1
|
Ribas-Costa VA, Trlica A, Gastón A. Integrating regional forest productivity maps with supplemental data to optimize forest management priority: A case study in Ibiza (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125221. [PMID: 40185013 DOI: 10.1016/j.jenvman.2025.125221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Forest Management Priority (FMP) refers to the allocation of limited resources in forestry to achieve pre-established objectives. In Mediterranean forests, wildfire suppression is a primary focus yet challenges arise when forest management needs to be actively implemented. Additionally, productivity, a critical factor in FMP, is often overlooked. In response, we propose (1) a method to estimate forest productivity using remote sensing and (2) the integration of this data into a GIS-based Multiple-Criteria Decision Analysis (MCDA) framework with a participatory approach to propose a novel FMP index for Mediterranean forests. This method aims to enhance FMP by guiding resource allocation to key areas, using the island of Ibiza as a test case. Our approach to mapping forest productivity yielded a 20.4 % relative error in site index and 43.5 % in mean annual increment. Incorporating this data into the GIS MCDA allows decision-makers to evaluate multiple information layers also including wildfire risk, terrain slope, forest stress, accessibility, and landscape visibility. We tested five prioritization scenarios: high productivity, environmental protection, wildfire risk management, a multipurpose scenario, and a business-as-usual scenario. When comparing the FMP index distribution, most scenarios showed a broader prioritization of areas than current practices, highlighting opportunities for improvement. In the high productivity scenario, 0.903 M m3 of timber were categorized as high priority for management, translating to a mean annual growth of 20,539 m3. We believe this work provides a valuable framework for stakeholders to adopt better forest management practices, promoting bioeconomy and optimizing the use of limited public and private funds.
Collapse
Affiliation(s)
- Vicent A Ribas-Costa
- Centro para La Conservación de La Biodiversidad y El Desarrollo Sostenible (CBDS), ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Calle José Antonio Novais 10, 28040, Madrid, Spain.
| | - Andrew Trlica
- Department of Forestry and Environmental Resources, NC State University, Raleigh, NC, 27695, USA
| | - Aitor Gastón
- Centro para La Conservación de La Biodiversidad y El Desarrollo Sostenible (CBDS), ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Calle José Antonio Novais 10, 28040, Madrid, Spain
| |
Collapse
|
2
|
Hurtado P, Espelta JM, Jaime L, Martínez‐Vilalta J, Kokolaki MS, Lindner M, Lloret F. Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience. GLOBAL CHANGE BIOLOGY 2025; 31:e70196. [PMID: 40351244 PMCID: PMC12067180 DOI: 10.1111/gcb.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/14/2025]
Abstract
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
Collapse
Affiliation(s)
- Pilar Hurtado
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- DIFARUniversity of GenoaGenoaItaly
- Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMadridSpain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Luciana Jaime
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Manto Samou Kokolaki
- Department of Natural Resources Development and Agricultural EngineeringAgricultural University of AthensAthensGreece
| | | | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
3
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Konter O, Ziaco E, Büntgen U, Esper J. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174370. [PMID: 38945248 DOI: 10.1016/j.scitotenv.2024.174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Konter
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emanuele Ziaco
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, United Kingdom; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jan Esper
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
| |
Collapse
|
4
|
Vilà-Vilardell L, Valor T, Hood-Nowotny R, Schott K, Piqué M, Casals P. Thinning followed by slash burning enhances growth and reduces vulnerability to drought for Pinus nigra. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3030. [PMID: 39252434 DOI: 10.1002/eap.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 09/11/2024]
Abstract
Increasingly frequent severe drought events are pushing Mediterranean forests to unprecedented responses. Lack of management leads to dense forests that are highly susceptible to drought stress, potentially resulting in extensive dieback and increased vulnerability to other disturbances. Forest treatments like thinning and slash burning reduce competition for resources and have the potential to enhance tree growth and vigor and minimize tree vulnerability to drought. Here, we used tree rings to study the growth and physiological response of black pine (Pinus nigra) to drought in northeastern Spain under different treatments, including two thinning intensities (light and heavy, with 10% and 40% basal area reduction, respectively) followed by two understory treatments (clearing alone and in combination with slash burning), resulting in a research design of four treatments plus an untreated control with three replicates. Specifically, we studied basal area increment (BAI), resilience indices, and intrinsic water use efficiency (iWUE) using carbon and oxygen isotope composition (δ13C and δ18O in tree-ring cellulose) before and after treatments. Our results showed that BAI and resistance to drought increased in the heavy-thin (burned and unburned) and light-thin burned units. Resilience increased in the burned units regardless of the thinning intensity, while recovery was not affected by treatment. Slash burning additionally increased BAI in the light-thin and resistance and resilience in the heavy-thin units compared with clearing alone. The stable isotope analysis revealed a minor effect of treatments on δ13C and δ18O. No change in iWUE among treatments was presumably linked to a proportional increase in both net CO2 assimilation and stomatal conductance, which particularly increased in the heavy-thin (burned and unburned) and light-thin burned units, indicating that these trees were the least affected by drought. This study shows that management approaches aimed at reducing wildfire hazard can also increase the vigor of dominant trees under drought stress. By reducing competition both from the overstory and the understory, thinning followed by clearing alone or in combination with slash burning promotes tree growth and vigor and increases its resistance and resilience to drought.
Collapse
Affiliation(s)
| | - Teresa Valor
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| | - Rebecca Hood-Nowotny
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Katharina Schott
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Míriam Piqué
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| | - Pere Casals
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| |
Collapse
|
5
|
Tikkasalo OP, Leppä K, Launiainen S, Peltoniemi M, Mäkipää R, Rinne-Garmston KT, Sahlstedt E, Young GHF, Bokareva A, Lohila A, Korkiakoski M, Schiestl-Aalto P, Lehtonen A. Modeling the response of Norway spruce tree-ring carbon and oxygen isotopes to selection harvest on a drained peatland forest. TREE PHYSIOLOGY 2024; 44:tpad119. [PMID: 37756632 PMCID: PMC10993295 DOI: 10.1093/treephys/tpad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.
Collapse
Affiliation(s)
- Olli-Pekka Tikkasalo
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Kersti Leppä
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Samuli Launiainen
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Katja T Rinne-Garmston
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Elina Sahlstedt
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Giles H F Young
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Aleksandra Bokareva
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Annalea Lohila
- Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Sciences, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Mika Korkiakoski
- Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
| | - Pauliina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Sciences, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Aleksi Lehtonen
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
6
|
Dubinin M, Osem Y, Yakir D, Paz-Kagan T. Satellite-based assessment of water use and leaf area efficiencies of dryland conifer forests along an aridity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165977. [PMID: 37541509 DOI: 10.1016/j.scitotenv.2023.165977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Dryland forests worldwide are increasingly threatened by drought stress due to climate change. Understanding the relationships between forest structure and function is essential for managing dryland forests to adapt to these changes. We investigated the structure-function relationships in four dryland conifer forests distributed along a semiarid to subhumid climatic aridity gradient. Forest structure was represented by leaf area index (LAI) and function by gross primary productivity (GPP), evapotranspiration (ET), and the derived efficiencies of water use (WUE = GPP/ET) and leaf area (LAE = GPP/LAI). Estimates of GPP and ET were based on the observed relationships between high-resolution vegetation indices from VENμS and Sentinel-2A satellites and flux data from three eddy covariance towers in the study regions between November 2015 to October 2018. The red-edge-based MERIS Terrestrial Chlorophyll Index (MTCI) from VENμS and Sentinel-2A showed strong correlations to flux tower GPP and ET measurements for the three sites (R2cal > 0.91, R2val > 0.84). Using our approach, we showed that as LAI decreased with decreasing aridity index (AI) (i.e., dryer conditions), estimated GPP and ET decreased (R2 > 0.8 to LAI), while WUE (R2 = 0.68 to LAI) and LAE increased. The observed global-scale patterns are associated with a variety of forest vegetation characteristics, at the local scale, such as tree species composition and density. However, our results point towards a canopy-level mechanism, where the ecosystem-LAI and resultant proportion of sun-exposed vs. shaded leaves are primary determinants of WUE and LAE along the studied climatic aridity gradient. This work demonstrates the importance of high-resolution (spatially and spectrally) remote sensing data conjugated with flux tower data for monitoring dryland forests and understanding the intricate structure-function interactions in their response to drying conditions.
Collapse
Affiliation(s)
- Moshe Dubinin
- Earth and Planetary Sciences Department, Weizmann Institute, Rehovot, Israel; Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Israel; French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Yagil Osem
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Israel
| | - Dan Yakir
- Earth and Planetary Sciences Department, Weizmann Institute, Rehovot, Israel
| | - Tarin Paz-Kagan
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
7
|
Brennan RN, Boychuck S, Washkwich AJ, John-Alder H, Fonseca DM. Tick abundance and diversity are substantially lower in thinned vs. unthinned forests in the New Jersey Pinelands National Reserve, USA. Ticks Tick Borne Dis 2023; 14:102106. [PMID: 36516481 DOI: 10.1016/j.ttbdis.2022.102106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Forest thinning is a management tool used in the New Jersey Pinelands and elsewhere to improve forest health and resilience, mitigate wildfire risk, and manage for wildlife. Forest thinning leads to warmer drier microclimates, which have been shown in both field and laboratory studies to reduce tick survival and reproduction. To directly assess the effects of forest thinning on the abundance and diversity of ticks and on the prevalence of tick-borne human pathogens, we sampled ticks weekly from March to November 2021 at three replicated pairs of thinned and unthinned forest sites composed primarily of pitch-pine, shortleaf pine, and various oak species. We characterized microclimate in the understory and forest floor at each sampling plot by deploying multiple data loggers to monitor temperature and relative humidity throughout the study period. As expected, we found that thinned plots were significantly drier and warmer than unthinned plots. We also found that average questing tick abundance was 92% lower in thinned as compared with unthinned plots. Of the three main tick species collected in unthinned plots (Amblyomma americanum, Ixodes scapularis, and Dermacentor albipictus) only A. americanum and a single I. scapularis were collected in thinned plots. Prevalence of Ehrlichia species in A. americanum did not differ between treatments, and the sole I. scapularis collected in a thinned plot was infected with Borrelia burgdorferi sensu lato. However, the significant and much lower tick abundance in thinned plots indicates a lower risk of human-tick encounters. Our results add to the growing evidence that landscape and forest management can reduce local tick abundance, thereby reducing tick-borne disease risk.
Collapse
Affiliation(s)
- Reilly N Brennan
- Center for Vector Biology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901 USA; Department of Ecology and Evolution, Rutgers University, 14 College Farm Rd. New Brunswick, NJ 08901 USA; Rutgers Pinelands Field Research Station, 501 4 Mile Rd, New Lisbon, NJ 08064 USA; Present address: Latham Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060.
| | - Samantha Boychuck
- Rutgers Pinelands Field Research Station, 501 4 Mile Rd, New Lisbon, NJ 08064 USA; Department of Biology, Georgetown University, 37th and O Streets, Washington DC 20057 USA.
| | - Anthony John Washkwich
- Rutgers Pinelands Field Research Station, 501 4 Mile Rd, New Lisbon, NJ 08064 USA; Department of Environmental Science, Rutgers University, 14 College Farm Rd. New Brunswick, NJ 08901 USA.
| | - Henry John-Alder
- Department of Ecology and Evolution, Rutgers University, 14 College Farm Rd. New Brunswick, NJ 08901 USA; Rutgers Pinelands Field Research Station, 501 4 Mile Rd, New Lisbon, NJ 08064 USA.
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901 USA.
| |
Collapse
|
8
|
Testolin R, Dalmonech D, Marano G, Bagnara M, D'Andrea E, Matteucci G, Noce S, Collalti A. Simulating diverse forest management options in a changing climate on a Pinus nigra subsp. laricio plantation in Southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159361. [PMID: 36252656 DOI: 10.1016/j.scitotenv.2022.159361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mediterranean pine plantations provide several ecosystem services but are vulnerable to climate change. Forest management might play a strategic role in the adaptation of Mediterranean forests, but the joint effect of climate change and diverse management options have seldom been investigated together. Here, we simulated the development of a Laricio pine (Pinus nigra subsp. laricio) stand in the Bonis watershed (southern Italy) from its establishment in 1958 up to 2095 using a state-of-the-science process-based forest model. The model was run under three climate scenarios corresponding to increasing levels of atmospheric CO2 concentration and warming, and six management options with different goals, including wood production and renaturalization. We analysed the effect of climate change on annual carbon fluxes (i.e., gross and net primary production) and stocks (i.e., basal area, standing and harvested carbon woody stocks) of the autotrophic compartment, as well as the impact of different management options compared to a no management baseline. Results show that higher temperatures (+3 to +5 °C) and lower precipitation (-20 % to -22 %) will trigger a decrease in net primary productivity in the second half of the century. Compared to no management, the other options had a moderate effect on carbon fluxes over the whole simulation (between -14 % and +11 %). While standing woody biomass was reduced by thinning interventions and the shelterwood system (between -5 % and -41 %), overall carbon stocks including the harvested wood were maximized (between +41 % and +56 %). Results highlight that management exerts greater effects on the carbon budget of Laricio pine plantations than climate change alone, and that climate change and management are largely independent (i.e., no strong interaction effects). Therefore, appropriate silvicultural strategies might enhance potential carbon stocks and improve forest conditions, with cascading positive effects on the provision of ecosystem services in Mediterranean pine plantations.
Collapse
Affiliation(s)
- Riccardo Testolin
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy; BIOME Lab., Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; Centro Interuniversitario per la Biodiversità Vegetale Big Data - PLANT DATA, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; LifeWatch, Italy.
| | - Daniela Dalmonech
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy
| | - Gina Marano
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy; Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Maurizio Bagnara
- Senckenberg Biodiversity and Climate Research Centre (SBiKF), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Ettore D'Andrea
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems (CNR-IRET), Via G. Marconi n. 2, 05010 Porano, Italy
| | - Giorgio Matteucci
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Sergio Noce
- Foundation Euro-Mediterranean Centre on Climate Change, Division Impacts on Agriculture, Forests and Ecosystem Services (CMCC-IAFES), 01100 Viterbo, Italy
| | - Alessio Collalti
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy
| |
Collapse
|
9
|
Carrillo-García C, Girola-Iglesias L, Guijarro M, Hernando C, Madrigal J, Mateo RG. Ecological niche models applied to post-megafire vegetation restoration in the context of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158858. [PMID: 36122721 DOI: 10.1016/j.scitotenv.2022.158858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 05/21/2023]
Abstract
Climate change and land-use changes are the main drivers altering fire regimes and leading to the occurrence of megafires. Current management policies mainly focus on short-term restoration without considering how climate change might affect regeneration dynamics. We aimed to test the usefulness of ecological niche models (ENMs) to integrate the effects of climate change on tree species distributions into post-fire restoration planning. We also examined different important conceptual and methodological aspects during this novel process. We constructed ENM at fine spatial resolution (25 m) for the four main tree species (Pinus pinaster, Quercus pyrenaica, Q. faginea and Q. ilex) in an area affected by a megafire in Central Spain at two scales (local and regional), two periods (2 and 14 years after the fire) at the local scale, and under two future climate change scenarios. The usefulness of ENMs as support tools in decision-making for post-fire management was confirmed for the first time. As hypothesized, models developed at both scales are different, since they represent different scale dependent drivers of species distribution patterns. However, both provide objective information to be considered by stakeholders in combination with other sources of information. Local models generated with vegetation data 14 years after the fire provided valuable information about local and current vegetation dynamics (i.e., current microecology spatial niche prediction). Regional models are capable of considering a higher proportion of the climatic niche of species to generate reliable climate change forecasts (i.e., future macroclimate spatial niche forecast). The use of precise ENMs provide both an objective interpretation of potential habitat conditions and the opportunity of examining vegetation patches, that can be very valuable in managing restoration of areas affected by megafires under climate change conditions.
Collapse
Affiliation(s)
- Cristina Carrillo-García
- Grupo de Incendios Forestales, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. Coruña Km 7,5, 28040 Madrid, Spain; ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu s/n, 28040 Madrid, Spain.
| | - Lucas Girola-Iglesias
- ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu s/n, 28040 Madrid, Spain
| | - Mercedes Guijarro
- Grupo de Incendios Forestales, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. Coruña Km 7,5, 28040 Madrid, Spain
| | - Carmen Hernando
- Grupo de Incendios Forestales, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. Coruña Km 7,5, 28040 Madrid, Spain
| | - Javier Madrigal
- Grupo de Incendios Forestales, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. Coruña Km 7,5, 28040 Madrid, Spain; ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu s/n, 28040 Madrid, Spain
| | - Rubén G Mateo
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Facultad de Ciencias, Edificio de Biología, Campus de Cantoblanco, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Facultad de Ciencias, Edificio de Biología, Campus de Cantoblanco, Calle Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
10
|
Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154971. [PMID: 35367548 DOI: 10.1016/j.scitotenv.2022.154971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Tree growth is highly sensitive to water deficit. At the same time, growth processes substantially influence tree performance under water stress by changing the root-absorbing surface, leaf-transpiring surface, amount of conducting xylem, etc. Drought-induced growth suppression is often higher in conifers than in broadleaf species. This review is devoted to the relations between the growth of coniferous plants and their performance under increasing climate aridization in the temperate and boreal zones of the Northern Hemisphere. For adult trees, available evidence suggests that increasing the frequency and severity of water deficit would be more detrimental to those plants that have higher growth in favorable conditions but decrease growth more prominently under water shortage, compared to trees whose growth is less sensitive to moisture availability. Not only the overall sensitivity of growth processes to water supply but also the asymmetry in response to lower-than-average and higher-than-average moisture conditions can be important for the performance of coniferous trees under upcoming adverse climate change. To fully understand the tree response under future climate change, the responses to both drier and wetter years need to be analyzed separately. In coniferous seedlings, more active growth is usually linked with better drought survival, although physiological reasons for such a link can be different. Growth stability under exacerbating summer water deficit in coniferous plants can be maintained by more active spring growth and/or by a bimodal growth pattern; each strategy has specific advantages and drawbacks. The optimal choice of growth strategy would be critical for future reforestation programs.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| |
Collapse
|
11
|
Dynamic Evaluation of Early Silvicultural Treatments for Wildfire Prevention. FORESTS 2022. [DOI: 10.3390/f13060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thinning young forest stands is a common practice to improve the future development of the remaining trees and enhance their resistance to abiotic and biotic disturbances. The objective of this study was to consider the effectiveness of precommercial thinning, over time, implemented on Pinus halepensis (Aleppo pine) thickets, regarding fuel evolution and potential fire behavior. For this purpose, we established 44 plots on untreated and thinned Aleppo pine stands, measured all of the relevant fuel characteristics and simulated fire behavior under average and extreme fire weather scenarios. The plots were at different stages of fuel evolution (0.5 to 10 years since treatment, plus untreated stands), so that the evolution of the variables defining forest structure and the amount and distribution of surface fuels could be captured. The results show that precommercial thinning, when accompanied with pruning and surface fuel management, had a clear impact on fire behavior and on the potential of fire crowning during the first two to four years after the treatment. After that initial period, the buildup of understory vegetation minimized treatment effectiveness in mitigating potential fire behavior. In general, it can be stated that precommercial thinning has a positive impact on fire mitigation, but the impact that opening the tree canopy has on ground vegetation development must be considered in order to plan more efficient management strategies.
Collapse
|
12
|
Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain. FORESTS 2022. [DOI: 10.3390/f13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantations.
Collapse
|
13
|
Manrique-Alba À, Beguería S, Camarero JJ. Long-term effects of forest management on post-drought growth resilience: An analytical framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152374. [PMID: 34914996 DOI: 10.1016/j.scitotenv.2021.152374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
There is great interest in determining the effects of forest thinning as a tool to improve growth recovery from drought in different tree species and climatic conditions. However, we lack a robust framework to determine how transient are post-drought growth resilience and enhancement, and if such growth improvement involves an uncoupling with climate conditions. We used regression analysis to determine differences in growth, sensitivity to drought and previous-year growth, and long-term growth in five plantations of three pine species (Pinus halepensis Mill., Pinus nigra Arn. and Pinus sylvestris L.) under different thinning intensities. Then, we simulated post-drought and post-thinning growth trajectories based on fitted models, and we computed drought resistance, resilience and recovery indices based on these trajectories. Moreover, the simulation allowed us to calculate the time to recovery after a drought. Using this analytical framework, we found that thinning enhanced radial growth (between 85 and 150%, significant in all sites with p < 0.05), and reduced previous-year growth dependence (between -13 and -26%, significant in two out of five sites) and climatic dependence of growth (-23 to -49%, significant in two sites). We interpret these effects as a result of competition reduction by thinning and a transitory alleviation of growth climatic constraints. Thinning consistently improved drought resistance (+4 to +20%) and resilience (+1 to +4%). Recovery, on the contrary, was reduced (-1 to -15%). Since the growth loss during the drought was reduced due to higher drought resistance, the recovery was proportionally lower. Thinning reduced the time to recovery by one to two years. The thinning legacy effect persisted up to 15 to 20 years after thinning. Taken together, these findings enhance the benefits of adaptive silviculture in making pine plantations less vulnerable to unfavourable extreme climate events such as droughts. We present a novel and robust analytical framework to assess drought-thinning interactive effects on tree growth.
Collapse
|
14
|
The Past Matters: Previous Management Strategies Modulate Current Growth and Drought Responses of Norway Spruce (Picea abies H. Karst.). FORESTS 2022. [DOI: 10.3390/f13020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Due to high productivity and past management approaches, the forests of Central Europe are heavily dominated by conifers, even on sites where they do not occur naturally at all. One prominent example is Norway spruce (Picea abies H. Karst.), a species considered particularly vulnerable to severe droughts, especially outside of its ecological niche where it has been widely planted over the past centuries. In the face of global change, it is a major task for foresters to increase these forests’ ability to cope with the impacts of increasing climatic extremes. Therefore, gaining more knowledge about how different management strategies affect the drought responses of trees is crucial. However, we still know little about the influence of the individual treatment history of a tree on its growth. We used a dendroecological approach to address this issue and to assess how initial spacing, structural diversity, tree size, and density regulation approaches modulate annual growth, especially in drought years. We hypothesized that stand establishment and past silvicultural treatment codetermine tree growth and drought resilience. Our study took place at the combined spacing-thinning trial Fürstenfeldbruck 612 (FFB 612) in Southern Germany, since it delivered precise long-term data covering a broad range of treatments. Based on linear mixed effect models, we showed that the individual treatment history of a tree affects its annual growth and drought responses considerably. In more detail, we found that (i) high structural diversity in the vicinity of each tree favored growth and improved a tree’s performance under drought; (ii) larger trees were more climate-sensitive; (iii) previous high variations in thinning intensity, and consequently strong fluctuations in growth, affected current growth negatively and reduced recovery from droughts. Furthermore, we sought to understand the underlying mechanisms and to draw potential implications for refining silvicultural guidelines.
Collapse
|
15
|
Moghli A, Santana VM, Soliveres S, Baeza MJ. Thinning and plantation of resprouting species redirect overstocked pine stands towards more functional communities in the Mediterranean basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150715. [PMID: 34610406 DOI: 10.1016/j.scitotenv.2021.150715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Post-fire regeneration in Pinus halepensis' forests, one of the most abundant vegetation types in the Mediterranean basin, often generates overstocked and vulnerable stands. They accumulate a high fuel load, increasing the risk of further fires, and present high levels of vulnerability due to their reduced seed production. In addition, these dense stands substantially reduce the availability of light and nutrients, which may hinder the recruitment of other species, often generating mono-specific and homogeneous stands, which potentially supply fewer ecosystem services than mixed forests with more heterogeneous structures. In these dense pine stands, management is of high priority to reduce fire hazards and promote their functionality. In overstocked pine stands (>75,000 trees·ha-1), we assessed the long-term effects (10 years) of two thinning levels (600 and 1200 trees·ha-1), in combination with the plantation of Quercus faginea (a resprouter species typical of advanced successional stages in our study area) on 28 above and belowground ecosystem attributes, including fire hazard. After ten years, thinning and plantation interacted to enhance ecosystem attributes associated with disturbance regulation and biodiversity conservation (up to 200%) and food production (up to 90%), while no effects were observed on those attributes related to carbon sequestration and supporting services. These effects were mainly driven by aboveground attributes, as they responded more strongly to our treatments than those belowground. Our results are relevant for the restoration of Mediterranean degraded ecosystems, and show that tree thinning in overstocked pine stands, combined with the plantation of resprouter species, may not only reduce fire risks and accelerate post-fire succession but also enhance the supply of multiple ecosystem services in the long run.
Collapse
Affiliation(s)
- Aymen Moghli
- Departamento de Ecología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
| | - Victor M Santana
- Departamento de Ecología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; CEAM, Fundación Centro de Estudios Ambientales del Mediterráneo, 46.980 Paterna, Valencia, Spain
| | - Santiago Soliveres
- Departamento de Ecología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; Instituto Multidisciplinar de Estudios del Medio "Ramón Margalef", Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - M Jaime Baeza
- Departamento de Ecología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; Instituto Multidisciplinar de Estudios del Medio "Ramón Margalef", Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
16
|
Schuler P, Cormier M, Werner RA, Buchmann N, Gessler A, Vitali V, Saurer M, Lehmann MM. A high-temperature water vapor equilibration method to determine non-exchangeable hydrogen isotope ratios of sugar, starch and cellulose. PLANT, CELL & ENVIRONMENT 2022; 45:12-22. [PMID: 34564870 PMCID: PMC9291759 DOI: 10.1111/pce.14193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The analysis of the non-exchangeable hydrogen isotope ratio (δ2 Hne ) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ2 Hne values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.e., C3 , C4 and CAM). δ2 Hne of commercial sugars and starch from different classes and sources, ranging from -157.8 to +6.4‰, were reproducibly analysed with precision between 0.2‰ and 7.7‰. Mean δ2 Hne values of sugar are lowest in C3 (-92.0‰), intermediate in C4 (-32.5‰) and highest in CAM plants (6.0‰), with NSC being 2 H-depleted compared to cellulose and sugar being generally more 2 H-enriched than starch. Our results suggest that our method can be used in future studies to disentangle 2 H-fractionation processes, for improving mechanistic δ2 Hne models for leaf and tree-ring cellulose and for further development of δ2 Hne in plant carbohydrates as a potential proxy for climate, hydrology, plant metabolism and physiology.
Collapse
Affiliation(s)
- Philipp Schuler
- Research Unit of Forest Dynamics, Research Group of Ecosystem EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marc‐André Cormier
- Department of Earth Sciences, Research Group of Ocean BiogeochemistryUniversity of OxfordOxfordUK
| | - Roland A. Werner
- Department of Environmental Systems Science, Group of Grassland SciencesETH ZurichZürichSwitzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, Group of Grassland SciencesETH ZurichZürichSwitzerland
| | - Arthur Gessler
- Research Unit of Forest Dynamics, Research Group of Ecosystem EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental Systems Science, Institute of Terrestrial EcosystemsETH ZurichZürichSwitzerland
| | - Valentina Vitali
- Research Unit of Forest Dynamics, Research Group of Ecosystem EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Matthias Saurer
- Research Unit of Forest Dynamics, Research Group of Ecosystem EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
17
|
SilvAdapt.Net: A Site-Based Network of Adaptive Forest Management Related to Climate Change in Spain. FORESTS 2021. [DOI: 10.3390/f12121807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adaptive forest management (AFM) is an urgent need because of the uncertainty regarding how changes in the climate will affect the structure, composition and function of forests during the next decades. Current research initiatives for the long-term monitoring of impacts of silviculture are scattered and not integrated into research networks, with the consequent losses of opportunities and capacity for action. To increase the scientific and practical impacts of these experiences, it is necessary to establish logical frameworks that harmonize the information and help us to define the most appropriate treatments. In this context, a number of research groups in Spain have produced research achievements and know-how during the last decades that can allow for the improvement in AFM. These groups address the issue of AFM from different fields, such as ecophysiology, ecohydrology and forest ecology, thus resulting in valuable but dispersed expertise. The main objective of this work is to introduce a comprehensive strategy aimed to study the implementation of AFM in Spain. As a first step, a network of 34 experimental sites managed by 14 different research groups is proposed and justified. As a second step, the most important AFM impacts on Mediterranean pines, as one of the most extended natural and planted forest types in Spain, are presented. Finally, open questions dealing with key aspects when attempting to implement an AFM framework are discussed. This study is expected to contribute to better outlining the procedures and steps needed to implement regional frameworks for AFM.
Collapse
|
18
|
Sun S, Zhang J, Zhou J, Guan C, Lei S, Meng P, Yin C. Long-Term Effects of Climate and Competition on Radial Growth, Recovery, and Resistance in Mongolian Pines. FRONTIERS IN PLANT SCIENCE 2021; 12:729935. [PMID: 34594353 PMCID: PMC8477062 DOI: 10.3389/fpls.2021.729935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Understanding the response of tree growth and drought vulnerability to climate and competition is critical for managing plantation forests. We analyzed the growth of Mongolian pines in six forests planted by the Three-North Shelter Forest Program with tree-ring data and stand structures. A retroactive reconstruction method was used to depict the growth-competition relationships of Mongolian pines during the growth period and their climatic responses under different competition levels. Drought vulnerability was analyzed by measuring the basal area increment (BAI) of different competition indices (CIs). In young trees, differences in BAIs in stands with different CIs were not statistically significant. After 15-20 years, medium- and high-CI stands had significantly lower tree-ring widths (TWs) and BAIs than the low-CI stands (p < 0.05). The standardized precipitation evapotranspiration index (SPEI), precipitation, relative humidity, and vapor pressure deficit were major factors affecting tree growth. On a regional scale, climate outweighed competition in determining radial growth. The relative contribution of climatic factors increased with the gap in SPEI between plantation sites and the native range, while the reverse pattern of the competition-growth relationship was observed. Drought reduced TWs and BAIs at all sites. Stands of different CIs exhibited similar resistance, but, compared with low-CI stands, high- and medium-CI stands had significantly lower recovery, resilience, and relative resilience, indicating they were more susceptible to drought stresses. Modeled CI was significantly negatively related to resistance, resilience, and relative resilience, indicating a density-dependence of tree response to drought. After exposure to multiple sequential drought events, the relative resilience of high-CI stands decreased to almost zero; this failure to fully recover to pre-drought growth rates suggests increased mortality in the future. In contrast, low-CI stands are more likely to survive in hotter, more arid climates. These results provide a better understanding of the roles of competition and climate on the growth of Mongolian pines and offer a new perspective for investigating the density-dependent recovery and resilience of these forests.
Collapse
Affiliation(s)
- ShouJia Sun
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - JinSong Zhang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jia Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - ChongFan Guan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shuai Lei
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Meng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - ChangJun Yin
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Bottero A, Forrester DI, Cailleret M, Kohnle U, Gessler A, Michel D, Bose AK, Bauhus J, Bugmann H, Cuntz M, Gillerot L, Hanewinkel M, Lévesque M, Ryder J, Sainte‐Marie J, Schwarz J, Yousefpour R, Zamora‐Pereira JC, Rigling A. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. GLOBAL CHANGE BIOLOGY 2021; 27:4403-4419. [PMID: 34166562 PMCID: PMC8453522 DOI: 10.1111/gcb.15737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 05/24/2023]
Abstract
Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.
Collapse
Affiliation(s)
- Alessandra Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - David I. Forrester
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Maxime Cailleret
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- UMR RECOVERAix Marseille UniversityINRAEAix‐en‐ProvenceFrance
| | - Ulrich Kohnle
- Forest Research Institute of Baden‐Württemberg FVAFreiburgGermany
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| | - Dominic Michel
- IT Services GroupDepartment of Health Sciences and TechnologyETH ZürichZürichSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forest and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - Jürgen Bauhus
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Harald Bugmann
- SwissForestLabBirmensdorfSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Matthias Cuntz
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | - Loïc Gillerot
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Marc Hanewinkel
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | - Mathieu Lévesque
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - James Ryder
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | | | - Julia Schwarz
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Rasoul Yousefpour
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | | | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| |
Collapse
|
20
|
Abstract
In Mediterranean seasonally dry regions, the rise in dieback and mortality episodes observed in pine afforestations has been related to higher drought intensity and lack of appropriate management, which enhance competition between trees for water and light. However, there is little understanding of the benefits of silviculture for plantations under seasonal drought stress. A combination of dendrochronology and wood C and O isotope analyses was used in three Black pine (Pinus nigra) plantations to work out the responses of radial growth (BAI, basal area increment) and water-use efficiency (WUEi) to thinning treatments (removal of 40% of the stand basal area). Thinning had a positive effect on BAI and WUEi, reduced drought sensitivity, and reduced the temporal dependence on the previous year’s growth. These results were significant even 13–14 years after thinning and coherent for the three study sites. Differences were found between the sites regarding the physiological mechanisms of adaptation. In two sites, we inferred the enhanced WUEi was due to increased photosynthetic rates (A) at constant stomatal conductance (gs). In the third site, which had higher tree density and therefore competition, we inferred increases in both A and gs, with the former being proportionally larger than the latter.
Collapse
|
21
|
do Nascimento AMM, Polesi LG, Back FP, Steiner N, Guerra MP, Castander-Olarieta A, Moncaleán P, Montalbán IA. The Chemical Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets. FRONTIERS IN PLANT SCIENCE 2021; 12:771464. [PMID: 34899795 PMCID: PMC8663641 DOI: 10.3389/fpls.2021.771464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Changes in the chemical environment at the maturation stage in Pinus spp. somatic embryogenesis will be a determinant factor in the conversion of somatic embryos to plantlets. Furthermore, the study of biochemical and morphological aspects of the somatic embryos could enable the improvement of somatic embryogenesis in Pinus spp. In the present work, the influence of different amino acid combinations, carbohydrate sources, and concentrations at the maturation stage of Pinus radiata D. Don and Pinus halepensis Mill. was analyzed. In P. radiata, the maturation medium supplemented with 175 mM of sucrose and an increase in the amino acid mixture (1,100 mgL-1 of L-glutamine, 1,050 mgL-1 of L-asparagine, 350 mgL-1 of L-arginine, and 35 mgL-1 of L-proline) promoted bigger embryos, with a larger stem diameter and an increase in the number of roots in the germinated somatic embryos, improving the acclimatization success of this species. In P. halepensis, the maturation medium supplemented with 175 mM of maltose improved the germination of somatic embryos. The increase in the amount of amino acids in the maturation medium increased the levels of putrescine in the germinated somatic embryos of P. halepensis. We detected significant differences in the amounts of polyamines between somatic plantlets of P. radiata and P. halepensis; putrescine was less abundant in both species. For the first time, in P. radiata and P. halepensis somatic embryogenesis, we detected the presence of cadaverine, and its concentration changed according to the species.
Collapse
Affiliation(s)
| | - Luiza Giacomolli Polesi
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Franklin Panato Back
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Neusa Steiner
- Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Paloma Moncaleán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| | - Itziar Aurora Montalbán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- Itziar Aurora Montalbán,
| |
Collapse
|
22
|
Pinus spp. Somatic Embryo Conversion under High Temperature: Effect on the Morphological and Physiological Characteristics of Plantlets. FORESTS 2020. [DOI: 10.3390/f11111181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Climatic variations in the current environmental scenario require plants with tolerance to sudden changes in temperature and a decrease in water availability. Accordingly, this tolerance will enable successful plantations and the maintenance of natural and planted forests. Consequently, in the last two decades, drought tolerance and high temperatures in conifers have been an important target for morphological, physiological, and epigenetic studies. Based on this, our research team has optimized different stages of somatic embryogenesis (SE) in Pinus spp. improving the success of the process. Through this method, we can obtain a large amount of clonal material and then analyze the somatic plants under different conditions ex vitro. The analysis of the morphological and physiological parameters in somatic embryos (ses) and plants with different tolerances to abiotic stress can provide us with valuable information about the mechanisms used by plants to survive under adverse environmental conditions. Thus, the objective of this work was to evaluate the influence of high temperatures (23, 40, 50, and 60 °C, after 12 weeks, 90, 30, 5 min, respectively) on the morphology of somatic embryos obtained from Pinus radiata D.Don (Radiata pine) and Pinus halepensis Mill. (Aleppo pine). In addition, we carried out a physiological evaluation of the somatic plants of P. radiata submitted to heat and water stress in a greenhouse. We observed that the number of somatic embryos was not affected by maturation temperatures in both species. Likewise, P. radiata plants obtained from these somatic embryos survived drought and heat stress in the greenhouse. In addition, plants originating from embryonal masses (EMs) subjected to high maturation temperature (40 and 60 °C) had a significant increase in gs and E. Therefore, it is possible to modulate the characteristics of somatic plants produced by the manipulation of environmental conditions during the process of SE.
Collapse
|
23
|
Guerrieri R, Vanguelova E, Pitman R, Benham S, Perks M, Morison JIL, Mencuccini M. Climate and atmospheric deposition effects on forest water-use efficiency and nitrogen availability across Britain. Sci Rep 2020; 10:12418. [PMID: 32709879 PMCID: PMC7381603 DOI: 10.1038/s41598-020-67562-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Rising atmospheric CO2 (ca) has been shown to increase forest carbon uptake. Yet, whether the ca-fertilization effect on forests is modulated by changes in sulphur (Sdep) and nitrogen (Ndep) deposition and how Ndep affects ecosystem N availability remains unclear. We explored spatial and temporal (over 30-years) changes in tree-ring δ13C-derived intrinsic water-use efficiency (iWUE), δ18O and δ15N for four species in twelve forests across climate and atmospheric deposition gradients in Britain. The increase in iWUE was not uniform across sites and species-specific underlying physiological mechanisms reflected the interactions between climate and atmospheric drivers (oak and Scots pine), but also an age effect (Sitka spruce). Most species showed no significant trends for tree-ring δ15N, suggesting no changes in N availability. Increase in iWUE was mostly associated with increase in temperature and decrease in moisture conditions across the South-North gradient and over 30-years. However, when excluding Sitka spruce (to account for age or stand development effects), variations in iWUE were significantly associated with changes in ca and Sdep. Our data suggest that overall climate had the prevailing effect on changes in iWUE across the investigated sites. Whereas, detection of Ndep, Sdep and ca signals was partially confounded by structural changes during stand development.
Collapse
Affiliation(s)
- Rossella Guerrieri
- Centre for Ecological Research and Forestry Applications, CREAF, c/o Universidad Autonoma de Barcelona, Edificio C, 08290, Cerdanyola, Barcelona, Spain.
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.
| | - Elena Vanguelova
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Rona Pitman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Sue Benham
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Michael Perks
- Forest Research, Northern Research Station, Roslin, EH25 9SY, Midlothian, Scotland, UK
| | | | - Maurizio Mencuccini
- Centre for Ecological Research and Forestry Applications, CREAF, c/o Universidad Autonoma de Barcelona, Edificio C, 08290, Cerdanyola, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|