1
|
Bućko MS, Jaworek K, Janoszka K, Kernert J, Klyta J, Tsering T, Koistinen A, Sobota M, Musioł M. Aging properties of polymer pellets, release of secondary microplastics and additives in the water environment under laboratory-controlled conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137882. [PMID: 40086239 DOI: 10.1016/j.jhazmat.2025.137882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
In this work, the long-term degradation of polymer pellets (also known as the primary microplastics/MPs) was monitored under laboratory-controlled conditions. Polymers of different origin such as the ABS, HDPE and PA (non-processed, recycled) were exposed to demineralized and artificial seawater, stored in room (20-24 °C) and cold (4-8 °C) temperatures during 20 months period. Surface topography and thermal characteristics of selected primary MPs were examined with the use of digital microscope and thermogravimetric (TGA) analysis. Release of secondary MPs into the water solutions was monitored with digital microscopy observations and µ-FTIR analyses. Additionally, leaching of the additives/plasticizers was studied by the GC-MS technique. Periodical, microscopic observations of the surface topography of single pellets show that some polymers undergo deformation over time in the water environment. According to results of the surface roughness, the external structure of the primary MPs (e.g. HDPE and PA) deteriorate after 6 months of exposure to water and cold temperatures. As indicated by the TGA analysis the water penetrates the polymer-matrix (HDPE), changing its physicochemical properties. The µFTIR analyses confirm that primary MPs fragment into smaller particles (secondary MPs), while exposed to various degradation factors (e.g. temperature, pH and salinity changes). The average size of all identified secondary MPs ranges between 13 and 1055 µm. The MP-like particles in the size range of ∼3-230 µm have been identified by the microscopic analyses. While exposing the primary MPs to different degradation factors for 20 months, no significant concentrations of phthalates were released into the water solutions.
Collapse
Affiliation(s)
- Michał S Bućko
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland.
| | - Katarzyna Jaworek
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Janoszka
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| | - Joanna Kernert
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| | - Justyna Klyta
- Environmental Research Centre SORBCHEM Sp. z o. o., Ruda Śląska, Poland
| | - Tenzin Tsering
- University of Eastern Finland Sib Labs, PO Box 1627, Kuopio FI-70211, Finland
| | - Arto Koistinen
- University of Eastern Finland Sib Labs, PO Box 1627, Kuopio FI-70211, Finland
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
2
|
Rai M, Dhanker R, Sharma N, Kamakshi, Kamble SS, Tiwari A, Du ZY, Mohamed HI. Responses of natural plastisphere community and zooplankton to microplastic pollution: a review on novel remediation strategies. Arch Microbiol 2025; 207:136. [PMID: 40332619 DOI: 10.1007/s00203-025-04334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
The ubiquitous presence of microplastics (MP) in different environments has been well documented. Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. MP has been reported to accumulate organic pollutants associated with various microbial communities. The MP hazard is specifically serious in urban lakes, near-shore beaches, and benthic sediments. To prevent the further spread of MP and mitigate the increasing level of MP contamination, along with its associated environmental and economic concerns, it is essential to address mitigation strategies and their negative impacts. Contributed by low degradability, hydrophobicity, and sorption potential, the plastic surface acts as an important substrate colonized by several microorganisms known as the plastisphere community. Adaptive responses of the plastisphere community, MP ingestion, and surface modifications by the zooplankton provide insight into novel remediation strategies based on integrated natural community-level approaches. Zooplankton studies are extensive and encompass assessments of their abundance, biomass, distribution, and DNA meta-barcoding. Additionally, zooplankton has been utilized as an indicator in various freshwater environmental policies. Overall, employing zooplankton as an indicator in environmental policies is a vital tool for assessing the health of aquatic ecosystems and can assist in guiding management and conservation efforts. This review summarizes (i) the current literature on the estimation of MP distribution in aquatic environments, (ii) the effects of MP accumulation on the environment and its inhabitants, i.e., the interactions with marine microbiota,, (iii) addresses the bioremediation strategies with an emphasis on microbial degradation, ecological functioning and adaptive responses of marine microbes and finally, (iv) the directions of further research aiming to in situ mitigation of MP pollution. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies. Nano-enabled technologies show substantial potential to enhance microplastic removal efficiency. Further investigation is necessary to develop advanced treatment technologies that can enhance the removal efficiency of microplastics (MPs) in drinking water. Additionally, more research is needed to understand the toxic impacts of MPs on marine ecosystems, including coral reefs, seagrass beds, mangroves, and other important habitats.
Collapse
Affiliation(s)
- Malayaj Rai
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Nidhi Sharma
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Kamakshi
- Department of Science and Humanities, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Shashank S Kamble
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
- Centre for Drug Discovery and Development, Amity University, Mumbai, Maharashtra, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
3
|
García-Rollán M, Sanz-Santos E, Belver C, Bedia J. Key adsorbents and influencing factors in the adsorption of micro- and nanoplastics: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125394. [PMID: 40262493 DOI: 10.1016/j.jenvman.2025.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Microplastics and nanoplastics (MNPs) are emerging contaminants in drinking water sources that pose serious risks to human health and ecosystems. Several removal strategies, such as adsorption, exist but present challenges for their industrial scalability. This review provides a concise overview of MNP adsorption mechanisms and highlights the limited but critical exploration of column adsorption in the literature, emphasizing its importance for large-scale applications. Special attention is given to carbon-based materials due to their cost-effectiveness, environmental friendliness and sustainability. Other adsorbents (e.g., metal-organic frameworks, clays) are also discussed for their promising performance in realistic water matrixes. To predict and optimize the efficiency of adsorbents, leading simulation models are reviewed. Taken together, this work provides a comprehensive overview of the fundamental factors, such as adsorption mechanisms, adsorbent selection and experimental conditions, to optimize MNP adsorption. By highlighting the underexplored area of column-based processes, it provides valuable information to advance adsorption as a viable industrial-scale solution for MNP contamination.
Collapse
Affiliation(s)
- M García-Rollán
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| | - E Sanz-Santos
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| |
Collapse
|
4
|
Arif SM, Khan I, Saeed M, Chaudhari SK, Ghorbanpour M, Hasan M, Mustafa G. Exploring omics solutions to reduce micro/nanoplastic toxicity in plants: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179220. [PMID: 40147233 DOI: 10.1016/j.scitotenv.2025.179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The proliferation of plastic waste, particularly in the form of microplastics (MPs) and nanoplastics (NPs), has emerged as a significant environmental challenge with profound implications for agricultural ecosystems. These pervasive pollutants accumulate in soil, altering its physicochemical properties and disrupting microbial communities. MPs/NPs can infiltrate plant systems, leading to oxidative stress and cytotoxic effects, which in turn compromise essential physiological functions such as water uptake, nutrient absorption, and photosynthesis. This situation threatens crop yield and health, while also posing risks to human health and food security through potential accumulation in the food chain. Despite increasing awareness of this issue, substantial gaps still remain in our understanding of the physiological and molecular mechanisms that govern plant responses to MP/NP stress. This review employs integrative omics techniques including genomics, transcriptomics, proteomics, metabolomics, and epigenomics to elucidate these responses. High-throughput methodologies have revealed significant genetic and metabolic alterations that enable plants to mitigate the toxicity associated with MPs/NPs. The findings indicate a reconfiguration of metabolic pathways aimed at maintaining cellular homeostasis, activation of antioxidant mechanisms, and modulation of gene expression related to stress responses. Additionally, epigenetic modifications suggest that plants adapt to prolonged plastics exposure, highlighting unexplored avenues for targeted research. By integrating various omics approaches, a comprehensive understanding of molecular interactions and their effects on plant systems can be achieved. This review underscores potential targets for biotechnological and agronomic interventions aimed at enhancing plant resilience by identifying key stress-responsive genes, proteins, and metabolites. Ultimately, this work addresses critical knowledge gaps and highlights the importance of multi-omics strategies in developing sustainable solutions to mitigate the adverse effects of MP/NP pollution in agriculture, thereby ensuring the integrity of food systems and ecosystems.
Collapse
Affiliation(s)
- Samia Muhammad Arif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 42100, Pakistan
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
5
|
Newrick BA, Valdés D, Laca A, Laca A, Díaz M. Enhanced biodegradation of high-density polyethylene microplastics: Study of bacterial efficiency and process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136822. [PMID: 39673947 DOI: 10.1016/j.jhazmat.2024.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
As global microplastic (MP) pollution intensifies, sustainable and effective remediation methods are gaining interest due to the growing environmental and health implications. Microorganisms are demonstrating remarkable capabilities to degrade these polymers, offering a promising solution for reducing MP contamination. The aim of this study was to utilize bacteria for the degradation of high-density polyethylene (HDPE) MPs, specifically Comamonas testosteroni NCIMB 8955, Bacillus firmus NCTC 10335 and Paenibacillus macquariensis NCTC 10419. During the incubation, bacterial growth, pH and carbohydrate concentration were monitored, and samples were taken to track MP weight loss and changes in surface morphology and functional groups. Gravimetric analysis revealed degradation efficiencies of 15.30 %, 13.00 %, and 12.29 % for B. firmus NCTC 10335, P. macquariensis NCTC 10419, and C. testosteroni NCIMB 8955, respectively, over 30 days or less. Scanning electron microscopy (SEM) further confirmed degradation, revealing surface deterioration and biofilm formation. Energy dispersive X-ray spectroscopy (EDS) showed changes in the functional groups on the polymer surface, indicating an increase in the O/C molar ratio. Fourier-transform infrared spectroscopy (FTIR) revealed an increase in the carbonyl and vinyl indexes. The influence of temperature, MP size, and concentration on biodegradation was systematically studied using C. testosteroni NCIMB 8955, which demonstrated the highest degradation rate. The best result, i.e., a degradation efficiency of 21.81 %, was achieved at 35 ºC, with MP sizes between 20 and 100 µm, and a concentration of 200 mg/L. These findings highlight the importance of process parameters during biodegradation and the potential of C. testosteroni NCIMB 8955 in developing sustainable bioremediation approaches to mitigate microplastic pollution.
Collapse
Affiliation(s)
- Bess A Newrick
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - David Valdés
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, Oviedo 33006, Spain
| |
Collapse
|
6
|
Thanigaivel S, Kamalesh R, Ragini YP, Saravanan A, Vickram AS, Abirami M, Thiruvengadam S. Microplastic pollution in marine environments: An in-depth analysis of advanced monitoring techniques, removal technologies, and future challenges. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106993. [PMID: 39914291 DOI: 10.1016/j.marenvres.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/08/2025]
Abstract
Microplastics, recognized as toxic contaminants, have pervaded terrestrial, atmospheric, and marine environments, transitioning from emerging pollutants to pervasive threats. About 10 % of the plastic produced worldwide enters into the ocean which constitutes 85 % of marine litter. Microplastic distribution holds the highest concentration in the Atlantic Ocean whereas the Southern Ocean holds the lowest. Concerning microplastics, reports state that each year about 1.3 million metric tons of microplastics enter the ocean. The microparticles account for about 90 % of the floating ocean debris and over 75 % of these particles originate from land-based sources which include urban runoff, and mismanaged wastes. This review offers a thorough examination of the sources of microplastics and their environmental consequences and ecological impacts. The ubiquity of microplastics necessitates robust control measures, starting with their monitoring and detection in aquatic ecosystems to assess the effectiveness of mitigation strategies. Current removal methods, including physical, chemical, and bio-based techniques, are detailed, alongside advances in filtration, separation, and integrated hybrid approaches for microplastic control. The review concludes with perspectives on the limitations of existing methods and directions for future research in microplastic monitoring, detection, and removal.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu district, Kattankulathur, Tamil Nadu, 603203, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - Y P Ragini
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - M Abirami
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Thiruvengadam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
7
|
Wu X, He F, Xu X, Wu L, Rong J, Lin S. Environmental Health and Safety Implications of the Interplay Between Microplastics and the Residing Biofilm. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:118-132. [PMID: 40012871 PMCID: PMC11851218 DOI: 10.1021/envhealth.4c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/28/2025]
Abstract
The increasing prevalence of microplastics in the environment has raised concerns about their potential environmental and health implications. Biofilms readily colonize microplastics upon their entry into the environment, altering their surface characteristics. While most studies have explored how biofilms influence the adsorption and transportation of other contaminants by microplastics, the reciprocal interplay between microplastics and biofilms and the resulting ecological risks remain understudied. This review comprehensively reviews the impact of microplastic properties on biofilm formation and composition, including the microbial community structure. We then explore the dynamic interactions between microplastics and biofilms, examining how biofilms alter the physicochemical properties, migration, and deposition of microplastics. Furthermore, we emphasize the potential of biofilm-colonized microplastics to influence the environmental fate of other pollutants. Lastly, we discuss how biofilm-microplastic interactions may modify the bioavailability, biotoxicity, and potential health implications of microplastics.
Collapse
Affiliation(s)
- Xiaohan Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Fei He
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Xueran Xu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Leilei Wu
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Jinyu Rong
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| | - Sijie Lin
- College
of Environmental Science and Engineering, Biomedical Multidisciplinary
Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological
Security, Shanghai 200092, China
| |
Collapse
|
8
|
Tang KHD, Li R. The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess Biosyst Eng 2025; 48:1-15. [PMID: 38960926 DOI: 10.1007/s00449-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
9
|
Yadav B, Gupta P, Kumar V, Umesh M, Sharma D, Thomas J, Kumar Bhagat S. Potential health, environmental implication of microplastics: A review on its detection. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104467. [PMID: 39608219 DOI: 10.1016/j.jconhyd.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.
Collapse
Affiliation(s)
- Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India.
| | - Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Mridul Umesh
- Department of Life Sciences, Christ University, Bangalore 560029, Karnataka, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges Landran, 140307, Mohali, Punjab, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Suraj Kumar Bhagat
- Marwadi University Research Center, Department of Civil Engineering, Faculty of Engineering & Technology, Marwadi University, Gujarat, Rajkot, 360003, India
| |
Collapse
|
10
|
Abd El-Hack ME, Ashour EA, AlMalki F, Khafaga AF, Moustafa M, Alshaharni MO, Youssef IM, Elolimy AA, Świątkiewicz S. Harmful impacts of microplastic pollution on poultry and biodegradation techniques using microorganisms for consumer health protection: A review. Poult Sci 2025; 104:104456. [PMID: 39546917 PMCID: PMC11609547 DOI: 10.1016/j.psj.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Microplastics (MPs) are small plastic particles less than five millimeters in size. Microplastic pollution poses a serious threat to ecosystems, affecting both biotic and abiotic components. Current techniques used to eliminate microplastics include recycling, landfilling, incineration, and biodegradation. Microplastics have been detected in various animal species, including poultry, fish, mammals, and invertebrates, indicating widespread exposure and potential bioaccumulation. In the Middle East, MPs contamination was discovered in chicken purchased from food shops, chain supermarkets, and open markets. The contamination levels ranged from 0.03±0.04 to 1.19±0.72 particles per gram of chicken meat. In poultry, microplastics negatively affect production and harm vital organs such as the kidneys, spleen, and lungs. In humans, exposure to microplastics can lead to inflammation, immune responses, metabolic disturbances, DNA damage, neurological damage, and even cancer upon contact with mucosal membranes or absorption into the body. Several studies have explored the use of microorganisms, including bacteria, fungi, and algae, to degrade microplastics, offering an economical and environmentally friendly solution. Different polymers were cultured with strains of Bacillus spp. (SB-14 and SC-9) and Streptococcus spp. (SC-56) for a duration of 40 days. Degradation rates for LDPE were 11.8 %, 4.8 %, and 9.8 %. The rates of deterioration for HDPE were 11.7 %, 3.8 %, and 13.7 %. Rates for polyester beads were 17.3 %, 9.4 %, and 5.8 %. This review focuses on the effects of microorganisms in removing microplastic pollution, the detrimental impact of microplastics on poultry production, and the connection between microplastic pollution and human health.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fatemah AlMalki
- Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra Universit, Al Quwaiiyah 19257, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | | |
Collapse
|
11
|
Wu H, Li H, Li Z, Liu X, Li Q, Cheng M, Gong J. Interfacial engineering-based colonization of biofilms on polyethylene terephthalate (PET) surfaces: Implications for whole-cell biodegradation of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178002. [PMID: 39708756 DOI: 10.1016/j.scitotenv.2024.178002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Microplastic pollution has become a significant environmental issue. One of the most important sources and components of microplastics is polyester fabric - polyethylene terephthalate (PET). Because the catalytic depolymerization of PET typically requires specific conditions such as alkaline environments, specific solvents, or high temperatures, there is an urgent need for a simpler, eco-friendly solution with high degradation efficiency for managing the vast amounts of PET textile waste. In this study, Comamonas testosterone F4, which we screened and cultivated to grow using PET as the sole carbon source, was utilized as a whole-cell biocatalyst. The bioprocess was optimized through interfacial engineering, which leveraged dynamic supramolecular interactions and molecular recognition at the PET-enzyme interface. Biofilms were more effectively formed on the surfaces of PET@Span-80 and PET@TRE. Through supramolecular interactions, Span-80 and Trehalose lipids (TRE), which serve as host and guest chemicals, readily adhere to the PET surface. Compared to untreated PET fibers, PET surfaces treated with biodegradable surfactants showed increased hydrophilicity, which facilitated bacterial colonization and enhanced bacterial and enzymatic activity on PET. Furthermore, combining PET@Span-80 and a strategy for renewing bacterial cultures (RBC) resulted in a high-efficiency degradation effect over an extended degradation period. The weight loss of PET increased from 2.23 % to 5.67 % after four weeks of degradation. A more efficient method for the biodegradation of PET was proposed by our team. The developed interfacial enhancement system provides a practical approach to accelerate the degradation of PET fabric waste, thereby mitigating the substantial environmental impact of polyester textile waste.
Collapse
Affiliation(s)
- Haodong Wu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Huiqin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; Hebei Green Textile Technology Innovation Center, Xingtai, Hebei 055550, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Meilin Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China.
| |
Collapse
|
12
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
13
|
Barhoumi B, Metian M, Alonso-Hernández CM, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Insight into the effect of natural aging of polystyrene microplastics on the sorption of legacy and emerging per- and polyfluorinated alkyl substances in seawater. Heliyon 2024; 10:e40490. [PMID: 39654741 PMCID: PMC11626057 DOI: 10.1016/j.heliyon.2024.e40490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with Kd values ranging from 327 L kg-1 for PFOA to 3247 L kg-1 for PFOS in aged PS-MPs. The difference in sorption capacity was mainly attributed to the physical-chemical changes and the adhered biofilm observed in aged PS-MPs. Results also showed that virgin PS-MPs adsorb PFAS mainly through steric hindrance, while the aged PS-MPs may involve more complex sorption mechanisms. This research provides additional insights into the ability of aged MPs as potential carriers of legacy and emerging contaminants in the marine environment.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| |
Collapse
|
14
|
Ullah Z, Peng L, Lodhi AF, Kakar MU, Mehboob MZ, Iqbal I. The threat of microplastics and microbial degradation potential; a current perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177045. [PMID: 39447905 DOI: 10.1016/j.scitotenv.2024.177045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Microplastics in marine environments come from various sources, and over the years, their buildup in marine environments suggests an inevitable need for the safe mitigation of plastic pollution. Microplastics are one of the chief and hazardous components of marine pollution, as they are transferred through the food chain to different trophic levels, affecting living organisms. They are also a source of transfer for pathogenic organisms. Upon transfer to humans, several toxic effects can occur. This review aims to assess the accumulation of microplastics in marine environments globally, the threat posed to humans, and the biodegradation potential of bacteria and fungi for future mitigation strategies. The versatility of bacteria and fungi in the biodegradation of different types of plastics has been discussed, with a focus on the microbial majority that has been cultivated in labs from the marine environment. We also propose that the exploration of yet-to-be-cultivated microbial majority can be a way forward for employing future strategies to mitigate microplastics.
Collapse
Affiliation(s)
- Zahid Ullah
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological & Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74075, OK, USA
| | - Imran Iqbal
- Department of Pathology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
15
|
Tong R, Wang B, Xiao N, Yang S, Xing Y, Wang Y, Xing B. Selection of engineered degradation method to remove microplastics from aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176281. [PMID: 39278507 DOI: 10.1016/j.scitotenv.2024.176281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) in the aquatic environment are difficult to degrade naturally due to their hydrophobicity and structure. A variety of engineered degradation methods were developed to treat MPs contamination in the aquatic environment. Current reviews of MPs degradation methods only provided an inventory but lacked systematic comparisons and application recommendations. However, selecting suitable degradation methods for different types of MPs contamination may be more effective. This work examined the present engineered degradation methods for MPs in the aquatic environment. They were categorized into chemical degradation, biodegradation, thermal degradation and photodegradation. These degradation methods were systematically summarized in terms of degradation efficiency, technical limitations and production of environmental hazards. Also, the potential influences of different environmental factors and media on degradation were analyzed, and the selection of degradation methods were suggested from the perspectives of contamination types and degradation mechanisms. Finally, the development trend and challenges for studying MPs engineered degradation were proposed. This work will contribute to a better selection of customized degradation methods for different types of MPs contamination scenarios in aquatic environments.
Collapse
Affiliation(s)
- Ruizhen Tong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China.
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Shuo Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710054, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
16
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
18
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
19
|
Safdar A, Ismail F, Iftikhar H, Majid Khokhar A, Javed A, Imran M, Safdar B. Determination of Biodegradation Potential of Aspergillus niger, Candida albicans, and Acremonium sclerotigenum on Polyethylene, Polyethylene Terephthalate, and Polystyrene Microplastics. Int J Microbiol 2024; 2024:7682762. [PMID: 39502512 PMCID: PMC11535424 DOI: 10.1155/2024/7682762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 11/08/2024] Open
Abstract
Plastics are used widely in almost every field of life, but their synthetic and persistent nature makes them harmful for the environment. The aim of this research was to evaluate the degradation abilities of Aspergillus niger, Candida albicans, and Acremonium sclerotigenum on microplastics (MPs). MP pieces of 4 ± 1 mm, including polyethylene, polyethylene terephthalate, and polystyrene, were incubated with fungal inoculums for 30 days. The degradation of treated MPs was determined by biofilm formation, weight loss, scanning electron microscopy (SEM), and Fourier transform analyses. The results indicated that the polyethylene MPs treated with Aspergillus niger exhibited the highest level of biofilm formation (optical density 1.595) and percentage weight loss (16%). In the case of polyethylene terephthalate and polystyrene MPs, Acremonium sclerotigenum and co-culture showed weight loss of 6% and 10%, respectively. Candida albicans was observed to be the least effective in biodegradation analyses. SEM observation revealed the surface modifications as holes, pits, cracks, and increased roughness in treated MPs. Fourier transform infrared (FTIR) spectroscopy showed that the chemical structure of each polymer exhibited some variations. The study concluded that the fungal strains play an important role in the biodegradation of plastics and can be utilized to mitigate environmental pollution.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Hafsa Iftikhar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Majid Khokhar
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Atika Javed
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Imran
- Institute for Advanced Study Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Bushra Safdar
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
20
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
21
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
22
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Tian H, Du Y, Luo X, Dong J, Chen S, Hu X, Zhang M, Liu Z, Abolfathi S. Understanding visible light and microbe-driven degradation mechanisms of polyurethane plastics: Pathways, property changes, and product analysis. WATER RESEARCH 2024; 259:121856. [PMID: 38875861 DOI: 10.1016/j.watres.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The accumulation of polyurethane plastics (PU-PS) in the environment is on the rise, posing potential risks to the health and function of ecosystems. However, little is known about the degradation behavior of PU-PS in the environment, especially water environment. To address this knowledge gap, we investigated and isolated a degrading strain of Streptomyces sp. B2 from the surface of polyurethane coatings. Subsequently, a photoreactor was employed to simulate the degradation process of bio-based polyurethane (BPU) and petroleum-based polyurethane (PPU) under three conditions, including single microorganism (SM), single light exposure (SL), and combined light exposure/microorganism action (ML) in aqueous solution. The results indicated that PU-PS mainly relies on biodegradation, with the highest degradation rate observed after 28 d under SM condition (BPU 5.69 %; PPU 5.25 %). SL inhibited microbial growth and degradation, with the least impact on plastic degradation. Microorganisms colonized the plastic surface, secreting relevant hydrolytic enzymes and organic acids into the culture medium, providing a negative charge. The carbon chains were broken and aged through hydrogen peroxide induction or attack by oxygen free radicals. This process promoted the formation of oxidized functional groups such as OH and CO, disrupting the polymer's structure. Consequently, localized fragmentation and erosion of the microstructure occurred, resulting in the generation of secondary microplastic (MPs) particles, weight loss of the original plastic, increased surface roughness, and enhanced hydrophilicity. Additionally, BPU exhibited greater degradability than PPU, as microorganisms could utilize the produced fatty acids, which promoted their reproduction. In contrast, PPU degradation generated a large amount of isocyanate, potentially toxic to cells and inhibiting biodegradation. This study unveils the significant role of microorganisms in plastic degradation and the underlying degradation mechanisms of BPU, providing a novel strategy for polyurethane degradation and valuable information for comprehensive assessment of the behavior and fate of MPs in the environment.
Collapse
Affiliation(s)
- Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuping Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xinyu Luo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jingjing Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Siyu Chen
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Soroush Abolfathi
- School of Engineering, University of Warwick, Coventry, CV47AL, United Kingdom
| |
Collapse
|
24
|
Schneier A, Melaugh G, Sadler JC. Engineered plastic-associated bacteria for biodegradation and bioremediation. BIOTECHNOLOGY FOR THE ENVIRONMENT 2024; 1:7. [PMID: 39026535 PMCID: PMC11256910 DOI: 10.1186/s44314-024-00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 07/20/2024]
Abstract
The global plastic waste crisis has triggered the development of novel methods for removal of recalcitrant polymers from the environment. Biotechnological approaches have received particular attention due to their potential for enabling sustainable, low-intensity bioprocesses which could also be interfaced with microbial upcycling pathways to support the emerging circular bioeconomy. However, low biodegradation efficiency of solid plastic materials remains a bottleneck, especially at mesophilic conditions required for one-pot degradation and upcycling. A promising strategy used in nature to address this is localisation of plastic-degrading microbes to the plastic surface via biofilm-mediated surface association. This review highlights progress and opportunities in leveraging these naturally occurring mechanisms of biofilm formation and other cell-surface adhesion biotechnologies to co-localise engineered cells to plastic surfaces. We further discuss examples of combining these approaches with extracellular expression of plastic-degrading enzymes to accelerate plastic degradation. Additionally, we review this topic in the context of nano- and microplastics bioremediation and their removal from wastewater and finally propose future research directions for this nascent field.
Collapse
Affiliation(s)
- Arianna Schneier
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, King’s Buildings, Edinburgh, EH9 3FF UK
| | - Gavin Melaugh
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD UK
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL UK
| | - Joanna C. Sadler
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, King’s Buildings, Edinburgh, EH9 3FF UK
| |
Collapse
|
25
|
Guo Z, Li J, Zhang Z. Meta-analysis for systematic review of global micro/nano-plastics contamination versus various freshwater microalgae: Toxicological effect patterns, taxon-specific response, and potential eco-risks. WATER RESEARCH 2024; 258:121706. [PMID: 38761590 DOI: 10.1016/j.watres.2024.121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics (MNPs), as emerging persistent pollutants, are threatening freshwater ecosystems worldwide. Microalgae are important primary producers at the base of trophic level and susceptible to MNPs contamination, possibly resulting in further contamination in higher trophic levels and water quality. This study conducted a systematic review of 1071 observations from 63 publications, utilizing meta-analysis and subgroup analysis to investigate the toxicological effect patterns of MNPs parameters (size, concentration, and type) on microalgae. We also explored the potential eco-risks of certain specific MNPs parameters and subtle variations in the response of various microalgae taxa to MNPs. Results suggested that microplastics significantly inhibited microalgal photosynthesis, while nano-plastics induced more severe cell membrane damage and promoted toxin-release. Within a certain range of concentrations (0∼50 mg/L), rising MNPs concentration progressively inhibited microalgal growth and chlorophyll-a content, and progressively enhanced toxin-release. Among MNPs types, polyamide caused higher growth inhibition and more severe lipid peroxidation, and polystyrene induced more toxin-release, whereas polyethylene terephthalate and polymethyl methacrylate posed minimal effects on microalgae. Moreover, Bacillariophyta growth was inhibited most significantly, while Chlorophyta displayed strong tolerance and Cyanophyta possessed strong adaptive and exceptional resilience. Particularly, Komvophoron, Microcystis, Nostoc, Scenedesmus, and Gomphonema were more tolerant and might dominate freshwater microalgal communities under MNPs contamination. These results are crucial for acquiring the fate of freshwater microalgae under various MNPs contamination, identifying dominant microalgae, and reasonably assessing and managing involved eco-risks.
Collapse
Affiliation(s)
- Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Ziqing Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Fiard M, Militon C, Sylvi L, Migeot J, Michaud E, Jézéquel R, Gilbert F, Bihannic I, Devesa J, Dirberg G, Cuny P. Uncovering potential mangrove microbial bioindicators to assess urban and agricultural pressures on Martinique island in the eastern Caribbean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172217. [PMID: 38583633 DOI: 10.1016/j.scitotenv.2024.172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Jonathan Migeot
- Impact Mer consulting, expertise, and R&D firm, 20 rue Karukéra, 97200 Fort de France, Martinique/FWI, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Ronan Jézéquel
- CEDRE, 715 rue Alain Colas, 29218 Brest CEDEX 2, France.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
| | | | - Jeremy Devesa
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
27
|
Guo Z, Zhang M, Li J. Modifying luteolin's algicidal effect on Microcystis by virgin and diversely-aged polystyrene microplastics: Unveiling novel mechanisms through microalgal adaptive strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124237. [PMID: 38801882 DOI: 10.1016/j.envpol.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Luteolin has shown great potential in inhibiting Microcystis-dominated cyanobacterial blooms. However, widespread microplastics (MPs) in natural aquatic systems often serve as substrates for cyanobacterial growth, which could impact cyanobacterial resistance to external stresses and interfere with luteolin's algicidal effect. This study explored the influence of virgin and diversely-aged polystyrene microplastics (PS-MPs) on inhibitory effect of luteolin on Microcystis growth and its microcystins (MCs) production/release. Moreover, the underlying mechanisms were also revealed by jointly analyzing SEM image, antioxidant response, exopolymeric substances (EPSs) production, and functional gene expression. Results suggested that 0.5, 5, and 50 mg/L virgin and diversely-aged PS-MPs almost weakened growth inhibition and oxidative damage of two doses of luteolin against Microcystisby stimulating its EPSs production and inducing self-aggregation of Microcystis cells and/or hetero-aggregation between Microcystis cells and PS-MPs. Compared to virgin PS-MPs, photo-aged PS-MPs possessed rougher flaky surfaces, and hydrothermal-aged PS-MPs showed internal cracking. These characteristics led to greater stimulation of EPS production and exhibited more significant protective effects on Microcystis. Notably, PS-MPs also decreased MCs content in aqueous phase, likely because they adsorbed some MCs. Such toxigenic hetero-aggregates formed by MCs, MPs, and Microcystis cells would directly poison grazing organisms that consume them and create more pathways for MCs into food web, posing greater eco-risks. This is the first study to clarify the influence and mechanisms of virgin and diversely-aged MPs on allelopathic algicidal effects from the perspective of microalgal inherent adaptive strategies.
Collapse
Affiliation(s)
- Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Mingxia Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
29
|
Wang Y, van Putten RJ, Tietema A, Parsons JR, Gruter GJM. Polyester biodegradability: importance and potential for optimisation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:3698-3716. [PMID: 38571729 PMCID: PMC10986773 DOI: 10.1039/d3gc04489k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
To reduce global CO2 emissions in line with EU targets, it is essential that we replace fossil-derived plastics with renewable alternatives. This provides an opportunity to develop novel plastics with improved design features, such as better reusability, recyclability, and environmental biodegradability. Although recycling and reuse of plastics is favoured, this relies heavily on the infrastructure of waste management, which is not consistently advanced on a worldwide scale. Furthermore, today's bulk polyolefin plastics are inherently unsuitable for closed-loop recycling, but the introduction of plastics with enhanced biodegradability could help to combat issues with plastic accumulation, especially for packaging applications. It is also important to recognise that plastics enter the environment through littering, even where the best waste-collection infrastructure is in place. This causes endless environmental accumulation when the plastics are non-(bio)degradable. Biodegradability depends heavily on circumstances; some biodegradable polymers degrade rapidly under tropical conditions in soil, but they may not also degrade at the bottom of the sea. Biodegradable polyesters are theoretically recyclable, and even if mechanical recycling is difficult, they can be broken down to their monomers by hydrolysis for subsequent purification and re-polymerisation. Additionally, both the physical properties and the biodegradability of polyesters are tuneable by varying their building blocks. The relationship between the (chemical) structures/compositions (aromatic, branched, linear, polar/apolar monomers; monomer chain length) and biodegradation/hydrolysis of polyesters is discussed here in the context of the design of biodegradable polyesters.
Collapse
Affiliation(s)
- Yue Wang
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Gert-Jan M Gruter
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support BV Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
30
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
31
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
32
|
Zaman I, Turjya RR, Shakil MS, Al Shahariar M, Emu MRRH, Ahmed A, Hossain MM. Biodegradation of polyethylene and polystyrene by Zophobas atratus larvae from Bangladeshi source and isolation of two plastic-degrading gut bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123446. [PMID: 38295931 DOI: 10.1016/j.envpol.2024.123446] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Plastic pollution has become a major environmental concern globally, and novel and eco-friendly approaches like bioremediation are essential to mitigate the impact. Low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and expanded polystyrene (EPS) are three of the most frequently used plastic types. This study examined biodegradation of these using Zophobas atratus larvae, followed by isolation and whole genome sequencing of gut bacteria collected from larvae frass. Over 36 days, 24.04 % LDPE, 20.01 % EPS, and 15.12 % LLDPE were consumed on average by the larvae, with survival rates of 85 %, 90 %, and 87 %, respectively. Fourier transform infrared spectroscopy (FTIR) analysis of fresh plastic types, consumed plastics, and larvae frass showed proof of plastic oxidation in the gut. Frass bacteria were isolated and cultured in minimal salt media supplemented with plastics as the sole carbon source. Two isolates of bacteria were sampled from these cultures, designated PDB-1 and PDB-2. PDB-1 could survive on LDPE and LLDPE as carbon sources, whereas PDB-2 could survive on EPS. Scanning Electron Microscopy (SEM) provided proof of degradation in both cases. Both isolates were identified as strains of Pseudomonas aeruginosa, followed by sequencing, assembly, and annotation of their genomes. LDPE- and LLDPE-degrading enzymes e.g., P450 monooxygenase, alkane monooxygenase, alcohol dehydrogenase, etc. were identified in PDB-1. Similarly, phenylacetaldehyde dehydrogenase and other enzymes involved in EPS degradation were identified in PDB-2. Genes of both isolates were compared with genomes of known plastic-degrading P. aeruginosa strains. Virulence factors, antibiotic-resistance genes, and rhamnolipid biosurfactant biosynthesis genes were also identified in both isolates. This study indicated Zophobas atratus larvae as potential LDPE, LLDPE, and EPS biodegradation agent. Additionally, the isolated strains of Pseudomonas aeruginosa provide a more direct and eco-friendly solution for plastic degradation. Confirmation and modification of the plastic-degrading pathways in the bacteria may create scope for metabolic engineering in the future.
Collapse
Affiliation(s)
- Ifthikhar Zaman
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Rafeed Rahman Turjya
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Ramna, Dhaka, 1000, Bangladesh.
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mahruf Al Shahariar
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | | | - Akash Ahmed
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - M Mahboob Hossain
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
33
|
Liang J, Li C, Mo J, Iwata H, Rehman F, Song J, Guo J. Metatranscriptomic profiles reveal the biotransformation potential of azithromycin in river periphyton. WATER RESEARCH 2024; 251:121140. [PMID: 38246076 DOI: 10.1016/j.watres.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Assessment of the interaction between the biotransformation of chemical contaminants and enzyme activity from aquatic microbial communities is critical for improving the micropollutant degradation in river remediation. Here, association mining based on metatranscriptomic analysis was initially applied to determine the genes encoding enzymes involved in the azithromycin (AZI) transformation process and the corresponding microbial hosts in periphyton, followed by revealing the dynamic variation in the community structure and function. In terms of the biotransformation potential, the highly correlated 15 enzymes were suggested to be primarily involved in AZI biotransformation, energy supply, and antibiotic resistance processes, especially aryl-alcohol dehydrogenases (EC: 1.1.1.90), hydroxylamine dehydrogenase (EC: 1.7.2.6), and monooxygenases (EC: 1.14.11.57) that were involved in the biotransformation of AZI. In the matter of community ecological function, the photosystem II (PSII) reaction center in the periphytic photosynthetic process, as indicated by Fv/Fm, was inhibited after AZI exposure, which may be attributed to the down-regulated genes enriched in the photosynthesis - antenna proteins (ko00196), photosynthesis (ko00195), and two-component system (ko02020) pathways. Furthermore, the periphytic utilization capacity for carbohydrates and phenolic acids was enhanced, which was in accordance with all the increased expression of transcripts involved in the corresponding molecular pathways, including aminobenzoate degradation (ko00627), starch and sucrose metabolism (ko00500), ABC transporters (ko02010), phosphotransferase system (ko02060), galactose metabolism (ko00052), amino sugar and nucleotide sugar metabolism (ko00520). Taken together, this study highlighted the critical role of river periphyton in the micropollutant degradation and unraveled the molecular mechanism of antibiotic biotransformation as well as the structural and functional damage in the periphyton.
Collapse
Affiliation(s)
- Jiayi Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chenghao Li
- School of Economics & Management, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Campus, Lahore, Pakistan
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
34
|
Yan ZF, Feng CQ, Zhou JQ, Huang QS, Chen XQ, Xia W, Wu J. Complete degradation of PET waste using a thermophilic microbe-enzyme system. Int J Biol Macromol 2024; 260:129538. [PMID: 38246467 DOI: 10.1016/j.ijbiomac.2024.129538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Enzymatic degradation has been proposed as a suitable solution for addressing PET pollution, but approximately 10 % of PET is left as nonbiodegradable. Microbes can completely degrade PET at the gram level per year. Based on the complementary benefits of microbes and enzymes, a microbe-enzyme system was created to completely degrade PET. Here, a thermophilic microbe-enzyme (TME) system composed of Bacillus thermoamylovorans JQ3 and leaf-branch compost cutinase variant (ICCG) was used to demonstrate the synergistic degradation of PET, enabling 100 % degradation of PET waste at a high PET loading level (360 g/L). Six endogenous PET hydrolases of strain JQ3 were discovered by employing an ester bond hydrolysis function-first genome mining (EGM) strategy and first successfully expressed in E. coli. These hydrolases could release TPA as the final product from PET and preferentially degraded BHET instead of MHET. Of these, carboxylesterase 39_5 and ICCG could degrade PET in a synergistic manner to generate 50 μM of TPA, which was greater than the sum of the individual treatments. Finally, the degradation pathway of the TME system was speculated to include biofilm formation, PET degradation and utilization. The successful implementation of this study rendered a scale-up degradation feasible of PET at a lower cost.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Chu-Qi Feng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jian-Qiao Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qing-Song Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiao-Qian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
35
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
36
|
Kang P, Zhao Y, Wei T, Cai Y, Ji B, Addo-Bankas O. Interactions between MPs and PFASs in aquatic environments: A dual-character situation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119907. [PMID: 38157575 DOI: 10.1016/j.jenvman.2023.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) have drawn great attention as emerging threats to aquatic ecosystems. Although the literature to study the MPs and PFASs alone has grown significantly, our knowledge of the overlap and interactions between the two contaminations is scarce due to the unawareness of it. Actually, numerous human activities can simultaneously release MPs and PFASs, and the co-sources of the two are common, meaning that they have a greater potential for interactions. The direct interaction lies in the PFASs adsorption by MPs in water with integrated mechanisms including electrostatic and hydrophobic interactions, plus many influence factors. In addition, the existence and transportation of MPs and PFASs in the aquatic environment have been identified. MPs and PFASs can be ingested by aquatic organisms and cause more serious combined toxicity than exposure alone. Finally, curbing strategies of MPs and PFASs are overviewed. Wastewater treatment plants (WWTPs) can be an effective place to remove MPs from wastewater, while they are also an important point source of MPs pollution in water bodies. Although adsorption has proven to be a successful curbing method for PFASs, more technological advancements are required for field application. It is expected that this review can help revealing the unheeded relationship and interaction between MPs and PFASs in aquatic environments, thus assisting the further investigations of both MPs and PFASs as a whole.
Collapse
Affiliation(s)
- Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin, Ireland.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Bin Ji
- School of Civil Engineering, Yantai University, Yantai, 264005, PR China
| | - Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| |
Collapse
|
37
|
L E, Wilfred N, S K, Halder G, Haldar D, Patel AK, Singhania RR, Pandey A. Biodegradation of microplastics: Advancement in the strategic approaches towards prevention of its accumulation and harmful effects. CHEMOSPHERE 2024; 346:140661. [PMID: 37951399 DOI: 10.1016/j.chemosphere.2023.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) are plastic particles in a size ranging from 1 mm to 5 mm in diameter, and are formed by the breakdown of plastics from different sources. They are emerging environmental pollutants, and pose a great threat to living organisms. Improper disposal, inadequate recycling, and excessive use of plastic led to the accumulation of MP in the environment. The degradation of MP can be done either biotically or abiotically. In view of that, this article discusses the molecular mechanisms that involve bacteria, fungi, and enzymes to degrade the MP polymers as the primary objective. As per as abiotic degradation is concerned, two different modes of MP degradation were discussed in order to justify the effectiveness of biotic degradation. Finally, this review is concluded with the challenges and future perspectives of MP biodegradation based on the existing research gaps. The main objective of this article is to provide the readers with clear insight, and ideas about the recent advancements in MP biodegradation.
Collapse
Affiliation(s)
- Emisha L
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Nishitha Wilfred
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Kavitha S
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul, 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| |
Collapse
|
38
|
Hu S, Johnson DM, Jiang M, Zhang J, Huang Y, Xi Y, Xu T. The effect of polyvinyl chloride (PVC) color on biofilm development and biofilm-heavy metal chemodynamics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166924. [PMID: 37704145 DOI: 10.1016/j.scitotenv.2023.166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Plastic surfaces are colonized by microorganisms and biofilms are formed in the natural aquatic environment. As the biofilm develops, it changes the density and buoyancy of the plastic-biofilm complex, results in plastic sinking, and increases the heavy metals accumulated by biofilm's mobility and availability in aquatic ecosystems. In this experiment, biofilms were cultured on five colors of polyvinyl chloride (PVC; transparent, green, blue, red, black) in an aquatic environment to investigate the effects of plastic color on biofilm formation and development (Phase 1) and to study the effects of being sunk below the photic zone on biofilm (Phase 2). The PVC color significantly affected the biofilm formation rate but had no impact on the final biofilm biomass. After sinking the biofilm-PVC below the photic zone in Phase 2, the layer of diatoms on the biofilm surface began to disintegrate, and the biomass and Chlorophyll-a (Chla) content of the biofilm decreased, except on the red PVC. Below the photic zone, the microbial community of the biofilm changed from primarily autotrophic microbes to mostly heterotrophic microbes. Microbial diversity increased and extracellular polymeric substances (EPS) content decreased. The primary factor leading to microbial diversity and community structure changes was water depth rather than PVC color. The changes induced in the biofilm led to an increase in the concentration of all heavy metals in the biofilm, related to the increase in microbial diversity. This study provides new insights into the biofilm formation process and the effects on a biofilm when it sinks below the photic zone.
Collapse
Affiliation(s)
- Shuang Hu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - David M Johnson
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Menghan Jiang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Junjie Zhang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Ying Xi
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Tao Xu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
39
|
Mallick K, Sahu A, Dubey NK, Das AP. Harvesting marine plastic pollutants-derived renewable energy: A comprehensive review on applied energy and sustainable approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119371. [PMID: 37925980 DOI: 10.1016/j.jenvman.2023.119371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
The inevitable use of plastics in the existing standard of life makes its way to ecosystems, predominantly into the marine ecosystem. Recent research on energy recycling from marine discarded plastics through biological, chemical, and thermal processes is summarized, which degrade plastic debris and transform it into energy-efficient products. In a system-oriented approach, different boundaries like carbon efficiency, global warming potential, cumulative energy demand, and cost of the product have been evaluated. Even these technologies may successfully reduce the yearly volume of marine plastics by up to 89% while reducing greenhouse gas emissions by 30%. Conversely, recycling a ton of marine discarded plastics may save 915 cubic feet of landfill space, 6500 kWh of energy, and barrels of oil. Energy may be recovered up to 79% from waste plastics using various techniques. Up to 84% liquid fuel had been generated, with a maximum calorific power of 45 MJ/kg. It has been shown that in Asian countries, the power generation capacity of throw-away facemask wastes regularly varies from 2256 kWh/day to 18.52 million kWh/day. Hence, the conversion of marine plastics into biofuel, syngas, biochar, hydrocarbons, electricity, and value-added functional materials by various biotechnological and chemical processes like biodegradation, pyrolysis, gasification, methanolysis, and hydrolysis should be improvised as a source of alternative energy in the immediate future. Our review signifies the potential benefits of energy harvesting technologies from marine plastics pollutants to overcome the growing challenge of energy demands and provide a long-term solution to underdeveloped and developing countries as a sustainable source of energy. Endorsing current strategies to harvest energy from marine plastic wastes that enhance power generation technologies will help in building a more sustainable and greener environment that imparts a healthy and circular economy while shielding natural resources.
Collapse
Affiliation(s)
- Krishnamayee Mallick
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Aishwarya Sahu
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | | | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
40
|
Liu X, Fang L, Yan X, Gardea-Torresdey JL, Gao Y, Zhou X, Yan B. Surface functional groups and biofilm formation on microplastics: Environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166585. [PMID: 37643702 DOI: 10.1016/j.scitotenv.2023.166585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
41
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
42
|
Arbabi A, Gholami M, Farzadkia M, Djalalinia S. Microplastics removal technologies from aqueous environments: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:463-473. [PMID: 37869596 PMCID: PMC10584763 DOI: 10.1007/s40201-023-00872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/04/2023] [Indexed: 10/24/2023]
Abstract
Purpose Pollution of the environment with all kinds of plastics has become a growing problem. The problem of microplastics is mainly due to the absorption of stable organic pollutants and metals into them, and as a result, their environmental toxicity increases. The main purpose of this study is to investigate the appropriate and efficient methods of removing microplastics from aqueous environments through a systematic review. Methods Present study designed according to PRISMA guidelines. Two independent researchers followed all process from search to final analysis, for the relevant studies using international databases of PubMed, Scopus and ISI/WOS (Web of Science), without time limit. The search strategy developed based on the main axis of "microplastics", "aqueous environments" and "removal". This research was carried out from 2017 until the March of 2022. All relevant observational, analytical studies, review articles, and a meta-analysis were included. Results Through a comprehensive systematic search we found 2974 papers, after running the proses of refining, 80 eligible papers included to the study. According to the results of the review, the methods of removing microplastics from aquatic environments were divided to physical (12), chemical (18), physicochemical (27), biological (12) and integrated (11) methods. In different removal methods, the most dominant group of studied microplastics belonged to the four groups of polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene tetra phthalate (PET). Average removal efficiency of microplastics in different processes in each method was as: physical method (73.76%), chemical method (74.38%), physicochemical method (80.44%), biological method (75.23%) and integrated method (88.63%). The highest removal efficiency occurred in the processes based on the integrated method and the lowest efficiency occurred in the physical method. In total, 80% of the studies were conducted on a laboratory scale, 18.75% on a full scale and 1.25% on a pilot scale. Conclusion According to the findings; different processes based on physical, chemical, physicochemical, biological and integrated methods are able to remove microplastics with high efficiency from aqueous environments and in order to reduce their hazardous effects on health and environment, these processes can be easily used.
Collapse
Affiliation(s)
- Arman Arbabi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Djalalinia
- Development of Research and Technology center, Deputy of Research and Technology Ministry of Health and Medical Education, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Dehghanian Z, Asgari Lajayer B, Biglari Quchan Atigh Z, Nayeri S, Ahmadabadi M, Taghipour L, Senapathi V, Astatkie T, Price GW. Micro (nano) plastics uptake, toxicity and detoxification in plants: Challenges and prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115676. [PMID: 37979355 DOI: 10.1016/j.ecoenv.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | | | - Zahra Biglari Quchan Atigh
- Department of Civil Engineering and Smart Cities, College of Engineering, Shantou University, Shantou, Guangdong 515063, China.
| | - Shahnoush Nayeri
- SP-Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Leila Taghipour
- Department of Horticultural Science, College of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran.
| | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
44
|
Zhu Z, Parker W, Wong A. Leveraging deep learning for automatic recognition of microplastics (MPs) via focal plane array (FPA) micro-FT-IR imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122548. [PMID: 37757933 DOI: 10.1016/j.envpol.2023.122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The fast and accurate identification of MPs in environmental samples is essential for the understanding of the fate and transport of MPs in ecosystems. The recognition of MPs in environmental samples by spectral classification using conventional library search routines can be challenging due to the presence of additives, surface modification, and adsorbed contaminants. Further, the thickness of MPs also impacts the shape of spectra when FTIR spectra are collected in transmission mode. To overcome these challenges, PlasticNet, a deep learning convolutional neural network architecture, was developed for enhanced MP recognition. Once trained with 8000 + spectra of virgin plastic, PlasticNet successfully classified 11 types of common plastic with accuracy higher than 95%. The errors in identification as indicated by a confusion matrix were found to be caused by edge effects, molecular similarity of plastics, and the contamination of standards. When PlasticNet was trained with spectra of virgin plastic it showed good performance (92%+) in recognizing spectra that had increased complexity due to the presence of additives and weathering. The re-training of PlasticNet with more complex spectra further enhanced the model's capability to recognize complex spectra. PlasticNet was also able to successfully identify MPs despite variations in spectra caused by variations in MP thickness. When compared with the performance of the library search in identifying MPs in the same complex dataset collected from an environmental sample, PlasticNet achieved comparable performance in identifying PP MPs, but a 17.3% improvement. PlasticNet has the potential to become a standard approach for rapid and accurate automatic recognition of MPs in environmental samples analyzed by FPA FT-IR imaging.
Collapse
Affiliation(s)
- Ziang Zhu
- Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Wayne Parker
- Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Alexander Wong
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
45
|
Khan A, Jie Z, Wang J, Nepal J, Ullah N, Zhao ZY, Wang PY, Ahmad W, Khan A, Wang W, Li MY, Zhang W, Elsheikh MS, Xiong YC. Ecological risks of microplastics contamination with green solutions and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165688. [PMID: 37490947 DOI: 10.1016/j.scitotenv.2023.165688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
The rise of plasticulture as mulching material in farming systems has raised concerns about microplastics (MPs) in the agricultural landscape. MPs are emerging pollutants in croplands and water systems with significant ecological risks, particularly over the long term. In the soil systems, MPs polymer type, thinness, shape, and size induces numerous effects on soil aggregates, dissolved organic carbon (C), rapidly oxidized organic C, microbial biomass C, microbial biomass nitrogen (N), microbial immobilization, degradation of organic matter, N cycling, and production of greenhouse gas emissions (GHGs), thereby posing a significant risk of impairing soil physical and biochemical properties over time. Further, toxic chemicals released from polyethylene mulching (PMs) might indirectly harm plant growth by affecting soil wetting-drying cycles, releasing toxic substances that interact with soil matrix, and suppressing soil microbial activity. In the environment, accumulation of MPs poses a risk to human health by accelerating emissions of GHGs, e.g., methane and carbon dioxide, or directly releasing toxic substances such as phthalic acid esters (PAEs) into the soils. Also, larger sizes MPs can adhere to root surface and block stomata could significantly change the shape of root epidermal cells resulting in arrest plant growth and development by restricting water-nutrient uptake, and gene expression and altering the biodiversity of the soil pollutants. In this review, we systematically analyzed the potential risks of MPs to the soil-plant and human body, their occurrence, abundance, and migration in agroecosystems. Further, the impacts of MPs on soil microbial function, nutrient cycling, soil C, and GHGs are mechanistically reviewed, with emphasis on potential green solutions such as organic materials amendments along with future research directions for more eco-friendly and sustainable plastic management in agroecosystems.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zheng Jie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China
| | - Jing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Najeeb Ullah
- Agriculture Research Station, office of VP For Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wiqar Ahmad
- Department of the Soil and Environmental Sciences, AMKC, The University of Agriculture, Peshawar, Pakistan
| | - Adnan Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | | | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Pan H, Zhao X, Zhou X, Yan H, Han X, Wu M, Chen F. Research progress on the role of biofilm in heavy metals adsorption-desorption characteristics of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122448. [PMID: 37640222 DOI: 10.1016/j.envpol.2023.122448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) have been found to be widely distributed in aquatic environments, where they will interact with toxic heavy metals and result in more serious adverse effects on the aquatic environments and organisms. However, after entering the aquatic environments, MPs are quickly covered by biofilms, which significantly modify MPs properties and relevant heavy metals adsorption-desorption characteristics In order to better understand the adsorption behavior of heavy metals on biofilm developed MPs (BMPs), we comprehensively reviewed representative studies in this area. First, we summarized the formation process of biofilms on MPs. Subsequently, we reviewed the current understanding on the influence of biofilm formation on the properties of MPs and discussed the metal adsorption-desorption characteristics of MPs affected by these changes. Finally, based on the systematic literature review, some future research needs and strategies were proposed to further understand the interactions between MPs and heavy metals.
Collapse
Affiliation(s)
- Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China.
| | - Xiuyan Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Hua Yan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Xiaoyu Han
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Mingsong Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819 China
| |
Collapse
|
47
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
48
|
Ma Y, Wu S, Xu Y, Zhou X, Ruan A. Degradation characteristics of polyethylene film by microorganisms from lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122115. [PMID: 37385361 DOI: 10.1016/j.envpol.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Polyethylene (PE) exists widely in many habitats as a persistent organic pollution and poses a major threat to the ecological environment. In this study, bacterial communities in freshwater lake sediments were exposed to culture media using PE films as the sole carbon source in aerobic and anaerobic microculture environments, and they were able to adhere and adapt to the PE films for a longer period of time. The results demonstrated that the pH value of the medium in the two cultural conditions was distinct, as were the rates of films weight loss and surface functional group alterations. We also concluded the certain bacterial genera from freshwater lake sediments who may be able to degrade PE films under either aerobic or anaerobic conditions. Simultaneously, the dominating bacterial communities between the medium and the film differed significantly under two cultural settings, as did the community composition, while metabolism was the primary function.
Collapse
Affiliation(s)
- Yunmei Ma
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shuai Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yaofei Xu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
49
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
50
|
Li X, Wu H, Gong J, Li Q, Li Z, Zhang J. Improvement of biodegradation of PET microplastics with whole-cell biocatalyst by interface activation reinforcement. ENVIRONMENTAL TECHNOLOGY 2023; 44:3121-3130. [PMID: 35293270 DOI: 10.1080/09593330.2022.2052359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene terephthalate (PET) is an important basic polymer, which was used widely in variety of fields. Due to its high crystallinity, compact structure and strong surface hydrophobicity, PET has prominent resistance to biodegradation. In recent years, microplastics, especially polyethylene terephthalate (PET) microplastics, was considered as serious threaten to ecosystems. In this study, alkali-resistant bacteria were used as whole-cell catalysts to try to improve the biodegradation of PET microplastics by increasing the bio-interfacial activity of the polymer substrate. Surfactants were applicated to enhance interfacial activation of enzyme and PET interactions. And an integrated strategy was constructed based on alkali resistant bacteria to catalysis the hydrolysis of PET. The results showed that Tween 20 had the most obvious promoting effect among the four interfacial biocatalysts on biological-chemical combined hydrolysis of PET microplastics with whole-cell biocatalysts in alkaline environment. Obvious etching and fracture were observed on the PET fibre surface after biodegradation in presence of surfactant. The weight loss rate of PET substrate can reach 11.04% after 5 days of biodegradation. Thus, this research provides a promising method for efficient degradation of PET microplastics.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Haodong Wu
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jixian Gong
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Qiujin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Zheng Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jianfei Zhang
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, People's Republic of China
| |
Collapse
|