1
|
Jayasekara UG, Hadibarata T, Hindarti D, Kurniawan B, Jusoh MNH, Gani P, Tan IS, Yuniarto A, Rubiyatno, Khamidun MHB. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. Bioprocess Biosyst Eng 2025; 48:705-723. [PMID: 39760783 DOI: 10.1007/s00449-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.
Collapse
Affiliation(s)
- Upeksha Gayangani Jayasekara
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Dwi Hindarti
- Research Center for Oceanography, National Research and Innovation Agency, Jalan Pasir Putih I, Jakarta, 14430, Indonesia
| | - Budi Kurniawan
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, KST BJ Habibie, Puspitek, Serpong, Tangeran Selatan, 15314, Banten, Indonesia
| | - Mohammad Noor Hazwan Jusoh
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Paran Gani
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Inn Shi Tan
- Department of Chemical & Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Rubiyatno
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Mohd Hairul Bin Khamidun
- Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia
| |
Collapse
|
2
|
Petousis M, Michailidis N, Saltas V, Papadakis V, Spiridaki M, Mountakis N, Argyros A, Valsamos J, Nasikas NK, Vidakis N. Mechanical and Electrical Properties of Polyethylene Terephthalate Glycol/Antimony Tin Oxide Nanocomposites in Material Extrusion 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:761. [PMID: 38727355 PMCID: PMC11085549 DOI: 10.3390/nano14090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped Tin Oxide (ATO) to create five different composites (2.0-10.0 wt.% ATO). The PETG/ATO filaments were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens following international standards. Various tests were conducted on thermal, rheological, mechanical, and morphological properties. The mechanical performance of the prepared nanocomposites was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and electrical properties of the prepared composites were evaluated over a broad frequency range. The dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray spectroscopy, which were performed to investigate the structures and morphologies of the samples. The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase over the pure polymer in tensile strength). The results show the potential of such nanocomposites when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG is the most commonly used polymer.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Vassilis Saltas
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Vassilis Papadakis
- Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH)–Hellas, N. Plastira 100m, 70013 Heraklion, Greece;
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
| | - Mariza Spiridaki
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - John Valsamos
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| | - Nektarios K. Nasikas
- Division of Mathematics and Engineering Sciences, Department of Military Sciences, Hellenic Army Academy, Vari, 16673 Attica, Greece;
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.S.); (N.M.); (J.V.)
| |
Collapse
|
3
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
4
|
Wang J, Tan L, Li Q, Wang J. Toxic effects of nSiO 2 and mPS on diatoms Nitzschia closterium f. minutissima. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106298. [PMID: 38101202 DOI: 10.1016/j.marenvres.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Nitzschia closterium f. minutissima, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 2, 5, 10, 30 mg L-1) and mPS (1, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. Both micro-/nano-particles (MNPs) inhibited the growth of N. closterium f. minutissima in a concentration- and time-dependent manner. The toxic effect of mPS on N. closterium f. minutissima is higher than that of nSiO2, because silicon is essential for diatoms to maintain cell wall integrity, and the addition of appropriate amounts of nSiO2 can be absorbed and used as a nutrient to promote diatom growth and protect the integrity of the siliceous shell to some extent. Both MNPs induce the production of excess oxidation and activate the cellular antioxidant defense system, leading to increased SOD and CAT activity as a means to resist oxidative damage to the cell, and eliminating excess ROS and maintaining normal cell morphology and metabolism. SEM is consistent with the results of MDA, showing that mPS with high concentrations attach to the surface of algal cells to produce heterogeneous aggregates and disrupt the cell wall and cell membrane, causing the cells to expand and rupture. This study contributes to the understanding of the size effect of MNPs on the growth of marine diatom.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
5
|
Yaashikaa PR, Devi MK, Kumar PS. Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology. ENVIRONMENTAL RESEARCH 2022; 214:113868. [PMID: 35835162 DOI: 10.1016/j.envres.2022.113868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities resulted in the deposition of huge quantities of contaminants such as heavy metals, dyes, hydrocarbons, etc into an ecosystem. The serious ill effects caused by these pollutants to all living organisms forced in advancement of technology for degrading or removing these pollutants. This degrading activity is mostly depending on microorganisms owing to their ability to survive in harsh adverse conditions. Though native strains possess the capability to degrade these pollutants the development of genetic engineering and molecular biology resulted in engineering approaches that enhanced the efficiency of microbes in degrading pollutants at faster rate. Many bioinformatics tools have been developed for altering/modifying genetic content in microbes to increase their degrading potency. This review provides a detailed note on engineered microbes - their significant importance in degrading environmental contaminants and the approaches utilized for modifying microbes. The genes responsible for degrading the pollutants have been identified and modified fir increasing the potential for quick degradation. The methods for increasing the tolerance in engineered microbes have also been discussed. Thus engineered microbes prove to be effective alternate compared to native strains for degrading pollutants.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
6
|
A Simple Model to Estimate the Number of Metal Engineered Nanoparticles in Samples Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2022; 27:molecules27185810. [PMID: 36144546 PMCID: PMC9506279 DOI: 10.3390/molecules27185810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate determination of the size and the number of nanoparticles plays an important role in many different environmental studies of nanomaterials, such as fate, toxicity, and occurrence in general. This work presents an accurate model that estimates the number of nanoparticles from the mass and molar concentration of gold nanoparticles (AuNPs) in water. Citrate-capped AuNPs were synthesized and characterized using transmission electron microscopy (TEM) and ultraviolet–visible spectroscopy (UV-vis). A mimic of environmental matrices was achieved by spiking sediments with AuNPs, extracted with leachate, and separated from the bulk matrix using centrifuge and phase transfer separation techniques. The quantification of AuNPs’ molar concentration on the extracted residues was achieved by inductively coupled plasma optical emission spectroscopy (ICP-OES). The molar concentrations, an average diameter of 27 nm, and the colloidal suspension volumes of AuNPs enable the calculation of the number of nanoparticles in separated residues. The plot of the number of AuNPs against the mass of AuNPs yielded a simple linear model that was used to estimate the number of nanoparticles in the sample using ICP-OES. According to the authors’ knowledge, this is the first adaptation of the gravimetric method to ICP-OES for estimating the number of nanoparticles after separation with phase transfer.
Collapse
|
7
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
9
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
10
|
Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC, Ehmoser EK, Lynch I, Ming X, Rui Y. A critical review of the environmental impacts of manufactured nano-objects on earthworm species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118041. [PMID: 34523513 DOI: 10.1016/j.envpol.2021.118041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The presence of manufactured nano-objects (MNOs) in various consumer or their (future large-scale) use as nanoagrochemical have increased with the rapid development of nanotechnology and therefore, concerns associated with its possible ecotoxicological effects are also arising. MNOs are releasing along the product life cycle, consequently accumulating in soils and other environmental matrices, and potentially leading to adverse effects on soil biota and their associated processes. Earthworms, of the group of Oligochaetes, are an ecologically significant group of organisms and play an important role in soil remediation, as well as acting as a potential vector for trophic transfer of MNOs through the food chain. This review presents a comprehensive and critical overview of toxic effects of MNOs on earthworms in soil system. We reviewed pathways of MNOs in agriculture soil environment with its expected production, release, and bioaccumulation. Furthermore, we thoroughly examined scientific literature from last ten years and critically evaluated the potential ecotoxicity of 16 different metal oxide or carbon-based MNO types. Various adverse effects on the different earthworm life stages have been reported, including reduction in growth rate, changes in biochemical and molecular markers, reproduction and survival rate. Importantly, this literature review reveals the scarcity of long-term toxicological data needed to actually characterize MNOs risks, as well as an understanding of mechanisms causing toxicity to earthworm species. This review sheds light on this knowledge gap as investigating bio-nano interplay in soil environment improves our major understanding for safer applications of MNOs in the agriculture environment.
Collapse
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shafiq
- University of Guadalajara-University Center for Biological and Agricultural Sciences, Camino Ing. Ramón Padilla Sánchez núm. 2100, La Venta del Astillero, Zapopan, Jalisco, CP. 45110, Mexico
| | - Anna Pavlicek
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Christian Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Eva-Kathrin Ehmoser
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Xu Ming
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Zhao Q, Chu C, Xiao X, Chen B. Selectively coupled small Pd nanoparticles on sp 2-hybridized domain of graphene-based aerogel with enhanced catalytic activity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145396. [PMID: 33736138 DOI: 10.1016/j.scitotenv.2021.145396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The precisely coupling of metal nanoparticles with support domain are crucial to enhance the catalytic activity and stability of supported metal nanoparticle catalysts (MNPs). Here we selectively anchor Pd nanoparticles to the sp2 domain in graphene-based aerogel constructed with base-washed graphene oxide (BGO) by removing oxidative debris (OD). The effects of OD on the size and chemical composition of Pd nanoparticles in aerogels are initially unveiled. The removal of OD nanoparticles prompt selective coupling of Pd nanoparticles to the exposed sp2-hybridized domain on BGO nanosheets, and then prevent it from agglomeration. As a result, the Pd nanoparticle size of self-assembled Pd/BGA is 4.67 times smaller than that of traditional Pd/graphene oxide aerogel (Pd/GA). The optimal catalytic activity of Pd/BGA for the model catalytic reduction of 4-nitrophenol is 15 times higher than that of Pd/GA. Pd/BGA could maintain its superior catalytic activity and achieves 98.72% conversion in the fifth cycle. The superior catalytic performance could be ascribed to the small Pd nanoparticles and high percentage of Pd(0) in Pd/BGA, and the enhanced electronic conductivity of Pd/BGA. These integrated merits of Pd/BGA as heterogeneous catalysts are attributed to selectively anchor Pd nanoparticles on sp2-hybridized domain of graphene-based aerogel, and strongly coupled interaction of MNPs with support. The structure-regulated BGO nanosheets could serve as versatile building blocks for fabricating MNPs/graphene aerogels with superior performance for catalytic transformation of water pollutants.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
12
|
Dai H, Sun T, Han T, Li X, Guo Z, Wang X, Chen Y. Interactions between cerium dioxide nanoparticles and humic acid: Influence of light intensities and molecular weight fractions. ENVIRONMENTAL RESEARCH 2021; 195:110861. [PMID: 33600822 DOI: 10.1016/j.envres.2021.110861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 05/25/2023]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) are ubiquitous in the water environment due to the extensive commercial applications. The complexity of heterogeneous humic acid (HA) plays a significant role in affecting the physicochemical properties of CeO2 NPs in aqueous environments. However, the effects of light intensities and HA fractions on the interaction mechanism between CeO2 NPs and HA are poorly understood. Here, we provided the evidence that both light intensities (>3 E L-1 s-1) and molecular weights (>10 kDa) can effectively affect the interactions between CeO2 NPs and HA. The absolute content of reactive oxygen species (ROS) and quantum yield (Φ) of 3HA* were inhibited when HA (10 mg of C L-1) interacts with CeO2 NPs. However, they were positively correlated with the increasing irradiation time and simulated sunlight intensities. High molecular weights of HA fraction (>100 kDa) restrained the ROS generation and Φ of 3HA* due to surface adsorption between HA and CeO2 NPs blocking reactive sites, competitive absorption for simulated sunlight. Fourier transform infrared and three-dimensional excitation-emission matrix fluorescence spectroscopy confirmed that the carboxylic groups of HA have high complexation capacity with CeO2 NPs. These findings are essential for us to improve the understanding of the impacts of HA on CeO2 NPs under different conditions in natural waters.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangxi Jindalai Environmental Protection Co., Ltd, Nanchang, 330100, China.
| | - Tongshuai Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Xiang Li
- School Energy & Environment, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangxi Jindalai Environmental Protection Co., Ltd, Nanchang, 330100, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
13
|
Palmieri V, De Maio F, De Spirito M, Papi M. Face masks and nanotechnology: Keep the blue side up. NANO TODAY 2021; 37:101077. [PMID: 33519950 PMCID: PMC7833187 DOI: 10.1016/j.nantod.2021.101077] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the biggest challenges of the 21st century. While researchers are working on vaccine development and elucidating the mechanism of action and evolution of the harmful SARS-CoV-2, the current most important public health measure, second only to social distancing, is the obligatory wearing of facial protection. The Centers for Disease Control and Prevention recommended in April 2020 that the public wear face coverings in areas with high rates of transmission based on epidemiological evidence on the strong relationship between mask wearing and pandemic control. This protection against SARS-CoV-2 and other airborne pathogens, boost the design and production of innovative solutions by industry stakeholders. Nanoparticles, nanofibers, and other pioneering technologies based on nanomaterials have been introduced in mask production chains to improve performance and confer antiviral properties. During an emergency like COVID-19, these products directly available to the public should be carefully analyzed in terms of efficacy and possible long-term effects on the wearers' skin and lungs as well as on the environment. This opinion paper provides a wealth of information on the role of nanotechnologies in improving the performance of facial masks and on possible future consequences caused by a poorly regulated use of nanotechnology in textiles.
Collapse
Affiliation(s)
- Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| |
Collapse
|
14
|
Wang Z, Jin S, Zhang F, Wang D. Combined Toxicity of TiO 2 Nanospherical Particles and TiO 2 Nanotubes to Two Microalgae with Different Morphology. NANOMATERIALS 2020; 10:nano10122559. [PMID: 33419281 PMCID: PMC7766607 DOI: 10.3390/nano10122559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
The joint activity of multiple engineered nanoparticles (ENPs) has attracted much attention in recent years. Many previous studies have focused on the combined toxicity of different ENPs with nanostructures of the same dimension. However, the mixture toxicity of multiple ENPs with different dimensions is much less understood. Herein, we investigated the toxicity of the binary mixture of TiO2 nanospherical particles (NPs) and TiO2 nanotubes (NTs) to two freshwater algae with different morphology, namely, Scenedesmus obliquus and Chlorella pyrenoidosa. The physicochemical properties, dispersion stability, and the generation of reactive oxygen species (ROS) were determined in the single and binary systems. Classical approaches to assessing mixture toxicity were applied to evaluate and predict the toxicity of the binary mixtures. The results show that the combined toxicity of TiO2 NPs and NTs to S. obliquus was between the single toxicity of TiO2 NTs and NPs, while the combined toxicity to C. pyrenoidosa was higher than their single toxicity. Moreover, the toxicity of the binary mixtures to C. pyrenoidosa was higher than that to S. obliquus. A toxic unit assessment showed that the effects of TiO2 NPs and NTs were additive to the algae. The combined toxicity to S. obliquus and C. pyrenoidosa can be effectively predicted by the concentration addition model and the independent action model, respectively. The mechanism of the toxicity caused by the binary mixtures of TiO2 NPs and NTs may be associated with the dispersion stability of the nanoparticles in aquatic media and the ROS-induced oxidative stress effects. Our results may offer a new insight into evaluating and predicting the combined toxicological effects of ENPs with different dimensions and of probing the mechanisms involved in their joint toxicity.
Collapse
Affiliation(s)
- Zhuang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
- Correspondence: ; Tel.: +86-25-58731090
| | - Shiguang Jin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
| | - Fan Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian 116023, China;
| |
Collapse
|
15
|
Liu Y, Pan B, Li H, Lang D, Zhao Q, Zhang D, Wu M, Steinberg CEW, Xing B. Can the properties of engineered nanoparticles be indicative of their functions and effects in plants? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111128. [PMID: 32827963 DOI: 10.1016/j.ecoenv.2020.111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The extensive applicability of engineered nanoparticles (ENPs) in various fields such as environment, agriculture, medicine or biotechnology has mostly been attributed to their better physicochemical properties as compared with conventional bulk materials. However, functions and biological effects of ENPs change across different scenarios which impede the progress in their risk assessment and safety management. This review thus intends to figure out whether properties of ENPs can be indicators of their behavior through summarizing and analyzing the available literature and knowledge. The studies have indicated that size, shape, solubility, specific surface area, surface charge and surface reactivity constitute a more accurate measure of ENPs functions and toxic effects in addition to mass concentration. Effects of ENPs are also highly dependent on dose metrics, species and strains of organisms, environmental conditions, exposure route and duration. Searching correlations between properties and functions or biological effects may serve as an effective way in understanding positive and negative impacts of ENPs. This will ensure safe design and sustainable future use of ENPs.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Bo Pan
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Hao Li
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Di Zhang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Min Wu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Christian E W Steinberg
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Institute of Biology, Freshwater & Stress Ecology, Humboldt University, Berlin, 12437, Germany
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|