1
|
Wang J, Lv L, An X, Zhang C, Tang T, Sun Y, Wang F. Combined effects of different-sized microplastics and fluindapyr on earthworm: Bioaccumulation, oxidative stress, histopathological responses and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125478. [PMID: 39647773 DOI: 10.1016/j.envpol.2024.125478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Soil is an important sink for microplastics (MPs) and pesticides. MPs can act as carriers for pesticides, thus induce direct and indirect effects on soil organisms. Fluindapyr (FIP), a novel succinate dehydrogenase inhibitors fungicides (SDHIs), may pose a serious threat to earthworms. However, few studies have evaluated the effects of joint exposure to MPs and FIP. Here, earthworms (Eisenia fetida) were jointly exposed to PMMA (polymethylmethacrylate) and PS (polystyrene) MPs of different sizes (0.1, 1 and 10 μm) along with FIP for 28-day to investigate the toxic effects of single and joint exposure of FIP and MPs on earthworms. The results showed that joint exposure to 0.1 and 1 μm MP promoted the accumulation of FIP in earthworms at the beginning of the experiment compared to the sole group, but the elimination of FIP from earthworms accelerated after 14 d. In addition, the joint exposure caused more serious damages to the epidermis and intestine of earthworms and increased the severity of oxidative stress. The effects of joint exposure to FIP and MPs depended on the size of the MPs, and the strongest effects were observed in the treatment with the smallest size. The 16S rRNA sequencing results showed that the joint exposure to MPs and FIP didn't cause gut microbiota dysbiosis. However, the sole 0.1 μm PS significantly altered the community diversity and richness of earthworm gut bacteria, and the relative abundance of Proteobacteria, Actinobacteria and Firmicutes was significantly changed. The obtained results inferred that MPs could influence environmental and toxicological behaviors of FIP and may provide data support for the risk assessments of MPs and FIP on soil ecosystems.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China.
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Bürger LU, Focks A. From water to land-Usage of Generalized Unified Threshold models of Survival (GUTS) in an above-ground terrestrial context exemplified by honeybee survival data. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:589-598. [PMID: 39847401 PMCID: PMC11816312 DOI: 10.1093/etojnl/vgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 01/24/2025]
Abstract
In regulatory aquatic risk assessment, toxicokinetic-toxicodynamic (TKTD) methods, such as the generalized unified threshold model of survival (GUTS), are already established and considered ready for use, whereas TKTD methods for aboveground terrestrial species, like arthropods, are less developed and currently not intended for risk assessment. This could be due to the fact that exposure in aboveground terrestrial systems is more event-based (feeding, contact, overspray, etc.), whereas exposure in aquatic systems is simply related to substance concentrations in the surrounding water. To provide a generic TKTD framework for terrestrial invertebrates, we propose a new GUTS variant that includes an intermediate buffer between the external exposure and inside of the organism. This buffer can be interpreted as residues on the exoskeleton or in the stomach, depending on the uptake route. Such an uptake behavior is mechanistically reasonable and observable in laboratory experiments. This GUTS variant, BufferGUTS, is particularly suitable for discrete or discretized exposure scenarios. Testing our model on honeybee datasets for 13 pesticides reveals a similar or better reproduction of survival curves than existing models (GUTS-RED and BeeGUTS) while keeping the number of parameters the same and making no substance or species-specific assumptions. The proposed new BufferGUTS approach can prospectively be used to derive TKTD parameters for a variety of terrestrial arthropod species. A standardized model definition for terrestrial species will facilitate the comparison and extrapolation of parameters between species and the applicability for terrestrial risk assessments.
Collapse
Affiliation(s)
| | - Andreas Focks
- Osnabrück University, Osnabrück, Lower Saxony, Germany
| |
Collapse
|
3
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2975-2992. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
4
|
Qu R, Xiong Y, Li R, Hu J, Liu H, Huang Y. Comparison of three spatial interpolation methods in predicting time-dependent toxicities of single substances and mixtures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136029. [PMID: 39393320 DOI: 10.1016/j.jhazmat.2024.136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
This study aims to optimize the time-dependent toxicity assessments for both single substances, particularly those causing hormesis, and mixtures that exhibit toxicological interactions. To achieve this, three time-dependent toxicity prediction methods were developed using geologic interpolation techniques: Inverse distance weighted (IDW), Kriging, and linear interpolation based on Delaunay triangulation (LDT). The toxicity of 7 single substances and 80 mixtures on Vibrio qinghaiensis sp.-Q67, along with 6 single substances and 19 mixtures on Microcystis aeruginosa, were assessed to evaluate the predictive accuracy of these methods. The coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were employed as performance metrics during cross-validation. The results showed that IDW underperformed LDT and Kriging in terms of both RMSE and MAE, indicating that LDT and Kriging had superior accuracy compared to IDW. Although LDT and Kriging demonstrated comparable predictive capabilities, LDT was identified as the more practical option for time-dependent toxicity prediction due to its simplicity and no requirement for parameter tuning. Consequently, LDT was presented as a new, efficient, and user-friendly tool for assessing the time-dependent toxicity of both individual chemicals and chemical mixtures. LDT will help to better assess the ecological risks of chemicals.
Collapse
Affiliation(s)
- Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yuanzhao Xiong
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Jiwen Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
5
|
Rakel K, Roeben V, Ernst G, Gergs A. Advancing Soil Risk Assessment: A Novel Earthworm Cocoon Test with a Complementary Toxicokinetic-Toxicodynamic Modeling Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2377-2386. [PMID: 39171945 DOI: 10.1002/etc.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
In the current European Union pesticide risk assessment for soil organisms, effect endpoints from laboratory studies (Tier 1) and field studies (higher-tier risk assessment) are compared with predicted environmental concentrations in soil, derived from the proposed use pattern. The simple but conservative initial Tier 1 risk assessment considers a range of worst-case assumptions. In contrast, the higher-tier assessment focuses on specific conditions tested in the corresponding field study. Effect modeling, such as toxicokinetic-toxicodynamic (TKTD) modeling, is considered a promising future tool to address uncertainties in soil risk assessment, such as extrapolation to different ecological, pedo-climatical, or agronomical situations, or to serve as an intermediate tier for potential refinement of the risk assessment. For the implementation of TKTD modeling in soil organism risk assessment, data on earthworm growth and reproduction over time are required, which are not provided by the standard Organisation for Economic Co-operation and Development (OECD) 222 laboratory test. The underlying study with carbendazim presents a new earthworm cocoon test design, based on the OECD 222 test, to provide the necessary data as input for TKTD modeling. This proposed test design involves destructive samplings at days 7, 14, 21, and 28, enabling the determination of growth, cocoon number, and the number of juveniles hatched per cocoon in 7-day intervals. The new cocoon test allowed the disentanglement of the toxic effect of carbendazim in earthworms: At the highest concentration prominent effects on growth and reproductive output were observed, and the number of cocoons was significantly reduced compared to control. The results highlighted different physiological modes of action: effect on growth via higher maintenance costs as a primary mode of action as well as a reduced number of cocoons (effect on reproduction) and a lower number of juveniles hatching from each cocoon (hazard during oogenesis) as a secondary mode of action. We provide an example of how this new test's data can be used to feed a dynamic energy budget theory-TKTD model of Eisenia fetida. We also validate it against the original OECD 222 test design, outlining its potential future use in soil risk assessment. Environ Toxicol Chem 2024;43:2377-2386. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kim Rakel
- Research Institute gaiac, Aachen, Germany
| | | | | | | |
Collapse
|
6
|
Azzolin VF, Azzolin VF, da Silva Maia R, Mastella MH, Sasso JS, Barbisan F, Bitencourt GR, de Azevedo Mello P, Ribeiro EMA, Ribeiro EE, Nunomura RDCS, Manica da Cruz IB. Safety and efficacy indicators of guarana and Brazil nut extract carried in nanoparticles of coenzyme Q10: Evidence from human blood cells and red earthworm experimental model. Food Chem Toxicol 2024; 191:114828. [PMID: 38914193 DOI: 10.1016/j.fct.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
This study characterized a nanosupplement based on coenzyme Q10 containing guarana (Paullinia cupana) and Brazil nuts oil (Bertholetia excelsa) (G-Nut). Determined cytotoxic and oxi-immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs) and its effect on mortality of red Californian earthworms (Eisenia fetida) and on the immune efficiency of its coelomocytes immune by in vitro exposure to yeast dead microorganism. The cytotoxic and immunomodulatory effects of G-Nut and the GN-Free extract (0.25-3 mg/mL) were determined in PBMC cultures. Apoptotic, oxidative, and inflammatory markers were determined using biochemical, immunological, and molecular protocols. The effects of G-Nut and GN-Free extracts on mortality and immune efficiency were investigated in earthworms. G-Nut and GN-Free did not induce cytotoxic events in PBMCs, triggering the decrease in apoptotic (caspases 3 and 8) gene expression, lipid and protein oxidation levels, or pro-inflammatory cytokine levels. G-Nut and GN-Free did not trigger earthworm mortality and improved coelomocyte immune efficiency by increasing Eisenia neutrophil extracellular DNA traps and brown body formation when exposed to dead yeasts. The G-Nut nanoformulation is safe and can be used as a new form of food supplement by oral or transdermal delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Barbisan
- Biogenomics Laboratory - Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Li J, Hodson ME, Brown CD, Bottoms MJ, Ashauer R, Alvarez T. A User-Friendly Kinetic Model Incorporating Regression Models for Estimating Pesticide Accumulation in Diverse Earthworm Species Across Varied Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14555-14564. [PMID: 39083655 PMCID: PMC11325639 DOI: 10.1021/acs.est.4c06642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Existing models for estimating pesticide bioconcentration in earthworms exhibit limited applicability across different chemicals, soils and species which restricts their potential as an alternative, intermediate tier for risk assessment. We used experimental data from uptake and elimination studies using three earthworm species (Lumbricus terrestris, Aporrectodea caliginosa, Eisenia fetida), five pesticides (log Kow 1.69-6.63) and five soils (organic matter content = 0.972-39.9 wt %) to produce a first-order kinetic accumulation model. Model applicability was evaluated against a data set of 402 internal earthworm concentrations reported from the literature including chemical and soil properties outside the data range used to produce the model. Our models accurately predict body load using either porewater or bulk soil concentrations, with at least 93.5 and 84.3% of body load predictions within a factor of 10 and 5 of corresponding observed values, respectively. This suggests that there is no need to distinguish between porewater and soil exposure routes or to consider different uptake and elimination pathways when predicting earthworm bioconcentration. Our new model not only outperformed existing models in characterizing earthworm exposure to pesticides in soil, but it could also be integrated with models that account for earthworm movement and fluctuating soil pesticide concentrations due to degradation and transport.
Collapse
Affiliation(s)
- Jun Li
- Department of Environment and Geography, University of York, York YO10 5NG, U.K
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York YO10 5NG, U.K
| | - Colin D Brown
- Department of Environment and Geography, University of York, York YO10 5NG, U.K
| | - Melanie J Bottoms
- Jealotts Hill International Research Centre, Syngenta Ltd, Warfield, Bracknell RG42 6EY, U.K
| | - Roman Ashauer
- Department of Environment and Geography, University of York, York YO10 5NG, U.K
- Syngenta Crop Protection AG, Rosentalstr. 67, 4058 Basel, Switzerland
| | - Tania Alvarez
- Jealotts Hill International Research Centre, Syngenta Ltd, Warfield, Bracknell RG42 6EY, U.K
| |
Collapse
|
8
|
Alaoui A, Christ F, Silva V, Vested A, Schlünssen V, González N, Gai L, Abrantes N, Baldi I, Bureau M, Harkes P, Norgaard T, Navarro I, de la Torre A, Sanz P, Martínez MÁ, Hofman J, Pasković I, Pasković MP, Glavan M, Lwanga EH, Aparicio VC, Campos I, Alcon F, Contreras J, Mandrioli D, Sgargi D, Scheepers PTJ, Ritsema C, Geissen V. Identifying pesticides of high concern for ecosystem, plant, animal, and human health: A comprehensive field study across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174671. [PMID: 39004368 DOI: 10.1016/j.scitotenv.2024.174671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.
Collapse
Affiliation(s)
- Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anne Vested
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Lingtong Gai
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Coen Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Chen D, Liu Y, Liu Y, Zhao K, Zhang T, Gao Y, Wang Q, Song B, Hao G. ChemFREE: a one-stop comprehensive platform for ecological and environmental risk evaluation of chemicals in one health world. Nucleic Acids Res 2024; 52:W450-W460. [PMID: 38832633 PMCID: PMC11223831 DOI: 10.1093/nar/gkae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Addressing health and safety crises stemming from various environmental and ecological issues is a core focus of One Health (OH), which aims to balance and optimize the health of humans, animals, and the environment. While many chemicals contribute significantly to our quality of life when properly used, others pose environmental and ecological health risks. Recently, assessing the ecological and environmental risks associated with chemicals has gained increasing significance in the OH world. In silico models may address time-consuming and costly challenges, and fill gaps in situations where no experimental data is available. However, despite their significant contributions, these assessment models are not web-integrated, leading to user inconvenience. In this study, we developed a one-stop comprehensive web platform for freely evaluating the eco-environmental risk of chemicals, named ChemFREE (Chemical Formula Risk Evaluation of Eco-environment, available in http://chemfree.agroda.cn/chemfree/). Inputting SMILES string of chemicals, users will obtain the assessment outputs of ecological and environmental risk, etc. A performance evaluation of 2935 external chemicals revealed that most classification models achieved an accuracy rate above 0.816. Additionally, the $Q_{F1}^2$ metric for regression models ranges from 0.618 to 0.898. Therefore, it will facilitate the eco-environmental risk evaluation of chemicals in the OH world.
Collapse
Affiliation(s)
- Dongyu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yingwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, P. R. China
| | - Yang Liu
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, P. R. China
| | - Kejun Zhao
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, P. R. China
| | - Tianhan Zhang
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, P. R. China
| | - Yangyang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qi Wang
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, P. R. China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
10
|
Ernst G, Amorim MJB, Bottoms M, Brooks AC, Hodson ME, Kimmel S, Kotschik P, Marx MT, Natal-da-Luz T, Pelosi C, Pieper S, Schimera A, Scott-Fordsmand J, Sharples A, Sousa JP, van Gestel CAM, van Hall B, Bergtold M. Intermediate-tier options in the environmental risk assessment of plant protection products for soil invertebrates-Synthesis of a workshop. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:780-793. [PMID: 37563990 DOI: 10.1002/ieam.4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option. For soil invertebrates, intermediate tiers are not implemented. Hence, there is limited possibility to include additional information for the ERA to address specific concerns when the Tier 1 fails, as an alternative to, for example, a field study. Calibrated intermediate-tier approaches could help to address risks for soil invertebrates with less time and resources but also with sufficient certainty. A multistakeholder workshop was held on 2-4 March 2022 to discuss potential intermediate-tier options, focusing on four possible areas: (1) natural soil testing, (2) single-species tests (other than standard species), (3) assessing recovery in laboratory tests, and (4) the use of assembled soil multispecies test systems. The participants acknowledged a large potential in the intermediate-tier options but concluded that some issues need to be clarified before routine application of these approaches in the ERA is possible, that is, sensitivity, reproducibility, reliability, and standardization of potential new test systems. The definition of suitable assessment factors needed to calibrate the approaches to the protection goals was acknowledged. The aims of the workshop were to foster scientific exchange and a data-driven dialog, to discuss how the different approaches could be used in the risk assessment, and to identify research priorities for future work to address uncertainties and strengthen the tiered approach in the ERA for soil invertebrates. This article outlines the background, proposed methods, technical challenges, difficulties and opportunities in the ERA, and conclusions of the workshop. Integr Environ Assess Manag 2024;20:780-793. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gregor Ernst
- Bayer AG, CropScience Division, Monheim, Germany
| | - Mónica J B Amorim
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Melanie Bottoms
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| | - Amy C Brooks
- Cambridge Environmental Assessments, Cambridge, UK
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York, UK
| | | | - Pia Kotschik
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | - Tiago Natal-da-Luz
- Associate Laboratory TERRA, Department of Life Sciences, CFE-Centre for Functional Ecology - Science for the People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, Avignon, France
| | - Silvia Pieper
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | | | | | - José P Sousa
- Associate Laboratory TERRA, Department of Life Sciences, CFE-Centre for Functional Ecology - Science for the People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Cornelis A M van Gestel
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart van Hall
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Li J, Hodson ME, Brown CD, Bottoms MJ, Ashauer R, Alvarez T. Earthworm lipid content and size help account for differences in pesticide bioconcentration between species. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133744. [PMID: 38367437 DOI: 10.1016/j.jhazmat.2024.133744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
The uptake and elimination kinetics of pesticides from soil to earthworms are important in characterising the risk of pesticides to soil organisms and the risk from secondary poisoning. However, the understanding of the relative importance of chemical, soil, and species differences in determining pesticide bioconcentration into earthworms is limited. Furthermore, there is insufficient independent data in the literature to fully evaluate existing predictive bioconcentration models. We conducted kinetic uptake and elimination experiments for three contrasting earthworm species (Lumbricus terrestris, Aporrectodea caliginosa, Eisenia fetida) in five soils using a mixture of five pesticides (log Kow 1.69 - 6.63). Bioconcentration increased with pesticide hydrophobicity and decreased with soil organic matter. Bioconcentration factors were comparable between earthworm species for hydrophilic pesticides due to the similar water content of earthworm species. Inter-species variations in bioconcentration of hydrophobic pesticides were primarily accounted for by earthworm lipid content and specific surface area (SSA). Existing bioconcentration models either failed to perform well across earthworm species and for more hydrophilic compounds (log Kow < 2) or were not parameterised for a wide range of compounds and earthworm species. Refined models should incorporate earthworm properties (lipid content and SSA) to account for inter-species differences in pesticide uptake from soil.
Collapse
Affiliation(s)
- Jun Li
- Department of Environment and Geography, University of York, York, YO10 5NG, UK.
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Colin D Brown
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Melanie J Bottoms
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK
| | - Roman Ashauer
- Department of Environment and Geography, University of York, York, YO10 5NG, UK; Syngenta Crop Protection AG Rosentalstr. 67 4058 Basel Switzerland
| | - Tania Alvarez
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK
| |
Collapse
|
12
|
Li J, Hodson ME, Brown CD, Bottoms MJ, Ashauer R, Alvarez T. Evaluation of models to estimate the bioaccumulation of organic chemicals in earthworms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116240. [PMID: 38520811 DOI: 10.1016/j.ecoenv.2024.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Modelling approaches to estimate the bioaccumulation of organic chemicals by earthworms are important for improving the realism in risk assessment of chemicals. However, the applicability of existing models is uncertain, partly due to the lack of independent datasets to test them. This study therefore conducted a comprehensive literature review on existing empirical and kinetic models that estimate the bioaccumulation of organic chemicals in earthworms and gathered two independent datasets from published literature to evaluate the predictive performance of these models. The Belfroid et al. (1995a) model is the best-performing empirical model, with 91.2% of earthworm body residue simulations within an order of magnitude of observation. However, this model is limited to the more hydrophobic pesticides and to the earthworm species Eisenia fetida or Eisenia andrei. The kinetic model proposed by Jager et al. (2003b) which out-performs that of Armitage and Gobas (2007), predicted uptake of PCB 153 in the earthworm E. andrei to within a factor of 10. However, the applicability of Jager et al.'s model to other organic compounds and other earthworm species is unknown due to the limited evaluation dataset. The model needs to be parameterised for different chemical, soil, and species types prior to use, which restricts its applicability to risk assessment on a broad scale. Both the empirical and kinetic models leave room for improvement in their ability to reliably predict bioaccumulation in earthworms. Whether they are fit for purpose in environmental risk assessment needs careful consideration on a case by case basis.
Collapse
Affiliation(s)
- Jun Li
- Department of Environment and Geography, University of York, York YO10 5NG, UK.
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York YO10 5NG, UK
| | - Colin D Brown
- Department of Environment and Geography, University of York, York YO10 5NG, UK
| | - Melanie J Bottoms
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell RG42 6EY, UK
| | - Roman Ashauer
- Department of Environment and Geography, University of York, York YO10 5NG, UK; Syngenta Crop Protection AG Rosentalstr, Basel 67 4058, Switzerland
| | - Tania Alvarez
- Syngenta Ltd, Jealotts Hill International Research Centre, Warfield, Bracknell RG42 6EY, UK
| |
Collapse
|
13
|
Schad T, Bub S, Wang M, Holmes CM, Kleinmann J, Hammel K, Ernst G, Preuss TG. A spatiotemporally explicit modeling approach for more realistic exposure and risk assessment of off-field soil organisms. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:263-278. [PMID: 37340847 DOI: 10.1002/ieam.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Natural and seminatural habitats of soil living organisms in cultivated landscapes can be subject to unintended exposure by active substances of plant protection products (PPPs) used in adjacent fields. Spray-drift deposition and runoff are considered major exposure routes into such off-field areas. In this work, we develop a model (xOffFieldSoil) and associated scenarios to estimate exposure of off-field soil habitats. The modular model approach consists of components, each addressing a specific aspect of exposure processes, for example, PPP use, drift deposition, runoff generation and filtering, estimation of soil concentrations. The approach is spatiotemporally explicit and operates at scales ranging from local edge-of-field to large landscapes. The outcome can be aggregated and presented to the risk assessor in a way that addresses the dimensions and scales defined in specific protection goals (SPGs). The approach can be used to assess the effect of mitigation options, for example, field margins, in-field buffers, or drift-reducing technology. The presented provisional scenarios start with a schematic edge-of-field situation and extend to real-world landscapes of up to 5 km × 5 km. A case study was conducted for two active substances of different environmental fate characteristics. Results are presented as a collection of percentiles over time and space, as contour plots, and as maps. The results show that exposure patterns of off-field soil organisms are of a complex nature due to spatial and temporal variabilities combined with landscape structure and event-based processes. Our concepts and analysis demonstrate that more realistic exposure data can be meaningfully consolidated to serve in standard-tier risk assessments. The real-world landscape-scale scenarios indicate risk hot-spots that support the identification of efficient risk mitigation. As a next step, the spatiotemporally explicit exposure data can be directly coupled to ecological effect models (e.g., for earthworms or collembola) to conduct risk assessments at biological entity levels as required by SPGs. Integr Environ Assess Manag 2024;20:263-278. © 2023 Applied Analysis Solutions LLC and WSC Scientific GmbH and Bayer AG and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Sascha Bub
- Rheinland-Pfälzische Technische Universität, Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Ji C, Miao J, Xia B, Dai Y, Yang J, Zhang G, Zhang Q, Wang F, Tang T, Zhao M. Evaluation of the toxic effects of fluindapyr, a novel SDHI fungicide, to the earthworms Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165697. [PMID: 37482356 DOI: 10.1016/j.scitotenv.2023.165697] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
The emergence of resistance to existing succinate dehydrogenase inhibitor fungicides (SDHIs) calls for the urgent innovation of novel formulations, but also results in an increase information gap on the ecological risks of novel SDHIs especially to non-target organisms. Herein, the environmental behavior and toxicological effects of a novel SDHI, fluindapyr (FIP), were evaluated using earthworm as model non-target organism. Results showed that FIP had a relatively shorter half-live (about 28 days) in artificial soil compared with traditional SDHIs. Besides, FIP exhibited a rapid uptake and bioaccumulation trend in earthworms. For the toxicological effects, FIP suppressed earthworm growth (≥ 5 mg/kg) and reproduction (≥ 1 mg/kg) whereas no lethal effects were observed up to the highest tested concentration of 25 mg/mg. FIP of high exposure concentrations also induced serious epidermis and intestines damage as well as oxidative stress to earthworms after 28-day exposure. In addition, expression of oxidative damage related genes (CAT, CRT, GST, HSP70, SOD) was further verified after FIP exposure. The earthworm Tier 1 RQ also indicated a potential risk for earthworm reproduction. Data presented here may be useful for the risk assessments of FIP in soil ecosystems and help to set appropriate precautions to ensure protection against novel SDHIs.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bin Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guizhen Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
15
|
Buddendorf WB, Wipfler L, Beltman W, Baveco H, Braakhekke MC, Bub S, Gergs A, Schad T. Aquatic Risks at the Landscape Scale: A Case Study for Pyrethroid Use in Pome Fruit Orchards in Belgium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15608-15616. [PMID: 37796045 PMCID: PMC10586366 DOI: 10.1021/acs.est.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Procedures for environmental risk assessment for pesticides are under continuous development and subject to debate, especially at higher tier levels. Spatiotemporal dynamics of both pesticide exposure and effects at the landscape scale are largely ignored, which is a major flaw of the current risk assessment system. Furthermore, concrete guidance on risk assessment at landscape scales in the regulatory context is lacking. In this regard, we present an integrated modular simulation model system that includes spatiotemporally explicit simulation of pesticide application, fate, and effects on aquatic organisms. As a case study, the landscape model was applied to the Rummen, a river catchment in Belgium with a high density of pome fruit orchards. The application of a pyrethroid to pome fruit and the corresponding drift deposition on surface water and fate dynamics were simulated. Risk to aquatic organisms was quantified using a toxicokinetic/toxicodynamic model for individual survival at different levels of spatial aggregation, ranging from the catchment scale to individual stream segments. Although the derivation of landscape-scale risk assessment end points from model outputs is straightforward, a dialogue within the community, building on concrete examples as provided by this case study, is urgently needed in order to decide on the appropriate end points and on the definition of representative landscape scenarios for use in risk assessment.
Collapse
Affiliation(s)
- Willem B. Buddendorf
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Louise Wipfler
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Wim Beltman
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Hans Baveco
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | | | - Sascha Bub
- iES Landau, Institute for Environmental
Sciences, University of Kaiserslautern-Landau
(RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - André Gergs
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| | - Thorsten Schad
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| |
Collapse
|
16
|
Santos FCF, Verweij RA, van Gestel CAM, Amorim MJB. Toxicokinetics and toxicodynamics of Ag nanomaterials (NM300K) in the soil environment-impact on Enchytraeus crypticus (Oligochaeta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114599. [PMID: 36738615 DOI: 10.1016/j.ecoenv.2023.114599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Silver (Ag) is one of the most used elements in the nanomaterials (NMs) form, which upon release to the environment can be harmful to organisms. We compared the toxicokinetics (TK) and toxicodynamics (TD) of Ag from AgNO3 (0, 15, 45, 135, 405 mg Ag/kg soil) and AgNM300K (0, 75, 150, 300, 600, 1200 mg Ag/kg soil) in the model organism Enchytraeus crypticus. Organisms were exposed in LUFA 2.2 soil, and besides body Ag concentrations, survival and reproduction were determined, in a time series (for 21 days). In the soil, the available (CaCl2 extractable) Ag fraction from Ag NM300K increased from 0 to 21 days but did not consistently change for AgNO3. Internal concentrations reached equilibrium in most exposures to both Ag forms. The organisms were able to internalize and eliminate Ag, but less when exposed to Ag NM300K. The overall uptake rate constants for Ag from AgNO3 and Ag NM300K exposures were 0.05 and 0.06 kg soil/kg organism/day, respectively, the elimination rate constants 0.2 and 0.1 day-1, respectively. For AgNO3 the median lethal concentrations decreased steadily with time, while for Ag NM300K they remained constant during the first 10 days of exposure followed by a 2-fold decline in the last 7 days. The 21-d LC50s for both Ag forms were similar but the LC50inter (based on internal concentrations) were 63 and 121 mg Ag/kg body DW (Dry Weight) for AgNO3 and Ag NM300K, respectively, showing higher toxicity of AgNO3. These results show the importance of assessing time to toxicity, a relevant factor in toxicity assessment, especially for NMs.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Santos FCF, Verweij RA, van Gestel CAM, Amorim MJB. Toxicokinetics and toxicodynamics of chromium in the soil invertebrate Enchytraeus crypticus (Oligochaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159868. [PMID: 36328254 DOI: 10.1016/j.scitotenv.2022.159868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chromium emissions led to increased concentrations in soil, where it can affect soil organisms to relevant levels. With the aim of better understanding the effects of Cr throughout time, its toxicokinetics-toxicodynamics (TKTD) were evaluated in the soil model organism Enchytraeus crypticus to assess the development of internal concentrations and consequent toxic effects. To achieve this goal, organisms were exposed in LUFA 2.2 soil spiked with increasing CrCl3 concentrations. During the 21-day exposure period, survival, internal concentrations, and reproduction were evaluated at several time points up to 21 days. Uptake and elimination rate constants were 0.0044 kg soil/kg organism/day and 0.023 per day, respectively. Internal Cr concentrations increased with time, generally reaching equilibrium within 14 days with an estimated LC50inter (based on internal metal concentrations) of 57.7 mg Cr/kg body DW. Internal Cr concentrations were regulated by the organisms up to exposure to 360 mg Cr/kg soil DW, where the elimination rate was highest, but at 546 mg Cr/kg soil DW the animals were no longer able to eliminate Cr, and the internal concentrations were well above the estimated LC50inter. At day 21, exposure to 546 mg Cr/kg soil DW significantly reduced survival by 23 %, while reproduction EC50 was 344 mg Cr/kg soil DW. This study highlights the advantages of using a TKTD approach to understand the development of internal metal concentrations in time and relate it to the phenotypical effects observed. Toxicity is better understood when also taking into account time and not just exposure concentration alone.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Preuss TG, Agatz A, Goussen B, Roeben V, Rumkee J, Zakharova L, Thorbek P. The BEEHAVE ecotox Model-Integrating a Mechanistic Effect Module into the Honeybee Colony Model. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2870-2882. [PMID: 36040132 PMCID: PMC9828121 DOI: 10.1002/etc.5467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Mechanistic effect models are powerful tools for extrapolating from laboratory studies to field conditions. For bees, several good models are available that can simulate colony dynamics. Controlled and reliable experimental systems are also available to estimate the inherent toxicity of pesticides to individuals. However, there is currently no systematic and mechanistic way of linking the output of experimental ecotoxicological testing to bee models for bee risk assessment. We introduce an ecotoxicological module that mechanistically links exposure with the hazard profile of a pesticide for individual honeybees so that colony effects emerge. This mechanistic link allows the translation of results from standard laboratory studies to relevant parameters and processes for simulating bee colony dynamics. The module was integrated into the state-of-the-art honeybee model BEEHAVE. For the integration, BEEHAVE was adapted to mechanistically link the exposure and effects on different cohorts to colony dynamics. The BEEHAVEecotox model was tested against semifield (tunnel) studies, which were deemed the best study type to test whether BEEHAVEecotox predicted realistic effect sizes under controlled conditions. Two pesticides used as toxic standards were chosen for this validation to represent two different modes of action: acute mortality of foragers and chronic brood effects. The ecotoxicological module was able to predict effect sizes in the tunnel studies based on information from standard laboratory tests. In conclusion, the BEEHAVEecotox model is an excellent tool to be used for honeybee risk assessment, interpretation of field and semifield studies, and exploring the efficiency of different mitigation measures. The principles for exposure and effect modules are portable and could be used for any well-constructed honeybee model. Environ Toxicol Chem 2022;41:2870-2882. © 2022 Bayer AG & Sygenta, et al. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Annika Agatz
- Institute for Biological Analytics & ConsultingRoßdorfGermany
| | - Benoit Goussen
- Institute for Biological Analytics & ConsultingRoßdorfGermany
| | | | | | | | | |
Collapse
|
19
|
Larras F, Beaudouin R, Berny P, Charles S, Chaumot A, Corio-Costet MF, Doussan I, Pelosi C, Leenhardt S, Mamy L. A meta-analysis of ecotoxicological models used for plant protection product risk assessment before their placing on the market. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157003. [PMID: 35772548 DOI: 10.1016/j.scitotenv.2022.157003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris 75338, France
| | - Rémy Beaudouin
- INERIS, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Philippe Berny
- UR ICE, VetAgro Sup Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, F-69280 Marcy l'étoile, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne F-69625, France
| | | | - Isabelle Doussan
- CNRS, INRAE, CREDECO-GREDEG, Université Côte d'azur, 06560 Valbonne, France
| | - Céline Pelosi
- INRAE, Avignon University, UMR EMMAH, 84000 Avignon, France
| | - Sophie Leenhardt
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris 75338, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France.
| |
Collapse
|
20
|
Urionabarrenetxea E, Casás C, Garcia-Velasco N, Santos M, Tarazona JV, Soto M. Predicting environmental concentrations and the potential risk of Plant Protection Products (PPP) on non-target soil organisms accounting for regional and landscape ecological variability in european soils. CHEMOSPHERE 2022; 303:135045. [PMID: 35609662 DOI: 10.1016/j.chemosphere.2022.135045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Plant Protection Products (PPP) raise concerns as their application may cause effects on some soil organisms considered non-target species which could be highly sensitive to some pesticides. The European Food and Safety Authority (EFSA), in collaboration with the Joint Research Centre (JRC) of the European Commission, has developed guidance and a software tool, Persistence in Soil Analytical Model (PERSAM), for conducting soil exposure assessments. EFSA PPR Panel has published recommendations for the risk assessment of non-target soil organisms. We have used PERSAM for calculating PPPs predicted environmental concentrations (PECs); and used the estimated PEC for assessing potential risks using Toxicity Exposure Ratios (TER) for selected soil organisms and good agricultural practices. Soil characteristics and environmental variables change along a latitudinal axis through the European continent, influencing the availability of PPP, their toxicity upon soil biota, and hence, impacting on the risk characterization. Although PERSAM includes as input geographical information, the information is aggregated and not further detailed in the model outputs. Therefore, there is a need to develop landscape based environmental risk assessment methods addressing regional variability. The objective was to integrate spatially explicit exposure (PECs) and effect data (biological endpoints i.e. LC50, NOEC, etc.) to estimate the risk quotient (TER) of four PPP active substances (esfenvalerate, cyclaniliprole, picoxystrobin, fenamidone) on non-target species accounting European landscape and agricultural variability. The study was focused on the effects produced by the above-mentioned pesticides on two soil organisms: E. fetida earthworms and Folsomia sp. collembolans. After running PERSAM assuming a worst case application of PPPs, PECs in total soil and pore water were obtained for different depths in northern, central and southern European soils. With this data, soil variability and climatic differences among soils divided in three large Euroregions along a latitudinal transect (Northern, Central, Southern Europe) were analysed. Summarising, a trend to accumulate higher PECs and TERs in total soil was observed in the north decreasing towards the south. Higher PECs and TERs could be expected in pore water in southern soils, decreasing towards the north. The risk disparity between pollutant concentrations at different soils compartments should be taken into account for regulatory purposes, as well as the potential landscape variabilities among different Euroregions.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Carmen Casás
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Miguel Santos
- European Food Safety Authority (EFSA), Via Carlo Magno 1/A, I-43126, Parma, Italy
| | - Jose V Tarazona
- European Food Safety Authority (EFSA), Via Carlo Magno 1/A, I-43126, Parma, Italy
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| |
Collapse
|
21
|
Gergs A, Rakel K, Bussen D, Capowiez Y, Ernst G, Roeben V. Integrating earthworm movement and life history through dynamic energy budgets. CONSERVATION PHYSIOLOGY 2022; 10:coac042. [PMID: 35769332 PMCID: PMC9235907 DOI: 10.1093/conphys/coac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Earthworms are considered ecosystem engineers and, as such, they are an integral part of the soil ecosystem. The movement of earthworms is significantly influenced by environmental factors such as temperature and soil properties. As movement may directly be linked to food ingestion, especially of endogeic species like Aporrectodea caliginosa, changes in those environmental factors also affect life history traits such as growth and reproduction. In our laboratory studies, earthworms showed a decrease in burrowing activity with decreasing moisture levels and, to some extent, the organic matter content. The burrowing activity of earthworms was also affected by temperature, for which the casts produced per earthworm was used as a proxy in laboratory experiments. We integrated changes in earthworm movement and life histories in response to temperature, soil organic matter content and the moisture level, as observed in our experiment and reported in the literature, through dynamic energy budget (DEB) modelling. The joint parametrization of a DEB model for A. caliginosa based on movement and life history data revealed that food ingestion via movement is an integral part of the earthworms' energy budgets. Our findings highlight the importance of soil properties to be considered in the model development for earthworms. Furthermore, by understanding and incorporating the effect of environmental factors on the physiology, this mechanistic approach can help assess the impact of environmental changes such as temperature rise or drought.
Collapse
Affiliation(s)
- Andre Gergs
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Kim Rakel
- Research Institute for Ecosystem Analysis and Assessment (gaiac), Kackertstrasse 10, 52072 Aachen, Germany
| | - Dino Bussen
- Research Institute for Ecosystem Analysis and Assessment (gaiac), Kackertstrasse 10, 52072 Aachen, Germany
| | - Yvan Capowiez
- INRAE, UMR EMMAH, 228 Route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | - Gregor Ernst
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Vanessa Roeben
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| |
Collapse
|
22
|
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R. A critical review of effect modeling for ecological risk assessment of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43448-43500. [PMID: 35391640 DOI: 10.1007/s11356-022-19111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France
| | - Céline Pelosi
- Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France
| | - Morgane Le Gall
- Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
| | - Rémy Beaudouin
- Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, France.
| |
Collapse
|
23
|
Ernst G, Agert J, Heinemann O, Hellpointner E, Gladbach A. Realistic exposure of the fungicide bixafen in soil and its toxicity and risk to natural earthworm populations after multiyear use in cereal. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:734-747. [PMID: 34397149 PMCID: PMC9291565 DOI: 10.1002/ieam.4510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive multiyear monitoring program was conducted to assess the exposure, effects, and long-term risk of the fungicide bixafen to earthworms in cereal fields. The realistic exposure of bixafen in soil was assessed at 10 representative field sites in Germany after a period of up to 8 years of use with five different products containing bixafen, followed by annual measurements from 2017 to 2019. The measured exposure concentrations were compared with modeled predicted environmental concentrations in soil (PECsoil) that are derived in the context of the European risk assessment of plant protection products. It was shown that the model assumptions, in particular the kinetic parameters describing the background accumulation, provided a conservative description of the observed residue data. This demonstrates that the exposure modeling tools are adequate for use in soil risk assessment. Laboratory and field ecotoxicological studies were performed to provide a comprehensive risk assessment on the long-term use of bixafen-based fungicides in cereals. While a laboratory reproduction study with the earthworm Eisenia fetida indicated a potential risk at the Tier 1 risk assessment for the end-use product Skyway XPro® , a 2.5-year field study showed no unacceptable long-term effects on natural earthworm populations. The exposure in this study exceeded the maximum recommended field rate of Skyway XPro® by a factor of 3 and the maximum measured bixafen concentrations from exposure monitoring study by a factor of 5.2. Hence, an acceptable long-term risk of bixafen-based cereal fungicides is concluded for earthworms. Integr Environ Assess Manag 2022;18:734-747. © 2021 Bayer AG. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Jutta Agert
- Bayer AG, CropScience DivisionMonheimGermany
| | | | | | | |
Collapse
|
24
|
Santos FCF, Verweij RA, van Gestel CAM, Amorim MJB. Toxicokinetics and toxicodynamics of copper and cadmium in the soil invertebrate Enchytraeus crypticus (Oligochaeta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113485. [PMID: 35390690 DOI: 10.1016/j.ecoenv.2022.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the toxicokinetics-toxicodynamics (TKTD) of Cu and Cd in the soil model organism Enchytraeus crypticus, and assess the development of internal effect concentrations over time. Animals were exposed in LUFA 2.2 soil spiked with increasing concentrations of Cu and Cd. Survival, reproduction and internal metal concentrations in the animals were evaluated at different points in time over a period of 21 days. Internal concentrations increased with time, for Cu reaching a steady state after c. 10 days, except for the highest test concentration, and for Cd continuing to increase after 21 days. Applying a one-compartment model to all data together, estimated uptake and elimination rate constants for Cu and Cd were 0.08 and 0.45 kg soil/kg organism/day and 0.4 and 0.04 per day, respectively. Median lethal concentrations, based on total soil concentrations, decreased with time for Cu and did not reach a steady state level, but they did not change with time for Cd. The LC50inter (based on internal concentrations) was 75 mg Cu/kg body DW and > 800 mg Cd/kg body weight. Animals were able to regulate Cu internal concentrations, keeping them low, while for Cd internal concentrations continued to increase showing lack of regulation and also the importance of exposure time. This study highlights the advantages of using a TKTD approach to understand the relation between organism survival and internal Cu or Cd concentrations over time.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Silva V, Alaoui A, Schlünssen V, Vested A, Graumans M, van Dael M, Trevisan M, Suciu N, Mol H, Beekmann K, Figueiredo D, Harkes P, Hofman J, Kandeler E, Abrantes N, Campos I, Martínez MÁ, Pereira JL, Goossens D, Gandrass J, Debler F, Lwanga EH, Jonker M, van Langevelde F, Sorensen MT, Wells JM, Boekhorst J, Huss A, Mandrioli D, Sgargi D, Nathanail P, Nathanail J, Tamm L, Fantke P, Mark J, Grovermann C, Frelih-Larsen A, Herb I, Chivers CA, Mills J, Alcon F, Contreras J, Baldi I, Pasković I, Matjaz G, Norgaard T, Aparicio V, Ritsema CJ, Geissen V, Scheepers PTJ. Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS One 2021; 16:e0259748. [PMID: 34780516 PMCID: PMC8592492 DOI: 10.1371/journal.pone.0259748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.
Collapse
Affiliation(s)
- Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
- Centre for Development and Environment, University of Bern, Bern, Switzerland
| | - Vivi Schlünssen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne Vested
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Martien Graumans
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Maurice van Dael
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Marco Trevisan
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicoleta Suciu
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Hans Mol
- Wageningen Food Safety Research, Wageningen, Wageningen University & Research, Wageningen, Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research, Wageningen, Wageningen University & Research, Wageningen, Netherlands
| | - Daniel Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Centre for Environmental and Marine Studies and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - María Ángeles Martínez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas–CIEMAT, Madrid, Spain
| | - Joana Luísa Pereira
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Dirk Goossens
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
- KU Leuven Department of Earth and Environmental Sciences, Geo-institute, Celestijnenlaan, Leuven, Belgium
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Freya Debler
- Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Frank van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | | | | | - Lucius Tamm
- Research Institute of Organic Agriculture—FIBL, Frick, Switzerland
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Lyngby, Denmark
| | - Jennifer Mark
- Research Institute of Organic Agriculture—FIBL, Frick, Switzerland
| | | | | | | | - Charlotte-Anne Chivers
- Countryside and Community Research Institute, University of Gloucestershire, Cheltenham, United Kingdom
| | - Jane Mills
- Countryside and Community Research Institute, University of Gloucestershire, Cheltenham, United Kingdom
| | | | | | - Isabelle Baldi
- INSERM U1219, EPICENE Team, Bordeaux University, Nouvelle-Aquitaine, France
| | - Igor Pasković
- Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, Poreč, Croatia
| | - Glavan Matjaz
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria—INTA, Buenos Aires, Argentina
| | - Coen J. Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
26
|
van Gestel CAM, Mommer L, Montanarella L, Pieper S, Coulson M, Toschki A, Rutgers M, Focks A, Römbke J. Soil Biodiversity: State-of-the-Art and Possible Implementation in Chemical Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:541-551. [PMID: 33210820 PMCID: PMC8246784 DOI: 10.1002/ieam.4371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
Protecting the structure and functioning of soil ecosystems is one of the central aims of current regulations of chemicals. This is, for instance, shown by the emphasis on the protection of key drivers and ecosystem services as proposed in the protection goal options for soil organisms by the European Food Safety Authority (EFSA). Such targets require insight into soil biodiversity, its role in the functioning of ecosystems, and the way it responds to stress. Also required are tools and methodologies for properly assessing biodiversity. To address these issues, the Society of Environmental Toxicology and Chemistry (SETAC) Europe 14th Special Science Symposium (SESSS14) was held 19 to 20 November 2019 in Brussels, Belgium. The central aim of the SESSS14 was to provide information on how to include soil biodiversity and soil functions as protection goal options in the risk assessment and quantification of the effects of chemicals and other stressors (including their respective regulations). This paper is based on the presentations and discussions at the SESSS14 and will give a brief update on the scientific state-of-the art on soil biodiversity, novel scientific developments, experimental and modeling approaches, as well as case studies. It will also discuss how these approaches could inform future risk assessment of chemicals and other stressors in the regulatory context of protecting soil ecosystems. Integr Environ Assess Manag 2021;17:541-551. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Liesje Mommer
- Wageningen University & ResearchWageningenthe Netherlands
| | | | - Silvia Pieper
- German Environment Agency (UBA), Dessau‐RoßlauGermany
| | | | - Andreas Toschki
- gaiac, Research Institute for Ecosystem Analysis and AssessmentAachenGermany
| | - Michiel Rutgers
- National Institute for Public Health and the EnvironmentBilthoventhe Netherlands
| | - Andreas Focks
- Wageningen Environmental ResearchWageningenthe Netherlands
| | | |
Collapse
|
27
|
Teixeira CF, da Cruz IB, Ribeiro EE, Pillar DM, Turra BO, Praia RS, Barbisan F, Alves AO, Sato DK, Assmann CE, Palma TV, Barcelos RP, Barbosa IM, Azzolin VF. Safety indicators of a novel multi supplement based on guarana, selenium, and L-carnitine: Evidence from human and red earthworm immune cells. Food Chem Toxicol 2021; 150:112066. [DOI: 10.1016/j.fct.2021.112066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
|
28
|
Cruz Jung IED, Assmann CE, Mastella MH, Barbisan F, Spilliari Ruaro RA, Roggia I, Turra BO, Chitolina B, de Oliveira Alves A, Teixeira CF, Azzolin VF, Ribeiro EE, Medeiros Frescura Duarte MM, Mânica da Cruz IB. Superoxide-anion triggers impairments of immune efficiency and stress response behaviors of Eisenia fetida earthworms. CHEMOSPHERE 2021; 269:128712. [PMID: 33189402 DOI: 10.1016/j.chemosphere.2020.128712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Superoxide-hydrogen peroxide (S-HP), triggered by Val16Ala-SOD2 human polymorphism, may influence the risk of depression. Therefore, it is plausible that higher basal S-anion levels and chronic inflammatory states associated with the VV-SOD2 genotype can negatively modulate the stress response associated with resilience in various species, from primitive species to humans. To test this hypothesis, Eisenia fetida earthworms were exposed for 24 h to 30 nM rotenone, which causes mitochondrial dysfunction by generating high S-anion levels (known as the "VV-like phenotype"), and 10 μM porphyrin, a SOD2-like compound, which generates elevated HP levels (known as the "AA-like phenotype"). The results suggested that both S-anion and HP acted as signaling molecules, differentially altering the immune function and acute hydric stressful response. Although the AA-like phenotype improved the immune and stress response efficiencies, the VV-like phenotype showed a downregulated expression of the toll-like receptor (EaTLR, JX898685) and antimicrobial peptide (AMP) (AF060552) genes, which triggered the impairment of encapsulation and earthworms extracellular trap (EET) processes used by earthworms to trap and destroy microorganisms. When exposed to adverse environments and dangerous hydric stress, VV-like earthworms exhibited an impulsive behavior and failed to quickly identify and migrate to a protected environment, unlike control earthworms and AA-like earthworms. All results corroborated that the S-anion imbalance could concomitantly induce alterations in immune function and stress behavior related to earthworm survival. From a human perspective, this information may corroborate the potential specific role of superoxide anion in the modulation of the stress response, resilience, and risk of depression.
Collapse
Affiliation(s)
| | - Charles Elias Assmann
- Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Fernanda Barbisan
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Isabel Roggia
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bárbara Osmarin Turra
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna Chitolina
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Verônica Farina Azzolin
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Euler Esteves Ribeiro
- Open University of the Third Age Foundation, State University of Amazonas, Manaus, Brazil
| | | | - Ivana Beatrice Mânica da Cruz
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
29
|
Forbes VE, Agatz A, Ashauer R, Butt KR, Capowiez Y, Duquesne S, Ernst G, Focks A, Gergs A, Hodson ME, Holmstrup M, Johnston AS, Meli M, Nickisch D, Pieper S, Rakel KJ, Reed M, Roembke J, Schäfer RB, Thorbek P, Spurgeon DJ, Van den Berg E, Van Gestel CA, Zorn MI, Roeben V. Mechanistic Effect Modeling of Earthworms in the Context of Pesticide Risk Assessment: Synthesis of the FORESEE Workshop. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:352-363. [PMID: 32910508 DOI: 10.1002/ieam.4338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.
Collapse
Affiliation(s)
- Valery E Forbes
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | | | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Kevin R Butt
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Yvan Capowiez
- INRAE, UMR 1114 EMMAH, INRA/Université d'Avignon, Domaine Saint Paul, Agroparc, Avignon, France
| | - Sabine Duquesne
- UBA Umweltbundesamt, FGIV-1.3, Section Plant Protection Products, Dessau, Germany
| | - Gregor Ernst
- Bayer AG, CropScience Division, Monheim, Germany
| | - Andreas Focks
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Andre Gergs
- Bayer AG, CropScience Division, Monheim, Germany
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York, United Kingdom
| | | | - Alice Sa Johnston
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Mattia Meli
- Adama Agricultural Solutions Ltd, Suresnes Cedex, France
| | | | - Silvia Pieper
- UBA Umweltbundesamt, FGIV-1.3, Section Plant Protection Products, Dessau, Germany
| | | | - Melissa Reed
- Health and Safety Executive, York, United Kingdom
| | | | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz and Landau, Landau, Germany
| | | | - David J Spurgeon
- UK Centre for Ecology and Hydrology, MacLean Building, Wallingford, Oxon, United Kingdom
| | | | - Cornelis Am Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | |
Collapse
|