1
|
Chen J, Zhang Z, Shen N, Yu H, Yu G, Qi J, Liu R, Hu C, Qu J. Bipartite trophic levels cannot resist the interference of microplastics: A case study of submerged macrophytes and snail. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137898. [PMID: 40107097 DOI: 10.1016/j.jhazmat.2025.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Some studies frequently focus on the toxic effects of compound pollution formed by microplastics and other pollutants on individual organisms, but it is still unclear how multi-trophic level organisms in compound communities resist the stress of microplastics. Thus, this research used a dose-response experiment (0, 0.1, 0.2, 0.5, 1 mg L-1) to illustrate the influences that microplastics might have on two symbiotic freshwater organisms Vallisneria natans and Sinotaia quadrata. The results showed the reduction of V. natans biomass in 0.5 and 1 mg L-1 groups (28-38 %), and disturbances on the photosynthetic system, reduced the chlorophyll content (15-85 %) and maximum quantum yields (10-31 %). In the case of S. quadrata, which subsisted by scraping leaf biofilms, there was a disruption in the functioning of the antioxidant system. Concurrently, the activities of digestive and neurotransmitter enzymes were affected, potentially leading to detrimental impacts on the organism's essential physiological processes. The introduction of microplastics significantly enhanced the relative abundance of specific microbial taxa, such as Proteobacteria within the biofilm of V. natans leaves and chloroflexi in the rhizosphere, thereby altering the microbial community assembly process. This means the potential ecological functions with microbes as the carrier was influenced. These results indicated that microplastic in aquatic environments can impact the metabolism, autotrophic, and heterotrophic behavior of double-end trophic organisms through symbiotic activities. Therefore, our study reveals how polystyrene microplastics affect the growth of submerged aquatic plants and snails, and from the perspective of community integrity and health, the introduction of these pollutants into freshwater environments may cause disruptive effects.
Collapse
Affiliation(s)
- Jun Chen
- Yunnan University, College of Ecology and Environment, Kunming 650500, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiqiang Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Liu
- Yunnan University, College of Ecology and Environment, Kunming 650500, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Abelouah MR, Idbella M, Nouj N, Ben-Haddad M, Hajji S, Ouheddou M, Ourouh J, Iacomino G, El Haouti R, Barra I, Oualid JA, Bonanomi G, Banni M, Alla AA. Marine plastic exposure triggers rapid recruitment of plastic-degrading bacteria and accelerates polymer-specific transformations. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137724. [PMID: 40037197 DOI: 10.1016/j.jhazmat.2025.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Plastic pollution in marine ecosystems is a growing concern, yet the degradation behavior of different plastic types and their interactions with microbial communities remain poorly understood. This study investigated the degradation kinetics and microbial colonization of four widely used plastic materials, surgical masks (most made of PP), PET bottles, PS foam, and PP cups, over 40 days of seawater exposure in the Central Atlantic of Morocco. Mass loss measurement revealed distinct degradation patterns, with PS foam showing the highest mass loss (13 %), followed by PET bottles (5 %), likely due to environmental stressors that promote mechanical fragmentation. Surgical masks and PP cups exhibited minimal degradation, retaining nearly all their original mass, as well as limited extent of biodegradation. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses showed the formation of oxidative functional groups on PP cups and significant structural changes in PS foam and PET, particularly in their crystalline structures, correlating with their higher mass reduction rates. SEM/EDX biofilm imaging confirmed extensive microbial colonization, particularly on PS and PET surfaces. Using 16S rRNA metabarcoding, we identified a striking enrichment of Exiguobacterium, followed by Pseudomonas, Acinetobacter and Bacillus genera, containing reported plastic degrading strains, which were strongly correlated with the accelerated breakdown of plastics. However, its role in accelerating plastic breakdown in this study remains unclear and may warrant further investigation. Co-occurrence network analysis revealed a progressive shift in microbial community structure, evolving from highly interconnected networks at day 0 to more specialized, modular clusters by day 40, dominated by Proteobacteria and Firmicutes. Atomic Absorption Spectrometry (AAS) demonstrated significant heavy metal accumulation on plastic surfaces, potentially influencing microbial colonization and activity. While the observed fragmentation of PS foam and PET highlights the susceptibility of certain plastics to environmental stressors, this study also positions microbial colonization as a potential contributor to plastic surface changes, providing novel insights into the interplay between microbial communities and plastic degradation in marine environments.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Mohamed Idbella
- College of Agriculture and Environmental Sciences, AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nisrine Nouj
- Institut National Thématique de Recherche Scientifique-Eau (INTR-Eau), Ibn Zohr University, Agadir 80000, Morocco; Laboratory of Materials and Environment (LME), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Jamila Ourouh
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Giuseppina Iacomino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA 80055, Italy
| | - Rachid El Haouti
- Laboratory of Materials and Environment (LME), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Issam Barra
- Mohammed VI Polytechnic University (UM6P), Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences (AgBS), Benguerir 43150, Morocco
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA 80055, Italy
| | - Mohamed Banni
- Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
3
|
Li F, Zeng Z, Wu Y, Wang Y, Shen L, Huang X, Wang X, Sun Y. Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137808. [PMID: 40043390 DOI: 10.1016/j.jhazmat.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Collapse
Affiliation(s)
- Fulin Li
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Ziru Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yixiao Wu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yefan Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lingyan Shen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingru Huang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xue Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Guan X, Dai Y, Li X, Han Z, Li X, Su Z, Wang X, Wang L, Xu M. Acetochlor promotes the aging of mulch-derived microplastics in soil by altering the plastisphere microbial community. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138641. [PMID: 40393295 DOI: 10.1016/j.jhazmat.2025.138641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Although many studies have already highlighted the effects of mulch-derived microplastics (MDMPs) on adsorbing and spreading organic pollutants, the ecological risks of MDMPs co-contaminated with herbicide and the interaction between them have not been clarified. In this study, the interactions between MDMPs from virgin and aged low-density polyethylene (LDPE) films and the herbicide acetochlor in soil were investigated by microcosmic experiments. Results showed that acetochlor in soil was significantly enriched on the surface of MDMPs, with higher concentration on aged-MDMPs compared to virgin-MDMPs. Acetochlor significantly accelerated the fragmentation of aged-MDMPs, leading to more oxygenated functional groups and promoting biofilm development. Acetochlor also notably altered plastisphere microbial community, with Pseudomonas dominating for an extended period in acetochlor-treated samples. This suggests that Pseudomonas may facilitate the aging of MDMPs, likely due to its dual ability to degrade both acetochlor and polyethylene. Additionally, acetochlor initially increased microbial diversity and interaction complexity in the plastisphere, but decreased them in later phase, resulting in a more specialized community. These findings reported here broaden our understanding of interactions between MDMPs and herbicide in soil and offer insights for improved farmland management practices.
Collapse
Affiliation(s)
- Xinyu Guan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhiyang Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiujuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
5
|
Basumatary T, Biswas D, Boro S, Nava AR, Narayan M, Sarma H. Dynamics and Impacts of Microplastics (MPs) and Nanoplastics (NPs) on Ecosystems and Biogeochemical Processes: The Need for Robust Regulatory Frameworks. ACS OMEGA 2025; 10:17051-17069. [PMID: 40352536 PMCID: PMC12060063 DOI: 10.1021/acsomega.5c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pose significant threats to aquatic and terrestrial ecosystems, disrupting nutrient cycling, altering soil properties, and affecting microbial communities. MPs and NPs bioaccumulate and contribute to global nutrient and water cycle disruptions, intensifying the impact of climate change. Despite the widespread use of plastics, inadequate plastic waste management leads to persistent environmental pollution. Toxic compounds are transported by MPs and NPs, affecting food chains, nutrient cycles, and overall ecosystem health. MPs impact soil biogeochemistry, microbial activity, and greenhouse gas emissions by altering the nitrogen and carbon cycles. One of the largest gaps in microplastic (MP) research today is the lack of standardized sampling and analytical methods. This lack of standardization significantly complicates the comparison of results across different studies. Multidisciplinary research and strict regulatory measures are needed to address MP pollution. This review highlights the critical need for mitigation methods to maintain ecosystem integrity and suggests standardization of sampling and data analysis. It offers insights into MP distribution, best practices for data analysis, and the impacts and interactions of MPs with biogeochemical processes. The Environmental Protection Agency has identified a critical need to improve the identification of nanoplastics. Particles smaller than 10 μm become increasingly difficult to quantify using standard MP detection practices.
Collapse
Affiliation(s)
- Tanushree Basumatary
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Debajyoti Biswas
- Department
of English, Bodoland University, Kokrajhar (BTR), Assam 783370, India
| | - Swrangsri Boro
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Amy R. Nava
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| |
Collapse
|
6
|
Wang L, Zhou J, Xiong J, Hu T, Xia Q. Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 40056461 DOI: 10.1080/09593330.2024.2448764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/21/2024] [Indexed: 03/10/2025]
Abstract
Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.
Collapse
Affiliation(s)
- Lifei Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Tuanping Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Qianhe Xia
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
7
|
He S, Ye Y, Cui Y, Huo X, Shen M, Li F, Yang Z, Zeng G, Xiong W. Different wetting states in riparian sediment ecosystems: Response to microplastics exposure. WATER RESEARCH 2025; 270:122823. [PMID: 39612814 DOI: 10.1016/j.watres.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Climate change alters the wetting state of riparian sediments, impacting microbial community response and biogeochemical processes. Microplastics (MPs) invade nearly all ecosystems on earth, posing a significant environmental risk. However, little is known about the response mechanism of MP exposure in sediment ecosystems with different wetting states under alternating seasonal rain and drought conditions. In this study, sediments with three different wetting states were selected to explore the differential response of ecosystems to PLA MP exposure. We observed that PLA MP exposure directly affected biogeochemical processes in sediment ecosystems and induced significant changes in microbial communities. PLA MP exposure was found to alter the composition of key species and microbial functional groups in the ecosystem, resulting in a more complex, interconnected, but less stable microbial network. Our findings showed that PLA MP exposure enhances the contribution of stochastic processes, for example the dispersal limitation increasing from 7.41 % to 54.32 %, indicating that sediment ecosystems strive to buffer disturbances from PLA MP exposure. In addition, 87 pathogenic species were detected in our samples, with PLA MPs acting as vectors for their transmission, potentially amplifying ecosystem disturbance. Importantly, we revealed that submerged sediments may present a greater environmental risk, while alternating wet and dry sediments demonstrate greater resistance and resilience to PLA MPs pollution. Overall, this study sheds light on how sediment ecosystems respond to MP exposure, and highlights differences in sediment response mechanisms across wetting states.
Collapse
Affiliation(s)
- Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yajing Cui
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiuqin Huo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
8
|
Wei Z, Ma X, Chai Y, Senbayram M, Wang X, Wu M, Zhang G, Cai S, Ma J, Xu H, Bol R, Rillig MC, Ji R, Yan X, Shan J. Tire Wear Particles Exposure Enhances Denitrification in Soil by Enriching Labile DOM and Shaping the Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1209-1221. [PMID: 39725382 DOI: 10.1021/acs.est.4c09766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil. Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing were employed to elucidate the mechanisms underpinning the TWP effects. We show that TWP increased soil CO2, N2, and N2O emissions, which were attributed to the changes in content and composition of soil dissolved organic matter (DOM) induced by TWP and their leachate. Specifically, the labile DOM components (H/C ≥ 1.5 and transformation >10), which were crucial in shaping the denitrifying community, were significantly enriched by TWP exposure. Furthermore, the abundances of denitrification genes (nirK/S and nosZ-I) and the specific denitrifying genera Pseudomonas were increased following TWP exposure. Our findings provide new insights into impacts of TWP on carbon and nitrogen cycling in soil, highlighting that TWP exposure may exacerbate greenhouse gas emissions and fertilizer N loss, posing adverse effects on soil fertility in peri-urban areas and climate change mitigation.
Collapse
Affiliation(s)
- Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mehmet Senbayram
- Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, Sanliurfa 63000, Turkey
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shujie Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
10
|
Cau A, Moccia D, Dessì C, Carugati L, Carreras-Colom E, Atzori F, Cadoni N, Pusceddu A. Microplastics impair extracellular enzymatic activities and organic matter cycling in oligotrophic sandy marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176795. [PMID: 39395488 DOI: 10.1016/j.scitotenv.2024.176795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Microplastics (MPs) are ubiquitous and constantly accumulating in the marine environment, especially sediments. Yet, it is not well clarified if and how their carbon backbone could interact with surrounding sediments, eventually impairing key benthic processes. We assessed the effects of a 'pulse' contamination event of MPs on sedimentary organic matter (OM) quantity, quality and extracellular enzymatic activities (EEAs), which are well established descriptors of benthic ecosystem functioning. Marine sediments were exposed for 30 days to environmentally relevant concentrations (∼0.2 % in weight) of naturally weathered particles (size range 70-210 μm) of polyurethane, polyethylene, and a mixture of the most common polymers that are documented to accumulate in marine sediments. Despite the low concentration, contaminated sediments showed significantly different composition of OM, showing a decrease in lipid content and increase in protein. Moreover, we document a significant decrease (over 25 %) in quantity of biopolymeric C already after 15 days of exposure, compared to controls. Contaminated sediments showed lower C degradation rates (up to -40 %) and altered EEAs, with alkaline phosphatase being ∼50 % enhanced and aminopeptidase being reduced over 35 % compared to control treatments. Overall, the effects generated by the mixture of polymers were smaller than those exerted by the same amount of a single polymer. Our results provide insights on how that MPs can significantly alter marine sedimentary biogeochemistry through altered benthic processes, that could cumulatively impair whole benthic trophic webs by enhancing the accumulation and possible longer-term storage of recalcitrant organic C in the seabed.
Collapse
Affiliation(s)
- Alessandro Cau
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy.
| | - Davide Moccia
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Claudia Dessì
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Laura Carugati
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Ester Carreras-Colom
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Fabrizio Atzori
- Marine Protected Area 'Capo Carbonara', Via Roma 60, 09049 Villasimius, Cagliari, Italy
| | - Nicoletta Cadoni
- Marine Protected Area 'Capo Carbonara', Via Roma 60, 09049 Villasimius, Cagliari, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| |
Collapse
|
11
|
Cao L, Wu H, Wu X, Feng Y, Ye W, Fan J, Yang Q. Effects of cyanotoxins on nitrogen transformation in aquaculture systems with microplastics coexposure: Adsorption behavior, bacterial communities and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177079. [PMID: 39442720 DOI: 10.1016/j.scitotenv.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Microcystin-LR (MC-LR) and microplastics (MPs) have attracted increasing attention as important new pollutants in freshwater fishery environments. However, there are few reports on the effects of long-term combined MC-LR and MPs pollution on nitrogen transformation and microbial communities in aquaculture ponds, and the resulting risks have yet to be determined. Therefore, in this study, traditional refractory MPs (polystyrene, PS), biodegradable MPs (polylactic acid, PLA) and MC-LR, which are common in freshwater fishery environments in China, were selected as pollutants to construct a microcosm that simulates freshwater aquaculture ponds. MC-LR coexposure to PS and PLA was tested to reveal the effects of these pollutants on nitrogen transformation and microbial communities in aquaculture ponds, as well as to elucidate the potential risks posed by traditional refractory MPs and biodegradable MPs to freshwater aquaculture ecosystems. The results revealed that the MPs had a relatively high adsorption rate for MC-LR and that PS presented a relatively high adsorption capacity, whereas PLA presented a relatively high desorption capacity. Single or combined MPs and MC-LR pollution disrupted the normal nitrogen cycle in the aquaculture system, causing an overall loss of nitrogen in the water, and denitrification and nitrogen fixation in the water were inhibited to a certain extent through the inhibition of nitrogen cycle-related functional genes, with the PS + MC-LR group having the greatest inhibitory effect. In addition, compared with single-pollutant exposure, combined exposure to MC-LR and MPs had a greater effect on the microbial community composition. Analysis of the integrated biomarker response (IBR) index revealed that the risk of combined exposure to MC-LR and PS was greater than that of single exposure, so this phenomenon merits further attention.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Hao Wu
- Huzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Huzhou City, Zhejiang Province 313000, China
| | - Xiang Wu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China.
| | - Yaru Feng
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Wentao Ye
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Jiaqi Fan
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Quping Yang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| |
Collapse
|
12
|
Zhang S, Li T, Xie H, Song M, Huang S, Guo Z, Hu Z, Zhang J. The crucial factor for microplastics removal in large-scale subsurface-flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136023. [PMID: 39383694 DOI: 10.1016/j.jhazmat.2024.136023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Constructed wetlands (CWs) are an effective method for removing microplastics (MPs). Nevertheless, the understanding of the impact of various parameters on MPs removal within CWs remains incomplete. Through field investigations of large-scale CWs and the application of machine learning methods with an interpretable attribution technique (the Shapley Additive Explanation), we investigated the critical factors influencing MPs removal within CWs. The MPs abundance in the influent and the inlet of Z-CW (400.1 ± 20.8 items/L and 699.6 ± 50.6 items/kg) was significantly higher compared to that in M-CW (138.8 ± 20.5 items/L and 166.5 ± 36.8 items/kg), with no significant difference observed in the effluent. The primary characteristic of MPs is their fibrous and transparent appearance. The MPs removal range from 87.9% to 95.5 %, influenced by the types and characteristics of MPs, physical and chemical parameters, biofilms, and different processes. Among these factors, dissolved organic carbon with high humic content, aromaticity, and carboxyl abundance may serve as a crucial factor in MPs removal. The results of this study highlight the significance of physical and chemical parameters for the MPs removal in CWs, providing the necessary theoretical data for the construction of future large-scale engineering applications.
Collapse
Affiliation(s)
- Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Tianshuai Li
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shengxuan Huang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Zizhang Guo
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
13
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
15
|
Wang Z, Liu L, Zhou G, Yu H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Chen J. Impact of microplastics on microbial community structure in the Qiantang river: A potential source of N 2O emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124755. [PMID: 39151781 DOI: 10.1016/j.envpol.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, 15008, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
16
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
17
|
Hamann L, Werner J, Haase FJ, Thiel M, Scherwaß A, Laforsch C, Löder MGJ, Blanke A, Arndt H. Retention of microplastics by biofilms and their ingestion by protists in rivers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70016. [PMID: 39384165 PMCID: PMC11464032 DOI: 10.1111/1758-2229.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Microplastics (MPs) are released into the environment through human activities and are transported by rivers from land to sea. Biofilms, which are ubiquitous in aquatic ecosystems such as rivers, may play an essential role in the fate of MPs and their ingestion by biofilm protists. To assess this, biofilms were naturally grown on clay tiles in the River Rhine, Germany, and analysed in a combined field and laboratory study. Compared to the ambient river water, biofilms grown for 6, 12, and 18 months in the River Rhine contained up to 10 times more MPs. Between 70% and 78% of all MPs were smaller than 50 μm. In laboratory experiments, clay tiles covered with 1-month-old naturally grown biofilm retained 6-12 times more MPs than clay tiles without biofilm coverage. Furthermore, the ingestion of MPs of 6 and 10 μm by the ciliate Stentor coeruleus was confirmed, and a positive correlation between ingestion rates and ambient MP concentrations was found. The results are relevant for particle transport models in riverine systems, risk assessment of MPs regarding their distribution and fate in the aquatic environment, and the effects of MPs on micro- and macroorganisms.
Collapse
Affiliation(s)
- Leandra Hamann
- Bonn Institute for Organismic Biology, Section 2, Animal DiversityUniversity of BonnBonnGermany
- Institute of ZoologyUniversity of CologneCologneGermany
| | | | - Felicia J. Haase
- Institute of ZoologyUniversity of CologneCologneGermany
- Coastal and Marine Research CentreGriffith UniversitySouthportQueenslandAustralia
- School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Massimo Thiel
- Institute of ZoologyUniversity of CologneCologneGermany
| | - Anja Scherwaß
- Institute of ZoologyUniversity of CologneCologneGermany
| | - Christian Laforsch
- Department Animal Ecology I and BayCEERUniversity of BayreuthBayreuthGermany
| | - Martin G. J. Löder
- Department Animal Ecology I and BayCEERUniversity of BayreuthBayreuthGermany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology, Section 2, Animal DiversityUniversity of BonnBonnGermany
| | - Hartmut Arndt
- Institute of ZoologyUniversity of CologneCologneGermany
| |
Collapse
|
18
|
Ma Y, Gu X, Zhang Y, Yan P, Zhang M, Sun S, Ren T, Tang L, He S. Unveiling the microplastic perturbation on surface flow constructed wetlands with macrophytes of different life forms: Responses of nitrogen removal and sensory quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135283. [PMID: 39053072 DOI: 10.1016/j.jhazmat.2024.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) discharging into constructed wetlands pose risks to these ecosystems. Nevertheless, the perturbation of MPs to different types of macrophytes, which play important roles in purifying pollutants of wetlands, has not been fully elucidated. In this study, polystyrene MPs (PS-MPs) perturbation on nitrogen removal and sensory quality of surface flow constructed wetlands planted with emergent and submerged macrophytes were investigated. PS-MPs enhanced N removal efficiencies temporarily, whereas the N removal rate constants were declined as exposure time was prolonged. The NH4+-N removal rate constants declined by 25.78 % and 34.03 % in E and S groups respectively. The NO3--N removal rate constants declined by 22.13 % in the S groups. Denitrifiers including Thiobacillus, Rhodobacter, and Sulfuritalea were stressed. The sensory quality deteriorated after PS-MPs exposure, which was significantly related to changes in Chlorophyll a, particle size distribution, and colored dissolved organic matter. Turbidity in E groups and chroma in S groups were greatly affected by PS-MPs. Overall, under MPs exposure, macrophytes in E groups were more suitable for nitrogen removal, and macrophytes in S groups better purified the turbidity. The study could provide the basis for better allocation of macrophytes in CWs to reduce the purifying risk by PS-MPs disturbance.
Collapse
Affiliation(s)
- Yujia Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tongtong Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Gardens (Group) Co., Ltd., Shanghai 200023, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
19
|
Zhuo T, Yu K, Chai B, Tang Q, Gao X, Wang J, He L, Lei X, Li Y, Meng Y, Wu L, Chen B. Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study. ENVIRONMENTAL RESEARCH 2024; 257:119250. [PMID: 38844031 DOI: 10.1016/j.envres.2024.119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.
Collapse
Affiliation(s)
- Tianyu Zhuo
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China; Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Kehong Yu
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China.
| | - Qingfeng Tang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Xia Gao
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Jiamin Wang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Lixin He
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yang Li
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yuan Meng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China; School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Lifeng Wu
- Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Bin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan, 056038, China.
| |
Collapse
|
20
|
Huang W, Xia X. Element cycling with micro(nano)plastics. Science 2024; 385:933-935. [PMID: 39208108 DOI: 10.1126/science.adk9505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Plastics in the environment can alter a wide range of biogeochemical cycles.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Chatman CC, Olson EG, Freedman AJ, Dittoe DK, Ricke SC, Majumder ELW. Co-exposure to polyethylene fiber and Salmonella enterica serovar Typhimurium alters microbiome and metabolome of in vitro chicken cecal mesocosms. Appl Environ Microbiol 2024; 90:e0091524. [PMID: 38984844 PMCID: PMC11337840 DOI: 10.1128/aem.00915-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024] Open
Abstract
Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.
Collapse
Affiliation(s)
- Chamia C. Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elena G. Olson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allison J. Freedman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica L-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
23
|
Nava V, Leoni B, Arienzo MM, Hogan ZS, Gandolfi I, Tatangelo V, Carlson E, Chea S, Soum S, Kozloski R, Chandra S. Plastic pollution affects ecosystem processes including community structure and functional traits in large rivers. WATER RESEARCH 2024; 259:121849. [PMID: 38851112 DOI: 10.1016/j.watres.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Plastics in aquatic ecosystems rapidly undergo biofouling, giving rise to a new ecosystem on their surface, the 'plastisphere.' Few studies quantify the impact of plastics and their associated community on ecosystem traits from biodiversity and functional traits to metabolic function. It has been suspected that impacts on ecosystems may depend on its state but comparative studies of ecosystem responses are rare in the published literature. We quantified algal biomass, bacterial and algal biodiversity (16S and 18S rRNA), and metabolic traits of the community growing on the surface of different plastic polymers incubated within rivers of the Lower Mekong Basin. The rivers selected have different ecological characteristics but are similar regarding their high degree of plastic pollution. We examined the effects of plastics colonized with biofilms on ecosystem production, community dark respiration, and the epiplastic community's capability to influence nitrogen, phosphorus, organic carbon, and oxygen in water. Finally, we present conceptual models to guide our understanding of plastic pollution within freshwaters. Our findings showed limited microalgal biomass and bacterial dominance, with potential pathogens present. The location significantly influenced community composition, highlighting the role of environmental conditions in shaping community development. When assessing the effects on ecosystem productivity, our experiments showed that biofouled plastics led to a significant drop in oxygen concentration within river water, leading to hypoxic/anoxic conditions with subsequent profound impacts on system metabolism and the capability of influencing biogeochemical cycles. Scaling our findings revealed that plastic pollution may exert a more substantial and ecosystem-altering impact than initially assumed, particularly in areas with poorly managed plastic waste. These results highlighted that the plastisphere functions as a habitat for biologically active organisms which play a pivotal role in essential ecosystem processes. This warrants dedicated attention and investigation, particularly in sensitive ecosystems like the Mekong River, which supports a rich biodiversity and the livelihoods of 65 million people.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy.
| | - Monica M Arienzo
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Zeb S Hogan
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Emily Carlson
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Seila Chea
- Institute of Technology of Cambodia, PO Box 86, Russian Conf. Blvd. Phnom Penh, Cambodia
| | - Savoeurn Soum
- Royal University of Phnom Penh, Russian Federation Blvd (110), Phnom Penh, Cambodia
| | - Rachel Kozloski
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Sudeep Chandra
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States.
| |
Collapse
|
24
|
Song X, Zou H, Zhang Y, Yang J, Ding J. Microplastics alter the microbiota-mediated phosphorus profiles at sediment-water interface: Distinct microbial effects between sediment and plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173048. [PMID: 38740204 DOI: 10.1016/j.scitotenv.2024.173048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater sediments, raising concern about their potential impacts on ecosystem services. However, the specific impacts of microbiota mediated by MPs in sediment and plastisphere compartments on P availability remain elusive. This investigation conducted a series of microcosm experiments utilizing eutrophic lake sediment amended with fuel-based polyethylene terephthalate (PET), bio-based polylactic acid (PLA) MPs, and a natural cobblestone substrate to unravel their effects. The findings highlighted that MPs induced alterations in bacterial communities in both sediment and plastisphere, consequently modifying P availabilities at the sediment-water interface (SWI). In comparison to non-biodegradable PET, biodegradable PLA MPs presented higher proportions of specific bacteria and functional genes associated with P profiles, such as Firmicutes, Ignavibacteriota, and P mineralizing genes in the sediment and plastisphere. This, in turn, elevated the levels of soluble reactive P in the porewater by 54.19 % (0-1 cm), 55.81 % (1-3 cm), and 18.24 % (3-5 cm), respectively. Additionally, PLA obviously altered P immobilization capacity and bioavailability, increasing the organic P fraction. Whereas, inert cobblestone exhibited negligible influence on P biogeochemical processes during the incubation. Moreover, the biofilm communities and those in the surrounding sediment specifically contributed to the changes in P profiles at the SWI. The functional genes associated with P profiles in the sediment mainly concentrate on P mineralization and P uptake/transport. In the plastisphere, P activation genes are obviously affected under MP exposure. This study fills the knowledge gap concerning the repercussions of MPs on ecosystem services.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Yunbo Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| |
Collapse
|
25
|
Gao X, Li X, Wang Y, Lin C, Zuo Y, Li X, Xing W. Does invasive submerged macrophyte diversity affect dissimilatory nitrate reduction processes in sediments with varying microplastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134510. [PMID: 38704909 DOI: 10.1016/j.jhazmat.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.
Collapse
Affiliation(s)
- Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yingcai Wang
- Eco-Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan 430010, China.
| | - Cheng Lin
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaolu Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
26
|
Valentine K, Hughes C, Boxall A. Plastic Litter Emits the Foraging Infochemical Dimethyl Sulfide after Submersion in Freshwater Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1485-1496. [PMID: 38661488 DOI: 10.1002/etc.5880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is widespread throughout aquatic environments globally, with many organisms known to interact with and ingest plastic. In marine environments, microbial biofilms that form on plastic surfaces can produce the odorous compound dimethyl sulfide (DMS), which is a known foraging cue. This has been shown to increase the ingestion of plastic by some invertebrates and therefore act as a biological factor which influences the risks of plastic to marine ecosystems. In freshwater however, the production of DMS has been largely overlooked, despite the known sensitivity of some freshwater species to this compound. To address this gap, the present study analyzed the production of DMS by biofilms which formed on low-density polyethylene and polylactic acid films after 3 and 6 weeks of submersion in either a rural or an urban United Kingdom river. Using gas chromatography-mass spectrometry, the production of DMS by these biofilms was consistently identified. The amount of DMS produced varied significantly across river locations and materials, with surfaces in the urban river generally producing a stronger signal and plastics producing up to seven times more DMS than glass control surfaces. Analysis of biofilm weight and photosynthetic pigment content indicated differences in biofilm composition across conditions and suggested that DMS production was largely driven by nonphotosynthetic taxa. For the first time this work has documented the production of DMS by plastic litter after submersion in freshwater rivers. Further work is now needed to determine if, as seen in marine systems, this production of DMS can encourage the interaction of freshwater organisms with plastic litter and therefore operate as a biological risk factor in the impacts of plastic on freshwater environments. Environ Toxicol Chem 2024;43:1485-1496. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Katey Valentine
- Department of Environment and Geography, University of York, York, United Kingdom
- BeZero Carbon, London, United Kingdom
| | - Claire Hughes
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
27
|
Yan Z, Lin S, Hu R, Cheng H, Xiang R, Xu H, Zhao J. Effects of biodegradable microplastics and straw addition on soil greenhouse gas emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124315. [PMID: 38848959 DOI: 10.1016/j.envpol.2024.124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Large pieces of plastic are transformed into microplastic particles through weathering, abrasion, and ultraviolet radiation, significantly impacting the soil ecosystem. However, studies on biodegradable microplastics replacing traditional microplastics as agricultural mulching films to drive the biogeochemical processes influenced by GHG are still in their initial stages, with limited relevant reports available. This study sought to investigate the effects of microplastic and straw addition on CO2 and N2O emissions in different soils. Herein, yellow-brown soil (S1) and fluvo-aquic soil (S2) were utilized, each treated with three different concentrations of PLA (polylactic acid) microplastics (0.25%, 2%, and 7% w/w) at 25 °C for 35 days, with and without straw addition. The results showed that straw (1% w/w) significantly increased soil CO2 by 4.1-fold and 3.2-fold, respectively, and N2O by 1.8-fold and 1.8-fold, respectively, in cumulative emissions in S1 and S2 compared with the control. PLA microplastics significantly increased CO2 emissions by 71.5% and 99.0% and decreased N2O emissions by 30.1% and 24.7% at a high concentration (7% w/w, PLA3) in S1 and S2 compared with the control, respectively. The same trend was observed with the addition of straw and microplastics together. Structural equation modeling and redundancy analysis confirmed that soil physiochemical parameters, enzyme and microbial activities are key factors regulating CO2 and N2O emissions. The addition of microplastics is equivalent to the addition of carbon sources, which can significantly affect DOC, MBC, SOC and the abundance of carbon-associated bacteria (CbbL), thereby increasing soil CO2 emissions. The addition of microplastics alone inhibited the activity of nitrogen cycling enzymes (urease activity), increasing the abundance of denitrifying microbes. However, adding a high amount of microplastics and straw together released plastic additives, inhibiting microbial abundance and reducing the nitrogen cycle. These effects decreased NH4+-N and increased NO3--N, resulting in decreased N2O emissions. This study indicates that biodegradable microplastics could reduce soil plastic residue pollution through degradation. However, their use could also increase CO2 emissions and decrease N2O emissions. Consequently, this research lays the groundwork for further investigation into the implications of utilizing biodegradable microplastics as agricultural mulch, particularly concerning soil geochemistry and GHG emissions.
Collapse
Affiliation(s)
- Ziwei Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shan Lin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Ronggui Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China
| | - Rongbiao Xiang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Han Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jinsong Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
28
|
Wang Q, Zheng G, Ni L, Wang H, Li W, Guo P, Wang Y, Zheng D, Wu J, Zhang D. Colonization characteristics and dynamic transition of archaea communities on polyethylene and polypropylene microplastics in the sediments of mangrove ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134343. [PMID: 38640671 DOI: 10.1016/j.jhazmat.2024.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China; Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Gang Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Xianghu Laboratory, Hangzhou 311231, Zhejiang, China
| | - Lingfang Ni
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| | - Weiye Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China
| | - Jiaping Wu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
29
|
Zhang T, Luo XS, Kumar A, Liu X, Tong X, Yao X, Fan J, Chen Z, Chaturvedi S. Effects of micro-nano plastics on the environmental biogeochemical cycle of nitrogen: A comprehensive review. CHEMOSPHERE 2024; 357:142079. [PMID: 38642771 DOI: 10.1016/j.chemosphere.2024.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Liu
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Tong
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiayi Fan
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihuai Chen
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sadashiv Chaturvedi
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
30
|
Jacquin J, Budinich M, Chaffron S, Barbe V, Lombard F, Pedrotti ML, Gorsky G, Ter Halle A, Bruzaud S, Kedzierski M, Ghiglione JF. Niche partitioning and plastisphere core microbiomes in the two most plastic polluted zones of the world ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41118-41136. [PMID: 38844633 DOI: 10.1007/s11356-024-33847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e., the North Pacific gyre and the Mediterranean Sea. The 16S rRNA gene sequencing analysis confirmed that PMD are a new anthropogenic ocean habitat for marine microbes at the ocean-basin-scale, with clear niche partitioning compared to FL and PA lifestyles. At an ocean-basin-scale, the composition of the plastisphere communities was mainly driven by environmental selection, rather than polymer types or dispersal effect. A plastisphere "core microbiome" could be identified, mainly dominated by Rhodobacteraceae and Cyanobacteria. Predicted functions indicated the dominance of carbon, nitrogen and sulfur metabolisms on PMD that open new questions on the role of the plastisphere in a large number of important ecological processes in the marine ecosystem.
Collapse
Affiliation(s)
- Justine Jacquin
- UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, 1 Avenue Fabre, 66650, Banyuls Sur Mer, France
| | - Marko Budinich
- Laboratoire Adaptation Et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
- École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes Université, F-44000, Nantes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Fabien Lombard
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Maria-Luiza Pedrotti
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Gabriel Gorsky
- UMR 7076, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche Sur Mer, France
| | - Alexandra Ter Halle
- Laboratoire SOFMAT, CNRS, Université de Toulouse III-Paul Sabatier, UMR 5623, Toulouse, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Mikaël Kedzierski
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Jean-François Ghiglione
- UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, 1 Avenue Fabre, 66650, Banyuls Sur Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
| |
Collapse
|
31
|
Ventura E, Marín A, Gámez-Pérez J, Cabedo L. Recent advances in the relationships between biofilms and microplastics in natural environments. World J Microbiol Biotechnol 2024; 40:220. [PMID: 38809290 PMCID: PMC11136731 DOI: 10.1007/s11274-024-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Plastic pollution in the form of microplastics (MPs), poses a significant threat to natural ecosystems, with detrimental ecological, social, and economic impacts. This review paper aims to provide an overview of the existing research on the interaction between microbial biofilms and MPs in natural environments. The review begins by outlining the sources and types of MPs, emphasizing their widespread presence in marine, freshwater, and terrestrial ecosystems. It then discusses the formation and characteristics of microbial biofilms on MPs surfaces, highlighting their role in altering the physicochemical properties of MPs and facilitating processes such as vertical transport, biodegradation, dispersion of microorganisms, and gene transfer. Different methods used to assess these interactions are discussed, including microbiological and physicochemical characterization. Current gaps and challenges in understanding the complex relationships between biofilms and MPs are identified, highlighting the need for further research to elucidate the mechanisms underlying these complex interactions and to develop effective mitigation strategies. Innovative solutions, including bioremediation techniques and their combination with other strategies, such as nanotechnology, advanced filtration technologies, and public awareness campaigns, are proposed as promising approaches to address the issue of MPs pollution. Overall, this review underscores the urgent need for a multidisciplinary approach to combating MPs pollution, combining scientific research, technological innovation, and public engagement to safeguard the health and integrity of natural ecosystems.
Collapse
Affiliation(s)
- Eva Ventura
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
32
|
Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, Li Y, Paller M, Adyel TM, Rinklebe J, Bolan NS, Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171435. [PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
Collapse
Affiliation(s)
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mike Paller
- Aquatic Biology Consultants, Inc., 35 Bungalow Ct., Aiken, SC 29803, USA
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
33
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
34
|
Zhao E, Xiong X, Li X, Hu H, Wu C. Effect of Biofilm Forming on the Migration of Di(2-ethylhexyl)phthalate from PVC Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6326-6334. [PMID: 38551364 DOI: 10.1021/acs.est.3c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plastic additives, represented by plasticizers, are important components of plastic pollution. Biofilms inevitably form on plastic surfaces when plastic enters the aqueous environment. However, little is known about the effect of biofilms on plastic surfaces on the release of additives therein. In this study, PVC plastics with different levels of di(2-ethylhexyl)phthalate (DEHP) content were investigated to study the effect of biofilm growth on DEHP release. The presence of biofilms promoted the migration of DEHP from PVC plastics to the external environment. Relative to biofilm-free controls, although the presence of surface biofilm resulted in 0.8 to 11.6 times lower DEHP concentrations in water, the concentrations of the degradation product, monoethylhexyl phthalate (MEHP) in water, were 2.3 to 57.3 times higher. When the total release amounts of DEHP in the biofilm and in the water were combined, they were increased by 0.6-73 times after biofilm growth. However, most of the released DEHP was adsorbed in the biofilms and was subsequently degraded. The results of this study suggest that the biofilm as a new interface between plastics and the surrounding environment can affect the transport and transformation of plastic additives in the environment through barrier, adsorption, and degradation. Future research endeavors should aim to explore the transport dynamics and fate of plastic additives under various biofilm compositions as well as evaluate the ecological risks associated with their enrichment by biofilms.
Collapse
Affiliation(s)
- E Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| |
Collapse
|
35
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
36
|
Peng X, Zhang X, Zhang S, Li Z, Zhang H, Zhang L, Wu Z, Liu B. Revealing the response characteristics of periphyton biomass and community structure to sulfamethoxazole exposure in aquaculture water: The perspective of microbial network relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123301. [PMID: 38190873 DOI: 10.1016/j.envpol.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.
Collapse
Affiliation(s)
- Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuxi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
37
|
Lazcano RF, Kelly JJ, Hoellein TJ. Biofilms on plastic litter in an urban river: Community composition and activity vary by substrate type. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11008. [PMID: 38443318 DOI: 10.1002/wer.11008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
In aquatic ecosystems, plastic litter is a substrate for biofilms. Biofilms on plastic and natural surfaces share similar composition and activity, with some differences due to factors such as porosity. In freshwaters, most studies have examined biofilms on benthic substrates, while little research has compared the activity and composition of biofilms on buoyant plastic and natural surfaces. Additionally, the influence of substrate size and successional stage on biofilm composition has not been commonly assessed. We incubated three plastics of distinct textures that are buoyant in rivers, low-density polyethylene (rigid; 1.7 mm thick), low-density polyethylene film (flexible; 0.0254 mm thick), and foamed polystyrene (brittle; 6.5 mm thick), as well as wood substrates (untreated oak veneer; 0.6 mm thick) in the Chicago River. Each material was incubated at three sizes (1, 7.5, and 15 cm2 ). Substrates were incubated at 2-10 cm depths and removed weekly for 6 weeks. On each substrate we measured chlorophyll concentration, biofilm biomass, respiration, and flux of nitrogen gas. We sequenced 16S and 23S rRNA genes at Weeks 1, 3, and 6 to capture biofilm community composition across successional stages. Chlorophyll, biomass, and N2 flux were similar across substrates, but respiration was greater on wood than plastics. Bacterial and algal richness and diversity were highest on foam and wood compared to polyethylene substrates. Bacterial biofilm community composition was distinct between wood and plastic substrates, while the algal community was distinct on wood and foam, which were different from each other and polyethylene substrates. These results indicate that polymer properties influence biofilm alpha and beta diversity, which may affect transport and distribution of plastic pollution and associated microbes, as well as biogeochemical processes in urban rivers. This study provides valuable insights into the effects of substrate on biofilm characteristics, and the ecological impacts of plastic pollution on urban rivers. PRACTITIONER POINTS: Plastic physical and chemical properties act as forces of selection for biofilm. Biofilm activity was similar among three different types of plastic. Community composition between plastic and wood was different.
Collapse
Affiliation(s)
- Raúl F Lazcano
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - John J Kelly
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Timothy J Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Song H, Xiao S, Zhou X, Li Y, Tao M, Wu F, Xu X. Temporal dynamics of bacterial colonization on five types of microplastics in a freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169697. [PMID: 38163614 DOI: 10.1016/j.scitotenv.2023.169697] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs), as a new substrate, provide a unique niche for microbial colonization in the freshwater ecosystems; however, the impacts of long-term MP exposure on colonized bacteria are still unclear. In this study, five MP types were exposed in a freshwater lake for approximately one year, and the MP particles, together with the surrounding water, were collected on days 60, 150, 250 and 330 during the in situ field experiment. Bacteria on the MP surface, as well as free-living bacteria in the surrounding water, were analyzed to evaluate the temporal dynamics of these bacterial communities. Results show that all five MP types exhibited signs of degradation during the exposure process. Additionally, the alpha diversity, community structure and composition of MP-attached bacteria significantly differed from that of the free-living bacteria in the surrounding water, indicating that the five MP types could provide a preferable niche for bacterial colonization in a freshwater environment. Proteobacteria, Chloroflexi, Verrucomicrobiota, Actinobacteriota and Firmicutes were the top five dominant phyla. Some plastic-degrading bacteria included in these phyla were detected, verifying that MP-attached biofilms had a certain degree of MP degradation potential. Some potentially pathogenic bacteria were also detected, suggesting an ecological threat for spreading disease in the aquatic ecosystem. Furthermore, the bacterial community and some metabolic pathways were significantly affected by the MP type (P < 0.01) and exposure time (P < 0.01), indicating that the presence of MPs not only alters the bacterial community structure and composition, but also influences their potential functional properties in freshwater ecosystems. Multiple factors, including the physicochemical properties related to MPs and the environmental parameters of the surrounding water, affect the community composition and the function of MP-attached bacteria to different degrees. Our findings indicate that the presence of MPs has a potential ecological impact on freshwater ecosystems.
Collapse
Affiliation(s)
- Haiya Song
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yanan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Tao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
39
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
40
|
Ma X, Shan J, Chai Y, Wei Z, Li C, Jin K, Zhou H, Yan X, Ji R. Microplastics enhance nitrogen loss from a black paddy soil by shifting nitrate reduction from DNRA to denitrification and Anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167869. [PMID: 37848146 DOI: 10.1016/j.scitotenv.2023.167869] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Microplastics (MPs) are frequently detected emerging pollutants in soil that can endanger farmland ecosystems; however, little is known about their impacts on dissimilatory nitrate reduction processes in paddy soil. Here, using the 15N-tracer and microbial molecular techniques, we investigated the effects of MPs (200-400 μm) made of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE) on denitrification, anaerobic ammonium oxidation (Anammox), and dissimilatory nitrate reduction to ammonium (DNRA) and the associated microbial community in a black paddy soil. All MPs increased the Anammox rate by 6.6 %-745 % and decreased the DNRA rate by 15.1 %-74.2 %, while MPs of PS and PE significantly increased the denitrification rate by 79.3 %-102.3 % and 34.8 %-62.1 %, respectively. The MPs promoted the partitioning of NO3- towards denitrification and Anammox while inhibiting DNRA, as suggested by the decreased relative contributions of DNRA from 24.1 % to 5.4 %-14.2 % following MPs amendment. This was attributed to the increased denitrification gene abundance and the enriched specific denitrifier taxa, as well as the decreased DNRA gene abundance. Our findings suggest that the stimulated denitrification and Anammox by MPs, accompanied by the suppression of DNRA, may lead to substantial nitrogen loss in paddy fields, underscoring the need to further evaluate the environmental behaviors of MPs in agricultural ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Han Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
41
|
Wu Q, Zhou W, Chen D, Tian J, Ao J. Biochar Mitigates the Negative Effects of Microplastics on Sugarcane Growth by Altering Soil Nutrients and Microbial Community Structure and Function. PLANTS (BASEL, SWITZERLAND) 2023; 13:83. [PMID: 38202391 PMCID: PMC10781033 DOI: 10.3390/plants13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Microplastic pollution in sugarcane areas of China is severe, and reducing the ecological risks is critical. Biochar has been widely used in soil remediation. This study aims to explore the effects and mechanisms of microplastics combined with or without biochar on sugarcane biomass, soil biochemical properties in red soil through a potted experiment. The results show that, compared with control (CK), treatments with microplastics alone reduced the dry biomass of sugarcane, soil pH, and nitrogen (N) and phosphorus (P) contents by an average of 8.8%, 2.1%, 1.1%, and 2.0%, respectively. Interestingly, microplastics combined with biochar could alleviate the negative effects of microplastic accumulation on sugarcane growth and soil quality. There were significant differences in the bacterial community alpha diversity indices and compositions among different treatments. Compared with CK, treatments with microplastics alone obviously decreased the observed operational taxonomic units (OTUs) and the Chao1 and Shannon indices of soil total bacteria (16S rRNA gene-based bacteria) while increasing them in phoD-harboring bacteria. Microplastics combined with biochar treatments significantly increased the abundance of Subgroup_10 for the 16S rRNA gene and treatments with microplastics alone significantly increased the relative abundance of Streptomyces for the phoD gene compared to CK. Moreover, compared with microplastics alone, the treatments with microplastics combined with biochar increased the relative abundance of Subgroup_10, Bacillus, Pseudomonas in soil total bacteria, and Amycolatopsis and Bradyrhizobium in phoD-harboring bacteria, most of which can inhibit harmful bacteria and promote plant growth. Additionally, different treatments also changed the abundance of potential microbial functional genes. Compared to CK, other treatments increased the abundance of aerobic ammonia oxidation and denitrification but decreased the abundance of nitrate respiration and nitrogen respiration; meanwhile, these four functional genes involved in N cycling processes were obviously higher in treatments with microplastics combined with biochar than in treatments with microplastics alone. In conclusion, microplastics combined with biochar could alleviate the negative effects of microplastic accumulation on sugarcane biomass by altering soil nutrients and microbial community structure and function.
Collapse
Affiliation(s)
- Qihua Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (Q.W.); (W.Z.); (D.C.)
| | - Wenling Zhou
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (Q.W.); (W.Z.); (D.C.)
| | - Diwen Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (Q.W.); (W.Z.); (D.C.)
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China;
| | - Junhua Ao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (Q.W.); (W.Z.); (D.C.)
| |
Collapse
|
42
|
Li T, Cui L, Xu Z, Liu H, Cui X, Fantke P. Micro- and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166925. [PMID: 37689210 DOI: 10.1016/j.scitotenv.2023.166925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA.
Collapse
Affiliation(s)
- Tong Li
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Hongdou Liu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
43
|
Liu X, Fang L, Yan X, Gardea-Torresdey JL, Gao Y, Zhou X, Yan B. Surface functional groups and biofilm formation on microplastics: Environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166585. [PMID: 37643702 DOI: 10.1016/j.scitotenv.2023.166585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
44
|
Zhou J, Zhang Z, Xiong J, Shi W, Liang L, Zhang F, Zhang F. Nitrogen removal performance of bioretention cells under polyethylene (PE) microplastic stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122655. [PMID: 37778494 DOI: 10.1016/j.envpol.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The use of bioretention cells as a stormwater control measure allows stormwater runoff to be collected and filtered, effectively removing microplastics and other pollutants from stormwater. This study investigated the effect of polyethylene microplastics (PE-MPs) retention on the bioretention cell, in terms of denitrification performance and microbial community structure. Four PE-MP exposures were compared at different concentrations of 0, 250, 500 and 1000 mg/L under alternating dry and wet period conditions. Results showed that the removal efficiency reduced by 14.99%, 28.37% and 18.59% with PE-MP concentrations of 250, 500 and 1000 mg/L. The NO3--N removal efficiency increased by 36.19%, 20.19% and 35.39%. After 8 days of dry conditions, the NO3--N removal efficiencies of the bioretention cells were reduced by 36.66%, 46.86% and 31.11% compared to those after 2 days of dry conditions. Microbial sequencing results indicated that the accumulation of PE-MPs changed the microbial community structure within the bioretention cell filler material, promoting the growth of bacteria such as Actinobacteria, Bacteroidetes and Firmicutes. Furthermore, PE-MPs reduced the relative abundance of nitrifying bacteria (e.g. Nitrospira) within the bioretention cell and promoted denitrifying bacteria (e.g. Dechloromonas and Hydrogenophaga), along with numerous other genera such as Azotobacter and Nocardia.
Collapse
Affiliation(s)
- Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zinuo Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
| | - WeiPeng Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Lipeng Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Fanghong Zhang
- Qinghai Provincial Civil Air Defense Engineering Design and Research Institute Co., Ltd, China
| | - Fei Zhang
- Wuhan Municipal Engineering Design & Research Institute Co., Ltd, China
| |
Collapse
|
45
|
Procházková P, Mácová S, Aydın S, Zlámalová Gargošová H, Kalčíková G, Kučerík J. Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor. Heliyon 2023; 9:e23128. [PMID: 38076089 PMCID: PMC10703853 DOI: 10.1016/j.heliyon.2023.e23128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.
Collapse
Affiliation(s)
- Petra Procházková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Sabina Mácová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Seçil Aydın
- Department of Chemical Engineering, Faculty of Chemistry-Metallurgical, Yıldız Technical University, 34210, Davutpasa Esenler, Istanbul, Turkiye
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
46
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
47
|
Hu X, Meng LJ, Liu HD, Guo YS, Liu WC, Tan HX, Luo GZ. Impacts of Nile Tilapia (Oreochromis niloticus) exposed to microplastics in bioflocs system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165921. [PMID: 37527718 DOI: 10.1016/j.scitotenv.2023.165921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Microplastics (MPs) are abundant in aquaculture water, including in bioflocs aquaculture systems. Compared with other aquaculture systems, biofloc technology systems have the richest microbes and are beneficial to cultivated organisms. Therefore, this study provides a comprehensive assessment of the potential effects of MPs on aquaculture organisms in bioflocs systems. Here, Nile Tilapia (Oreochromis niloticus) were exposed to MPs (polystyrene; 32-40 μm diameter) with 0, 80 items/L (30 μg/L), and 800 items/L (300 μg/L) for 28 days in a bioflocs aquaculture system. The results showed that the MPs generally had no apparent effect on water quality, tilapia growth, or digestive enzyme activity. However, MPs accumulated the most in the liver (5.65 ± 0.74 μg/mg) and significantly increased the hepato-somatic index of tilapia and reduced the crude protein and lipid of tilapia muscle (p < 0.05). The levels of the antioxidant enzymes catalase and glutathione S-transferase increased significantly in response to MPs (p < 0.05). In contrast, MPs did not affect the content of glutathione, glutathione peroxidase, oxidized glutathione, and malondialdehyde, or the enzyme activity of Na+/K+-ATPase. Moreover, using an improved integrated biomarker response index, growth performance was found to be less responsive to MPs than to oxidative stress and digestive activity. Exposure to MPs did not significantly influence the microbial communities of the bioflocs and tilapia guts (p < 0.05). These results suggest that MPs barely affected tilapia in the bioflocs system. This study contributes to the evaluation of the ecological risk of MPs in aquaculture systems and a better understanding of the integrated response of cultivated vertebrates to MPs in biofloc technology systems.
Collapse
Affiliation(s)
- Xin Hu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liu-Jiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Dan Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shuo Guo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wen-Chang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Hong-Xin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guo-Zhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
48
|
Salam M, Zheng H, Liu Y, Zaib A, Rehman SAU, Riaz N, Eliw M, Hayat F, Li H, Wang F. Effects of micro(nano)plastics on soil nutrient cycling: State of the knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118437. [PMID: 37343476 DOI: 10.1016/j.jenvman.2023.118437] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The ecological impacts of micro(nano)plastics (MNPs) have attracted attention worldwide because of their global occurrence, persistence, and environmental risks. Increasing evidence shows that MNPs can affect soil nutrient cycling, but the latest advances on this topic have not systematically reviewed. Here, we aim to present the state of knowledge about the effects of MNPs on soil nutrient cycling, particularly of C, N, and P. Using the latest data, the present review mainly focuses on three aspects, including (1) the effects and underlying mechanisms of MNPs on soil nutrient cycling, particularly of C, N and P, (2) the factors influencing the effects of MNPs on soil nutrient cycling, and (3) the knowledge gaps and future directions. We conclude that MNPs can alter soil nutrient cycling via mediating soil nutrient availability, soil enzyme activities, functional microbial communities, and their potential ecological functions. Furthermore, the effects of MNPs vary with MNPs characteristics (i.e., polymeric type, size, dosage, and shape), chemical additives, soil physicochemical conditions, and soil biota. Considering the complexity of MNP-soil interactions, multi-scale experiments using environmental relevant MNPs are required to shed light on the effects of MNPs on soil nutrients. By learning how MNPs influence soil nutrients cycles, this review can guide policy and management decisions to safeguard soil health and ensure sustainable agriculture and land use practices.
Collapse
Affiliation(s)
- Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China
| | - Aneeqa Zaib
- Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Nimra Riaz
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Moataz Eliw
- Department of Agricultural Economics, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal Hayat
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China.
| |
Collapse
|
49
|
Pan I, Umapathy S, Issac PK, Rahman MM, Guru A, Arockiaraj J. The bioaccessibility of adsorped heavy metals on biofilm-coated microplastics and their implication for the progression of neurodegenerative diseases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1264. [PMID: 37782357 DOI: 10.1007/s10661-023-11890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MP) tiny fragments (< 5 mm) of conventional and specialized industrial polymers are persistent and ubiquitous in both aquatic and terrestrial ecosystem. Breathing, ingestion, consumption of food stuffs, potable water, and skin are possible routes of MP exposure that pose potential human health risk. Various microorganisms including bacteria, cyanobacteria, and microalgae rapidly colonized on MP surfaces which initiate biofilm formation. It gradually changed the MP surface chemistry and polymer properties that attract environmental metals. Physicochemical and environmental parameters like polymer type, dissolved organic matter (DOM), pH, salinity, ion concentrations, and microbial community compositions regulate metal adsorption on MP biofilm surface. A set of highly conserved proteins tightly regulates metal uptake, subcellular distribution, storage, and transport to maintain cellular homeostasis. Exposure of metal-MP biofilm can disrupt that cellular homeostasis to induce toxicities. Imbalances in metal concentrations therefore led to neuronal network dysfunction, ROS, mitochondrial damage in diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Prion disorder. This review focuses on the biofilm development on MP surfaces, factors controlling the growth of MP biofilm which triggered metal accumulation to induce neurotoxicological consequences in human body and stategies to reestablish the homeostasis. Thus, the present study gives a new approach on the health risks of heavy metals associated with MP biofilm in which biofilms trigger metal accumulation and MPs serve as a vector for those accumulated metals causing metal dysbiosis in human body.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
50
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|