation(s)
- Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China.
| | - Yijing Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jiayi Tang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Cong Peng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Liudong Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| |
Collapse
|
5
|
Chen S, Yao F, Pi Z, He L, Luo K, Li X, Yang Q. Evaluating the role of salinity in enhanced biogas production from two-stage anaerobic digestion of food waste by zero-valent iron. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119911. [PMID: 38150931 DOI: 10.1016/j.jenvman.2023.119911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Salts including NaCl are the most common food flavoring agents so they are often accumulated in food waste (FW) and have potential impact on anaerobic digestion (AD) of FW. In this study, the enhanced biogas production from two-stage anaerobic digestion (TSAD) of FW by microscale zero-valent iron (ZVI) under different salinity (3, 6, 9, and 15 g NaCl/L) was evaluated. Under salinity stress, ZVI becomes a continue-release electron donor due to the enhanced corrosion and dissolution effect and the slow-down surface passivation, further improving the performance of TSAD. Experimental results revealed that the biogas production including H2 and CH4 from TSAD with 10 g/L ZVI addition was promoted under salinity stress. The maximum H2 and CH4 yield (303.38 mL H2/g-VS and 253.84 mL CH4/g-VS) were observed at the salinity 9 g NaCl/L. Compared with that of zero salinity, they increased by 40.94% and 318.46%, respectively. Additionally, Sedimentibacter, an exoelectrogen that can participate in the direct interspecies electron transfer, also exhibited the highest relative abundance (34.96%) at the salinity 9 g NaCl/L. These findings obtained in this study might be of great importance for understanding the influence of salinity on the enhanced AD by ZVI.
Collapse
Affiliation(s)
- Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kun Luo
- Department of Materials and Environmental Engineering, Changsha University, Changsha, 410003, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
6
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
7
|
Luo L, Mak KL, Mal J, Khanal SK, Pradhan N. Effect of zero-valent iron nanoparticles on taxonomic composition and hydrogen production from kitchen waste. BIORESOURCE TECHNOLOGY 2023; 387:129578. [PMID: 37506933 DOI: 10.1016/j.biortech.2023.129578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study investigated the effects of varying zero-valent iron (ZVI) (0 to 5,000 mg/L) on fermentative hydrogen (H2) production, metabolic pattern, and taxonomic profile by using kitchen waste as substrate. The study demonstrated that the supplementation of 500 mg ZVI/L resulted in the highest H2 yield (219.68 ± 11.19 mL H2/g-volatile solids (VS)added), which was 19% higher than the control. The metabolic pattern analysis showed that acetic and butyric acid production primarily drove the H2 production. The taxonomic analysis further revealed that Firmicutes (relative abundance (RA): 80-96%) and Clostridium sensu stricto 1 (RA: 68-88%) were the dominant phyla and genera, respectively, during the exponential gas production phase, supporting the observation of accumulation of acetic and butyric acids. These findings suggest that supplementation of ZVI can enhance H2 production from organic waste and significantly influence the metabolic pattern and taxonomic profile, including the metalloenzymes.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Ka Lee Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Zhao Z, Shao Z, Qu Q, Ji M, Cheng D, Guo X. Promoting the overall energy profit through using the liquid hydrolysate during microwave hydrothermal pretreatment of wheat straw as co-substrate for anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159463. [PMID: 36257436 DOI: 10.1016/j.scitotenv.2022.159463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Liquid hydrolysate (LH) derived from the microwave hydrothermal pretreatment (MHP) of wheat straw (WS) was anaerobically digested together with the solid residual to promote the overall energy profit. Different MHP temperatures (90, 120, 150, 180 °C) and retention times (10, 20, 40 min) were investigated. Increased MHP intensity generated plenty of VFAs (mainly acetate) and phenols in the LH, implying the double-side effect of LH on AD. The highest methane production of 227.92 mL CH4·gVS-1 Raw was obtained with MHP at 120 °C for 10 min, 21.53 % higher than the control. While, MHP at 180 °C for 40 min exhibited 29.02 % lower methane production (113.13 mL CH4·gVS-1 Raw) and 115.86 % longer lag phase (3.13 days) than the control. Butyrate fermentation endowed the treatment groups of 180 °C with resilience from the overload and inhibition. Methanosarcina was largely enriched by the abundant acetate in LH on the early stage of anaerobic digestion (AD), especially when with high MHP intensity. Increased abundance of Methanosaeta and Methanobacterium played a crucial role in maintaining methane production at the middle and later stage. The high number of species and evenness in methanogens community were beneficial for the startup of batch AD. Although negative net energy was obtained, the lower ratio of energy input and output compared with the most researches using the solid residual after MHP as the sole substrate for AD demonstrated the contribution of LH to the overall energy profit.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijiang Shao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Qu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengqin Ji
- Northwest A&F University, College of Natural Resources and Environment, Yangling, Shaanxi 712100, China
| | - Demin Cheng
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Guo
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Du X, Zhang Y, Ma YW, Feng SX, Zhang YX, Kou HJ, Sun Y. The synergistic effect of chemical oxidation and microbial activity on improving volatile fatty acids (VFAs) production during the animal wastewater anaerobic digestion process treated with persulfate/biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159276. [PMID: 36216057 DOI: 10.1016/j.scitotenv.2022.159276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Improving volatile fatty acid (VFA) production, rather than producing methane from the anaerobic digestion (AD) of waste, has become a new strategy of resource utilization. In regard to animal wastewater, the effectiveness of persulfate/biochar (potassium peroxodisulfate, PDS/BC) on the hydrolysis and acidogenesis stages and the reaction mechanisms are still unclear. In this study, the AD process on cow wastewater was controlled at the hydrolysis and acidification stages by setting the hydraulic retention time (HRT) at 25 days. The results showed that the contents of total solids (TS) and volatile solids (VS) were further reduced by PDS/BC treatment with 0.15 gPDS/gTS of PDS added. The VFAs production increased by 12.4 % from day 0 to 25 compared to the blank set. Based on our molecular analysis, the rate of increase for the dissolved organic matter with low molecular weight (0-10 kDa) was 699.5 mg/(L·d) in the first 10 days. The change rate increased nearly 2.1 times, leading to higher VFAs yield. Moreover, the activities of fermentative bacteria were enhanced and Anaerocella was determined to be the specific and critical genus. However, excessive PDS (0.3 gPDS/gTS) prolonged the acidification period and caused the inactivation of fermentative bacteria. Structural equation modeling demonstrated that PDS can directly affect VFAs yield and also had an indirect effect by influencing the decomposition of particulate matter and microbial activities. Therefore, the enhancement of VFAs production using the PDS/BC method could be due to synergistic chemical and microbial effects. Findings from this study can provide a practical strategy to enhance the VFAs production of AD technology for livestock wastewater and help reveal the reaction mechanism of PDS/BC treatment.
Collapse
Affiliation(s)
- Xian Du
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sinochem Environment Holdings Co., Ltd, Beijing 100160, China
| | - Yue Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yan-Wen Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shao-Xuan Feng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Xin Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hui-Juan Kou
- Ulanqab Animal Husbandry Station of Inner Mongolia Autonomous Region, Inner Mongolia 012000, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
He ZW, Zou ZS, Ren YX, Tang CC, Zhou AJ, Liu W, Wang L, Li Z, Wang A. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158420. [PMID: 36049687 DOI: 10.1016/j.scitotenv.2022.158420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
11
|
Shao Z, Chen H, Zhao Z, Yang Z, Qiu L, Guo X. Combined effects of liquid digestate recirculation and biochar on methane yield, enzyme activity, and microbial community during semi-continuous anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 364:128042. [PMID: 36182021 DOI: 10.1016/j.biortech.2022.128042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The combined effects of liquid digestate recirculation (LDR) and biochar on methanogenesis and microbial communities were studied in semi-continuous anaerobic reactors fed with wheat straw and swine manure. The tolerated organic loading rate (OLR) was expanded from 5 g- volatile solids (VS)∙L-1∙d-1 in the control to higher than 6 g-VS∙L-1∙d-1 in the LDR. At the OLR of 5.0 g-VS∙L-1∙d-1, average special methane yield in LDR with biochar was 0.234 L∙g-VS-1, which was 5.4 % higher than that of the LDR alone. Moreover, enzyme activity and microbial community analysis indicated that LDR with biochar enhanced the processes of hydrolysis and methanogenesis, and balanced the pathway between hydrogenotrophic and acetoclastic methanogenesis. The co-application of LDR and biochar synergistically enhanced the degradation pathways of substrates and the loading shock resistance of anaerobic digestion system. This study could offer strategies for developing sustainable applications of full and continuous LDR in industrial biogas projects.
Collapse
Affiliation(s)
- Zhijiang Shao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heyu Chen
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuangzhuang Zhao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaijun Yang
- Northwest A&F University, College of Natural Resources and Environment, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Guo
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Lin D, Fu Y, Li X, Wang L, Hou M, Hu D, Li Q, Zhang Z, Xu C, Qiu S, Wang Z, Boczkaj G. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129722. [PMID: 35963083 DOI: 10.1016/j.jhazmat.2022.129722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including solid waste treatment, resources recovery and regeneration of ecomaterials. PS applications mainly rely on direct oxidation by PS itself or the reactive sulfate radical (SO4•-) or hydroxyl radical (•OH) from the activation of peroxodisulfate (PDS, S2O82-) or peroxymonosulfate (PMS, HSO5-) in SO4•--based advanced oxidation processes (SO4•--AOPs). From a broader perspective of environmental cleanup and sustainability, this review summarizes the various applications of PS except pollutant decontamination and elaborates the possible reaction mechanisms. Additionally, the differences between PS treatment and conventional technologies are highlighted. Challenges, research needs and future prospect are thus discussed to promote the development of the applications of PS-based oxidation processes in niche environmental fields. In all, this review is a call to pay more attention to the possibilities of PS application in practical resource reutilization and environmental protection except widely reported pollutant degradation.
Collapse
Affiliation(s)
- Dagang Lin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodie Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Meiru Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dongdong Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
13
|
Yang G, Xu C, Varjani S, Zhou Y, Wc Wong J, Duan G. Metagenomic insights into improving mechanisms of Fe 0 nanoparticles on volatile fatty acids production from potato peel waste anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127703. [PMID: 35907599 DOI: 10.1016/j.biortech.2022.127703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The management of potato peel waste (PPW) has been a challenge faced by the potato industry. This investigation assessed the feasibility of PPW for volatile fatty acids (VFAs) production via anaerobic fermentation, and investigated the impact of Fe0 nanoparticles (Fe0 NPs) supplementation on the VFAs production. It is found that PPW is a potential feedstock for producing VFAs, achieving a yield of 480.4 mg COD/g-vS Meanwhile, the supplementation of Fe0 NPs significantly promoted the VFAs productivity and quality. The higher enrichment of VFAs-producing bacteria, including Clostridium, Proteiniphilum, Fonticella and Pygmaiobacter, contributed to the promotion of the VFAs yield. Furthermore, metagenomic analysis revealed that the encoding genes responsible for carbohydrate metabolism (especially starch), membrane transport, glycolysis and the formation of acetic and butyric acids were remarkably up-regulated,which could be the essential reason for the enhanced metabolic activity and VFAs productivity. This work provides a promising strategy for recycling PPW.
Collapse
Affiliation(s)
- Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar-382 010, Gujarat, India
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jonathan Wc Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Liu W, Xia R, Ding X, Cui W, Li T, Li G, Luo W. Impacts of nano-zero-valent iron on antibiotic removal by anaerobic membrane bioreactor for swine wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Zhang Q, Cheng X, Wang F, Fang S, Zhang L, Huang W, Fang F, Cao J, Luo J. Unveiling the behaviors and mechanisms of percarbonate on the sludge anaerobic fermentation for volatile fatty acids production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156054. [PMID: 35595140 DOI: 10.1016/j.scitotenv.2022.156054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/30/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Percarbonate (PC), as a cheap and environmental-friendly chemical oxidant, has been applied extensively in various fields. However, the impacts of PC on the waste activated sludge (WAS) anaerobic fermentation process are unknown. This study mainly aimed to investigate its effects on the production of volatile fatty acids (VFAs) and disclose the underlying mechanisms. Results indicated that the maximal VFAs yield at 0.3 g PC/g TSS within 4 d was 1452.9 mg COD/L while it was only 296.4 mg COD/L in the control at the fermentation time of 6 d. The mechanistic analysis demonstrated that PC treatment substantially promoted the extracellular polymeric substances (EPS) disruption and cell lysis, and meanwhile improved the biodegradability of released organics, thereby providing more bio-availability substrates for further acidogenic metabolic processes. Moreover, the abundance of fermentative microorganisms (i.e., Proteiniclasticum) and the microbial activities correlated with substrates metabolism and VFAs biosynthesis (i.e. hydrolases and metabolic genetic expression levels) were also evidently improved by the PC. This work provides a feasible method for improving the resource recovery from WAS and discloses the responses of the microbial community to chemicals stimulus for the regulations of the biochemical fermentation process in anaerobic systems.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| |
Collapse
|
16
|
Tawfik A, Mostafa A, Elsamadony M, Pant D, Fujii M. Unraveling the metabolic shift in anaerobic digestion pathways associated with the alteration of onion skin waste concentration. ENVIRONMENTAL RESEARCH 2022; 212:113494. [PMID: 35660404 DOI: 10.1016/j.envres.2022.113494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Onion skin waste (OSW) is common waste in developing countries, which can cause severe environmental pollution when not properly treated. Value-added products can be chemically extracted from OSW; however, that process is not economically feasible. Alternatively, dry anaerobic digestion (DAD) of OSW is a promising approach for both energy recovery and environment protection. The main hurdles during DAD of OSW can be the hydrolysis and acidification. In batch tests, sludge digestate (SD) rich with methanogens was co-digested with different fractions of OSW for enhancing hydrolysis and raising biogas productivity. The cumulative biogas production (CBP) was 36.6 ± 0.3 mL for sole DAD of SD (100% SD) and increased up to 281.9 ± 14.1 mL for (50% SD: 50% OSW) batch. Self-delignification of OSW took place by SD addition, where the lignin removal reached 75.3 ± 10.5% for (85% SD: 15% OSW) batch. Increasing the fraction of OSW (45% SD: 55% OSW) reduced the delignification by a value of 68.8%, where initial lignin concentration was 9.48 ± 1.6% in dry weight. Lignin breaking down resulted a high fraction of phenolic compounds (345.6 ± 58.8 mg gallic acid equivalent/g dry weight) in the fermentation medium, causing CBP drop (219.0 ± 28.5 mL). The presence of elements (K, Ca, Mg, Fe, Zn, Mn, S and P) in OSW improved the enzymatic activity, facilitated phenolic compounds degradation, shifted the metabolism towards acetate fermentation pathway, and raised biogas productivity. Acidogenesis was less affected by phenolic compounds than methanogenesis, causing higher H2 contents and lower CH4 contents, at batches with high share of OSW.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt
| | - Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 22212, South Korea
| | - Mohamed Elsamadony
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan.
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| |
Collapse
|
17
|
Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114765. [PMID: 35202951 DOI: 10.1016/j.jenvman.2022.114765] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The high salinity of kitchen wastewater might have adverse effects on the production of short-chain fatty acids (SCFAs) in anaerobic fermentation. The effects and mechanisms of salinity on SCFA production in the anaerobic fermentation of kitchen wastewater were studied by varying the salt concentration, as follows: 0 g/L (S0), 2 g/L (S2), 6 g/L (S6), 10 g/L (S10), 15 g/L (S15), and 20 g/L (S20). Experimental results showed that hypersaline conditions (>10 g NaCl/L) accelerated the release of soluble proteins at the initial stage of anaerobic fermentation. They also significantly prohibited the hydrolysis and degradation of soluble proteins and carbohydrates. Compared with low salinity tests, the SCFA concentrations under hypersaline conditions (>10 g NaCl/L) only reached approximately 43% of the highest concentration on day 10, although the SCFA concentrations in all tests were very close on day 10 (14 g COD/L). High salinity delayed the production of n-butyric acid but did not change the composition of the total SCFAs. High salinity enriched Enterococcus and Bifidobacterium, the relative abundance levels of which reached 27.57% and 49.71%, respectively, before the depletion of substrate. High salinity showed a negative correlation with the relative abundance of the genera Clostridium_sensu_stricto_1, Prevotella and unclassified_f_Oscillospiraceae which are responsible for SCFA production. This study provided a theoretical basis for the fficient utilization of kitchen wastewater.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Linyu Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
18
|
Kong X, Niu J, Li M, Yue X, Zhang Q, Zhang W, Liu J, Yuan J, Li X. Novel application of pyrolytic carbon generated from waste tires: Hydrolytic and methanogenic performance promotion in vinegar residue anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:15-22. [PMID: 35219252 DOI: 10.1016/j.wasman.2022.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Random disposal of waste tires and vinegar residues is deleterious to the environment; these materials can be sufficiently treated using pyrolysis and anaerobic digestion, respectively. In this study, pyrolytic carbon was used to enhance the performance of the anaerobic digestion of vinegar residues, which is a much more economic method comparing with dosing commercial-level carbon based materials. The conductivity of pyrolytic carbon at 1000 °C is much higher than that of commercial activated carbon. At a dosage of 10 g per 29 g of vinegar residues, the maximum volatile fatty acid production was 4225.4 mg COD/L in the reactor (effective volume of 400 mL) with inoculum to substrate ratio (ISR) of 1:1, representing an increase of 50.3% from that of the control reactor. A sufficient dosage is necessary to improve methane yield. The maximum methane yield was obtained at a pyrolytic carbon dosage, obtained at 1000 °C, of 12 g per 29 g of vinegar residues. The results indicated that the differences in the microbial communities of the control and experimental reactors correlated with the performance; however, the deep microbial mechanism of pyrolytic carbon boosting anaerobic digestion performance must be explored in further studies.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; School of Environment, Tsinghua University, Beijing 10084, China; Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mingkai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; China Nuclear Industry 24 Construction Co., Ltd., Chongqing 401120, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Qiang Zhang
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xia Li
- Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
19
|
Accelerating anaerobic hydrolysis acidification of dairy wastewater in integrated floating-film and activated sludge (IFFAS) by using zero-valent iron (ZVI) composite carriers. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Shao Z, Guo X, Qu Q, Kang K, Su Q, Wang C, Qiu L. Effects of chlorine disinfectants on the microbial community structure and the performance of anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2021; 339:125576. [PMID: 34303098 DOI: 10.1016/j.biortech.2021.125576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The residual chlorine disinfectants (CDs) in swine slurry could negatively impact the anaerobic digestion (AD). The objective of this study was to investigate the effects of CDs on mesophilic and thermophilic AD. The results indicated that CDs exerted inhibition effects on methanogenesis at the initial stage of mesophilic AD, leading to the extension of lag time from 0.62 days for control to 0.85, 1.9, 3.8, and 5.5 days with the increasing CDs concentrations of 50, 100, 200, and 400 mg/L, respectively. Under thermophilic condition, the inhibition effects reduced significantly at the initial stage but a decrease of CMPu at later stage was observed. The microbial analysis revealed that CDs resulted in the enrichment of chlorine-resistant bacteria (Clostridum_sensu_stricto_1) and archaea (Methanosarcina). Addition of activated carbon (AC), zero-valent iron (ZVI) and biochar (BC) was evaluated for alleviating the inhibitions of CDs and proved to be feasible strategies to alleviate the inhibited AD.
Collapse
Affiliation(s)
- Zhijiang Shao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Guo
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Qu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Kang
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Qiyuan Su
- Northwest A&F University, College of Life Sciences, Yangling, Shaanxi 712100, China
| | - Chao Wang
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Kong X, Niu J, Zhang W, Liu J, Yuan J, Li H, Yue X. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148415. [PMID: 34412392 DOI: 10.1016/j.scitotenv.2021.148415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) has been used extensively to control environmental pollution owing to its strong reducibility and low cost. Herein, we evaluate the impact of ZVI (iron scrap and ZVI powder with different scales) on anaerobic digestion (AD) reactor performance improvement and syntrophic relationship stimulation among various microbial groups in the methanogenesis process. In recent studies, ZVI addition significantly enhanced methane and volatile fatty acid (VFA) yields and alleviated excessive acidification, ammonia accumulation, and odorous gas production. Further, we reviewed the changes in enzyme activity and microbial metabolism after the addition of ZVI throughout the reaction process. Certain innovative technologies, such as bioelectrochemical system assistance and combined usage of conductive materials, may improve AD performance compared to the use of ZVI alone, the mechanism of which has been discussed from various viewpoints. Furthermore, the primary technical bottlenecks, such as poor mass transfer efficiency in dry AD and high ZVI dosage, have been illustrated, and syntrophic methanogenesis regulated by ZVI addition can be further studied by conducting theoretical research.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| |
Collapse
|
22
|
Gong X, Wu M, Jiang Y, Wang H. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. BIORESOURCE TECHNOLOGY 2021; 333:125149. [PMID: 33901914 DOI: 10.1016/j.biortech.2021.125149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The effects of temperature (35 °C and 55 °C) and pH (uncontrolled, 7 and 10) on volatile fatty acid (VFA) yields from anaerobic codigestion of food waste, and thermal-hydrolysed sewage sludge were investigated in this study. The results revealed that optimal conditions for VFA production occurred at 35 °C at pH 7 and at 10 and 55 °C at pH 7. The dominant bacterial genera associated with VFA production significantly differed when the temperature and pH were altered, including Prevotella, Lactobacillus, Bifidobacterium Megasphaera, Clostridium XlVa, and Coprothermobacter. A temperature of 35 °C at pH 7 favoured mixed acid-type fermentation, while a temperature of 35 °C at pH 10 and 55 °C at pH 7 favoured butyric acid-type fermentation. The maximal polyhydroxyalkanoate content accounted for 54.8% of the dry cell at 35 °C with pH 7 fermentative liquids and comprised 58.9% 3-hydroxybutyrate (3HB) and 41.1% 3-hydroxyvalerate (3HV).
Collapse
Affiliation(s)
- Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Jiang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100084, China; Beijing Engineering Research Center (NO: BG113), Beijing 100124, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Luo J, Huang W, Zhang Q, Guo W, Xu R, Fang F, Cao J, Wu Y. A preliminary metatranscriptomic insight of eggshells conditioning on substrates metabolism during food wastes anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143214. [PMID: 33160662 DOI: 10.1016/j.scitotenv.2020.143214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The anaerobic treatment of food wastes (FW) for resource recovery has been extensively studied. However, the information on the traits of functional genes and enzymes for substrates metabolisms and their associations with microbial community are little. In this study, the influences of eggshells conditioning on the substrates metabolism for volatile fatty acids production (VFAs) in the process of FW fermentation were investigated at genetic levels by using the metatranscriptomic approach. The obtained results suggested that the critical genes involved in the carbohydrate and protein metabolisms (i.e. pgmB, GPI, glsA, pyrB and etc.) were up-regulated in the eggshell-conditioned reactor, which were beneficial to the bioconversion of macromolecule organics during FW fermentation. Moreover, the functional genes related with the intermediate products metabolism (i.e. pyruvate acid, butanoate) also exhibited differential genetic expression levels, which resulted in the alteration of microbial metabolic pathways and contributed to the acetic and butyric acids accumulation. In addition, a preliminary association of microbial distribution and genetic expressions was analyzed. The distinct distribution of microbial community in different FW fermentation systems affected the corresponding microbial contribution to those genetic expression levels of metabolic enzymes involved in VFAs production. This study would provide new insights of the underlying mechanism of VFAs promotion in the eggshell-conditioned FW fermentation process from the perspectives of substrates metabolisms at genetic and functional traits.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
24
|
Zhao C, Sharma A, Ma Q, Zhu Y, Li D, Liu Z, Yang Y. A developed hybrid fixed-bed bioreactor with Fe-modified zeolite to enhance and sustain biohydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143658. [PMID: 33250258 DOI: 10.1016/j.scitotenv.2020.143658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In this study, we describe the development of a hybrid bioreactor with integrated chlorinated polyethylene (CPE) fixed-bed and zeolite as a microorganism nutrition carrier (MNC), aiming at enhancing and sustaining biohydrogen production during the anaerobic digestion (AD) process. In the batch test, the hybrid bioreactor achieved a maximum biohydrogen production of 646.3 mL/L. Accordingly, the hybrid bioreactor significantly enhanced biohydrogen production and maintained a stable performance for 50 days of semi-continuous operation. This result should be attributed to the CPE providing roughness surface and high porosity for microorganism immobilization, resulting in the enhancement of microbial quantity, confirmed by our scanning electron microscope and immobilized biomass analyses. Moreover, the element ratio significantly decreased, indicating that zeolite could provide metal cations for stimulating microbial bioactivity and growth, as well as contributing to superior biohydrogen productivity during the 50-day operation. In order to further enhance and sustain long-term biohydrogen production, raw zeolite was modified with iron. The hybrid-Fe bioreactor (CPE with Fe-modified zeolite) operated mainly following the acetate pathway and exhibited higher sustainability in improving biohydrogen production with a peak value of 1893.0 mL/L during a 72-day-lasting operation. The synergistic mechanism of the Fe-modified zeolite and CPE fixed-bed revealed that it could effectively induce favorable pathways and contribute to the synthesis of essential enzymes, micronutrient supplementation, electoral conductivity, and microbial immobilization for biohydrogen production. Therefore, a hybrid-Fe bioreactor could provide a unique alternative for the enhancement of hydrogen production for practical applications.
Collapse
Affiliation(s)
- Chenyu Zhao
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Aditya Sharma
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qiansu Ma
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yunxin Zhu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dawei Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhiyuan Liu
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
25
|
Chen J, Jiang X, Tang X, Sun Y, Zhou L. Use of biochar/persulfate for accelerating the stabilization process and improving nitrogen stability of animal waste digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:144158. [PMID: 33316520 DOI: 10.1016/j.scitotenv.2020.144158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In China, the growing amount of digestate from anaerobic digestion produced by animal husbandry is an emerging challenge. A common treatment used to eliminate this digestate is long-term stabilization ponds. However, this process can lead to a shortage of digestate storage space and loss of nitrogen nutrients within the digestate. To alleviate those shortcomings, this study developed an efficient stabilization pond using biochar and persulfate (BC/PS treatment). Using this treatment, the germination index (GI) of the digestate increased from 56% to 85% and the stabilization efficiency increased nearly 2.7 times. In addition, the dehydrogenase activity (DHA) in the BC/PS treatment remained between 0.47 and 0.91 μg/(g·h) across the 40 days, which indicated that BC/PS had a positive effect on microbial inactivation. In the traditional stabilization process (CK treatment), dissolved organic nitrogen (DON) decreased from 47.77 mg/L to 0.81 mg/L and ammonium nitrogen almost disappeared. The BC/PS treatment led to the promotion of nitrogen nutrient composition. Particulate total nitrogen (21.49% of total nitrogen) decomposed into dissolved total nitrogen and the DON increased from 47.77 to 58.89 mg/L. The BC/PS treatment showed a faster stabilization time, good microbial inactivation, lower toxicity, and stable nitrogen nutrient composition of the digestate compared to traditional methods.
Collapse
Affiliation(s)
- Junhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xuan Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xin Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| | - Lei Zhou
- Animal husbandry and aquaculture technology extension service center, Wuzhong, Ningxia Hui Autonomous Region 751100, China
| |
Collapse
|
26
|
Zhang Q, Lu Y, Zhou X, Wang X, Zhu J. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142390. [PMID: 33113691 DOI: 10.1016/j.scitotenv.2020.142390] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Volatile fatty acids (VFAs) are intermediates of anaerobic fermentation with high value and wide range of usage. VFA production from vegetable wastes (VW) is an effective way to dispose of wastes and recover resources. The organic matter composition of the substrate influences VFA yield and distribution, which is related to the separation and purification of the downstream steps and the application of the product. Hence, potato peels, carrots, celery, and Chinese cabbage were selected to investigate the effect of VW types on the performance of the VFA production in a batch anaerobic fermentation reactor with continuous stirring at 37 °C, total solid (TS) of 4.5%. A VFA yield of 452 mg COD/g VSfeed (chemical oxygen demand (COD); volatile solids (VS)) was achieved from potato peels, which was 40.1%, 21.5%, and 124.9% higher than that of carrots, celery, and Chinese cabbage, respectively. The rapid acidification of carrots caused a sharp decline in pH and led to inhibition of VFA production. The acidification of celery started slowly, and the yield of hexanoic acid increased rapidly in the later stage of fermentation. The VFA yield of Chinese cabbage was inhibited due to the low initial pH, but the ethanol concentration reached 7577.04 mg COD/L. According to the VFA profile, the fermentation of potato peels, carrots, celery, and Chinese cabbage can be classified as propionate-type, butyrate-type, mixed-acid type, and ethanol-acetate type metabolic pathway, respectively. The results of this study suggest that a suitable combination of vegetable waste types is important for selective VFA production.
Collapse
Affiliation(s)
- Qi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
27
|
Cheng J, Hua J, Kang T, Meng B, Yue L, Dong H, Li H, Zhou J. Nanoscale zero-valent iron improved lactic acid degradation to produce methane through anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 317:124013. [PMID: 32827976 DOI: 10.1016/j.biortech.2020.124013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Serious inhibition of methane production in an anaerobic digestion (AD) system can be caused by propionic acid, which is derived from lactic acid degradation. Nanoscale zero-valent iron (nZVI) was used in this study to improve conversion of propionic acid into acetic acid, thereby promoting methane production. The methane yield was markedly enhanced when nZVI concentration increased from 0 to 2 g/L; however, it decreased when nZVI concentration further increased to 8 g/L. At an nZVI concentration of 2 g/L, the methane yield increased by 37% from 398.5 to 546.4 mL CH4/g TVS. The abundance of Candidatus Cloacamonas in the bacterial community increased from 2.17% to 3.78%, which facilitated conversion of propionic acid into acetic acid. Meanwhile, the abundances of Methanomassiliicoccus and Methanosarcina in archaeal community increased, which was beneficial to methane production. Cyclic voltammetry showed that the electron transfer coefficient in the AD system increased from 0.029 to 0.034 s-1.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Junjie Hua
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ting Kang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Bo Meng
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Liangchen Yue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haiquan Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hui Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Wang P, Qiao Z, Li X, Su Y, Xie B. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141086. [PMID: 32750579 DOI: 10.1016/j.scitotenv.2020.141086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P < 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P < 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P < 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
29
|
Xu Q, Du M, Liu X, Wang D, Wu Y, Li Y, Yang J, Fu Q, He D, Feng C, Liu Y, Wang Q, Ni BJ. Calcium peroxide eliminates grease inhibition and promotes short-chain fatty acids production during anaerobic fermentation of food waste. BIORESOURCE TECHNOLOGY 2020; 316:123947. [PMID: 32769002 DOI: 10.1016/j.biortech.2020.123947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Deterioration of anaerobic fermentation can occur with the presence of grease in food waste, but little information on eliminating this deterioration is currently available. In this study, it was found that the presence of 10 g/L grease decreased SCFAs production from 16.97 to 13.32 g COD/L and prolonged the optimal fermentation time to 7 days, but could be respectively recovered to 39.10 g COD/L and 4 days with 0.02 mg/g VS (volatile solids) calcium peroxide addition. Mechanism investigations indicated that calcium peroxide facilitated biodegradable organics release and improved grease degradation, thereby providing enough nutrients and better growth environments to microbes for SCFAs-producing, which could be further supported by the elevated enzymes activities responding to hydrolysis and acidification process. Further investigations revealed that among the main derivates of calcium peroxide, OH- and Ca2+ played vital role in SCFAs production promotion, O2- and OH radicals were the main contributors to grease degradation.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qiling Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
30
|
Wang Q, Feng K, Li H. Nano iron materials enhance food waste fermentation. BIORESOURCE TECHNOLOGY 2020; 315:123804. [PMID: 32673984 DOI: 10.1016/j.biortech.2020.123804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic fermentation can produce valuable chemicals from food waste, such as butyric acid, lactic acid, and ethanol. Three nano iron materials, i.e. zero-valence iron (nZVI), ferric oxide (nFO), and magnetite (nM), were tested to improve food waste fermentation with mixed inoculation. nZVI and nFO enhanced the dissolution and conversion of carbohydrate to lactate, dependent on different mechanisms, while nM had almost no effects due to its aggregation at high doses. nZVI alleviated the drop of pH, kept the ORP at an anaerobic level, increased functional enzymes, and resulted in a high hydrolysis rate of 45% and lactic acid yield of 0.16 g/g VSfed at the dose of 500 mg/(Lfed·d). nFO increased the ORP to 100 mV, stimulated the enrichment of Pseudomonas, and increased the abundance of Lactobacillus_panis, leading to hydrolysis rate of 47% and lactic acid yield of 0.19 g/gVSfed at the dose of 200 mg/(Lfed·d).
Collapse
Affiliation(s)
- Qiao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kai Feng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
31
|
Abstract
Food waste has a great potential for resource recovery due to its huge yield and high organic content. Oriented fermentation is a promising method with strong application prospects due to high efficiency, strong robustness, and high-value products. Different fermentation types lead to different products, which can be shifted by adjusting fermentation conditions such as inoculum, pH, oxidation-reduction potential (ORP), organic loading rate (OLR), and nutrients. Compared with other types, lactic acid fermentation has the lowest reliance on artificial intervention. Lactic acid and volatile fatty acids are the common products, and high yield and high purity are the main targets of food waste fermentation. In addition to operational parameters, reactors and processes should be paid more attention to for industrial application. Currently, continuously stirred tank reactors and one-stage processes are used principally for scale-up continuous fermentation of food waste. Electro-fermentation and iron-based or carbon-based additives can improve food waste fermentation, but their mechanisms and application need further investigation. After fermentation, the recovery of target products is a key problem due to the lack of green and economic methods. Precipitation, distillation, extraction, adsorption, and membrane separation can be considered, but the recovery step is still the most expensive in the entire treatment chain. It is expected to develop more efficient fermentation processes and recovery strategies based on food waste composition and market demand.
Collapse
|
32
|
Huang H, Guo G, Tang S, Li B, Li J, Zhao N. Persulfate oxidation for alternative sludge treatment and nutrient recovery: An assessment of technical and economic feasibility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111007. [PMID: 32677624 DOI: 10.1016/j.jenvman.2020.111007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/30/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The introduce of tighter waste disposal regulations and increasing resource scarcity make the re-utilization of waste activated sludge a hot and crucial research topic. Compared with traditional sludge disposal technologies (e.g. landfill and incineration), advanced oxidation processes have been proven to be an environmentally friendly method for sludge stabilization and disintegration. However, the effectiveness of persulfate oxidation for sludge degradation, and the re-utilization of its embedded nutrients have been rarely reported. Therefore, this work is to investigate the technical and economic feasibility of using persulfate oxidation and struvite precipitation for sludge degradation and nutrient recovery. The results show that with the assistance of ultraviolet radiation, released phosphate and ammonia nitrogen from sludge could reach 233.4 and 265.6 mg/L. Besides, 92.8% phosphate and 32.6% ammonia-nitrogen could be recovered by struvite precipitation at a pH of 9.5, with an Mg: P molar ratio of 1.1:1. The economic analysis shows that the operational cost of the proposed process was 25% higher than traditional sludge disposal (267.5 $/ton), but its capital investment is much lower. Investigations on chemical dosage minimization, energy reclamation and process optimization are suggested to reduce the process's operating cost in the future.
Collapse
Affiliation(s)
- Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Guojun Guo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Shoufeng Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Bing Li
- Department of Chemical & Materials Engineering, the University of Auckland, New Zealand.
| | - Jing Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ning Zhao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
33
|
Zhang Q, Cao J, Wu Y, Zhao J, Guo W, Huang W, Feng Q, Fang F, Aleem M, Luo J. Shifts of microbial community and metabolic function during food wastes and waste activated sludge co-fermentation in semi-continuous-flow reactors: Effects of fermentation substrate and zero-valent iron. BIORESOURCE TECHNOLOGY 2020; 313:123686. [PMID: 32570079 DOI: 10.1016/j.biortech.2020.123686] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The effects of food wastes (FW) composition and zero-valent iron (ZVI) on the volatile fatty acids (VFAs) generation, bacterial community succession and related metabolic functions during long-term FW and waste activated sludge (WAS) co-fermentation were investigated. The VFAs production in the carbohydrate-enriched reactor was approximately 3.0-folds of that in FW reactor. The ZVI contributed to the VFAs promotion by 3.6- and 6.7-folds in carbohydrate-enriched and FW reactors, respectively. Firmicutes (20.1-74.7%), Actinobacteria (0.9-26.3%), Bacteroidetes (3.4-65.7%), and Proteobacteria (9.1-28.5%) were the main bacteria in different fermentation reactors, and they were closely associated with the fermentation substrates and ZVI. Further analysis demonstrated that the key metabolic capacity (i.e. amino acid, carbohydrate and energy metabolism) and the genetic expressions of enzymes (i.e. fabA, fabZ, accA and accB) involved in VFAs generation were also related to FW composition, and were improved by the ZVI, which accounted for the significant VFAs promotion.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Muhammad Aleem
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200000, China.
| |
Collapse
|
34
|
Luo J, Huang W, Zhang Q, Guo W, Wu Y, Feng Q, Fang F, Cao J, Su Y. Effects of different hypochlorite types on the waste activated sludge fermentation from the perspectives of volatile fatty acids production, microbial community and activity, and characteristics of fermented sludge. BIORESOURCE TECHNOLOGY 2020; 307:123227. [PMID: 32229411 DOI: 10.1016/j.biortech.2020.123227] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The effects of different hypochlorite types (namely Ca(OCl)2 and NaOCl) on the waste activated sludge (WAS) anaerobic fermentation, and microbial community and activity were investigated. The results indicated that both Ca(OCl)2 and NaOCl contributed to volatile fatty acids (VFAs) production by simultaneously enhancing the solubilization, hydrolysis and acidification processes. The maximal VFAs was respectively 1379.5 (at 10 d) and 1621.5 (at 8 d) mg COD/L at the optimal dose of NaOCl and Ca(OCl)2 while it was merely 157.4 (at 6 d) mg COD/L in the control. However, the Ca(OCl)2 might affect the anaerobic process in a continuous mode while the NaOCl was relatively transient, which caused distinctive influences on the microbial structure and activity, and subsequently VFAs production in WAS fermentation systems. Moreover, Ca(OCl)2 treatments showed advantages over NaOCl on WAS dewatering and VSS reduction, implying the superiority of utilizing Ca(OCl)2 as additives for WAS disposal.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Yinglong Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
35
|
Wu Y, Cao J, Zhang T, Zhao J, Xu R, Zhang Q, Fang F, Luo J. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 305:123078. [PMID: 32135351 DOI: 10.1016/j.biortech.2020.123078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
This research proposed an innovative approach to synchronously enhance the recovery of phosphorus (P) as vivianite and volatile fatty acids (VFAs) during waste activated sludge (WAS) and food waste (FW) co-fermentation. A high performance was achieved under 30% FW addition and pH uncontrolled, which gained 83.09% of TP recovery as high-purity vivianite (93.90%), together with efficient VFAs production (7671 mg COD/L). The FW supplement could enhance VFAs production and subsequently lower pH to contribute to the release of Fe2+ and PO43-. Also, it could dampen disrupting effects of strong acidic pH on microbial cells (lowering LDH release). Moreover, the flexible pH variation caused by biological acidification could maintain relatively higher microbial activities (increasing enzymes' activities), which was advantageous to the biological effects involved in Fe2+ and PO43 release and VFAs generation. Therefore, this research provide a promising and economic alternative to dispose of WAS and FW simultaneously for valuable resource recovery.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China.
| |
Collapse
|
36
|
Yuan T, Bian S, Ko JH, Liu J, Shi X, Xu Q. Exploring the roles of zero-valent iron in two-stage food waste anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:91-100. [PMID: 32278220 DOI: 10.1016/j.wasman.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/07/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This research investigated the roles of zero-valent iron (ZVI) in a two-stage food waste digestion process. ZVI was added separately to hydrolytic-acidogenic (HA) and methanogenic (MG) stages to understand its impacts on FW hydrolysis-acidification, methanogenesis and bioenergy recovery efficiency. Results showed that ZVI effectively enhanced the overall performance of digestion as compared with the controls without ZVI. Supplementing with ZVI could facilitate the HA process along with faster hydrogen generation. In addition, ZVI shortened the lag phase of MG stage by 42.43-57.23% and raised the maximum methane production rate and yield by 33.99-38.20% and 11-13%, respectively, compared with the controls. Supplementing ZVI to the HA stage could simultaneously raise the bioenergy recovery efficiency of the HA and MG stages by 71.92% and 96.96%, respectively. Further studies demonstrated that iron corrosion contributed little to hydrogen and methane production. The enrichment of syntrophic bacteria, Pseudomonas, and methanogens, and the enhancement of electron transfer among those microbes was supposed to be the main possible mechanism for the enhancement of methanogenesis with ZVI assisted.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Songwei Bian
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Jianguo Liu
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, Beijing, PR China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
37
|
Zhang Q, Wu Y, Luo J, Cao J, Kang C, Wang S, Li K, Zhao J, Aleem M, Wang D. Enhanced volatile fatty acids production from waste activated sludge with synchronous phosphorus fixation and pathogens inactivation by calcium hypochlorite stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136500. [PMID: 31931205 DOI: 10.1016/j.scitotenv.2020.136500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
An efficient approach for synchronous volatile fatty acids (VFAs) promotion, phosphorus fixation and pathogens inactivation during waste activated sludge (WAS) anaerobic fermentation was achieved with optimal calcium hypochlorite (Ca(ClO)2) stimulation. The maximal VFAs were 3.6 folds of control in reactors with 0.01 g Ca(ClO)2/g TSS addition. The low dosage of Ca(ClO)2 enhanced WAS solubilization and hydrolysis by disrupting the extracellular polymeric substance (EPS) effectively. Sufficient substrates for fermentative bacteria were thereby provided with the maintenance of acceptable microbial activity and viability. However, high dosage of Ca(ClO)2 deteriorated the performance of anaerobic fermentation due to its strong oxidative ability, resulting in cell lysis greatly. Moreover, the largely released phosphorus during WAS fermentation was effectively precipitated and removed by the combination of Ca2+ at 0.01 g Ca(ClO)2/g TSS dosage. In addition, Ca(ClO)2 had distinguished effects on pathogens inactivation. The simultaneous phosphorus fixation and pathogens reduction during VFAs production increased the utilization value of fermentation liquid and benefitted the further disposal of fermented sludge.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, PR China.
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, PR China
| | - Chaojie Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Suna Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Keyan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Muhammad Aleem
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
38
|
Luo J, Huang W, Zhu Y, Guo W, Yibing L, Wu L, Zhang Q, Wu Y, Fang F, Cao J. Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135878. [PMID: 31972926 DOI: 10.1016/j.scitotenv.2019.135878] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The treatments of peroxydisulfate (PDS) activated with different iron forms (zero-valent iron (ZVI), ferrous iron (Fe2+) and nano zero-valent iron (NZVI)) all contributed to the generation of volatile fatty acids (VFAs) during waste activated sludge (WAS) anaerobic fermentation. The maximal VFAs generation was 3036, 5537 and 3533 mg COD/L in the PDS/ZVI, PDS/Fe2+ and PDS/NZVI reactors, respectively, while it was only 702 mg COD/L in the control. The enhancing effects followed the order of PDS/Fe2+ > PDS/NZVI > PDS/ZVI. ZVI and NZVI showed no dual promoting effects with PDS on the VFAs production. Mechanisms exploration indicated that the simultaneous improvement of WAS solubilization and hydrolysis (high concentrations of soluble proteins and carbohydrates) and enrichment of fermentative bacteria (i.e. Bacteroides, Clostridium, Fonticella, and etc.) involved in VFAs generation were the main causes of VFAs promotion in the PDS treated systems. However, the reductive ZVI and NZVI partially consumed the generated free radicals (i.e. SO4- and/or OH), which possess strong oxidative potentials and are the main contributors to extracellular polymeric substances disintegration in WAS. This consumption of free radicals accounted for the lower efficiency of solubilization and hydrolysis and consequently reduced VFAs production in the PDS/NZVI and PDS/ZVI reactors compared with that in PDS/Fe2+ reactor. Moreover, the treatment of PDS activated by different forms of iron improved the VSS reduction extent and dewaterability of fermented sludge compared with that of the control, which is advantageous to the ultimate disposal of WAS.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Ying Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Li Yibing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lijuan Wu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
39
|
Luo J, Zhu Y, Zhang Q, Cao M, Guo W, Li H, Wu Y, Wang H, Su Y, Cao J. Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 295:122278. [PMID: 31669867 DOI: 10.1016/j.biortech.2019.122278] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
This study explored the influences of peroxydisulfate (PDS) and peroxymonosulfate (PMS) activated with different catalysts on the anaerobic fermentation of waste activated sludge (WAS). All the treatments were effective in promoting short-chain fatty acids (SCFAs) production, particularly acetic acid, in the order of PMS/MnO2 > PMS/Zn > PDS/Zn > PMS/Fe > PDS/Fe > PDS/MnO2. Mechanistic investigations demonstrated that WAS disintegration was intensely induced by the free radicals (i.e., SO4- and OH) generated in PDS and PMS treating reactors. It significantly promoted the solubilization and hydrolysis processes and thereby provided sufficient bioavailable substrates for further acidogenic metabolisms. Additionally, it enlarged the abundance of functional bacteria responsible for SCFAs production. The simultaneous promotion of bioavailable substrates and fermentative microorganisms markedly contributed to the SCFAs enhancement. Moreover, the dewaterability and stabilization of fermented sludge were both improved with the PDS and PMS treatments, which were beneficial to the final disposal of WAS.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Ying Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Miao Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hui Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinglong Su
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
40
|
Amha YM, Corbett M, Smith AL. Two-Phase Improves Performance of Anaerobic Membrane Bioreactor Treatment of Food Waste at High Organic Loading Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9572-9583. [PMID: 31356076 DOI: 10.1021/acs.est.9b02639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) are in use at the full-scale for energy recovery from food waste (FW). In this study, the potential for two-phase (acid/gas) AnMBR treatment of FW was investigated as a strategy to increase microbial diversity, thereby improving performance. Two bench-scale AnMBRs were operated in single-phase (SP) and two-phase (TP) mode across incremental increases in organic loading rate (OLR) from 2.5 to 15 g total chemical oxygen demand (COD) L·d-1. The TP acid-phase (TP-AP) enriched total VFAs by 3-fold compared to influent FW and harbored a distinct microbial community enriched in fermenters that thrived in the low pH environment. The TP methane phase (TP-MP) showed increased methane production and resilience relative to SP as OLR increased from 3.5 to 10 g COD L·d-1. SP showed signs of inhibition (i.e., rapid decrease in methane production per OLR) at 10 g COD L·d-1, whereas both systems were inhibited at 15 g COD L·d-1. At 10 g COD L·d-1, where the highest difference in performance was observed (20.3% increase in methane production), activity of syntrophic bacteria in TP-MP was double that of SP. Our results indicate that AnMBRs in TP mode could effectively treat FW at OLRs up to 10 g COD·L day-1 by improving hydrolysis rates, microbial diversity, and syntroph activity, and enriching resistant communities to high OLRs relative to AnMBRs in SP mode.
Collapse
Affiliation(s)
- Yamrot M Amha
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| | - Michael Corbett
- Divert, Inc. , 23 Bradford Street, 3rd Floor , Concord , Massachusetts 01742 , United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering , University of Southern California , 3620 South Vermont Avenue , Los Angeles , California 90089 , United States
| |
Collapse
|