1
|
Yeung YH, Zhang Y, Xie JY, Qiu JW. Laboratory experiments revealed different bleaching susceptibilities to heat stress in eight species of subtropical urban corals. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107132. [PMID: 40203722 DOI: 10.1016/j.marenvres.2025.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Understanding species' susceptibility to environmental stressors is crucial for conservation planning, but such data are unavailable for many subtropical corals. We therefore conducted 1-month laboratory experiments to determine the heat stress susceptibility of eight species from subtropical areas by exposing them to 32 °C (treatment) or 25 °C (control). Four species (Dipsastraea rotumana, Echinophyllia aspera, Pavona decussata, and Platygyra carnosa) survived the whole experiment, although bleaching occurred after one to two weeks of exposure. The heat exposure caused total mortality in the other four species: on day 2 in Acropora solitaryensis, day 7 in Acropora digitifera, day 9 in Acropora pruinosa, and day 17 in Montipora peltiformis. These results suggest that repeated heatwaves may cause changes in coral communities by causing disproportionally high mortality of heat-sensitive species. Coral species tested in this study, collected from subtropical reefs previously thought to be refuges for coral reefs under global warming, demonstrated greater susceptibility to heat stress than their tropical counterparts. This raises concerns about the persistence of coral reefs as sea surface temperatures continue to rise.
Collapse
Affiliation(s)
- Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Hainan, 570228, China.
| | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Da-Anoy J, Posadas N, Conaco C. Interspecies differences in the transcriptome response of corals to acute heat stress. PeerJ 2024; 12:e18627. [PMID: 39677947 PMCID: PMC11639872 DOI: 10.7717/peerj.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Rising sea surface temperatures threaten the survival of corals worldwide, with coral bleaching events becoming more commonplace. However, different coral species are known to exhibit variable levels of susceptibility to thermal stress. To elucidate genetic mechanisms that may underlie these differences, we compared the gene repertoire of four coral species, Favites colemani, Montipora digitata, Acropora digitifera, and Seriatopora caliendrum, that were previously demonstrated to have differing responses to acute thermal stress. We found that more tolerant species, like F. colemani and M. digitata, possess a greater abundance of antioxidant protein families and chaperones. Under acute thermal stress conditions, only S. caliendrum showed a significant bleaching response, which was accompanied by activation of the DNA damage response network and drastic upregulation of stress response genes (SRGs). This suggests that differences in SRG orthologs, as well as the mechanisms that control SRG expression response, contribute to the ability of corals to maintain stability of physiological functions required to survive shifts in seawater temperature.
Collapse
Affiliation(s)
- Jeric Da-Anoy
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
- Department of Biology, Boston University, Boston, MA, United States of America
| | - Niño Posadas
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
3
|
Monteiro M, Azeiteiro UM, Queiroga H. Climatic resilience: Marine heatwaves do not influence the variations of green crab (Carcinus maenas) megalopae supply patterns to a Western Iberian estuary. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106567. [PMID: 38820829 DOI: 10.1016/j.marenvres.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Extreme climatic events like marine heatwaves (MHWs) are becoming more frequent, intense, and longer lasting all around the world. The consequences of these anomalously warm periods are devastating for marine ecosystems. Still, little is known about these extreme events off the western Iberia coast. Here we analyzed MHW events occurring from 1982 to 2020 on the Aveiro coast, western Iberia coast of Portugal. A total of 79 events were detected for the region, with an average duration of 15.8 days, and a mean intensity of 1.9 °C ± 0.4 °C above the 90th percentile of sea surface temperatures (SST) for the region. The maximum intensity of the events has increased by 0.5 °C over the last decade. The relation between SST, and therefore, MHW events, the North Atlantic Oscillation index (NAO), and the regional Iberian Upwelling Index (UI) was identified. The intense upwelling of the region seems to mitigate the duration of warming conditions, resulting in shorter MHW events. Furthermore, the impacts of SST and MHW events on the supply patterns of Carcinus maenas megalopae were examined, utilizing daily data from 2002, 2006-2009, 2012, and 2013, collected at the entrance of Ria de Aveiro. Cross-correlations were employed to assess the effect of SST on megalopae supply, while ordinary least square cumulative sums were used to identify variations over time. The influence of SST on supply was noticed with a 5-to-11-day lag, but this relation changed over the years. Contrary to our hypothesis, we found no evidence supporting a diminishment in megalopae supply due to MHW events. These elusive findings, coupled with the apparent lack of influence of these extreme events, highlight the relatively weak intensity and brief duration of the MHW events in the region, coupled with the high thermal tolerance of these species.
Collapse
Affiliation(s)
- M Monteiro
- CESAM Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; MARE, ARNET, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-630, Peniche, Portugal.
| | - U M Azeiteiro
- CESAM Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - H Queiroga
- CESAM Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Sannassy Pilly S, Roche RC, Richardson LE, Turner JR. Depth variation in benthic community response to repeated marine heatwaves on remote Central Indian Ocean reefs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231246. [PMID: 38545610 PMCID: PMC10966399 DOI: 10.1098/rsos.231246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean. Our analyses show an overall decline in hard and soft coral cover and an increase in crustose coralline algae, sponge and reef pavement following successive marine heatwaves on the remote reef system. Our findings indicate that the changes in benthic communities in response to elevated seawater temperatures varied across depths. We found greater changes in benthic group cover at shallow depths (5-15 m) compared with deeper zones (15-25 m). The loss of hard coral cover was better predicted by initial thermal stress, while the loss of soft coral was associated with repeated thermal stress following successive warming events. Our study shows that benthic communities extending to 25 m depth were impacted by successive marine heatwaves, supporting concerns about the resilience of shallow coral reef communities to increasingly severe climate-driven warming events.
Collapse
Affiliation(s)
| | - Ronan C. Roche
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| | | | - John R. Turner
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| |
Collapse
|
5
|
Brown KT, Lenz EA, Glass BH, Kruse E, McClintock R, Drury C, Nelson CE, Putnam HM, Barott KL. Divergent bleaching and recovery trajectories in reef-building corals following a decade of successive marine heatwaves. Proc Natl Acad Sci U S A 2023; 120:e2312104120. [PMID: 38113265 PMCID: PMC10756270 DOI: 10.1073/pnas.2312104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual's lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai'i, Montipora capitata and Porites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies of P. compressa exhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptible M. capitata repeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically, M. capitata displayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely, P. compressa appeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene.
Collapse
Affiliation(s)
- Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Elizabeth A. Lenz
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Elisa Kruse
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Rayna McClintock
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Crawford Drury
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne‘ohe, HI96744
| | - Craig E. Nelson
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI96822
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI02881
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
6
|
Brown KT, Genin A, Mello‐Athayde MA, Bergstrom E, Campili A, Chai A, Dove SG, Ho M, Rowell D, Sampayo EM, Radice VZ. Marine heatwaves modulate the genotypic and physiological responses of reef-building corals to subsequent heat stress. Ecol Evol 2023; 13:e10798. [PMID: 38099138 PMCID: PMC10719612 DOI: 10.1002/ece3.10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.
Collapse
Affiliation(s)
- Kristen T. Brown
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amatzia Genin
- The Interuniversity Institute for Marine Sciences of EilatThe Hebrew University of JerusalemEilatIsrael
| | | | | | - Adriana Campili
- Australian Institute of Marine ScienceTownsville Mail CentreTownsvilleQueenslandAustralia
| | - Aaron Chai
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNew South WalesAustralia
| | - Sophie G. Dove
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Devin Rowell
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Eugenia M. Sampayo
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Veronica Z. Radice
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
7
|
Khen A, Wall CB, Smith JE. Standardization of in situ coral bleaching measurements highlights the variability in responses across genera, morphologies, and regions. PeerJ 2023; 11:e16100. [PMID: 37810774 PMCID: PMC10552771 DOI: 10.7717/peerj.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Marine heatwaves and regional coral bleaching events have become more frequent and severe across the world's oceans over the last several decades due to global climate change. Observational studies have documented spatiotemporal variation in the responses of reef-building corals to thermal stress within and among taxa across geographic scales. Although many tools exist for predicting, detecting, and quantifying coral bleaching, it remains difficult to compare bleaching severity (e.g., percent cover of bleached surface areas) among studies and across species or regions. For this review, we compiled over 2,100 in situ coral bleaching observations representing 87 reef-building coral genera and 250 species of common morphological groups from a total of 74 peer-reviewed scientific articles, encompassing three broad geographic regions (Atlantic, Indian, and Pacific Oceans). While bleaching severity was found to vary by region, genus, and morphology, we found that both genera and morphologies responded differently to thermal stress across regions. These patterns were complicated by (i) inconsistent methods and response metrics across studies; (ii) differing ecological scales of observations (i.e., individual colony-level vs. population or community-level); and (iii) temporal variability in surveys with respect to the onset of thermal stress and the chronology of bleaching episodes. To improve cross-study comparisons, we recommend that future surveys prioritize measuring bleaching in the same individual coral colonies over time and incorporate the severity and timing of warming into their analyses. By reevaluating and standardizing the ways in which coral bleaching is quantified, researchers will be able to track responses to marine heatwaves with increased rigor, precision, and accuracy.
Collapse
Affiliation(s)
- Adi Khen
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher B. Wall
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jennifer E. Smith
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
8
|
Zhao Y, Chen M, Chung TH, Chan LL, Qiu JW. The 2022 summer marine heatwaves and coral bleaching in China's Greater Bay Area. MARINE ENVIRONMENTAL RESEARCH 2023:106044. [PMID: 37321888 DOI: 10.1016/j.marenvres.2023.106044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
From July to August 2022, scleractinian coral communities in China's Greater Bay Area (GBA) in the northern South China Sea (nSCS) experienced an unprecedented bleaching event, despite the fact that coral communities in this area are often considered coral thermal refugia due to their high latitude distribution. Field surveys of six sites covering three main coral distribution areas of the GBA revealed that coral bleaching occurred at all sites. Bleaching was more severe in shallow water (1-3 m) than in deep water (4-6 m), as indicated by both percent bleached cover (51.80 ± 10.04% vs. 7.09 ± 7.37%) and bleached colonies (45.86 ± 11.22% vs. 6.58 ± 6.53%). Coral genera Acropora, Favites, Montipora, Platygyra, Pocillopora, and Porites showed high susceptibility to bleaching, and Acropora and Pocillopora suffered high post-bleaching mortality. In the three areas surveyed, analysis of oceanographic data detected marine heatwaves (MHWs) during the summer, with mean intensities between 1.62 and 1.97 °C and durations between 5 and 22 days. These MHWs were primarily driven by increased shortwave radiation due to strong western Pacific Subtropical High (WPSH), combined with reduced mixing between the surface and deep upwelling waters due to reduced wind speed. Comparing with histological oceanographic data showed that the 2022 MHWs were unprecedented, and there was a significant increase in the frequency, intensity, and total days of MHWs during 1982-2022. Furthermore, the heterogeneous distribution of summer MHW characteristics indicates that the coastal upwelling may modulate the spatial distribution of summer MHWs in nSCS through its cooling effect. Overall, our study indicates that MHWs may have affected the structure of the subtropical coral communities in the nSCS, and impaired their potential as thermal refugia.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Mingru Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, 361102, PR China.
| | - Tzu Hao Chung
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, PR China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Monteiro M, de Castro SLP, Marques SC, Freitas R, Azeiteiro UM. An emergent treat: Marine heatwaves - Implications for marine decapod crustacean species - An overview. ENVIRONMENTAL RESEARCH 2023; 229:116004. [PMID: 37116673 DOI: 10.1016/j.envres.2023.116004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Anthropogenic-mediated climate change severely affects the oceans. The most common definition of a Marine heatwave (MHW) considers that water temperatures rise above the 90th percentile threshold values, based on the last 30 years' average of temperature records for a particular location, and remains this high for five or more days. The current review addresses the evolution of definitions used, as well as the current understanding of the driving mechanisms of MHWs. The collected information shows that the study of MHW is recent and there is a growing interest among the scientific community on this topic, motivated largely by the impacts that pose to marine ecosystems. Further, a more in-depth analysis was carried out, addressing the impacts of MHW events on marine decapod crustacean species. The investigation of such impacts has been carried out using three main methodological approaches: the analysis of in situ records, observed in 33 studies; simulating MHW events through mesocosm experiments, found in 6 studies; and using computational predictive models, detected in 1 study. From the literature available it has been demonstrated that consequences are serious for these species, from altered expansion ranges to alterations of assemblages' abundances. Still, studies addressing the impacts of these extreme events on the decapod communities are scarce, often only limited to adult life forms of commercially relevant species, neglecting non-commercial ones and meroplanktonic life stages. Despite the severe impacts on the health of ecosystems, repercussions on socioeconomic human activities, like fisheries and aquaculture, are also a reality. Overall, this review aims to raise scientific and public awareness of these marine events, which are projected to increase in intensity and frequency in the coming decades. Therefore, there is a growing need to better understand and predict the mechanisms responsible for these extreme events and the impacts on key species, like decapod crustaceans.
Collapse
Affiliation(s)
- Marta Monteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal.
| | | | - Sónia Cotrim Marques
- MARE- Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Portugal
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Schoepf V, Baumann JH, Barshis DJ, Browne NK, Camp EF, Comeau S, Cornwall CE, Guzmán HM, Riegl B, Rodolfo-Metalpa R, Sommer B. Corals at the edge of environmental limits: A new conceptual framework to re-define marginal and extreme coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163688. [PMID: 37105476 DOI: 10.1016/j.scitotenv.2023.163688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The worldwide decline of coral reefs has renewed interest in coral communities at the edge of environmental limits because they have the potential to serve as resilience hotspots and climate change refugia, and can provide insights into how coral reefs might function in future ocean conditions. These coral communities are often referred to as marginal or extreme but few definitions exist and usage of these terms has therefore been inconsistent. This creates significant challenges for categorising these often poorly studied communities and synthesising data across locations. Furthermore, this impedes our understanding of how coral communities can persist at the edge of their environmental limits and the lessons they provide for future coral reef survival. Here, we propose that marginal and extreme coral communities are related but distinct and provide a novel conceptual framework to redefine them. Specifically, we define coral reef extremeness solely based on environmental conditions (i.e., large deviations from optimal conditions in terms of mean and/or variance) and marginality solely based on ecological criteria (i.e., altered community composition and/or ecosystem functioning). This joint but independent assessment of environmental and ecological criteria is critical to avoid common pitfalls where coral communities existing outside the presumed optimal conditions for coral reef development are automatically considered inferior to coral reefs in more traditional settings. We further evaluate the differential potential of marginal and extreme coral communities to serve as natural laboratories, resilience hotspots and climate change refugia, and discuss strategies for their conservation and management as well as priorities for future research. Our new classification framework provides an important tool to improve our understanding of how corals can persist at the edge of their environmental limits and how we can leverage this knowledge to optimise strategies for coral reef conservation, restoration and management in a rapidly changing ocean.
Collapse
Affiliation(s)
- Verena Schoepf
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia.
| | - Justin H Baumann
- Department of Biology, Mount Holyoke College, South Hadley, MA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nicola K Browne
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Steeve Comeau
- Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | - Christopher E Cornwall
- School of Biological Sciences and Coastal People: Southern Skies, Victoria University of Wellington, Wellington, New Zealand
| | - Héctor M Guzmán
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Bernhard Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia; Labex ICONA, International CO(2) Natural Analogues Network, Japan
| | - Brigitte Sommer
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Keshavmurthy S, Chen TR, Liu PJ, Wang JT, Chen CA. Learning from the past is not enough to survive present and future bleaching threshold temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158379. [PMID: 36055494 DOI: 10.1016/j.scitotenv.2022.158379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, the frequency of mass coral bleaching events has increased due to seawater temperature anomalies persisting for longer periods. Coral survival from temperature anomalies has been based on how each species in each location responds to stress, which is unique to individual species and may be due to the way stressful experiences accumulate through time in the form of ecological and physiological memory. A deeper understanding of ecological and physiological memory in corals is necessary to understand their survival strategies into the future. Laboratory experiments can help us simulate seawater temperatures experienced by corals in the past and compare their responses to those of the present and future. In this study, we sampled corals with different life history traits from one location perturbed by seawater temperature incursions (variable site) and from a second, relatively undisturbed location (stable site). We sampled across two seasons to observe the responses to bleaching threshold temperatures in the past (1998-29 °C), present (2018-31 °C), and future (2050-33 °C). Corals were healthy at 29 °C and 31 °C, but a fast-growing, temperature-susceptible coral species experienced high mortality at 33 °C compared to a slow-growing, temperature-resistant coral species. Moreover, corals from the variable site and during the spring season fared better under temperature stress. The results of this study provide insight into the possible role of life-history traits on coral's response to seasons and locations in terms of memory to long-term and short-term thermal anomalies and climate change.
Collapse
Affiliation(s)
| | - Ting-Ru Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Jen Liu
- Institute of Marine Biology, National Dong Hwa University, Hualien 974, Taiwan
| | - Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Science, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
12
|
Vega Thurber R, Schmeltzer ER, Grottoli AG, van Woesik R, Toonen RJ, Warner M, Dobson KL, McLachlan RH, Barott K, Barshis DJ, Baumann J, Chapron L, Combosch DJ, Correa AMS, DeCarlo TM, Hagedorn M, Hédouin L, Hoadley K, Felis T, Ferrier-Pagès C, Kenkel C, Kuffner IB, Matthews J, Medina M, Meyer C, Oster C, Price J, Putnam HM, Sawall Y. Unified methods in collecting, preserving, and archiving coral bleaching and restoration specimens to increase sample utility and interdisciplinary collaboration. PeerJ 2022; 10:e14176. [PMID: 36345483 PMCID: PMC9636870 DOI: 10.7717/peerj.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R. Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Andréa G. Grottoli
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Fl, United States
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States
| | - Mark Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Kerri L. Dobson
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Rowan H. McLachlan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States,School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Katie Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Justin Baumann
- Biology Department, Bowdoin College, Brunswick, ME, United States
| | - Leila Chapron
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | | | | | - Thomas M. DeCarlo
- College of Natural and Computational Sciences, Hawai’i Pacific University, Honolulu, HI, United States
| | - Mary Hagedorn
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States,Conservation Biology Institute, Smithsonian, Kāne’ohe, HI, United States
| | - Laetitia Hédouin
- Centre de Recherches Insulaires et Observatoire de l’Environnement, Chargée de Recherches CNRS, Papetō’ai, Moorea, French Polynesia
| | - Kenneth Hoadley
- Department of Biological Sciences, University of Alabama – Tuscaloosa, Tuscaloosa, AL, United States
| | - Thomas Felis
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Jennifer Matthews
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian, Washington DC, United States
| | - Corinna Oster
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - James Price
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences, St. George’s, St. George’s, Bermuda
| |
Collapse
|
13
|
Ng MS, Teo A, Todd PA. Sediment trap height affects mass, particle size, and biogeochemical composition of material collected in an equatorial coral reef. MARINE POLLUTION BULLETIN 2022; 183:114086. [PMID: 36108527 DOI: 10.1016/j.marpolbul.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic sedimentation is a major contributor to the worldwide decline in coral cover. Resuspension of benthic material can exacerbate the threat to corals, but evidence of vertical sediment gradients is limited. Here, we installed sediment traps at 10, 20, 30, 40, and 50 cm above the substrate at three equatorial reef sites for three months and determined the dry mass, particle size, and biogeochemical composition of the material collected. As the trap mouth height increased from 10 to 50 cm, dry mass decreased as sediments became finer, poorer in carbonate, and richer in silicate. Despite among-site differences in collected sediment, this vertical gradient was present in all trap arrays, likely driven by resuspension mechanisms on seabed sediments. These results have implications for coral vertical ecology and underline the importance of standardising sediment collection protocols.
Collapse
Affiliation(s)
- Ming Sheng Ng
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Aaron Teo
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
14
|
Ip JCH, Zhang Y, Xie JY, Yeung YH, Qiu JW. Comparative transcriptomics of two coral holobionts collected during the 2017 El Niño heat wave reveal differential stress response mechanisms. MARINE POLLUTION BULLETIN 2022; 182:114017. [PMID: 35963227 DOI: 10.1016/j.marpolbul.2022.114017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Although coral species exhibit differential susceptibility to stressors, little is known about the underlying molecular mechanisms. Here we compared scleractinian corals Montipora peltiformis and Platygyra carnosa collected during the 2017 El Niño heat wave. Zooxanthellae density and chlorophyll a content declined and increased substantially during and after heat stress event, respective. However, the magnitude of change was larger in M. peltiformis. Transcriptome analysis showed that heat-stressed corals corresponded to metabolic depression and catabolism of amino acids in both hosts which might promote their survival. However, only M. peltiformis has developed the bleached coral phenotype with corresponding strong stress- and immune-related responses in the host and symbiont, and strong suppression of photosynthesis-related genes in the symbiont. Overall, our study reveals differences among species in the homeostatic capacity to prevent the development of the bleached phenotype under environmental stressors, eventually determining their likelihood of survival in the warming ocean.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Yanjie Zhang
- School of Life Sciences, Hainan University, Haikou, China.
| | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.
| |
Collapse
|
15
|
Mo S, Chen T, Chen Z, Zhang W, Li S. Marine heatwaves impair the thermal refugia potential of marginal reefs in the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154100. [PMID: 35218829 DOI: 10.1016/j.scitotenv.2022.154100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Frequent marine heatwaves (MHWs), concurrent with climate warming, threaten global low-latitude, pristine coral reefs, leading to growing interest in identifying marginal coral reefs (relatively high-latitude and/or turbid reef environments) that can serve as thermal refugia from mass coral bleaching. However, the thermal refugia potential of marginal reefs remains controversial. We evaluated the thermal refugia potential of inshore reefs in the northern South China Sea (nSCS), a globally typical marginal reef system, by characterizing the long-term trend of MHW intensity and frequency and assessing thermal stress during a mass bleaching event in summer 2020. An unprecedented peak intensity of around 20 °C-weeks of cumulative heat stress, associated with a prolonged anomalous western Pacific subtropical high (WPSH) and weakened monsoon activity, induced record-breaking bleaching. The geographical variability of bleaching was strongly related to the extent of heat exposure and satellite-derived temperature anomalies. Under ongoing global warming, the frequency and intensity of MHWs over nSCS coral habitats show a markedly increasing trend, especially during the last decade. Intense MHWs and coral bleaching have already occurred throughout all El Niño-Southern Oscillation (ENSO) phases (e.g., 2010, 2015, and 2020). Climate change has pushed marginal coral reefs to or beyond the limits of their resilience, and frequent MHW events have amplified the increasing risk of thermal stress. There are no long-term thermal refugia for marginal reefs in the nSCS.
Collapse
Affiliation(s)
- Shaohua Mo
- Beihai Marine Environmental Monitoring Center Station, State Oceanic Administration, Beihai 536000, China
| | - Tianran Chen
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Zesheng Chen
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wenjing Zhang
- South China Sea Information Center, State Oceanic Administration, Guangzhou 510310, China
| | - Shu Li
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
16
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
17
|
Meziere Z, Rich WA, Carvalho S, Benzoni F, Morán XAG, Berumen ML. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151639. [PMID: 34780827 DOI: 10.1016/j.scitotenv.2021.151639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Sometimes called the "lab rat" of coral research, Stylophora pistillata (Esper, 1797) has been extensively used in coral biology in studies ranging from reef ecology to coral metabolic processes, and has been used as a model for investigations into molecular and cellular biology. Previously thought to be a common species spanning a wide distribution through the Indo-Pacific region, "S. pistillata" is in fact four genetically distinct lineages (clades) with different evolutionary histories and geographical distributions. Here, we review the studies of stress responses of S. pistillatasensulato (clades 1-4) and highlight research trends and knowledge gaps. We identify 126 studies on stress responses including effects of temperature, acidification, eutrophication, pollutants and other local impacts. We find that most studies have focused on the effect of single stressors, especially increased temperature, and have neglected the combined effects of multiple stressors. Roughly 61% of studies on S. pistillata come from the northern Red Sea (clade 4), at the extreme limit of its current distribution; clades 2 and 3 are virtually unstudied. The overwhelming majority of studies were conducted in laboratory or mesocosm conditions, with field experiments constituting only 2% of studies. We also note that a variety of experimental designs and treatment conditions makes it difficult to draw general conclusions about the effects of particular stressors on S. pistillata. Given those knowledge gaps and limitations in the published research, we suggest a more standardized approach to compare responses across geographically disparate populations and more accurately anticipate responses to predicted future climate conditions.
Collapse
Affiliation(s)
- Zoe Meziere
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Walter A Rich
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Spain
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Banc-Prandi G, Evensen NR, Barshis DJ, Perna G, Moussa Omar Y, Fine M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. CONSERVATION PHYSIOLOGY 2022; 10:coac002. [PMID: 35492414 PMCID: PMC9040280 DOI: 10.1093/conphys/coac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- Corresponding author: The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel: +33 7 86 94 72 76.
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Youssouf Moussa Omar
- Center for Studies and Scientific Research of Djibouti, Route de l’Aéroport, BP 1000, Djibouti
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| |
Collapse
|