1
|
Frigoli M, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Detection of antibiotic sulfamethoxazole residues in milk using a molecularly imprinted polymer-based thermal biosensor. Food Chem 2025; 476:143525. [PMID: 39999504 DOI: 10.1016/j.foodchem.2025.143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Antibiotic resistance is a growing concern, partly due to inadequate inspections in the food safety chain. The accumulation of antibiotics like sulfamethoxazole (SMX) in animal products contributes to the rise of resistant microorganisms, posing a global health challenge. This work focuses on developing a thermal sensor to quickly and affordably detect SMX residues in milk samples. Molecularly imprinted polymers (MIPs) were synthesized and immobilized on an aluminum chip to measure thermal changes using the heat-transfer method (HTM). The sensor's detection limit in calcium chloride solutions was 261 ± 12 pmol L-1, well below regulatory limits for sulfonamides in dairy. The sensor also showed good selectivity when tested against antibiotics from different classes, and good performances in spiked milk samples. These results indicate that the thermal sensor provides a sensitive, low-cost alternative for detecting sulfamethoxazole traces in dairy products, contributing to improved food safety.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| |
Collapse
|
2
|
Rodrigues DADS, da Cunha CCRF, Pereira AR, Espírito Santo DRD, Silva SDQ, Starling MCVM, Santiago ADF, Afonso RJDCF. Biodegradation of trimethoprim and sulfamethoxazole in secondary effluent by microalgae-bacteria consortium. Int J Hyg Environ Health 2025; 264:114517. [PMID: 39724811 DOI: 10.1016/j.ijheh.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance. Improving treatment applied in WWTPs is one of the measures to tackle this issue. In this study, a natural microalgae-bacteria consortium cultivated under low intensity LED irradiation was used as a quaternary treatment to assess the removal of TMP alone (50 μg L-1) and also mixed with SMX (TMP/SMX; 50 μg L-1 of each) from real WWTP secondary effluents from anaerobic treatment systems. The removal of the sulfonamide resistance gene, sul1, was also evaluated. This is the first study assessed the removal of TMP alone and TMP associated with SMX in real effluent using microalgae-bacteria consortium without nutrient enrichment. Biodegradation experiments were conducted for 7 days, residual amount of antibiotics were assessed by low-temperature partitioning extraction (LTPE) followed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and sul1 was analyzed by quantitative Polymerase Chain Reaction (qPCR). Results showed that SMX removal (48.34%) was higher than TMP (24.58%) in the mixture. The presence of both antibiotics at 50 μg L-1 did not inhibit microalgae-bacteria consortium growth. After 7 days, there was a slight increase in the absolute abundance of sul1 and 16S rRNA. The main removal mechanism for both antibiotics might be attributed to symbiotic biodegradation as bioadsorption, bioaccumulation and abiotic factors were very low or insignificant. While the application of a microalgae-bacteria consortium as a quaternary treatment seems to be a promising alternative, further research to improve degradation rate aiming at a global removal >80% as required in the Swiss and European directives is encouraged.
Collapse
Affiliation(s)
- Daniel Aparecido da Silva Rodrigues
- Multicenter Postgraduation Program in Chemistry, Minas Gerais, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
| | | | - Andressa Rezende Pereira
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Daiana Rocha do Espírito Santo
- Postgraduation Program in Chemistry, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, 35450-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Maria Clara Vieira Martins Starling
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Aníbal da Fonseca Santiago
- Department of Civil Engineering, School of Mines, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Robson José de Cássia Franco Afonso
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| |
Collapse
|
3
|
Yi C, Zhang J, Yi R, Zeng J, Xu W, Sulemana H, Wang X, Yu H. Degradation mechanism and decomposition of sulfamethoxazole aqueous solution with persulfate activated by dielectric barrier discharge. ENVIRONMENTAL TECHNOLOGY 2025; 46:246-265. [PMID: 38753523 DOI: 10.1080/09593330.2024.2354058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The present study focused on the degradation of sulfamethoxazole (SMX) aqueous solution and the toxicity of processing aqueous by the dielectric barrier discharge (DBD) activated persulfate (PS). The effects of input voltage, input frequency, duty cycle, and PS dosage ratio on the SMX degradation efficiency were measured. Based on the results of the Response Surface Methodology (RSM), SMX degradation efficiency reached 83.21% which is 10.54% higher than that without PS, and the kinetic constant was 0.067 min-1 in 30 min when the input voltage at 204 V (input power at 110.6 W), the input frequency at 186 Hz, the duty cycle at 63%, and the PS dosage ratio at 5.1:1. The addition of PS can produce more active particles reached 1.756 mg/L (O3), 0.118 mg/L (H2O2), 0.154 mmol/L (·OH) in 30 min. Furthermore, the DBD plasma system effectively activated an optimal amount of PS, leading to improved removal efficiency of COD, and TOC to 30.21% and 47.21%, respectively. Subsequently, eight primary by-products were pinpointed, alongside the observation of three distinct pathways of transformation. Predictions from the ECOSAR software indicated that most of the degradation intermediates were less toxic than SMX. The biological toxicity experiments elucidated that the treatment with the DBD/PS system effectively reduced the mortality of zebrafish larvae caused by SMX from 100% to 20.13% and improved the hatching rate from 55.69% to 80.86%. In particular, it is important to note that the degradation intermediates exhibit teratogenic effects on zebrafish larvae.
Collapse
Affiliation(s)
- Chengwu Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Jianan Zhang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Rongjie Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiangwei Zeng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenlin Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Husseini Sulemana
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinyi Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Huidi Yu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
4
|
Tian S, You L, Huang X, Liu C, Su JQ. Efficient sulfamethoxazole biotransformation and detoxification by newly isolated strain Hydrogenophaga sp. SNF1 via a ring ortho-hydroxylation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136113. [PMID: 39405676 DOI: 10.1016/j.jhazmat.2024.136113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Sulfonamides are frequently detected with high concentrations in various environments and was regarded as a serious environmental risk by fostering the dissemination of antibiotic resistance genes. This study for the first time reported a strain SNF1 affiliated with Hydrogenophaga can efficiently degrade sulfamethoxazole (SMX). Strain SNF1 prefers growing under extra carbon sources and neutral condition, and could degrade 500 mg/L SMX completely within 16 h. Under the conditions optimized by response surface method (3.11 g/L NaAc, 0.77 g/L (NH4)2SO4, pH = 7.53, and T = 34.38 ℃), a high removal rate constant 0.5104 /h for 50 mg/L SMX was achieved. Coupling the intermediate products identification with comparative genomic analysis, a novel SMX degradation pathway was proposed. Unlike Actinomycetota degraders, SMX was deaminized and ring ortho-hydroxylated in strain SNF1 using a Rieske dioxygenase in combination with glutamine synthetase system. Rieske dioxygenase gene expression was up-regulated by 1.09 to 6.02-fold in response to 100 mg/L SMX. When SMX is fully degraded, its antimicrobial activity drops by over 90 %, and its anticipated toxicity to aquatic organisms were overall reduced. These findings provided new insights into SMX-degrading microorganisms and mechanisms and highlighted the potential of Hydrogenophaga. sp. SNF1 for biological elimination of SMX from wastewater.
Collapse
Affiliation(s)
- Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Lelan You
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| | - Chaoxiang Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
5
|
Niu J, Lu Y, Wang H, Qiao X, Wang H, Ma C, Liu Y. Occurrence, removal and environmental risk assessment of pharmaceutical active compounds (PhACs) and metabolites in hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136348. [PMID: 39522152 DOI: 10.1016/j.jhazmat.2024.136348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the widespread detection of pharmaceuticals and personal care products (PPCPs) in aquatic environments has become a global concern, and wastewater discharged from hospitals is an important source. This study investigated the occurrence, removal efficiency and risk assessment of 74 commonly used pharmaceutical active compounds (PhACs), including 58 antibiotics, seven psychiatric drugs, four nonsteroidal anti-inflammatory drugs, three β-blockers and two lipid regulators, at wastewater treatment plants (WWTPs) in 11 hospitals. A total of 51 PhACs were detected in the wastewater effluents of 11 hospitals, with concentrations of 0.00089 (alprenolol) ∼ 69 µg/L (acetaminophen) in the influent samples and 0.00057 (alprenolol) ∼ 5.7 µg/L (theophylline) in the effluent samples. Under the same scales, the concentrations of PhACs in the influent of psychiatric hospital WWTP were 1.16 times and 2.28 times greater than those of general hospital and infectious disease hospital, respectively, and the concentrations in small and large hospitals were comparable and were approximately 1.73 times greater than those in medium hospitals, suggesting the influence of the hospital type and scale on the discharge characteristics of PhACs. The removal efficiency of PhACs ranged from negative to 100 %. The removal efficiency of the membrane bioreactor (MBR) was 53.98 %, which was better than that of the biological contact oxidation (BCO). An environmental risk assessment revealed that the PhACs detected in hospital wastewater might pose potential risks to the aquatic environment. In addition, attention should be paid to the management of wastewater discharge in special hospitals and small and medium hospitals. This study provides a basis for the management and control of PhACs in hospitals in China.
Collapse
Affiliation(s)
- Jiangqi Niu
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanna Lu
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaocui Qiao
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chunmeng Ma
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yan Liu
- State Key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first 10 h after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17 to 35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
Affiliation(s)
- Sara Neyrot
- Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Dario Acha
- Unidad de Ecología Acuática, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Isabel Morales-Belpaire
- Instituto de Biología Molecular y Biotecnología, Carrera de Biología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Bolivia.
| |
Collapse
|
7
|
Zang J, Jiang L, Wang Y, Chen Y, Fu C, Kasprzyk-Hordern B, Wang N, Jiang Q, Lambert H. Impact of easing COVID-19 restrictions on antibiotic usage in Eastern China using wastewater-based epidemiology. Nat Commun 2024; 15:10161. [PMID: 39580546 PMCID: PMC11585548 DOI: 10.1038/s41467-024-54498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
Coronavirus Disease 2019 (COVID-19) emerged in December 2019, prompting the implementation of a "zero-COVID" policy in Mainland China. The easing of this policy in December 2022 led to a surge in COVID cases, which was believed to significantly increase antibiotic usage, potentially due to antibiotic misuse or increased coinfections. Our study aimed to compare antibiotic consumption and patterns before and after this policy adjustment. We utilised wastewater-based epidemiology (WBE) to analyse antibiotic levels in samples collected from five wastewater treatment plants in Eastern China during January and February of 2021 and 2023. 27 antibiotics were quantified using ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS) and analysed via WBE, with the resulting estimates compared with catchment-specific prescription data. 23 antibiotics were detected in wastewater samples, with a substantial increase in usage in 2023 (ranging from 531% to 3734%), consistent with prescription data. Here, we show a significant rise in antibiotic consumption during the COVID-19 surge and this underscores the need for further investigation into the impacts of inappropriate antibiotic use in China.
Collapse
Affiliation(s)
- Jinxin Zang
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lufang Jiang
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yingying Wang
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Chaowei Fu
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China
| | | | - Na Wang
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Helen Lambert
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1TH, UK
| |
Collapse
|
8
|
Nguyen OTK, Nguyen VH, Linh NX, Doan MQ, Hoang LAT, Lee T, Nguyen TD. Nanostructured MnO x /g-C 3N 4 for photodegradation of sulfamethoxazole under visible light irradiation. RSC Adv 2024; 14:36378-36389. [PMID: 39545170 PMCID: PMC11561708 DOI: 10.1039/d4ra05996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
The effectiveness of g-C3N4 as photocatalyst is hindered by the rapid recombination of photo-generated electron/hole pairs. To improve its photocatalytic performance, the incorporation of g-C3N4 with co-catalysts can promote charge separation efficiency and enhance redox capabilities. In our study, a two-step approach involving calcination and solvothermal method was utilized to fabricate a proficient MnO x /g-C3N4 heterojunction photocatalyst with high photocatalytic activity. MnO x is effective at capturing holes to impede the recombination of electron/hole pairs. The MnO x /g-C3N4 composite shows a notable improvement in photocatalytic degradation of SMX, obtaining an 85% degradation rate, surpassing that of pure g-C3N4. Furthermore, the MnO x /g-C3N4 composite exhibits remarkable and enduring catalytic degradation capabilities for sulfamethoxazole (SMX), even after four consecutive reuse cycles. The intermediates produced in the MnO x /g-C3N4 system are found to be less hazardous to common aquatic creatures such as fish, daphnids, and green algae when compared to SMX. With its high tolerance, exceptional degradation ability, and minimal ecological risk, the MnO x /g-C3N4 composite emerges as a promising candidate for eliminating antibiotics from wastewater resources.
Collapse
Affiliation(s)
- Oanh T K Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Nong Xuan Linh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Minh Que Doan
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Lan-Anh T Hoang
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Zhang X, Wang Y, Lin Z, Chen Q, Liu M, Liu D, Li Z, Chen P, Lv W, Liu G. Enhancing interfacial electron transfer and photoelectrochemical kinetics for efficient water-treatment strategy through N-doped carbon dots modified PhC 2Cu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124579. [PMID: 39032547 DOI: 10.1016/j.envpol.2024.124579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
To improve the water environment quality, the development of an effective photocatalyst for pollutant removal was considered a promising strategy. The aim of the development of a novel photocatalyst PNC is pursued by modifying copper-phenylacetylide (PhC2Cu) with nitrogen-doped carbon quantum dots (N-CDs). Leading to a remarkable improvement in its light absorption capability, electron transfer efficiency and photoelectrochemical properties. Importantly, PNC possesses the characteristic of straightforward synthesis and demonstrates remarkable performance in the photodegradation of 99.87% sulfamethoxazole (SMX) within just 15 min, with a 3.95-fold increase in the photocatalytic rate. Analysis of the active substances revealed that 1O2, O2·-, and h+ are the generated active species by PNC. Active sites and degradation pathways of SMX were explored through density functional theory (DFT) calculations and intermediate analysis. Key evidence regarding the direction of electron transfer within the system was obtained through in-situ irradiated X-ray (ISI-XPS) techniques. This study deepened our understanding of the electron transfer characteristics of phenylacetylene copper and provided new insights for the modification of photocatalysts.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yishun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingman Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Minghao Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dezhu Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenchao Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Nie C, Chen L, Zhao B, Wu Z, Zhang M, Yan Y, Li B, Xia Y. Deciphering the adaptation mechanism of anammox consortia under sulfamethoxazole stress: A model coupling resistance accumulation and interspecies-cooperation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135074. [PMID: 38954855 DOI: 10.1016/j.jhazmat.2024.135074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater where anammox applications are promising. While it has been demonstrated that anammox consortia can adapt to SMX stress, the underlying community adaptation strategy has not yet been fully addressed. Therefore, in this study, we initially ascertained anammox consortia's ability to co-metabolize SMX in batch tests. Then, a 200-day domestication process of anammox consortia under SMX stress was carried out with community variations and transcriptional activities monitored by metagenomic and metatranscriptomic sequencing techniques. Despite the initial drop to 41.88 %, the nitrogen removal efficiency of the anammox consortia rebounded to 84.64 % post-domestication under 5 mg/L SMX. Meanwhile, a 4.85-fold accumulation of antibiotic resistance genes (ARGs) under SMX stress was observed as compared to the control group. Interestingly, the anammox consortia may unlock the SMX-inhibited folate synthesis pathway through a novel interspecies cooperation triangle among Nitrospira (NAA), Desulfobacillus denitrificans (DSS1), and the core anammox population Candidatus Brocadia sinica (AMX1), in which the modified dihydropteroate synthase (encoded by sul1) of NAA reconnected the symbiotic cooperation between AMX1 and DSS1. Overall, this study provides a new model for the adaptation strategies of anammox consortia to SMX stress.
Collapse
Affiliation(s)
- Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxi Yan
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Ma Y, Li TY, Meng H, Wang GX, Ma J, Xiao Y, Xie WM. The effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122090. [PMID: 39126848 DOI: 10.1016/j.jenvman.2024.122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 μg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 μg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.
Collapse
Affiliation(s)
- You Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tian-Yu Li
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Han Meng
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Guo-Xiang Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yan Xiao
- Hangzhou Environmental Protection Research Institute of China Coal Technology & Engineering Group, Hangzhou, 311201, China
| | - Wen-Ming Xie
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Yan P, Zhuang S, Li M, Zhang J, Wu S, Xie H, Wu H. Combined environmental pressure induces unique assembly patterns of micro-plastisphere biofilm microbial communities in constructed wetlands. WATER RESEARCH 2024; 260:121958. [PMID: 38896886 DOI: 10.1016/j.watres.2024.121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
The characteristics and dynamics of micro-plastisphere biofilm on the surface of microplastics (MPs) within artificial ecosystems, such as constructed wetlands (CWs), remain unclear, despite these ecosystems' potential to serve as sinks for MPs. This study investigates the dynamic evolution of micro-plastisphere biofilm in CWs, utilizing simulated wastewater containing sulfamethoxazole and humic acid, through physicochemical characterization and metagenomic analysis. Two different types of commercial plastics, including non-degradable polyethylene and degradable polylactic acid, were shredded into MPs and studied. The findings reveal that the types, shape and incubation time of MPs, along with humic acid content in wastewater, affected the quantity and quality of biofilms, such as the biofilm composition, spatial structure and microbial communities. After just 15 days into incubation, numerous microbials were observed on MP samples, with increases in biofilms content and enhanced humification of extracellular polymeric substances over time. Additionally, microbial communities on polylactic acid MPs, or those incubated for longer time, exhibit higher diversity, connectivity and stability, along with reduced vulnerability. Conversely, biofilms on polyethylene MPs were thicker, with higher potential for greenhouse gas emission and increased risk of antibiotic resistance genes. The addition of humic acid demonstrated opposite effects on biofilms across environmental interfaces, possibly due to its dual potential to produce light-induced free radicals and serve as a carbon source. Binning analysis further uncovered a unique assembly pattern of nutrients cycle genes and antibiotic resistance genes, significantly correlated within micro-plastisphere microbial communities, under the combined stress of nutrition and sulfamethoxazole. These results emphasize the shaping of micro-plastisphere biofilm characteristics by unique environmental conditions in artificial ecosystems, and the need to understand how DOM and other pollutants covary with MP pollution.
Collapse
Affiliation(s)
- Peihao Yan
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuzhen Zhuang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Mingjun Li
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266247, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
13
|
Qiang L, Chisheng Y, Kaiyin C, Hamid Y, Ancheng L, Zhiwei L, Tianyu X. Occurrence of micropollutants in rural domestic wastewater in Zhejiang Province, China and corresponding wastewater-based epidemiology analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172686. [PMID: 38663619 DOI: 10.1016/j.scitotenv.2024.172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
By 2021, rural regions in China were occupied by over 500 million residents, generating an annual volume of 19.5 billion m3 of rural domestic wastewater (RDW). This study aimed to investigate the occurrence and removal of micropollutants (MPs) in RDW treatment facilities and to perform a corresponding wastewater-based epidemiology analysis (WBE). Our findings indicated the significantly high levels of influent MPs, particularly pharmaceuticals, such as ofloxacin and diclofenac being most prevalent (ranging from several to tens of μg/L) across different facilities. After various treatments, regular water indexes in the effluent, like NH3 -N and COD, have basically satisfied the local discharge standard. However, the concentration of certain dominant MPs in effluent remained notably high, ranging from hundreds of ng/L to several μg/L. The risk quotients of MPs like diclofenac, ciprofloxacin, ofloxacin, sulfamethoxazole, diuron, and isoproturon were all above 1 in the effluent, signifying significant hazards to aquatic organisms. The quantitative meta-analysis revealed higher average standardized removal efficiency for membrane bioreactor (MBR) treatment (-11 %) compared to anaerobic/anoxic/aerobic (A2O) treatment (11 %), indicating the higher efficiency of MBR treatment in outperforming the A2O as a secondary treatment. Additionally, employing biofilter as a tertiary treatment proved to be more effective as compared to flocculation-air flotation and artificial wetlands. Moreover, the results of WBE analysis showed that diclofenac and ofloxacin emerged as the most commonly used pharmaceuticals (of seven), with consumption levels recorded at 1222 and 517 mg/(d·103 capita), with daily defined doses per day per 103 capita of 12.2/1000 and 1.29/1000, respectively. This study addresses the existing knowledge gaps regarding the occurrence and removal of MPs in RDW and offers valuable insights into pharmaceutical consumption patterns in rural regions, thereby improving our understanding of public health.
Collapse
Affiliation(s)
- Lin Qiang
- College of Environmental & Resource Sciences, Zhejiang University, China
| | - Yu Chisheng
- College of Environmental & Resource Sciences, Zhejiang University, China
| | - Chen Kaiyin
- College of Environmental & Resource Sciences, Zhejiang University, China
| | - Yasir Hamid
- College of Environmental & Resource Sciences, Zhejiang University, China
| | - Luo Ancheng
- College of Environmental & Resource Sciences, Zhejiang University, China
| | - Liang Zhiwei
- College of Environmental & Resource Sciences, Zhejiang University, China.
| | - Xu Tianyu
- The Rural Development Academy, Zhejiang University, China
| |
Collapse
|
14
|
Madej-Knysak D, Adamek E, Baran W. Biodegradation of Photocatalytic Degradation Products of Sulfonamides: Kinetics and Identification of Intermediates. Int J Mol Sci 2024; 25:6688. [PMID: 38928394 PMCID: PMC11203959 DOI: 10.3390/ijms25126688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Sulfonamides can be effectively removed from wastewater through a photocatalytic process. However, the mineralization achieved by this method is a long-term and expensive process. The effect of shortening the photocatalytic process is the partial degradation and formation of intermediates. The purpose of this study was to evaluate the sensitivity and transformation of photocatalytic reaction intermediates in aerobic biological processes. Sulfadiazine and sulfamethoxazole solutions were used in the study, which were irradiated in the presence of a TiO2-P25 catalyst. The resulting solutions were then aerated after the addition of river water or activated sludge suspension from a commercial wastewater treatment plant. The reaction kinetics were determined and fifteen products of photocatalytic degradation of sulfonamides were identified. Most of these products were further transformed in the presence of activated sludge suspension or in water taken from the river. They may have been decomposed into other organic and inorganic compounds. The formation of biologically inactive acyl derivatives was observed in the biological process. However, compounds that are more toxic to aquatic organisms than the initial drugs can also be formed. After 28 days, the sulfamethoxazole concentration in the presence of activated sludge was reduced by 66 ± 7%. Sulfadiazine was practically non-biodegradable under the conditions used. The presented results confirm the advisability of using photocatalysis as a process preceding biodegradation.
Collapse
Affiliation(s)
| | | | - Wojciech Baran
- Department of General and Analytical Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.M.-K.); (E.A.)
| |
Collapse
|
15
|
Xu L, Ceolotto N, Jagadeesan K, Standerwick R, Robertson M, Barden R, Kasprzyk-Hordern B. Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. WATER RESEARCH 2024; 257:121665. [PMID: 38692256 DOI: 10.1016/j.watres.2024.121665] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Higher usage of antimicrobial agents in both healthcare facilities and the communities has resulted in an increased spread of resistant bacteria. However, the improved infection prevention and control practices may also contribute to decreasing antimicrobial resistance (AMR). In the present study, wastewater-based epidemiology (WBE) approach was applied to explore the link between COVID-19 and the community usage of antimicrobials, as well as the prevalence of resistance genes. Longitudinal study has been conducted to monitor the levels of 50 antimicrobial agents (AAs), 24 metabolites, 5 antibiotic resistance genes (ARGs) and class 1 integrons (intI 1) in wastewater influents in 4 towns/cities over two years (April 2020 - March 2022) in the South-West of England (a total of 1,180 samples collected with 87,320 individual AA measurements and 8,148 ARG measurements). Results suggested higher loads of AAs and ARGs in 2021-22 than 2020-21, with beta-lactams, quinolones, macrolides and most ARGs showing statistical differences. In particular, the intI 1 gene (a proxy of environmental ARG pollution) showed a significant increase after the ease of the third national lockdown in England. Positive correlations for all quantifiable parent AAs and metabolites were observed, and consumption vs direct disposal of unused AAs has been identified via WBE. This work can help establish baselines for AMR status in communities, providing community-wide surveillance and evidence for informing public health interventions. Overall, studies focused on AMR from the start of the pandemic to the present, especially in the context of environmental settings, are of great importance to further understand the long-term impact of the pandemic on AMR.
Collapse
Affiliation(s)
- Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK
| | | | | | | | - Ruth Barden
- Wessex Water Service Ltd., Claverton Down, Bath BA2 7WW, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
16
|
Liu H, Zhao B, Jin M, Wang R, Ding Z, Wang X, Xu W, Chen Q, Tao R, Fu J, Xie D. Anthropogenic-induced ecological risks on marine ecosystems indicated by characterizing emerging pollutants in Pearl River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172030. [PMID: 38547985 DOI: 10.1016/j.scitotenv.2024.172030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Anthropogenic Contaminants of Emerging Concern (CECs) in marine environments have raised significant concerns. Yet, analyses detailing their origins, fate, and environmental effects are limited. This study employs an integrated non-target screening methodology to elucidate CECs existence across 46 sampling sites in the Pearl River Estuary (PRE) of the South China Sea. Assisted by advanced liquid chromatography-high resolution mass spectrometry, we discovered 208 chemicals in six usage categories, with pesticides (33 %) and pharmaceuticals (29 %) predominating. Several CECs drew attention for their consistent detections, profound abundance, and significant ecotoxicities. The wide detection of them at offshore sites further implies that anthropogenic activities may contribute to large-scale contamination. Meanwhile, distinct distribution patterns of CECs across PRE are evident in semi-quantitative results, indicating regional anthropogenic influences. Identified transformation products may establish a novel and non-negligible negative contribution to ecology through elevated environmental toxicities, exemplified by HMMM and atrazine. Based on the ecological risks, we compiled a prioritized list of 21 CECs warranting intensified scrutiny. Our findings indicate the introduction of various CECs into the South China Sea via PRE, emphasizing the urgent necessity for ongoing surveillance of discharged CECs at estuary areas and assessment of their marine ecological consequences.
Collapse
Affiliation(s)
- He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng Jin
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zirong Ding
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiong Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Wenjie Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qianghua Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rizhu Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jianping Fu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530029, PR China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
17
|
Tong X, Goh SG, Mohapatra S, Tran NH, You L, Zhang J, He Y, Gin KYH. Predicting Antibiotic Resistance and Assessing the Risk Burden from Antibiotics: A Holistic Modeling Framework in a Tropical Reservoir. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6781-6792. [PMID: 38560895 PMCID: PMC11025116 DOI: 10.1021/acs.est.3c10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.
Collapse
Affiliation(s)
- Xuneng Tong
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Shin Giek Goh
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Sanjeeb Mohapatra
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
- Northeast
Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Shenzhen
Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen518055,China
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| |
Collapse
|
18
|
Han M, Xie P, Ren N, Ho SH. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133454. [PMID: 38198867 DOI: 10.1016/j.jhazmat.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microalgal encapsulation technology is expected to broaden more possibilities for employing microalgae for upgrading conventional biological wastewater treatment. However, only limited and fragmented information is currently available on microalgal encapsulation and pollutant removal. It is ambiguous whether it hold potential for wastewater treatment. Particularly, it remains to be determined whether this technology can provide more possibilities in harsh sewage environments. Here, potential of encapsulated technology to recover nutrients from wastewater was examined, simultaneously compared with commonly adopted suspended system. Results indicate the encapsulated microalgal system showed outstanding advantages in nutrient recovery and defense against antibiotic threats. Moreover, by examining the cellular oxidative stress response and changes of the photosynthetic system, the encapsulated system exhibited potential cytoprotective advantages to microalgal cells for defensing antibiotic threats. Molecular dynamics simulation revealed that the differences among superficial aggregation between the nutrients' ions and molecular sulfamethoxazole on the cross-linked alginate microcapsule surface dominated the nutrient recovery and cytoprotective functions. Ultimately, the molecular nature of pollutants was found to be the most critical aspect for predicting application of this microalgal microcapsule. Cytoprotective systems created with alginate microcapsules can potentially handle more diverse threats with a single type of surface charge in their outermost layer.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
19
|
Carnevale Miino M, Macsek T, Halešová T, Chorazy T, Hlavínek P. Is the reliability of wastewater-based epidemiology affected by season? Comparative analysis with pharmaceuticals prescriptions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16426-16436. [PMID: 38316739 DOI: 10.1007/s11356-024-32110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Wastewater-based epidemiology (WBE) has been already proposed by several authors for estimating the consumption of drugs, mainly the illicit ones. However, not much information is available about the actual reliability of this tool given the absence of comparison with the actual consumption. This work aims to evaluate the reliability of the WBE as a tool for estimating the consumption of pharmaceuticals in urban area. Measured consumption back-calculated with a WBE approach was compared with prescription of pharmaceutical products as "control." Moreover, seasonal influence on (i) pharmaceutical consumption, (ii) load of pharmaceutical products in the sewer system, and (iii) reliability of WBE was evaluated. Ciprofloxacin, sulfamethoxazole, metoprolol, carbamazepine, and citalopram were estimated by WBE with a difference respect to the "control" value lower than 0.2 order of magnitude while only trimethoprim and sotalol exceeded the 0.5 order of magnitude of difference but below the 1 order of magnitude. Sedatives were the best represented by WBE (on average 0.15 order of magnitude of difference compared to prescription data). However, further studies are suggested to fully estimate the influence of the type of APs on the reliability of the WBE. Seasonal patterns were found for the load of ciprofloxacin in the sewer and for the consumption of sulfamethoxazole and trimethoprim by population but seasonal changes did not have a significant impact (p > 0.05) on the reliability of WBE. Despite some gaps remained to optimize the reliability of the tool, WBE can be considered a valid method to estimate the consumption of prescribed drugs from the analysis of the sewer system.
Collapse
Affiliation(s)
- Marco Carnevale Miino
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, 612 00, Brno, Czech Republic.
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
| | - Tomáš Macsek
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, 612 00, Brno, Czech Republic
| | - Taťána Halešová
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, 612 00, Brno, Czech Republic
- ALS Czech Republic S. R.O, Na Harfě 336/9, 190 00, Prague, Czech Republic
| | - Tomáš Chorazy
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, 612 00, Brno, Czech Republic
| | - Petr Hlavínek
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, 612 00, Brno, Czech Republic
| |
Collapse
|
20
|
Horvath ERB, Stein MG, Mulvey MA, Hernandez EJ, Winter JM. Resistance Gene Association and Inference Network (ReGAIN): A Bioinformatics Pipeline for Assessing Probabilistic Co-Occurrence Between Resistance Genes in Bacterial Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582197. [PMID: 38464005 PMCID: PMC10925210 DOI: 10.1101/2024.02.26.582197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The rampant rise of multidrug resistant (MDR) bacterial pathogens poses a severe health threat, necessitating innovative tools to unravel the complex genetic underpinnings of antimicrobial resistance. Despite significant strides in developing genomic tools for detecting resistance genes, a gap remains in analyzing organism-specific patterns of resistance gene co-occurrence. Addressing this deficiency, we developed the Resistance Gene Association and Inference Network (ReGAIN), a novel web-based and command line genomic platform that uses Bayesian network structure learning to identify and map resistance gene networks in bacterial pathogens. ReGAIN not only detects resistance genes using well-established methods, but also elucidates their complex interplay, critical for understanding MDR phenotypes. Focusing on ESKAPE pathogens, ReGAIN yielded a queryable database for investigating resistance gene co-occurrence, enriching resistome analyses, and providing new insights into the dynamics of antimicrobial resistance. Furthermore, the versatility of ReGAIN extends beyond antibiotic resistance genes to include assessment of co-occurrence patterns among heavy metal resistance and virulence determinants, providing a comprehensive overview of key gene relationships impacting both disease progression and treatment outcomes.
Collapse
Affiliation(s)
- Elijah R Bring Horvath
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Mathew G Stein
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, United States
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, United States
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Matthew A Mulvey
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, United States
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, United States
| | - Edgar J Hernandez
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
21
|
Brunelle LD, Batt AL, Chao A, Glassmeyer ST, Quinete N, Alvarez DA, Kolpin DW, Furlong ET, Mills MA, Aga DS. De facto Water Reuse: Investigating the Fate and Transport of Chemicals of Emerging Concern from Wastewater Discharge through Drinking Water Treatment Using Non-targeted Analysis and Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2468-2478. [PMID: 38252456 DOI: 10.1021/acs.est.3c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.
Collapse
Affiliation(s)
- Laura D Brunelle
- Oak Ridge Institute for Science and Education (ORISE) Participant at the U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, Ohio 45268, United States
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Angela L Batt
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina 27709, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Natalia Quinete
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, North Miami, Florida 33181, United States
| | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, United States
| | - Edward T Furlong
- U.S. Geological Survey, Strategic Laboratory Services Branch, Laboratory Analytical Services Division, Denver, Colorado 80225, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Diana S Aga
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- University at Buffalo Research and Education in Energy, Environment and Water (RENEW) Institute, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
22
|
Hu M, Liu X, Liu S, Ya T, Zhang M, Zhang T, Gao X, Wang X. Responses of microbial interactions and functional genes to sulfamethoxazole in anammox consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119408. [PMID: 37879180 DOI: 10.1016/j.jenvman.2023.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Sulfamethoxazole (SMX) has been widely detected in various environments and its potential environmental risks have caused great concerns. However, the impact mechanism of SMX on microbial interactions among anammox consortia remain unknown. A long-term exposure experiments (140 d) was carried out to systematically examine the influence of SMX (0-1000 μg/L) on the anammox system, especially microbial network dynamics and variations of key metabolic genes. Results showed that anammox system could adapt to SMX below 500 μg/L and maintain a high nitrogen removal efficiency (NRE) of 85.35 ± 2.42%, while 1000 μg/L SMX significantly decreased the abundance of functional microbes and deteriorated denitrification performance with NRE dropped to 36.92 ± 15.01%. Co-occurrence network analysis indicated that 1000 μg/L SMX decreased the interactions between Proteobacteria and Chloroflexi and limited AnAOB from playing an important role as central nodes in the subnetwork of Planctomycetes. Metagenomics analysis found that genes associated with nitrogen removal (i.e., hdh, hzs, nirS, and hao) showed lower expression level after addition of SMX, while SMX-related ARGs (sul1 and sul2) increased by 1.22 and 2.68 times. This study provided us a relatively comprehensive perspective in response of microbial interactions and metabolic activity to various SMX concentrations.
Collapse
Affiliation(s)
- Meina Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaojing Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Fuzhou Planning Design Research Institute, Fuzhou, 350108, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou, 350108, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
23
|
Hirani RAK, Hannan A, Rafique N, Shi L, Tian W, Wang H, Sun H. Three-dimensional rGO/CNT/g-C 3N 4 macro discs as an efficient peroxymonosulfate activator for catalytic degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132400. [PMID: 37639789 DOI: 10.1016/j.jhazmat.2023.132400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, advanced oxidation processes (AOPs) have shown promising efficiencies for wastewater remediation. Carbocatalysis, in particular, has been exploited widely thanks to its sustainable and economical properties but has an issue of recovery and reusability of the catalysts. To address this, three-dimensional (3D) binary and ternary graphene-based composites in the form of macro discs were created to activate peroxymonosulfate (PMS) for catalytic oxidation of sulfamethoxazole (SMX). Graphene oxide served as the base, while graphitic carbon nitride (g-C3N4) and/or single-walled carbon nanotubes (SWCNTs) were added. Among the various discs synthesized, rGNTCN discs (ternary composite) were proven to be the most efficient by completely degrading SMX in 60 min owing to their large surface area and nitrogen loading. The catalytic system was further optimized by varying the reaction parameters, and selective radical quenching and electron paramagnetic resonance tests were performed to identify the active radical, revealing the synergistic role of both radical and non-radical pathways. This led to the development of possible SMX degradation pathways. This research not only provides insights into ternary carbocatalysis but also gives a novel breakthrough in catalyst recovery and reusability by transforming nanocatalysts into macro catalysts.
Collapse
Affiliation(s)
| | - Abdul Hannan
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Nasir Rafique
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haitao Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongqi Sun
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; School of Molecular Sciences, The University of Western Australia, Perth WA6009, Australia.
| |
Collapse
|
24
|
Pan B, Liao M, Zhao Y, Lv Y, Qin J, Sharma VK, Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn 2S 4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132413. [PMID: 37666167 DOI: 10.1016/j.jhazmat.2023.132413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Miao Liao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yanli Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX 77843, USA.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
25
|
Yu Y, Dong H, Chen T, Sun Y, Guan X. Unraveling the intrinsic mechanism behind the selective oxidation of sulfonamide antibiotics in the Mn(II)/periodate process: The overlooked surface-mediated electron transfer process. WATER RESEARCH 2023; 244:120507. [PMID: 37639991 DOI: 10.1016/j.watres.2023.120507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Mn(II) exhibits a superb ability in activating periodate (PI) for the efficient degradation of aqueous organic contaminants. Nevertheless, ambiguous conclusions regarding the involved reactive species contributing to the removal of organic contaminants remain unresolved. In this work, we found that the Mn(II)/PI process showed outstanding and selective reactivity for oxidizing sulfonamides with the removal ranging from 57.1% to 100% at pH 6.5. Many lines of evidence suggest that the in-situ formed colloidal MnO2 (cMnO2) served as a catalyst to mediate electron transfer from sulfonamides to PI on its surface via forming cMnO2-PI complex (cMnO2-PI*) for the efficient oxidation of sulfonamides in the Mn(II)/PI process. Experimental results and density functional theory (DFT) calculations verify that the inclusive aniline moiety was the key site determining the electron transfer-dominated oxidation of sulfonamides. Furthermore, DFT calculation results reveal that the discrepancies in the removal of sulfonamides in the Mn(II)/PI process were attributed to different kinetic stability and chemical reactivity of sulfonamides caused by their heterocyclic substituents. In addition, a high utilization efficiency of PI was achieved in the Mn(II)/PI process owing to the surface-mediated electron transfer mechanism. This work provides deep insights into the surface-promoted mechanism in the cMnO2-involved oxidation processes.
Collapse
Affiliation(s)
- Yanghai Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | - Tiansheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Yuankui Sun
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
26
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
27
|
Wang Y, Jiang W, Han J, Qiao W, Guo H. An in-depth insight into the simultaneous oxidation of sulfamethoxazole and reduction of Cr (VI) by one system of water film DBD plasma: The interaction effect, role of active species, and their dominant to pathways. CHEMOSPHERE 2023; 333:138958. [PMID: 37209852 DOI: 10.1016/j.chemosphere.2023.138958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
This study aims to deeply investigate the simultaneous elimination of sulfamethoxazole (SMZ) and Cr (VI) through one system of water film dielectric barrier discharge (WFDBD) plasma. The interaction effect of SMZ degradation and Cr (VI) reduction and dominant effect of active species were highlighted. Results showed that the oxidation of SMZ and the reduction of Cr (VI) directly promote each other. When the concentration of Cr (VI) raised from 0 to 2 mg L-1, the degradation rate of SMZ enhanced from 75.6% to 88.6%, respectively. Similarly, when the concentration of SMZ improved from 0 to 15 mg L-1, the removal efficiency of Cr (VI) improved from 70.8% to 84.3%, respectively. ·OH, 1O2 and ·O2- play crical roles for SMZ degradation, and e-, ·O2-, ·H and H2O2 dominated to the Cr (VI) reduction. The variations of pH, conductivity and TOC during the removal process were also explored. The removal process was studied by UV-vis spectroscopy and a three-dimensional excitation-emission matrix. Based on DFT calculation and LC-MS analysis, free radicals dominated SMZ degradation pathways in the WFDBD plasma system were clarified. Besides, the influence of Cr (VI) on SMZ degradation pathway was clarified. The ecotoxicity of SMZ and the toxicity of Cr (VI) into Cr (III) were greatly reduced. This study provides a significant reference value for the application and mechanism of plasma simultaneous removal of organic pollutants and heavy metals in wastewater.
Collapse
Affiliation(s)
- Yawen Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Wenxuan Jiang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Weichuan Qiao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
28
|
Li J, Yu S, Cui M. Aged polyamide microplastics enhance the adsorption of trimethoprim in soil environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:669. [PMID: 37184777 DOI: 10.1007/s10661-023-11350-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Microplastics (MPs) in the environment typically age. However, the influence of aged MPs on the adsorption of antibiotics in soil remains unknown. In this study, the adsorption behavior of trimethoprim (TMP) on soil and soil containing aged polyamide (PA) was investigated using batch and stirred flow chamber experiments. The adsorption of TMP on the tested soil with and without PA was fast, with the ka values ranging from 50.5 to 55.6 L (mg min)-1. The adsorption of TMP on aged PA was more than 20 times larger than that on the tested soil, which resulted in an "enrichment effect." Furthermore, aged PA altered the pH of the reaction system, thereby enhancing the adsorption of TMP. Consequently, the Kd values of TMP for soil, soil containing 5%, and 10% aged PA were 5.64, 12.38, and 23.65 L kg-1, respectively. The effect of aged PA on the adsorption of TMP on soil depended on pH values. However, TMP adsorption on soil containing 10% aged PA was constantly higher (p < 0.01) than that on soil with NaCl concentrations ranging from 0 to 50 mmol L-1. These findings provide new insights into the effect of environmental MPs on the fate and transport of antibiotics in soil environments.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
29
|
Hanamoto S, Yamamoto-Ikemoto R, Tanaka H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161514. [PMID: 36634780 DOI: 10.1016/j.scitotenv.2023.161514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Little is known about the predictability of mass flows of veterinary drugs in Asian catchments, where effluent from livestock farms is a major source. We therefore conducted this study to understand the applicability and limitations of a population-based emission model, which assumed usage of veterinary and human drugs to be evenly distributed over the national livestock or human population throughout the year, and sources to be effluent discharges at livestock farms, households, and sewage treatment plants in Japanese catchments. We monitored five veterinary drugs (lincomycin, sulfamonomethoxine, tiamulin, tylosin, and tilmicosin), two human and livestock drugs (sulfamethoxazole and trimethoprim), two human drugs (carbamazepine and clarithromycin), and a metabolite (sulfapyridine) of a human drug once a month over 2 years in eight Japanese rivers which have active livestock farming in their catchments. Mass flows of carbamazepine and sulfapyridine were stable, while those of veterinary drugs fluctuated widely, especially sulfamonomethoxine and tilmicosin, whose 25 %-100 % ranges averaged 1.5 and 1.2 log units, respectively, attributable mainly to their usage patterns. The model accurately predicted mean mass flows of carbamazepine in the rivers with errors of <±0.3 log unit. Although it slightly to moderately overestimated those of the other four human-related compounds, the incorporation of an empirical correction factor, determined to minimize mean absolute error (MAE) among the rivers, substantially lowered their MAEs to <0.23 log units. However, the MAEs of the five veterinary drugs were as high as 0.42 (sulfamonomethoxine) to 0.60 (tiamulin) log units even with the coefficient, likely due mainly to the spatial distribution of their usage per capita. So as not to overlook spatiotemporal elevation of risks of veterinary drugs, a stochastic method should be applied in their management. This is the first study to assess the use of spatiotemporal homogeneity in usage per capita of veterinary drugs in Asian catchments.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryoko Yamamoto-Ikemoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
30
|
Xing P, Li X, Bai Y, Jiao Z. Cypermethrin and/or sulfamethoxazole exposure effect on apoptosis and endoplasmic reticulum of grass carp cardiomyocyte. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114594. [PMID: 36753969 DOI: 10.1016/j.ecoenv.2023.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With the soar use range of pesticides and antibiotics in agricultural production, the pollution of surrounding runoff has become more severe; thus, the health and safety of non-target species such as fish are at risk. Excessive amounts of cypermethrin (CMN, 0.651 mg/l) and sulfamethoxazole (SMZ, 0.3 mg/l) are known to trigger oxidative stress and endoplasmic reticulum stress, resulting in toxic effects on cells. The damage degree of poisons on grass carp and the effect of the corresponding axis pathway PERK/eif2α/CHOP are still unknown. Therefore, our study set up two single poison groups (CMN/SMZ) and a combined poison group (CMN&SMZ) to detect this pathway and related indicators. After detection, the content of MDA both in CMN and SMZ group myocardium tissue was increased, while the SOD, CAT activity and GSH levels were decreased. Apoptosis-related genes (Bax, PUMA, P53 and Caspase-3/9), inflammation-related genes (TNF-α, iNOS and IL-1β/6/8), ER stress pathway PERK/eif2α/CHOP and related genes (ATF6, IRE1a and GRP78) were all increased; in contrast, the anti-apoptotic gene Bcl-2 was down-regulated. From the overall trend observation, the apoptosis proportion of cardiomyocytes in the combined poison group was higher than that of the single poison. In summary, this study shows that CMZ and SMZ can induce oxidative stress and subsequent ER stress in grass carp cardiomyocytes by regulating the PERK/eif2α/CHOP signaling axle, thereby inducing apoptosis, and followed by inflammatory responses. The combined effect of the CMZ and SMZ mixture was severer than that of a single poison (CMZ or SMZ), so it can be inferred that the damage degree of grass carp myocardium tissue would be aggravated with the appearance of CMZ or/and SMZ. The experimental results of this study have suggestions and warnings for the toxicological research of CMZ and SMZ and the management of industrial and ecological balance.
Collapse
Affiliation(s)
- Pengcheng Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yiwei Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Zhihui Jiao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
31
|
Xu R, Fang F, Wang L, Luo J, Cao J. Insight into the interaction between trimethoprim and soluble microbial products produced from biological wastewater treatment processes. J Environ Sci (China) 2023; 124:130-138. [PMID: 36182123 DOI: 10.1016/j.jes.2021.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/16/2023]
Abstract
Soluble microbial products (SMPs), dissolved organic matter excreted by activated sludge, can interact with antibiotics in wastewater and natural water bodies. Interactions between SMPs and antibiotics can influence antibiotic migration, transformation, and toxicity but the mechanisms involved in such interactions are not fully understood. In this study, integrated spectroscopy approaches were used to investigate the mechanisms involved in interactions between SMPs and a representative antibiotic, trimethoprim (TMP), which has a low biodegradation rate and has been detected in wastewater. The results of liquid chromatography-organic carbon detection-organic nitrogen detection indicated that the SMPs used in the study contained 15% biopolymers and 28% humic-like substances (based on the total dissolved organic carbon concentration) so would have contained sites that could interact with TMP. A linear relationship of fluorescent intensities of tryptophan protein-like substances in SMP was observed (R2>0.99), indicating that the fluorescence enhancement between SMP and TMP occurred. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that carboxyl, carbonyl, and hydroxyl groups were the main functional groups involved in the interactions. The electrostatic and π-π interactions were discovered by the UV-vis spectra and 1H nuclear magnetic resonance spectra. Structural representations of the interactions between representative SMP subcomponents and TMP were calculated using density functional theory, and the results confirmed the conclusions drawn from the 1H nuclear magnetic resonance spectra. The results help characterize SMP-TMP complexes and will help understand antibiotic transformations in wastewater treatment plants and aquatic environments.
Collapse
Affiliation(s)
- Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
32
|
Dubey M, Vellanki BP, Kazmi AA. Removal of emerging contaminants in conventional and advanced biological wastewater treatment plants in India-a comparison of treatment technologies. ENVIRONMENTAL RESEARCH 2023; 218:115012. [PMID: 36502902 DOI: 10.1016/j.envres.2022.115012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Emerging contaminants (ECs) are a growing concern for the environment and human health. The study investigates 20 commonly reported ECs in 10 wastewater treatment plants (WWTPs) in urban to semi-urban settlements of north India over two years in the summer and winter. The selected plants were based on waste stabilization pond (WSP), up-flow anaerobic sludge blanket (UASB), activated sludge process (ASP), anoxic-aerobic process (AO), anaerobic-anoxic-oxic process, biodenipho process, sequencing batch reactor, and densadeg-biofor process. Of the 20 ECs, all 20 were identified in the influent and effluent, and 13 were identified in the final sludge on at least one occasion. The concentration in the influent, effluent, and sludge varied in the range from 2.5 ng/L to 77.4 μg/L, below limit of detection (LOD) to 1.984 μg/L, and < LOD to 1.41 μg/g, respectively. Acetaminophen and caffeine were predominately detected in the influent, whereas naproxen, ciprofloxacin, and carbamazepine were predominant in the effluent. The total removal in the plants was found in the range of 40.3-68.6%, mainly attributed to biodegradation/biotransformation. Removal of ECs by WWTPs, ranked by a relative removal criterion, followed the order: Biological nutrient removal based plants > WSP > UASB > densadeg-biofor > AO > ASP > combitreat-SBR. The risk assessment showed the risk to algae from antibiotics and triclosan, daphnia from triclosan, and fish from triclosan and hormones.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India.
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
33
|
Musial J, Mlynarczyk DT, Stanisz BJ. Photocatalytic degradation of sulfamethoxazole using TiO 2-based materials - Perspectives for the development of a sustainable water treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159122. [PMID: 36183772 DOI: 10.1016/j.scitotenv.2022.159122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous photocatalysis using titanium dioxide-based materials is considered a promising and innovative solution to the water pollution problem. However, due to the limitations concerning the use of the developed materials and the applied photodegradation conditions, the research on photoremediation using TiO2 often stays behind the lab door. The challenge is to convert the basic research into a successful innovation, leading to the implementation of this process into wastewater treatment. For this purpose, the most active materials and optimal photodegradation conditions must be chosen. This article collects and compares the studies on photocatalytic degradation of an emerging pollutant - sulfamethoxazole, an antibacterial drug - and attempts to find the best approaches to be successfully applied on an industrial scale. Various types of TiO2-based photocatalysts are compared, including different nanoforms, doped or polymer-based composites, composites with graphene, activated carbon, dyes or natural compounds, as well as possible supporting materials for TiO2. The paper covers the impact of the irradiation source (natural sunlight, LED, mercury or xenon lamps) and water matrix on the photodegradation process, considering the ecological and economic sustainability of the process. Emphasis is put on the stability, ease of separation and reuse of the photocatalyst, power and safety of the irradiation source, identification of photodegradation intermediates and toxicity assays. The main approaches are critically discussed, main challenges and perspectives for an effective photocatalytic water treatment technology are pointed out.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Beata J Stanisz
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
34
|
Wu Y, Song S, Chen X, Shi Y, Cui H, Liu Y, Yang S. Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158792. [PMID: 36113789 DOI: 10.1016/j.scitotenv.2022.158792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
To control the concentrations of pharmaceutical and personal care products (PPCPs) in the surface water of urban and rural areas, it is important to explore the spatial variation in source-specific ecological risks and identify critical sources. Here, we focused on 22 PPCPs found in the effluent from wastewater treatment plants and surface water in Tianjin, and source-specific risk was quantitatively apportioned combining positive matrix factorization with ecological risk assessment. Results showed that rural areas exhibited a more severe contamination level than urban areas. Medical wastewater (30.1 %) accounted for the highest proportion, while domestic sewage posed the greatest threat to aquatic ecosystems. The incidence of potential risks (RQ > 0.01) caused by domestic sewage in urban areas (88.9 %) was higher than that in rural areas (75.9 %). However, PPCP risks caused by farmland drainage, aquaculture, and livestock discharge were mainly distributed in rural areas. The critical source identified in the entire region was domestic sewage (weight, 0.36), and its weight (0.51) in urban areas was greater than that in rural areas (0.32). The impact of aquaculture (weight, 0.16) in rural areas was noteworthy. These findings may contribute to developing environmental management strategies in key areas to help alleviate PPCP contamination worldwide.
Collapse
Affiliation(s)
- Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinchuang Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
35
|
Photocatalytic degradation of sulfamethoxazole with Co-CuS@TiO2 heterostructures under solar light irradiation. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
36
|
Palm WU, Schmidt N, Stahn M, Grimme S. A kinetic study of the photolysis of sulfamethoxazole with special emphasis on the photoisomer. Photochem Photobiol Sci 2022; 22:615-630. [PMID: 36471235 DOI: 10.1007/s43630-022-00340-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Abstract
The previously not studied photochemical degradation of sulfamethoxazole (SMX) to the isomer of SMX (ISO) was measured via a polychromatic (Xe) and a monochromatic (Hg) light source and accompanied by quantum chemical DFT calculations. In addition to the $$\mathrm{p}K_\mathrm{a} = \;7.0 \pm 0.1$$
p
K
a
=
7.0
±
0.1
of ISO, tautomer-dependent properties such as the $$K_\mathrm{OW}$$
K
OW
were measured and theoretically confirmed by DFT. The kinetics in solutions below and above the $$\mathrm{p}K_\mathrm{a} = 5.6$$
p
K
a
=
5.6
of SMX were studied for the available and quantifiable products SMX, ISO, 3-amino-5-methylisoxazole (AMI), 2-amino-5-methyloxazole (AMO), and sulfanilic acid (SUA). The quantum yields of the neutral ($$\Phi _\mathrm{N}$$
Φ
N
) and anionic $$\Phi _\mathrm{A}$$
Φ
A
) forms of SMX ($$\Phi _\mathrm{A} = 0.03 \pm 0.001$$
Φ
A
=
0.03
±
0.001
, $$\Phi _\mathrm{N} = 0.15 \pm 0.01$$
Φ
N
=
0.15
±
0.01
) and ISO ($$\Phi _\mathrm{A} = 0.05 \pm 0.01$$
Φ
A
=
0.05
±
0.01
and $$\Phi _\mathrm{N} = 0.06 \pm 0.02$$
Φ
N
=
0.06
±
0.02
) were found to be wavelength-independent. In a competitive reaction to the formation of ISO from SMX, the degradation product TP271 is formed. Various proposed structures for TP271 described in the literature have been studied quantum mechanically and can be excluded for thermodynamic reasons. In real samples in a northern German surface water in summer 2021 mean concentrations of SMX were found in the range of 120 ng/L. In agreement with the pH-dependent yields, concentrations of ISO were low in the range of 8 ng/L.
Graphical abstract
Collapse
|
37
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
38
|
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin. Animals (Basel) 2022; 12:ani12182483. [PMID: 36139342 PMCID: PMC9495157 DOI: 10.3390/ani12182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. Abstract To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.
Collapse
|
39
|
Garduño-Jiménez AL, Durán-Álvarez JC, Gomes RL. Meta-analysis and machine learning to explore soil-water partitioning of common pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155675. [PMID: 35533866 DOI: 10.1016/j.scitotenv.2022.155675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The first meta-analysis and modelling from batch-sorption literature studies of the soil/water partitioning of pharmaceuticals is presented. Analysis of the experimental conditions reported in the literature demonstrated that though batch-sorption studies have value, they are limited in evaluating partitioning under environmentally-relevant conditions. Recommendations are made to utilise environmental relevant pharmaceutical concentrations, perform batch-sorption studies at temperatures other than 4, 20 and 25 °C to better reflect climate diversity, and utilise the Guideline 106 methodology as a benchmark to enable comparison between future studies (and support modelling and prediction). The meta-dataset comprised 82 data points, which were modelled using multivariate analysis; where Kd (soil/water partitioning coefficient) was the independent variable. The dependent variables fit into three categories: 1) pharmaceutical studied (including physical-chemical properties), 2) soil characteristics and 3) experimental conditions. The pharmaceutical solubility, the soil/liquid equilibration time (prior to adding the pharmaceutical), the soil organic carbon, the soil sterilisation method and the liquid phase were found to be significantly important variables for predicting Kd.
Collapse
Affiliation(s)
| | - Juan-Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan, Ciudad de México 04510, Mexico
| | - Rachel Louise Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
40
|
Zhang L, Brooks BW, Liu F, Zhou Z, Li H, You J. Human Apparent Volume of Distribution Predicts Bioaccumulation of Ionizable Organic Chemicals in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11547-11558. [PMID: 35896009 DOI: 10.1021/acs.est.2c03421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemicals with elevated bioaccumulation profiles present potential hazards to public health and the environment. Ionizable organic compounds (IOCs) increasingly represent a large proportion of commercial chemicals; however, historical approaches for bioaccumulation determinations are mainly developed for neutral chemicals, which were not appropriate for IOCs. Herein, we employed the zebrafish embryo, a common vertebrate model in environmental and biomedical studies, to elucidate toxicokinetics and bioconcentration of eight IOCs with diverse physicochemical properties and pharmacokinetic parameters. At an environmentally relevant pH (7.5), most IOCs exhibited rapid uptake and depuration in zebrafish, suggesting the ionized forms of IOCs are readily bioavailable. Bioconcentration factors (BCF) of these IOCs ranged from 0.0530 to 250 L·kg-1 wet weight. The human pharmacokinetic proportionality factor, apparent volume of distribution (VD), better predicted the BCF of selected IOCs than more commonly used hydrophobicity-based parameters (e.g., pH-dependent octanol-water distribution ratio, Dow). Predictive bioaccumulation models for IOCs were constructed and validated using VD alone or with Dow. Significant relationships between fish BCF and human VD, which is readily available for pharmaceuticals, highlighted the utility of biologically based "read-across" approaches for predicting bioaccumulative potential of IOCs. Our novel findings thus provided an understanding of the partitioning behavior and improved predictive bioconcentration modeling for IOCs.
Collapse
Affiliation(s)
- Ling Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Bryan W Brooks
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Fen Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
41
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
42
|
Xu L, Zang J, Cong W, Holton E, Jiang L, Sheppard SK, Wang Y, Wang N, Weeks J, Fu C, Jiang Q, Lambert H, Kasprzyk-Hordern B. Assessment of community-wide antimicrobials usage in Eastern China using wastewater-based epidemiology. WATER RESEARCH 2022; 222:118942. [PMID: 35944410 DOI: 10.1016/j.watres.2022.118942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Wastewater-based epidemiology (WBE) has potential to identify the epidemiological links between people, animals, and the environment, as part of antimicrobial resistance (AMR) surveillance. In this study, we investigated six wastewater treatment plants (WWTPs) serving six communities located in two regions in Eastern China: Site A in Zhejiang and site B in Jiangsu province to assess the public use of antimicrobial agents (AA). Fifty antimicrobials and 24 of their metabolites were quantified using ultraperformance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS). Spatiotemporal trends were established for measured concentrations, daily loads, and population-normalised daily loads. Daily AA mass loads varied between 1.6 g/day and 324.6 g/day reflecting the WWTP scales, with macrolides and β-lactams showing the highest overall environmental burden at 223.7 g/day and 173.7 g/day, respectively. Emissions of antibiotic residues from manufacturing have been observed, with the peak daily load 12-fold higher than the overall load from a community serving a population of over 600,000. Community exposure levels of 225.2 ± 156.2 mg/day/1000 inhabitant and 351.9 ± 133.5 mg/day/1000 inhabitant were recorded in site A and B, respectively. Paired parent-metabolites analysis identified a large proportion (64-78%) of un-metabolised metronidazole and clindamycin at site B, indicating improper disposal of unused drugs either in the community or in livestock production. Consumption levels, calculated via WBE, suggested relatively low antimicrobial usage in Eastern China compared to other areas in China. This first application of WBE in Eastern China to assess the community-wide exposure to AAs has potential to inform regional antimicrobial stewardship.
Collapse
Affiliation(s)
- Like Xu
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, UK
| | - Jinxin Zang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Cong
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elizabeth Holton
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, UK
| | - Lufang Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Yingying Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Na Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | | | - Chaowei Fu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Helen Lambert
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
43
|
Holton E, Sims N, Jagadeesan K, Standerwick R, Kasprzyk-Hordern B. Quantifying community-wide antimicrobials usage via wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129001. [PMID: 35594673 DOI: 10.1016/j.jhazmat.2022.129001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Increasing usage of antimicrobials is a significant contributor to the emergence and dissemination of antimicrobial resistance. Wastewater-based epidemiology is a useful tool for evaluating public health, via the monitoring of chemical and biological markers in wastewater influent, such as antibiotics. Sixteen antimicrobials and their metabolites were studied: sulfonamides, trimethoprim, metronidazole, quinolones, nitrofurantoin, cyclines, and antiretrovirals. Correction factors (CFs) for human drug excretion, for various drug forms, were determined via a systematic literature review of pharmacokinetic research. Analyte stability was examined over a 24 h study. The estimation of community-wide drug intake was evaluated using the corresponding catchment prescription data. Overall, antimicrobials excreted in an unchanged form were often observed to over-estimate daily intake. This could be attributed to biotransformation, e.g., via glucuronide cleavage, or direct disposal of unused drugs. Acetyl-sulfonamides, trimethoprim, hydroxy-metronidazole, clarithromycin, ciprofloxacin, ofloxacin, tetracycline, and oxytetracycline generally performed well in the estimation of drug intake, relative to prescription records. The low prevalence of quinolone and trimethoprim metabolites, and the low stability of nitrofurantoin, limited the ability to evaluate these metabolites and their respective CFs.
Collapse
Affiliation(s)
| | - Natalie Sims
- University of Bath, Department of Chemistry, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
44
|
Zhou A, Yang K, Wu X, Liu G, Zhang TC, Wang Q, Luo F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Holton E, Archer E, Fidal J, Kjeldsen T, Wolfaardt G, Kasprzyk-Hordern B. Spatiotemporal urban water profiling for the assessment of environmental and public exposure to antimicrobials (antibiotics, antifungals, and antivirals) in the Eerste River Catchment, South Africa. ENVIRONMENT INTERNATIONAL 2022; 164:107227. [PMID: 35561597 DOI: 10.1016/j.envint.2022.107227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial agent (AA) usage, excretion, and persistence are all important factors in association with the occurrence and dissemination of antimicrobial resistance. Urban water profiling was utilised in the Eerste River catchment (South Africa) to establish AA usage in a region where comprehensive prescription records were not readily available and where portions of the community did not have sufficient access to sanitation. This technique enabled the environmental exposure to be quantified throughout the catchment area and the identification of contamination hotspots. Monitoring occurred over a 11-month period. 812 samples were processed using UPLC-MS/MS for the quantitation of 56 antimicrobials and 26 of their metabolites. Spatiotemporal trends were established, with consideration to community behaviour, seasonal changes, and physiochemical properties of the analytes. The Eerste River samples collected upstream from the town of Stellenbosch had the lowest AA loads (<4 g/day), unafflicted by industrial presence and with only small impact from farming activities. This was followed by sites downstream from a wastewater treatment plant (serving 178 K people). The measurement of low AA loads (influent: 500-800 g/day and effluent 50-100 g/day), indicates a high efficiency of wastewater treatment, allowing for an effective reduction of AA and a lower environmental burden. This is compared to river sites that receive untreated waste from communities in informal settlements (6-12 K people) that are not connected to the sewer infrastructure (with AA levels accounting for 100-600 g/day). Temporal trends exhibited reduced daily loads during the summer to early autumn (Nov-May). This is likely due to seasonal patterns in community health and/or notable changes in rainfall and temperatures at the sampling locations throughout the year. However, weather patterns are also important to consider - particularly for the river sites. South Africa has notable rainfall and temperature seasonality. Antiretrovirals (ARV), emtricitabine and lamivudine, were the most prevalent drugs throughout the monitoring campaign, followed by tuberculosis drugs and sulfonamides. ARVs were, however, effectively reduced via wastewater treatment processes (>97%). This was also the case for beta-lactams, nitrofurantoin, and trimethoprim. The treatment efficacy for other drugs was more variable, that did not appear to have temporal significance.
Collapse
Affiliation(s)
| | - Edward Archer
- Stellenbosch University, Department of Microbiology, Stellenbosch, South Africa
| | - James Fidal
- University of Bath, Department of Architecture & Civil Engineering, Bath BA2 7AY, UK
| | - Thomas Kjeldsen
- University of Bath, Department of Architecture & Civil Engineering, Bath BA2 7AY, UK
| | - Gideon Wolfaardt
- Stellenbosch University, Department of Microbiology, Stellenbosch, South Africa
| | | |
Collapse
|
46
|
Delgado-Vargas CA, Espinosa-Barrera PA, Villegas-Guzman P, Martínez-Pachón D, Moncayo-Lasso A. An efficient simultaneous degradation of sulfamethoxazole and trimethoprim by photoelectro-Fenton process under non-modified pH using a natural citric acid source: study of biodegradability, ecotoxicity, and antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42275-42289. [PMID: 34993786 DOI: 10.1007/s11356-021-17751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
In this work, the use of natural organic wastes (orange and lemon peels) as sources of citric acid was evaluated along with the application of the photoelectro-Fenton (PEF) system under non-modified pH as a novel alternative to degrade a complex mixture of pharmaceuticals: sulfamethoxazole (SMX-7.90 × 10-5 mol/L) and trimethoprim (TMP-6.89 × 10-5 mol/L). The system was equipped with a carbon felt air diffusion cathode (GDE) and a Ti/IrO2 anode doped with SnO2 (DSA). A 3.6 × 10-5 mol/L solution of commercial citric acid was used as a reference. The pharmaceuticals' evolution in the mixture was followed by high-performance liquid chromatography (HPLC). The addition of natural products showed an efficient simultaneous degradation of the antibiotics (100% of SMX and TMP at 45 min and 90 min, respectively) similar to the performance produced by adding the commercial citric acid to the PEF system. Moreover, the addition of natural products allowed for an increment of biodegradability (100% removal of TOC by a modified Zahn Wellens test) and a decrease in ecotoxicity (0% in the bioassay with D. Magna) of the treated solutions. The antibacterial activity was eliminated after only 45 min of treatment, suggesting that the degradation by-products do not represent a significant risk to human health or the environment in general. Results suggest that, because of the efficient formation of Fe-citrate complexes, the PEF could be enhanced by the addition of natural organic wastes as a sustainable alternative ecological system for water contaminated pharmaceuticals. Additionally, the potential of reusing natural organic wastes has been exposed, contributing to an improved low-cost PEF by decreasing the environmental contamination produced by this type of waste.
Collapse
Affiliation(s)
- Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paola Villegas-Guzman
- Grupo de Investigación Materiales, Ambiente y Desarrollo, Facultad de Ciencias Básicas, Universidad de La Amazonia, Florencia, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia.
| |
Collapse
|
47
|
Duan W, Cui H, Jia X, Huang X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153178. [PMID: 35051455 DOI: 10.1016/j.scitotenv.2022.153178] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Rapid population growth and increasing demand for animal protein food have led to a continuous increase in global utilization of antibiotic. Sulfonamides (SAs) are ubiquitous in aquatic environments and pose an ecological risk owing to their large consumption and strong environmental persistence. Hence, this review focuses on the recent publications on 12 different SAs and provides a detailed summary of selected antibiotic concentrations in various water systems. We evaluated the ecotoxicity of SAs on organisms at different trophic level organisms and the environmental risks regarding aquatic systems. The results indicated that SA antibiotics were ubiquitous in aquatic environments at concentrations ranging from ng/L to μg/L. According to the data using standard ecotoxicity bioassays, algae were the most susceptible aquatic organisms for selected antibiotics, followed by crustaceans and fish. The risk data suggested that some antibiotics, such as sulfadiazine (SDZ), sulfamethoxazole (SMX), and sulfamethazine (SMZ) pose a great risk to the aquatic system. Based on the present review, it is necessary to strengthen the research into their ecotoxicity to marine systems and the chronic toxicity of antibiotic mixtures.
Collapse
Affiliation(s)
- Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Xinyu Jia
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
48
|
Tadić Đ, Gramblicka M, Mistrik R, Bayona JM. Systematic identification of trimethoprim metabolites in lettuce. Anal Bioanal Chem 2022; 414:3121-3135. [PMID: 35141763 PMCID: PMC8934764 DOI: 10.1007/s00216-022-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Antibiotics are some of the most widely used drugs. Their release in the environment is of great concern since their consumption is a major factor for antibiotic resistance, one of the most important threats to human health. Their occurrence and fate in agricultural systems have been extensively investigated in recent years. Yet whilst their biotic and abiotic degradation pathways have been thoroughly researched, their biotransformation pathways in plants are less understood, such as in case of trimethoprim. Although trimethoprim has been reported in the environment, its fate in higher plants still remains unknown. A bench-scale experiment was performed and 30 trimethoprim metabolites were identified in lettuce (Lactuca sativa L.), of which 5 belong to phase I and 25 to phase II. Data mining yielded a list of 1018 ions as possible metabolite candidates, which was filtered to a final list of 87 candidates. Molecular structures were assigned for 19 compounds, including 14 TMP metabolites reported for the first time. Alongside well-known biotransformation pathways in plants, additional novel pathways were suggested, namely, conjugation with sesquiterpene lactones, and abscisic acid as a part of phase II of plant metabolism. The results obtained offer insight into the variety of phase II conjugates and may serve as a guideline for studying the metabolization of other chemicals that share a similar molecular structure or functional groups with trimethoprim. Finally, the toxicity and potential contribution of the identified metabolites to the selective pressure on antibiotic resistance genes and bacterial communities via residual antimicrobial activity were evaluated.
Collapse
Affiliation(s)
- Đorđe Tadić
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Michal Gramblicka
- HighChem Ltd., Leškova 11, 811 04, Bratislava, Slovakia
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | | | - Josep Maria Bayona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
49
|
Ma Y, Yuan PK, Wu Y, Meng H, Wang GX, Xie WM, Zhang LM, Ma J, Xiao Y. Insight into the role of different extracellular polymeric substances components on trimethoprim adsorption by activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114502. [PMID: 35033891 DOI: 10.1016/j.jenvman.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
Abstract
Adsorption is the primary mechanism of antibiotic removal in wastewater treatment plants, wherein the extracellular polymeric substances (EPS) of the activated sludge play an important role. Due to their complex characteristics, the effect of EPS components on antibiotic adsorption is unknown. Therefore, in this study, the role of main components of EPS in antibiotic adsorption was explored using enzymatic treatment. The results revealed that proteinase K and α-amylase can efficiently hydrolyse the proteins and polysaccharides of EPS. The protein content of EPS reduced from 31.25 mg/g VSS to 21.53, 18.75, and 10.76 mg/g VSS, after treatment with proteinase K, α-amylase and their combination, respectively; the polysaccharides content also observed a similar decrease from 15.20 mg/g VSS to 8.22, 7.83, and 6.03 mg/g VSS, respectively. The humic substance in EPS was stable during enzymatic treatment. The equilibrium adsorption capacity of activated sludge treated by enzyme for trimethoprim (TMP)- a typical antibiotic, was significantly increased from 2.19 μg/g VSS to 4.68, 5.34, and 8.36 μg/g VSS after treatment with proteinase K, α-amylase and their mixture. The adsorption process was adequately described by pseudo-second-order kinetic model. A multivariable linear regression model was subsequently used to quantify the adsorption capacity of activated sludge for TMP considering the concentration of EPS components. The modelling and validated results showed that the model could satisfactorily predict the TMP adsorption capacity. The results of this study can provide new insights into the role of EPS on antibiotic transformation in biological wastewater treatment systems.
Collapse
Affiliation(s)
- You Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Pei-Kun Yuan
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Guo-Xiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Ming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yan Xiao
- Hangzhou Environmental Protection Research Institute of China Coal Technology & Engineering Group, Hangzhou, 311201, China
| |
Collapse
|
50
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|