1
|
Gao X, Zhang J, Mostofa KMG, Zheng W, Liu CQ, Senesi N, Senesi GS, Vione D, Yuan J, Liu Y, Mohinuzzaman M, Li L, Li SL. Sulfur-mediated transformation, export and mineral complexation of organic and inorganic C, N, P and Si in dryland soils. Sci Rep 2025; 15:9850. [PMID: 40119133 PMCID: PMC11928616 DOI: 10.1038/s41598-025-94920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
The transformation characteristics of mineral-associated soil components have profound impacts on their physical, biological, and chemical properties in drying-affected soils, whereas their mechanisms of sequestration and transformation remain elusive. To elucidate these phenomena, the solid-phase, water extracts (labile state, LS) and alkali-extracts (complexed state, CS) of four drying-affected soil types were examined. On average, the contents of soil organic carbon (SOC), soil total nitrogen (STN), and soil total hydrogen (STH) decreased in the order: forest > grassland > agriculture > desert. The extracted dissolved organic matter (DOM)LS, DOMCS and nutrients varied greatly among soil types, which indicated the occurrence of mineralization, sequestration, neoformation, and either export or emission. In particular, the relatively high levels of dissolved inorganic carbon (DIC)LS and relatively low levels of DICCS in agricultural soils could be ascribed to the impact of human activities, i.e., tilling and cultivation, on mineral-bound DIC, leading to its export in LS forms. The stable isotopes of δ13C-SOC and their significant relationships with DICLS and SO42‒LS+CS suggest the occurrence of carbon and sulfur sequestration through the uptake of CO2, DIC, or carbonyl sulfide (COS) following their generation from SOC or DOM mineralization. In forested and agricultural soils, the humic substances (HS) components in LS forms were subjected to a substantial degradation, whereas HSCS components remained mostly unaffected, implying their occurrence in organo-mineral protection. Overall, low soil total sulfur (STS) and sulfate (SO42‒)LS+CS contents were correlated with high amounts of soil components in both the solid and liquid phases, and vice versa. These findings suggest that microbial SO42‒ might operate in the dissolution and mineralization of HS-bound organo-minerals, which would potentially generate soil inorganic carbon (SIC) or DIC, leading to either their subsequent sequestration as carbonate minerals or their exports and emissions as DIC and CO2.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Jie Zhang
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Khan M G Mostofa
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.
| | - Wang Zheng
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giorgio S Senesi
- CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - Sede di Bari, Via Amendola, 122, 70126, Bari, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 5, 10125, Torino, Italy
- Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | - Jie Yuan
- College of Resources and Environment, Xingtai University, Quanbei East Road 88, Qiaodong District, Xingtai City, Hebei Province, China
| | - Yu Liu
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Mohammad Mohinuzzaman
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Longlong Li
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Si-Liang Li
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Zhang JT, Wang JX, Liu Y, Wang JH, Chi ZY. Effects of stratified microbial extracellular polymeric substances on microalgae dominant biofilm formation and nutrients turnover under batch and semi-continuous operation. BIORESOURCE TECHNOLOGY 2025; 420:132120. [PMID: 39880334 DOI: 10.1016/j.biortech.2025.132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/24/2024] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios. Soluble-EPS favored biofilm establishment and chlorophyll synthesis, while loosely-bound (LB-EPS) and tightly-bound EPS (TB-EPS) improved phosphorus removal, and optimum microalgae:bacteria cell count ratio was 1:0.5. Under semi-continuous operation, stable and efficient nutrients removal was observed at hydraulic retention time (HRT) of 2 days. Both nitrogen and phosphorus enrichment by TB-EPS over LB-EPS (respectively up to 7.9 and 23.8 times) were innovatively discovered, with enhanced nutrients turnover efficiency at higher HRTs. This study provided direct evidences regarding the role of stratified EPS on microalgal biofilm development and nutrients turnover.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| |
Collapse
|
3
|
Gong C, Zhang H, Huo S, Zhang J, Weng N, Li W. Transformation processes of total suspended solids and dissolved organic matter in rivers: Influences of different land use sources and degradation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178509. [PMID: 39818162 DOI: 10.1016/j.scitotenv.2025.178509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated. This study employed Fourier transform ion cyclotron resonance mass spectrometry, DOC characterization, and incubation experiments to investigate how land use and degradation processes influence TSS-DOM transformation in rivers. Our findings revealed that geographical patterns cause significant variations in both DOM composition and TSS content. Anthropogenic impacts led to an increase in autochthonous TSS content and an enhanced relative intensity (RI) of nitrogen (N)- and sulfur (S)-containing compounds in riverine DOM. The presence of TSS increased the bioavailability of DOM from 29.97 % to 33.57 %. However, during both photodegradation and combined degradation processes, the presence of TSS reduced the bioavailability of DOM. The degradation rate constant (k) of DOM decreased as degradation time increased. The k values were significantly correlated with the CHO components in natural rivers and with N- and S-containing components in human-influenced rivers. The degradation rates of DOC under different land uses were 0.05 ± 0.04 d-1, 0.07 ± 0.06 d-1, and 0.08 ± 0.06 d-1 in forested, urban, and cropland-influenced rivers, respectively. The content of aliphatic compounds and the number of CHOS molecules in TSS-containing water were higher than in TSS-free water during the combined process of photochemical and microbial degradation, while the saturation and aromaticity of the compounds were lower. The characteristics of autochthonous DOM were more pronounced under the influence of TSS photorespiration. During drinking water disinfection, these small molecules derived from autochthonous TSS may contribute to an increase in disinfection by-products (DBPs) in drinking water. This study enhanced our understanding of how changes in autochthonous TSS content, driven by geographical heterogeneity and human activities, influence the biogeochemical processes of DOM in water, as well as the underlying molecular mechanisms and implications for water quality safety.
Collapse
Affiliation(s)
- Chen Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxiao Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shouliang Huo
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenpan Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
4
|
Bhat MA, Li SL, Liu CQ, Senesi N, Senesi GS, Vione D, Fan D, Yuan J, Shammi M, Mostofa KMG. Dynamic changes, cycling and downward fate of dissolved carbon and nitrogen photosynthetically-derived from glaciers in upper Indus river basin. ENVIRONMENTAL RESEARCH 2024; 263:120117. [PMID: 39374751 DOI: 10.1016/j.envres.2024.120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
Glaciers play key roles in capturing, storing, and transforming global carbon and nitrogen, thereby contributing markedly to their cycles. However, an integrated mechanistic approach is still lacking regarding glacier's primary producers (PP), in terms of stable dissolved inorganic carbon isotope (δ13C-DIC) and its relationship with dissolved carbon and nitrogen transformation d ynamic changes/cycling. Here, we sampled waters from glaciers, streams, tributaries, and the Indus River (IR) mainstream in the Upper IR Basin, Western Himalaya. Dissolved organic matter (DOM) appears to increase, on average, by ∼2.5-23.4% with fluctuations when passing from glaciers to streams-tributaries-IR mainstream (the upper and lower parts, respectively) continuum, implying that DOM originates from glaciers PP and is subsequently degraded. The corresponding fluctuations are observed for fluorescent DOM (FDOM), dissolved organic nitrogen (8.0-106.8%), NO3--N (-13.5/+16.6%), NH4+-N (-8.8/+13.0%), and NO2--N (70.7-217.5%). These variations are associated with overall DOM/FDOM transformations, with the production of ending byproducts (e.g. CO2/DIC). The δ13C-DIC values fluctuated from glaciers (-5.3 ± 2.5‰) to streams (-4.4 ± 2.1‰), tributaries (-4.3 ± 1.6‰), and IR mainstream (-4.2 ± 1.3‰). The δ13C-DIC data are consistent with C transformations that involve lighter CO2 emission into the atmosphere, whereas highly depleted DIC/CO2 is the signature of DOM degradation after its fresh production from glaciers PP which originated by photosynthetic activities (e.g. uptake/sink of atmospheric CO2: -8.4‰). Finally, glacier-fed meltwaters would simultaneously contribute to the biogeochemical characteristics of downward margins and specific ecosystems (lake/pond/groundwater/hot springs) via transformation dynamics/cycling of dissolved C and N with high photo/microbial lability. Our results highlight the substantial contribution of western Himalayan glaciers-derived DOM to the global C and N cycles.
Collapse
Affiliation(s)
- Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China; School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Si-Liang Li
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, BARI, Italy
| | - Giorgio S Senesi
- CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - sede di Bari Via Amendola, 122/D - 70126 Bari, Italy
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125, Torino, Italy; Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095, Grugliasco, (TO), Italy
| | - Daidu Fan
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Yuan
- College of Resources and Environment, Xingtai University, Quanbei East Road 88, Qiaodong District, Xingtai City, Hebei Province, China
| | - Mashura Shammi
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Khan M G Mostofa
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
5
|
Yang X, Gao X, Mostofa KMG, Zheng W, Senesi N, Senesi GS, Vione D, Yuan J, Li SL, Li L, Liu CQ. Mineral states and sequestration processes involving soil biogenic components in various soils and desert sands of Inner Mongolia. Sci Rep 2024; 14:28530. [PMID: 39557936 PMCID: PMC11574102 DOI: 10.1038/s41598-024-80004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Soil biogenic components are subject to continuous sequestration, and export from soils into the surrounding air and water environments. However, the processes involving the stability or lability of their mineral states remain still unclear. To assess these issues, we have measured various biogenic components in a number of agricultural, forest, grassland, and deep soils, as well as desert sands from Inner Mongolia, both in the solid state and liquid extracts. The contents of soil organic carbon (SOC) and soil total nitrogen (STN) were higher in soils than in sands, whilst those of soil total sulfur (STS) and inorganic carbon were higher in sands and deeper soils. The significant positive correlations found between STS and SOC, and STN, and their significant negative correlations with pH and δ13C-SOC in all soils suggest a pH-dependent sequestration of C, N, and S. The decreased stability of organo-mineral complexes at acidic pH, resulting from the acidification of humic substance (HS) functionalities, leads to a higher availability of nutrients that facilitates the sequestration of soil organic matter (SOM). Conversely, an increase in pH enhances the stability of organo-mineral complexes by promoting negatively charged HS functionalities, which reduces the availability of nutrients and the sequestration of SOM. The δ13C-SOC enrichment in desert sands (-17.63 to -7.10‰) and its depleted values in soils (-24.9 to -18.8‰) suggest the occurrence of C sequestration in desert, via uptake of enriched atmospheric CO2 (-8.4‰). The fluorescence spectra of humic substance components and their molecular weights in sands were typically different from those of soils. The predominant relatively low molecular weight (MW) (< 15-25 kDa) of alkali-extracted (complexed state: CS) components and the relatively high MW (> 25 - 15 kDa) of water-extracted (labile state: LS) components of all soils suggest, respectively, their involvement in organo-mineral complexes and for export into the surrounding environment. The quantities of LS and CS soil components differ significantly on dependence of soil characteristics, implying their corresponding lability or stability in soils. These findings will provide useful input for the management of the corresponding soil/sand ecosystems.
Collapse
Affiliation(s)
- Xuemei Yang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xin Gao
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Khan M G Mostofa
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wang Zheng
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giorgio S Senesi
- CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP), sede di Bari Via Amendola, 122/D, 70126, Bari, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 5, 10125, Torino, Italy
- Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095, Grugliasco, TO, Italy
| | - Jie Yuan
- College of Resources and Environment, Xingtai University, Quanbei East Road 88, Qiaodong District, Xingtai City, Hebei Province, China
| | - Si-Liang Li
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Longlong Li
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
6
|
Sakib MAA, Miah O, Niloy NM, Haque MM, Shammi M, Tareq SM. Tracing fluorescent dissolved organic matter (fDOM) characteristics and water quality parameters: Insights from an urban industrial river to marine zone. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11125. [PMID: 39258546 DOI: 10.1002/wer.11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024]
Abstract
This study aims to identify continuous water quality changes and identify fluorescence properties from urban rivers to marine zones. Various types of natural and anthropogenic sources derived dissolved organic matter (DOM) have been identified in this study. These include soil-derived DOM, plant remnants, and soluble particles produced when organic material partially decomposes and is released by microorganisms, such as bacteria, algae, and plants. DOM was characterized using a three-dimensional excitation-emission matrix (3DEEM), parallel factor analysis (PARAFAC), and water quality parameters from the Buriganga River, Dhaka to Patenga Seaport, Chittagong, along with the Shitalakshya River, a small portion of the Padma River, and the Meghna River. To better understand the data analysis, the study area was divided into three central regions: urban industrial rivers, industrial estuarine rivers, and marine zones. In the urban industrial river, 3DEEM and PARAFAC identified five fluorophores (peaks: A, C, M, T, and Tuv) with five components: detergent-like, fulvic-like, tryptophan or protein-like, fulvic-like (C-type), and protein-like, which might originate from the industrial activities and sewage pollution. In the industrial estuarine river zone, three fluorophores have been identified (peaks: A, C, Tuv) with two known components, namely, fulvic acid (A-type) and fulvic acid (C-type), with an unknown photoproduct at Ex/Em = 295/368 (peak Tuv). Components in the industrial river zone may originate from terrestrial sources, indicating vegetation along the river. In the marine zone, four fluorophores have been identified (peaks: Tuv, A, T, C) with two components, that is, protein- or tryptophan-like and humic acid-like from coral origin. The intensities of both fulvic-like and protein-like substances were high in urban industrial river water owing to industrial activity and sewage pollution. SUVA254 suggests high aromaticity in all three regions, whereas the optical properties suggest that terrestrial and microbial components are present in the urban industrial and estuarine rivers. This further indicates that urban industrial river water quality is highly polluted. The lowest degradation potential index (DPI) in the marine zone might result from the presence of the highest number of dissolved solids in the water, and the highest DPI of industrial estuarine rivers explains the comparatively high presence of terrestrial-derived humic (A)- and humic (C)-like components in the ratio to the unknown photoproduct of mid-wavelength. PRACTITIONER POINTS: This study's uniqueness is a 220-km cruise from an urban river to a coastal seaport to analyze fluorescence properties. The study found that most water parameters were within the DoE standards, except for DO, which was consistently low. 3DEEM-PARAFAC identified five fluorophores linked to detergent, fulvic, and protein-like substances from sewage and industrial sources. Our study concludes that microbial and terrestrial sources dominate dissolved organic matter in urban, estuarine, and marine regions.
Collapse
Affiliation(s)
- Md Abid Azad Sakib
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Osman Miah
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
- Department of Environmental Science and Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Shafi Mohammad Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Nguyen TN, Kusakabe T, Takaoka M. Characterization and spatiotemporal variations of fluorescent dissolved organic matter in leachate from old landfill-derived incineration residues and incombustible waste. PLoS One 2024; 19:e0304188. [PMID: 38924014 PMCID: PMC11207158 DOI: 10.1371/journal.pone.0304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dissolved organic matter (DOM) influences the bioavailability and behavior of trace metals and other pollutants in landfill leachate. This research characterized fluorescent dissolved organic matter (FDOM) in leachate from an old landfill in Japan during a 13-month investigation. We employed excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC) to deconvolute the FDOM complex mixture into three fluorophores: microbial humic-like (C1), terrestrial humic-like (C2), and tryptophan-like fluorophores (C3). These FDOM components were compared with findings from other studies of leachate in landfills with different waste compositions. The correlations among EEM-PARAFAC components, dissolved organic carbon (DOC) concentration, and ultraviolet-visible and fluorescence indices were evaluated. The FDOM in leachate varied spatially among old and extended leachate collected in the landfill and leachate treatment facility. The FDOM changed temporally and decreased markedly in August 2019, November 2019, and April 2020. The strong positive correlation between HIX and %C2 (r = 0.87, ρ = 0.91, p < 0.001)) implies that HIX may indicate the relative contribution of terrestrial humic-like components in landfill leachate. The Fmax of C1, C2, and C3 and the DOC concentration showed strong correlations among each other (r > 0.72, ρ > 0.78, p < 0.001) and positive correlations with leachate level (r > 0.41, p < 0.001), suggesting the importance of hydrological effects and leachate pump operation on FDOM.
Collapse
Affiliation(s)
- Thi Ngoc Nguyen
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| | - Taketoshi Kusakabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| |
Collapse
|
8
|
Hou J, Zhang R, Ge J, Ma C, Yi Y, Qi Y, Li SL. Molecular and optical signatures of photochemical transformation of dissolved organic matter: Nonnegligible role of suspended particulate matter in urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166842. [PMID: 37689212 DOI: 10.1016/j.scitotenv.2023.166842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Natural dissolved organic matter (DOM) is one of the Earth's dynamic carbon pools and a key intermediate in the global carbon cycle. Photochemical processes potentially affect DOM composition and activity in surface water. Suspended particulate matter (SPM) is the integral component of slow-moving rivers, and holds the potential for photochemical reactivity. To further investigate the influence of SPM on DOM photochemical transformation, this study conducted experiments comparing samples with and without SPM irradiated under simulated sunlight. Surface water samples from slow-moving urban rivers were collected. DOM optical characteristics and molecular features obtained by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were investigated. Photolabile DOM was enriched in unsaturated and highly aromatic terrestrial substances. Photoproduced DOM had low aromaticity and was dominated by saturated aliphatics, protein-like substances, and carbohydrates. Study results indicated that the presence of SPM had a nonnegligible impact on the molecular traits of DOM, such as composition, molecular diversity, photolability, and bioavailability during photochemical reactions. In the environment affected by SPM, molecules containing heteroatoms exhibit higher photosensitivity. SPM promotes the photochemical transformation of a wider range of chemical types of photolabile DOM, particularly nitrogen-containing compounds. This study provides an essential insight into the more precise simulation of photochemical reactions of DOM influenced by SPM occurring in natural rivers, contributing to our understanding of the global carbon cycle from new theoretical perspectives.
Collapse
Affiliation(s)
- Jingyi Hou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
9
|
Miah O, Roy A, Sakib AA, Niloy NM, Haque MM, Shammi M, Tareq SM. Diurnal and seasonal variations of pCO 2 and fluorescent dissolved organic matter (FDOM) in different polluted lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92720-92735. [PMID: 37495806 DOI: 10.1007/s11356-023-28878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
This study aimed to assess pollution and daily-to-seasonal dynamics of the partial pressure of CO2 (pCO2) and CO2 degassing flux concerning the fluorescent dissolved organic matter (FDOM) from tropical lakes. A membrane-enclosed pCO2 sensor and water quality multimeter analyzer was deployed to continuously record daily and seasonal variations in pCO2 and CO2 degassing flux in three lakes in Savar, Dhaka. During both wet and dry seasons, all lake water was supersaturated with CO2 in contrast to the atmospheric equilibrium (~400 μatm). The pCO2 values in the lake water during the dry season were relatively low in comparison, and the pCO2 levels in the wet season were much higher due to external inputs of organic matter from watersheds and direct inputs of CO2 from soils or wetlands. The estimated water-to-air CO2 degassing flux in the different levels of polluted lakes varies with the pollution context. Study areas calculated the carbon flux and three lakes released respectively 86.75×107g CO2 year-1, 13.8×107g CO2 year-1, and 9.17×107g CO2 year-1. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy combined with parallel factor (PARAFAC) analysis was used to investigate the distributions of fluorescent components in DOM. EEM-PARAFAC analysis identified humic-like, fulvic-like, protein-like, and more tyrosine-like FDOM components and their environmental dynamics. Terrestrial DOM may provide inputs to the terrestrial humic-like component in the lake water. In contrast, the biological activity of plankton-derived FDOM is the most likely source for the autochthonous humic-like component. FDOM and DO concentrations have negative correlations with pCO2, indicating that when the FDOM and DO level is decreased, the amount of pCO2 values increases.
Collapse
Affiliation(s)
- Osman Miah
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Avik Roy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abid Azad Sakib
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Environmental Science and Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| |
Collapse
|
10
|
Carena L, Wang Y, Gligorovski S, Berto S, Mounier S, Vione D. Photoinduced production of substances with humic-like fluorescence, upon irradiation of water samples from alpine lakes. CHEMOSPHERE 2023; 319:137972. [PMID: 36716935 DOI: 10.1016/j.chemosphere.2023.137972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Evidence is here provided that irradiation of some lake water samples can trigger the formation of fluorophores with humic-like properties, at the same time increasing water absorbance. This phenomenon is the opposite of photobleaching, which is often observed when natural waters are irradiated. The photoproduced humic-like fluorophores observed here would be of autochthonous rather than allochthonous origin, which marks a difference with the fraction of humic substances that derives from terrestrial sources. Photogeneration of humic-like compounds can be highlighted in water samples where the fluorescence signal of initially occurring humic substances is low, so that their photobleaching is minimised. Samples that are most likely to show photoinduced formation of humic-like fluorophores are in fact characterised by high values of protein-like vs. humic-like contribution ratios to fluorescence, as evidenced by parallel factor (PARAFAC) analysis. Mountain lakes in late summer appear to be suitable candidates to highlight the described phenomenon. In some cases, lake-water irradiation caused a decrease in the spectral slope of the absorbance that, together with increasing absorbance values, is consistent with an increase in molecular mass and aromaticity of organic matter. The absorbance increase triggered by irradiation might play a role in screening biologically harmful UV radiation, in mountain environments that would otherwise be characterised by very clear water that allows for easy transmission of UV light along the water column.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510 640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510 640, China.
| | - Silvia Berto
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Stéphane Mounier
- Univ. Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041, Toulon, France
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
11
|
Zhang J, Mostofa KMG, Yang X, Mohinuzzaman M, Liu CQ, Senesi N, Senesi GS, Sparks DL, Teng HH, Li L, Yuan J, Li SL. Isolation of dissolved organic matter from aqueous solution by precipitation with FeCl 3: mechanisms and significance in environmental perspectives. Sci Rep 2023; 13:4531. [PMID: 36941375 PMCID: PMC10027667 DOI: 10.1038/s41598-023-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Ferric ions can bind strongly with dissolved organic matter (DOM), including humic acids (HA), fulvic acids (FA), and protein-like substances, whereas isolation of Fe-DOM precipitates (Fe-DOMP) and their biochemical characteristics remain unclear. In this work FeCl3 was used to isolate DOM components from various sources, including river, lake, soil, cow dung, and standard tryptophan and tyrosine, through precipitation at pH 7.5-8.5. The Fe-DOMP contribute to total DOM by approximately 38.6-93.8% of FA, 76.2% of HA and 25.0-30.4% of tryptophan and tyrosine, whilst fluorescence spectra allowed to monitor/discriminate the various DOM fractions in the samples. The relative intensity of the main infrared peaks such as 3406‒3383 cm-1 (aromatic OH), 1689‒1635 cm-1 (‒COOH), 1523-1504 cm-1 (amide) and 1176-1033 cm-1 (‒S=O) show either to decline or disappear in Fe‒DOMP. These results suggest the occurrence of Fe bonds with various functional groups of DOM, indicating the formation of π-d electron bonding systems of different strengths in Fe‒DOMP. The novel method used for isolation of Fe-DOMP shows promising in opening a new frontier both at laboratory and industrial purposes. Furthermore, results obtained may provide a better understanding of metal-organic complexes involved in the regulation of the long-term stabilization/sequestration of DOM in soils and waters.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xuemei Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mohammad Mohinuzzaman
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università Degli Studi Di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giorgio S Senesi
- CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - Sede Di Bari Via Amendola, 122/D, 70126, Bari, Italy
| | - Donald L Sparks
- Department of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware, Newark, DE, 19716-7310, USA
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Longlong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jie Yuan
- College of Resources and Environment, Xingtai University, Quanbei East Road 88, Qiaodong District, Xingtai City, Hebei Province, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
12
|
Fan T, Yao X, Sun Z, Sang D, Liu L, Deng H, Zhang Y. Properties and metal binding behaviors of sediment dissolved organic matter (SDOM) in lakes with different trophic states along the Yangtze River Basin: A comparison and summary. WATER RESEARCH 2023; 231:119605. [PMID: 36680825 DOI: 10.1016/j.watres.2023.119605] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The nature of sediment dissolved organic matter (SDOM) can reflect the environmental background, nutritional status and human activities and is an important part of lakes. The differences in the binding capacity of heavy metals and organic matter in lake sediments with different trophic states at the catchment scale and the mechanism of the differences in binding are still unclear. To solve this problem, we collected bulk SDOMs (< 0.7 μm) from 6 respective lakes (from upstream to downstream) in the Yangtze River Basin (YRB) to qualitatively and quantitatively characterize their properties and metal binding behaviors using excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-FARAFAC) and two-dimensional correlation spectroscopy of synchronous fluorescence spectroscopy and Fourier transform infrared spectroscopy (2D-SF-COS and 2D-FTIR-COS). The results showed that sediment dissolved organic carbon (SDOC) was mainly enriched in low molecular weight (LMW: < 1 kDa) fractions. The total fluorescence intensity (Fmax) of SDOM from upstream was larger than that from downstream (p = 0.033), and humic-like fluorophores were dominant in these lakes. The Fmax of sediment humic-like components (C1+C2) was closely related to the trophic levels of the lakes. Protein-like substances and oxygen-containing functional groups (C-OH, C=O, and C-O) were preferred in the reaction between SDOM and copper (Cu2+) or cadmium (Cd2+), while a unique binding path was exhibited in the moderately eutrophic DCL. In terms of fluorophore types, higher Cu2+-binding abilities (LogKCu) were observed in the humic-like matter for the lakes in the upper reaches and tryptophan-like matter for the lakes from the midstream and downstream areas of the YRB. Although Cd2+ complexed only with humic-like matter, LogKCd was higher than LogKCu. In terms of molecular weight (MW), the LogKCu/Cd of components were enhanced after MW fractionation. The HMW (0.7 μm - 1 kDa) components possessed higher LogKCu in most lakes (except for CHL and C4). The different fluorophores and molecular weight fractions in SDOM make an important contribution to reducing the ecological risks of heavy metals in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China; Institute of Huanghe Studies, University of Liaocheng, Liaocheng 252000, China
| | - Xin Yao
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China; Institute of Huanghe Studies, University of Liaocheng, Liaocheng 252000, China.
| | - Zhaoli Sun
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Dongling Sang
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Li Liu
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| | - Yinghao Zhang
- School of Geography and Environment, University of Liaocheng, Liaocheng 252000, China
| |
Collapse
|
13
|
Mu Z, Niu X, George C, Wang X, Huang R, Ma Y, Pu W, Qi Y, Fu P, Deng J, Ma C, Hu N, Li X, Wang X. Accumulation of dissolved organic matter in the transition from fresh to aged seasonal snow in an industrial city in NE China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159337. [PMID: 36228802 DOI: 10.1016/j.scitotenv.2022.159337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a significant role in the reduction of snow albedo and the acceleration of snowmelt, but its accumulation in snow remains poorly understood. This study investigated the accumulation of DOM in seasonal snow including its accumulation rate, molecular characteristics, and biological and chemical processing. Sixteen snow samples of both fresh and aged snow were collected at one-day interval in Changchun, a typical industrial city in NE China. The snow DOM contents increased linearly with accumulation time at a rate of 30.3 μg L-1 d-1. The optical properties, including fluorescence intensity and optical absorption coefficient, of snowmelt increased exponentially with time owing to the rapid accumulation of terrestrial humic-like fluorophores through snow-soil exchange and deposition of soil-derived substances. Fourier transform-ion cyclotron resonance-mass spectrometry highlighted the properties of DOM at a molecular level, indicating that compounds derived from underlying soil and vascular plants make the largest contribution to DOM. Microbe-derived compounds contribute 35.5 % to the DOM pool. Degrees of saturation and oxidation increase slightly after accumulation, with the impacts of photo- and bio-chemistry on DOM molecules being non-negligible. This study provides a new perspective concerning the accumulation and fate of organic contaminants in snow ecosystems.
Collapse
Affiliation(s)
- Zhen Mu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoying Niu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Xinke Wang
- Department of Chemistry, University of California, Irvine, CA 92697-2025, United States
| | - Rujin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yuling Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Pu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaobo Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Long-term ice phenology records spanning up to 578 years for 78 lakes around the Northern Hemisphere. Sci Data 2022; 9:318. [PMID: 35710905 PMCID: PMC9203534 DOI: 10.1038/s41597-022-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales. Measurement(s) | Ice-on and ice-off dates • Lake characteristics | Technology Type(s) | Observations • Historical records | Sample Characteristic - Environment | ice-covered lake | Sample Characteristic - Location | Northern Hemisphere |
Collapse
|
15
|
Zhang J, Liu J, Liu D, Chen X, Shi Q, He C, Li G. Temperature Rise Increases the Bioavailability of Marine Synechococcus-Derived Dissolved Organic Matter. Front Microbiol 2022; 13:838707. [PMID: 35572654 PMCID: PMC9097602 DOI: 10.3389/fmicb.2022.838707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is one group of main primary producers and plays a key role in oceanic carbon fixation and transformation. To explore how the temperature rise affects the bioavailability of Synechococcus-derived dissolved organic matter (SOM) and whether this effect would be altered by the involvement of heterotrophic bacteria, we compared the optical and molecular properties of the SOM of axenic Synechococcus sp. PCC7002 culture (Syn) to that with associated heterotrophic bacteria (SynB) under 15, 18, and 21°C growth temperatures at exponential and decay growth phases. Our results showed that the temperature rise increased the bioavailability of the SOM of both Syn and SynB cultures by lowering the proportion of the hydrogen-poor and double-bond structure-rich humus-like components and highly unsaturated substances, as indicated by the increase of spectral slope ratio (S R ) and biological index (BIX) and decrease of humification index (HIX). Moreover, the involvement of heterotrophic bacteria modified the Synechococcus-derived SOM, together with its intracellular dissolved organic matter (DOM) excludes, lowering the SOM bioavailability. Our results indicated that the warming in climate change scenario may enhance the bioavailability of the Synechococcus-derived SOM although it may be tempered by the involvement of heterotrophic bacteria, providing an insight for preservation of the organic carbon pool in global oceans.
Collapse
Affiliation(s)
- Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Xiao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Kundu S, Pal S, Talukdar S, Mahato S, Singha P. Integration of satellite image-derived temperature and water depth for assessing fish habitability in dam controlled flood plain wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28083-28097. [PMID: 34988818 DOI: 10.1007/s11356-021-17869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study attempted to investigate the changes in temperature conducive to fish habitability during the summer months in a hydrologically modified wetland following damming over a river. Satellite image-driven temperature and depth data calibrated with field data were used to analyse fish habitability and the presence of thermally optimum habitable zones in some fishes, such as labeo rohita, cirrhinus mrigala, tilapia fish, small shrimp, and catfish. The study was conducted both at the water's surface and at the optimum depth of survival. It is very obvious from the analysis that a larger part of the wetland has become an area that destroyed aquatic habitat during the post-dam period, and existing wetlands have suffered significant shallowing of water depth. This has resulted in a shrinking of the thermally optimum area of fish survival in relation to surface water temperature (from 100.09 to 74.24 km2 before the dam to 93.97 to 0 km2 after the dam) and an improvement in the optimum habitable condition in the comfortable depth niche of survival. In the post-dam period, it increased from 75.49 to 99.76%. Since the damming effect causes a 30.53 to 100% depletion of the optimum depth niche, improving the thermal environment has no effect on fish habitability. More water must be released from dams for restoration. Image-driven depth and temperature data calibrated with field information has been successfully applied in data sparse conditions, and it is further recommended in future work.
Collapse
Affiliation(s)
- Sonali Kundu
- Department of Geography, University of Gour Banga, Malda, India
| | - Swades Pal
- Department of Geography, University of Gour Banga, Malda, India.
| | - Swapan Talukdar
- Department of Geography, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Susanta Mahato
- Special Centre for Disaster Research, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | - Pankaj Singha
- Department of Geography, University of Gour Banga, Malda, India
| |
Collapse
|
17
|
Vione D, Minero C, Carena L. Fluorophores in surface freshwaters: importance, likely structures, and possible impacts of climate change. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1429-1442. [PMID: 34490433 DOI: 10.1039/d1em00273b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence spectroscopy is one of the most useful techniques currently available for the characterisation of organic matter in natural water samples, because it combines easy availability of instrumentation, high sensitivity and limited requirements for sample treatment. The main fluorophores that can be found in natural waters are usually proteins (and/or free amino acids) and humic substances (humic and fulvic acids). The identification of these fluorescent compounds in water samples helps to obtain information about, among others, biological activity in the water body, possible transport of organic matter from soil, and the phenomenon of photobleaching that decreases both the absorbance and (usually) the fluorescence of natural organic matter. Interestingly, all these phenomena can be affected by climate change, which could alter to different extents the ratio between aquagenic and pedogenic fluorophores. Several events induced by warming in natural waters (and especially lake water) could enhance algal growth, thereby also enhancing the production of aquagenic organic matter. Intense precipitation events could increase the export of pedogenic material to surface waters, while photobleaching would be enhanced in the epilimnion of lakes when summer stratification becomes longer and more stable because of higher temperatures. Interestingly, photobleaching affects humic substances to a higher extent compared to protein-like material, thus protein fluorescence signals could be more preserved in stratified waters.
Collapse
Affiliation(s)
- Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| |
Collapse
|
18
|
Fan X, Liu C, Yu X, Wang Y, Song J, Xiao X, Meng F, Cai Y, Ji W, Xie Y, Peng P. Insight into binding characteristics of copper(II) with water-soluble organic matter emitted from biomass burning at various pH values using EEM-PARAFAC and two-dimensional correlation spectroscopy analysis. CHEMOSPHERE 2021; 278:130439. [PMID: 33836401 DOI: 10.1016/j.chemosphere.2021.130439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.
Collapse
Affiliation(s)
- Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China; Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, China.
| | - Chao Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xufang Yu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yan Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xin Xiao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yue Xie
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
19
|
Seasonal Variations of Dissolved Organic Matter by Fluorescent Analysis in a Typical River Catchment in Northern China. WATER 2021. [DOI: 10.3390/w13040494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fluorescence (excitation-emission matrices, EEMs) spectroscopy coupled with PARAFAC (parallel factor) modelling and UV-Vis (ultraviolet visible) spectra were used to ascertain the sources, distribution and biogeochemical transformation of dissolved organic matter (DOM) in the Duliujian River catchment. Dissolved organic carbon (DOC), chromophoric dissolved organic matter (a335) (CDOM), and hydrophobic components (a260) were higher in summer than in other seasons with 53.3 m−1, while aromaticity (SUVA254) was higher in spring. Four fluorescent components, namely terrestrial humic acid (HA)-like (A/C), terrestrial fulvic acid (FA)-like (A/M), autochthonous fulvic acid (FA)-like (A/M), and protein-like substances (Tuv/T), were identified using EEM-PARAFAC modelling in this river catchment. The results demonstrated that terrestrial HA-like substances enhance its contents in summer ARE compared with BRE, whilst terrestrial FA-like substances were newly input in summer ARE, which was entirely absent upstream and downstream, suggesting that rain events could significantly input the terrestrial soil-derived DOM in the ambient downward catchments. Autochthonous FA-like substances in summer BRE could derive from phytoplankton in the downstream waters. The results also showed that DOM from wetland exhibited lower fluorescent intensity of humic-like peak A/C and fulvic-like peak A/M, molecular weight (SR) and humification index (HIX) during the low-flow season. Built-up land, cropland, and unused land displayed higher a335 (CDOM). A higher proportion of forest and industrial land in the SCs showed higher SUVA254 values. Humic-like moiety, molecular weight and aromaticity were more responsive to land use during stormflow in summer. Rainfall could increase the export of soil DOM from cropland and unused land, which influences the spatial variation of HIX. The results in this study highlighted that terrestrial DOM has a significant influence on the biogeochemical alterations of DOM compositions and thus water quality in the downward watershed catchments, which might significantly vary according to the land-use types and their alterations by human activities.
Collapse
|
20
|
Diversity and Structure of Pelagic Zooplankton (Crustacea, Rotifera) in NE Poland. WATER 2021. [DOI: 10.3390/w13040456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents the diversity and structure of pelagic zooplankton in north-eastern Poland. The research was conducted in 47 lakes with different trophic conditions in the middle of summer. Samples were collected close to the deepest part of the lakes to avoid the diverse benthic and littoral zones. We found 119 zooplankton species of which 32 were Cladocera, 16 were Cyclopoida, 4 were Calanoida, and 67 were Rotifera. We determined which species occurred most frequently in the region, as well as the species that were characteristic of different trophic conditions. We also recorded the presence of eight cold-adapted species which some of them are considered as glacial relicts (e.g., Eurytemora lacustris, Heterocope appendiculata, Cyclops lacustris). Our research revealed potential glacial refugia for planktonic species in 14 lakes of NE Poland. Our study suggests that the presence of stenotherm species may be an excellent indicator of the ecological status of deep lakes and could be considered in lake monitoring programs. Furthermore, we did not find Bythotrephes longimanus which has been reported from Poland. Instead, we found that B. brevimanus was the most common representative of the genus in the study area.
Collapse
|