1
|
Meng F, Wang Y, Wei Y. Advancements in Biochar for Soil Remediation of Heavy Metals and/or Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1524. [PMID: 40271705 PMCID: PMC11990842 DOI: 10.3390/ma18071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid industrialization and economic growth have exacerbated the contamination of soils with both heavy metals and organic pollutants. These persistent contaminants pose substantial threats to ecosystem integrity and human health due to their long-term environmental persistence and potential for bioaccumulation. Biochar, with its high specific surface area, well-developed pore structure, and abundant surface functional groups, has emerged as a promising material for remediating soils contaminated by heavy metals and organic pollutants. While some research has explored the role of biochar in soil remediation, several aspects remain under investigation. Fully harnessing the potential of biochar for soil contamination remediation is of critical importance. This review provides an overview of the preparation methods and physicochemical properties of biochar, discusses its application in soils contaminated by organic compounds and/or heavy metals, and examines the mechanisms underlying its interaction with pollutants. Additionally, it summarizes the toxicity assessments of biochar during soil remediation and outlines future research directions, offering scientific insights and references for the practical deployment of biochar in soil pollution remediation.
Collapse
Affiliation(s)
- Fanyue Meng
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yanming Wang
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yuexing Wei
- College of Environment and Ecology, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
2
|
Chamoli A, Karn SK, Kumari M, Sivaramasamy E. Biochar mediated fixation of nitrogen compounds (ammonia and nitrite) in soil: a review. Biodegradation 2025; 36:22. [PMID: 40044937 DOI: 10.1007/s10532-025-10116-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/31/2025] [Indexed: 05/07/2025]
Abstract
Biochar (BC) is a carbon-rich material created from biomass pyrolysis. It is an efficient addition for reducing ammonia inhibition due to its large specific surface area, porosity, conductivity, redox characteristics, and functional groups making it favorable for both soil and water remediation. The efficacy of biochar on the N cycle is associated with biochar properties which are mainly affected by feedstock type and pyrolysis condition. The addition of BC to soil affects nitrogen adsorption pathways. Other advantages include improved soil fertility, nutrient immobilization, and slow-release carbon storage. Biochar adsorption of ammonia reduces ammonia (NH3) and nitrate (NO3) losses during composting after manure applications and provides a method for creating slow-release fertilizers. Depending on the N source and the properties of the biochar, NH3 loss reductions vary. Besides improving soil dynamics, BC can also be used in wastewater treatment. Engineered or designer biochar is positioned as a promising material for wastewater treatment due to its enhanced properties and versatility.
Collapse
Affiliation(s)
- Arti Chamoli
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India
| | - Santosh Kumar Karn
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India.
| | - Moni Kumari
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India
| | - Elayaraja Sivaramasamy
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, Laboratory of Controlled Reproduction and Intensive Aquaculture, Husova třída 458/102, České Budějovice, 37005, Czech Republic
| |
Collapse
|
3
|
Li R, Yao J, Liu J, Jiang S, Sunahara G, Duran R, Li M, Liu H, Tang C, Li H, Ma B, Liu B, Xi B. Impact of steel slag, gypsum, and coal gangue on microbial immobilization of metal(loid)s in non-ferrous mine waste dumps. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135750. [PMID: 39276730 DOI: 10.1016/j.jhazmat.2024.135750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Non-ferrous mine waste dumps globally generate soil pollution characterized by low pH and high metal(loid)s content. In this study, the steel slag (SS), gypsum (G), and coal gangue (CG) combined with functional bacteria consortium (FB23) were used for immobilizing metal(loid)s in the soil. The result shown that FB23 can effectively decrease As, Pb, and Zn concentrations within 10 d in an aqueous medium experiment. In a 310-day field column experiment, solid waste including SS, G, and CG combined with FB23 decreased As, Cd, Cu, and Pb concentrations in the aqueous phase. Optimized treatment was obtained by combining FB23 with 1% SS, 1% G, and 1.5% CG. Furthermore, the application of solid waste (SS, G, and CG) increased the top 20 functional bacterial consortium (FB23) abundance at the genus level from 1% to 21% over 50 days in the soil waste dump. Moreover, dissolved organic carbon (DOC) and pH were identified as the main factors influencing the reduction in bioavailable As, Cd, Cu, and Pb in the combination remediation. Additionally, the reduction of Fe and sulfur S was crucial for decreasing the mobilization of the metal(loid)s. This study provides valuable insights into the remediation of metal contamination on a larger scale.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shun Jiang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Houquan Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chuiyun Tang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
5
|
Chen K, Jiang J, Huang C, Wang L, Wang X. Investigating the potential of mineral precipitation in co-pyrolysis biochar: Development of a novel Cd (II) adsorption material utilizing dual solid waste. BIORESOURCE TECHNOLOGY 2024; 402:130762. [PMID: 38692371 DOI: 10.1016/j.biortech.2024.130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Ionic cadmium (Cd (II)) in water is a significant threat to ecosystems, the environment, and human health. Research is currently focused on developing efficient adsorption materials to combat Cd (II) pollution in water. One promising solution involves co-pyrolyzing solid residue from anaerobic digestion of food waste with oil-based drill cuttings pyrolysis residue to create a biochar with high organic matter content. This biochar has a lower heavy metal content and leaching toxicity compared to China's national standards, making it both safe and resourceful. It exhibits a high adsorption capacity for Cd (II) in water, reaching up to 47.80 ± 0.37 mg/g. Raising the pyrolysis temperature above 600 °C and increasing the amount of pyrolysis residue beyond 30 % enhances the biochar's adsorption capacity. The adsorption process is primarily driven by mineral precipitation, offering a promising approach for dual waste resource management and reducing heavy metal pollution.
Collapse
Affiliation(s)
- Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jiaojiao Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Li'ao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
7
|
Ke Y, Zhang X, Ren Y, Zhu X, Si S, Kou B, Zhang Z, Wang J, Shen B. Remediation of polycyclic aromatic hydrocarbons polluted soil by biochar loaded humic acid activating persulfate: performance, process and mechanisms. BIORESOURCE TECHNOLOGY 2024; 399:130633. [PMID: 38552862 DOI: 10.1016/j.biortech.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The remediation for polycyclic aromatic hydrocarbons contaminated soil with cost-effective method has received significant public concern, a composite material, therefore, been fabricated by loading humic acid into biochar in this study to activate persulfate for naphthalene, pyrene and benzo(a)pyrene remediation. Experimental results proved the hypothesis that biochar loaded humic acid combined both advantages of individual materials in polycyclic aromatic hydrocarbons adsorption and persulfate activation, achieved synergistic performance in naphthalene, pyrene and benzo(a)pyrene removal from aqueous solution with efficiency reached at 98.2%, 99.3% and 90.1%, respectively. In addition, degradation played a crucial role in polycyclic aromatic hydrocarbons remediation, converting polycyclic aromatic hydrocarbons into less toxic intermediates through radicals of ·SO4-, ·OH, ·O2-, and 1O2 generated from persulfate activation process. Despite pH fluctuation and interfering ions inhibited remediation efficiency in some extent, the excellent performances of composite material in two field soil samples (76.7% and 91.9%) highlighted its potential in large-scale remediation.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Xing Zhang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Yuhang Ren
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China.
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Ziye Zhang
- Xi'an Jinborui Ecological Tech. Co., Ltd., Xi'an 710065, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd., Xi'an 710065, China
| | - Baoshou Shen
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| |
Collapse
|
8
|
Shang X, Wu S, Liu Y, Zhang K, Guo M, Zhou Y, Zhu J, Li X, Miao R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133684. [PMID: 38310844 DOI: 10.1016/j.jhazmat.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.
Collapse
Affiliation(s)
- Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Sirui Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yuli Liu
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuhui Li
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004 China.
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, Rajput VD, Fathi A, Pradhan A, Sarfraz R, Sushkova S, Mandzhieva S, Minkina T, Soldatov A, Wong MH, Rensing C. Nanomaterials and biochar mediated remediation of emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170064. [PMID: 38242481 DOI: 10.1016/j.scitotenv.2024.170064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamil Nadu, India
| | | | | | | | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rubab Sarfraz
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Shyamalagowri S, Bhavithra HA, Akila N, Jeyaraj SSG, Aravind J, Kamaraj M, Pandiaraj S. Carbon-based adsorbents for the mitigation of polycyclic aromatic hydrocarbon: a review of recent research. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:108. [PMID: 38453774 DOI: 10.1007/s10653-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.
Collapse
Affiliation(s)
- S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, Tamil Nadu, 600030, India
| | - H A Bhavithra
- Department of Mathematics, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - N Akila
- PG and Research Department of Zoology, Pachaiyappa's College, Chennai, Tamil Nadu, 600030, India
| | | | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, Tamil Nadu, 600089, India.
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Atakpa EO, Yan B, Okon SU, Liu Q, Zhang D, Zhang C. Asynchronous application of modified biochar and exogenous fungus Scedosporium sp. ZYY for enhanced degradation of oil-contaminated intertidal mudflat sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20637-20650. [PMID: 38383925 DOI: 10.1007/s11356-024-32419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Samuel Ukpong Okon
- Institute of Port, Coastal, and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Suzhou Industrial Technological Research Institute of Zhejiang University, Suzhou, 215163, China
| | - Qing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
12
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
13
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
14
|
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7342. [PMID: 38068085 PMCID: PMC10707613 DOI: 10.3390/ma16237342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2025]
Abstract
Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.
Collapse
Affiliation(s)
- Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Abdulmannan Rouhani
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| |
Collapse
|
15
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Li X, Zeng J, Zuo S, Lin S, Chen G. Preparation, Modification, and Application of Biochar in the Printing Field: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5081. [PMID: 37512355 PMCID: PMC10386302 DOI: 10.3390/ma16145081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Biochar is a solid material enriched with carbon produced by the thermal transformation of organic raw materials under anoxic or anaerobic conditions. It not only has various environmental benefits including reducing greenhouse gas emissions, improving soil fertility, and sequestering atmospheric carbon, but also has the advantages of abundant precursors, low cost, and wide potential applications, thus gaining widespread attention. In recent years, researchers have been exploring new biomass precursors, improving and developing new preparation methods, and searching for more high-value and meaningful applications. Biochar has been extensively researched and utilized in many fields, and recently, it has also shown good industrial application prospects and potential application value in the printing field. In such a context, this article summarizes the typical preparation and modification methods of biochar, and also reviews its application in the printing field, to provide a reference for future work.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinyu Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuai Zuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Saiting Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Mazarji M, Bayero MT, Minkina T, Sushkova S, Mandzhieva S, Bauer TV, Soldatov A, Sillanpää M, Wong MH. Nanomaterials in biochar: Review of their effectiveness in remediating heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163330. [PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023]
Abstract
Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Tukur Bayero
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55080, Turkey
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Center for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
18
|
Piash MI, Uemura K, Itoh T, Iwabuchi K. Meat and bone meal biochar can effectively reduce chemical fertilizer requirements for crop production and impart competitive advantages to soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117612. [PMID: 36967694 DOI: 10.1016/j.jenvman.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Safe and effective circulation of nutrient-rich meat and bone meal (MBM) could become a carbon-based alternative to limited chemical fertilizers (CFs). Therefore, MBM biochars (MBMCs) were produced at 500, 800, and 1000 °C to evaluate their effects on plant growth, nutrient uptake, and soil characteristics. The results revealed that MBMC produced at 500 °C (MBMC500) contained the maximum amount of C, N, and phytoavailable P. All additional MBMC doses with recommended CF increased sorghum shoot yield (6.7-16%) and significantly improved P uptake. Additional experiments were conducted with decreasing doses of CF (100-0%) with or without MBMC500 (7 t/ha) to quantify its actual fertilizing value. MBMC500 showed the capability to reduce CF requirement by 20% without compromising the optimum yield (by 100% CF) while increasing pH, CEC, total-N, available-P, Mg, and microbial population of post-harvest soil. Although a δ15N analysis confirmed MBMC500 as a source of plant N, a reduction in N uptake by MBMC500 + 80% CF treatment compared to 100% CF might have limited further sorghum growth. Thus, future studies should concentrate on producing MBMC with better N utilization capability and achieving maximum CF reduction without negative environmental impacts.
Collapse
Affiliation(s)
- Mahmudul Islam Piash
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Koki Uemura
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Takanori Itoh
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kazunori Iwabuchi
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
19
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Burachevskaya M, Minkina T, Bauer T, Lobzenko I, Fedorenko A, Mazarji M, Sushkova S, Mandzhieva S, Nazarenko A, Butova V, Wong MH, Rajput VD. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci Rep 2023; 13:2020. [PMID: 36737633 PMCID: PMC9898244 DOI: 10.1038/s41598-023-27638-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil. This research examined the efficacy of soil remediation using biochar made from three distinct sources: wood, and agricultural residues (sunflower and rice husks). The generated biochars were characterized by SEM/SCEM, XRF, XRD, FTIR, BET Specific Surface Area, and elemental compositions. The presence of hydroxyl and phenolic functional groups and esters in wood, sunflower and rice husk biochar were noted. The total volume of pores was in the following descending order: rice husk > wood > sunflower husk. However, wood biochar had more thermally stable, heterogeneous, irregular-shaped pores than other samples. Adsorption of soil-heavy metals into biochars differed depending on the type of adsorbent, according to data derived from distribution coefficients, sorption degree, Freundlich, and Langmuir adsorption models. The input of biochars to Calcaric Fluvic Arenosol increased its adsorption ability under contamination by Cu(II), Zn(II), and Pb(II) in the following order: wood > rice husk > sunflower husk. The addition of sunflower husk, wood, and rice husk biochar to the soil led to an increase in the removal efficiency of metals in all cases (more than 77%). The increase in the percentage adsorption of Cu and Pb was 9-19%, of Zn was 11-21%. The present results indicated that all biochars functioned well as an absorbent for removing heavy metals from soils. The tailor-made surface chemistry properties and the high sorption efficiency of the biochar from sunflower and rice husks could potentially be used for soil remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexander Nazarenko
- The Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Vera Butova
- Southern Federal University, Rostov-on-Don, Russia
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | | |
Collapse
|
21
|
Wang R, He Z, Wang W, Bu J, Wang D, Zeng G, Zhou C, Xiong W, Yang Y. Rational design of cobalt sulfide anchored on nitrogen-doped carbon derived from cyanobacteria waste enables efficient activation of peroxymonosulfate for organic pollutants oxidation. CHEMOSPHERE 2023; 314:137733. [PMID: 36603681 DOI: 10.1016/j.chemosphere.2022.137733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
With the increasing of eutrophication in water body, algae blooms have become one of the global environmental problems. The cyanobacteria waste has placed a severe burden on the environment and transforming cyanobacteria into functional materials may be a wise approach. Herein, cobaltous sulfide/nitrogen-doped biochar (N-BC/CoSx) composite was synthesized by pyrolysis of cyanobacteria waste. The N-BC/CoSx showed excellent performance in peroxymonosulfate (PMS) activation for enrofloxacin (ENR) degradation, which could remove more than 90% ENR within 60 min. The influencing factors of pH and catalyst dosage on ENR removal efficiency were studied. The N-BC/CoSx showed good recyclability in the cycle runs. The radicals (O2•-, OH andSO4•-) and the non-radical species (charge transfer and 1O2) were generated in the ENR degradation. The cycle of Co(II)/Co(III) m ay contribute to the radical generation process. This work proved that metal sulfide modified cyanobacteria biochar has a specific application value in water pollution control and provides a new method for resource utilization of cyanobacteria.
Collapse
Affiliation(s)
- Ronghan Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zixiang He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, 330013, Jiangxi Province, PR China.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
22
|
Sun L, Zhang G, Li X, Zhang X, Hang W, Tang M, Gao Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023; 9:e12949. [PMID: 36820180 PMCID: PMC9938413 DOI: 10.1016/j.heliyon.2023.e12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
To investigate the chemical properties in the biochar-mediated transformation of soil cadmium (Cd) fractions, the effects of biochar applied at different pyrolysis temperatures on soil Cd-fractions, pH value, and soil organic matter (SOM) were studied through an in-lab incubation experiment on contaminated soil. The results showed that the dissolved organic carbon (DOC) of CsBC300 (biochar prepared at 300 °C) was significantly higher (up to 1.31 times) than that of CsBC600 (biochar prepared at 600 °C). However, CsBC600 was more aromatic. Due to the difference in pyrolysis temperatures, the Cd deactivation mechanism of CsBC300 and CsBC600 was mainly to provide a large amount of organic matter and aromatic functional groups to the soil, respectively. The addition of these two biochar types significantly reduced the acid-extracted Cd content, by 76.56-83.52% and 70.48-76.81%, respectively. Contrastingly, it increased the residual Cd content by 2.26-2.36 and 2.08-2.29 times, respectively, which promoted the Cd transformation from the unstable to the stable state. However, CsBC300 had slightly better deactivation effect than CsBC600 on the 120th day, which was due to the decrease of soil pH and the increased SOM content. These study results can provide a theoretical reference for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Lianglun Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Guoquan Zhang
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| | - Xinyu Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xinyu Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Hang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China,Corresponding author.
| | - Yan Gao
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| |
Collapse
|
23
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
24
|
Khan Z, Fan X, Khan MN, Khan MA, Zhang K, Fu Y, Shen H. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. CHEMOSPHERE 2022; 308:136466. [PMID: 36122746 DOI: 10.1016/j.chemosphere.2022.136466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) accumulation in soil poses a severe threat worldwide for soil, plants, and humans. The accumulation of HMs in soil and uptake by plants leads to disrupt physiological and biochemical metabolisms. As a potential and sustainable soil amendment, biochar has attained huge attention to reduce HMs toxicity in soil and improve plant growth influenced by HMs stress. Despite an array of research studies, there is a lack of knowledge on how biochar interacts with HMs, moderate plant defence system, induce HMs stress signals pathways and promote plant growth. At first, the review highlights the possible effects of HMs on soil and plant and their consequences on plant signaling network. Secondly, the biochar's impact on soil physiochemical properties and the sorption of HMs on biochar surface through direct and indirect mechanisms are reviewed. Finally, the review shows the key roles of biochar in soil improvement to enhance plant growth and signaling response to HMs by enhancing the activities of antioxidants and reducing chlorophyll injury, reactive oxygen species (ROS) accumulation, and cell membrane degradation under HMs stress. However, future studies are needed to evaluate the role of biochar in diverse climatic conditions as well as the long-term effects of biochar on HMs persistency in soil and crop productivity. This review will provide new avenues for future studies to address and quantify the advancement in biochar's role in alleviating plant's HMs stress on a sustainable basis.
Collapse
Affiliation(s)
- Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xianting Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mohammad Nauman Khan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Kangkang Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, China; Guangdong Key Laboratory of New Technology in Rice Breeding, China; Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Removal of benzene, MTBE and toluene from contaminated waters using biochar-based liquid activated carbon. Sci Rep 2022; 12:19651. [PMID: 36385330 PMCID: PMC9669010 DOI: 10.1038/s41598-022-24283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fuel components such as benzene, toluene, and methyl tertiary-butyl ether (MTBE) are frequently detected pollutants in groundwater resources. Ex-situ remediation technologies by activated carbon have been used for treatment for many years. However, due to high cost of these technology, more attention has been given to the in-situ remediation methods of contaminated groundwaters using liquid carbon adsorbents. Literature search showed limited studies on using adsorbents in liquid form for the removal of such contaminants. Therefore, this lab-scale study investigates the capacity of using raw biochar-based liquid activated carbon and iron-modified biochar-based liquid activated carbon to remove these pollutants. The adsorption efficiency of the synthesized liquid activated carbon and iron-modified liquid activated carbon mixed with sand, limestone, and 1:1 mixture of sand/limestone, was tested using batch suspension experiments. Adsorption by granular activated carbon was also investigated for comparison with liquid activated carbon. Results of the study revealed that mixing of liquid activated carbon or LAC-Fe on subsurface materials had not improved the removal efficiency of MTBE. At the same time, it showed a slight improvement in the adsorption efficiency of benzene and toluene. In all cases, the removal by GAC was higher with around 80% and 90% for MTBE and BT, respectively. Results also showed that benzene and toluene were better removed by liquid activated carbon and iron-modified liquid activated carbon (∼ 40%) than MTBE (∼ 20%). It is also found that water chemistry (i.e., salinity and pH) had insignificant effects on the removal efficiency of pollutants under the study conditions. It can be concluded that more research is needed to improve the capacity of biochar-based liquid-activated carbon in removing MTBE, benzene and toluene compounds that will lead to improve the utilization of liquid activated carbon for the in-situ remediation of contaminated groundwaters.
Collapse
|
26
|
Van Nguyen TT, Phan AN, Nguyen TA, Nguyen TK, Nguyen ST, Pugazhendhi A, Ky Phuong HH. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. CHEMOSPHERE 2022; 307:135834. [PMID: 35963379 DOI: 10.1016/j.chemosphere.2022.135834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Each year, Asia produces an estimated 350 million tonnes of agricultural residues. According to Ministry of Power projections, numerous tonnes of such waste are discarded each year, in addition to being used as green manure. The methodology used to convert agricultural waste into the most valuable biochar, as well as its critical physical and chemical properties, were described in this review. This review also investigates the beneficial effects of bio and phytoremediation on metal(lloid)-contaminated soil. Agriculture biomass-based biochar is an intriguing organic residue material with the potential to be used as a responsible solution for metal(lloid) polluted soil remediation and soil improvement. Plants with faster growth and higher biomass can meet massive remediation demands. Recent research shows significant progress in agricultural biomass-based biomass conversion as biochar, as well as understanding the frameworks of metal(lloid) accumulation and mobility in plants used for metal(lloid) polluted soil remediation. Biochar made from various agricultural biomass can promote native plant growth and improve phytoremediation efficiency in polluted soil with metal(lloid)s. This carbon-enriched biochar promotes native microbial activity by neutralising pH and providing adequate nutrition. Thus, this review critically examines the feasibility of converting agricultural waste biomass into biochar, as well as the impact on plant and microbe remediation potential in metal(lloid)s polluted soil.
Collapse
Affiliation(s)
- Thi Thuy Van Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No.1A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Viet Nam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Tuan-Anh Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | - Trung Kim Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | - Son Truong Nguyen
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam
| | | | - Ha Huynh Ky Phuong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
27
|
Yang M, Tian S, Liu Q, Yang Z, Yang Y, Shao P, Liu Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction-Gas Chromatography-Mass Spectrometry. TOXICS 2022; 10:634. [PMID: 36355925 PMCID: PMC9698594 DOI: 10.3390/toxics10110634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The method for the determination of 16 priority polycyclic aromatic hydrocarbons (PAHs) in plant leaves has been studied extensively, yet the quantitativemethod for measuring non-priority PAHs in plant leaves is limited. A method for the simultaneous determination of 31 polycyclic aromatic hydrocarbons (PAHs) in plant leaves was established using an ultrasonic extraction-gas chromatography-mass spectrometry-internal standard method. The samples of plant leaves were extracted with ultrasonic extraction and purified with solid-phase extraction columns. The PAHs were separated by using gas chromatography-mass spectrometry equipped with a DB-EUPAH capillary column (20 m × 0.18 mm × 0.14 μm) with a selective ion monitoring (SIM) detection mode, and quantified with an internal standard. The method had good linearity in the range of 0.005~1.0 μg/mL with correlation coefficients greater than 0.99, and the method detection limit and maximum quantitative detection limit were in the ranges of 0.2~0.7 μg/kg and 0.8~2.8 μg/kg, respectively. The method was verified with spiked recovery experiments. The average spiked recovery ranged from 71.0% to 97.6% and relative standard deviations (n = 6) were less than 14%. Herein, we established a quantitativemethod for the simultaneous determination of priority and non-priority PAHs in plant leaves using GC-MS. The method is highly sensitive and qualitatively accurate, and it is suitable for the determination of PAHs in plant leaves.
Collapse
Affiliation(s)
- Ming Yang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Shili Tian
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Qingyang Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zheng Yang
- Beijing Milu Ecological Research Center, Beijing 100076, China
| | - Yifan Yang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| |
Collapse
|
28
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
29
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
30
|
Wang L, Cheng WC, Hu W, Wen S, Shang S. Effect of seepage conditions on the microstructural evolution of loess across north-west China. iScience 2022; 25:104691. [PMID: 35856035 PMCID: PMC9287809 DOI: 10.1016/j.isci.2022.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Loess features metastable microstructure and is deemed susceptible to chemical contaminant permeation. However, studies on the loess permeability evolution under water and chemical environments are remarkably limited. In this study, the response of the loess to the water and sodium sulfate seepages was analyzed using the temporal relationship of cations concentration, X-ray diffraction and fluorescence (XRD and XRF), mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) tests. The permeability evolution characteristics were identified, and its underlying mechanisms were revealed from aspects of the diffuse double layer (DDL) theory and physiochemical actions. The discharge of Mg2+ and precipitation of calcium carbonate, referred also to as the dedolomitization, degraded the macro permeability when subjected to the water seepage test. The salt-induced swelling, induced by the intrusion of Na+ into the DDL, caused an increase in the micropore fraction under the sodium sulfate seepage test, thereby increasing the macro permeability. The k evolution of the loess under the water and Na2SO4 seepages is investigated The dedolomitization takes part in the k degradation under the water seepage The Na+ intrusion into the double layer enhances the k under the Na2SO4 seepage
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China
| | - Sen Shang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
31
|
Bahadur DS, Ahmed SR, Lahori AH, Hussain T, Alvi SK, Shafique S, Fatima S, Vambol V, Mierzwa-Hersztek M, Hinduja P, Vambol S, Zhang Z. Novel Fuller Earth, Rock Phosphate, and Biochar for Phytomanagement of Toxic Metals in Polluted Soils. AGRICULTURE 2022; 12:1216. [DOI: 10.3390/agriculture12081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The present study was aimed to assess the efficacy of individual and combined effects of novel fuller earth, rock phosphate, and biochar (grapefruit peel) at 1% dosage on maize plant growth, soil chemical properties anduptake of toxic metals (TMs), such as Cu, Zn, Fe, and Cd, by maize plant sown in Korangi (district of Karachi, Pakistan) heavily polluted and Korangi less polluted (K-HP and K-LP) soils. The obtained results indicate that the dry biomass of maize crop increased by 14.13% with combined (FE1% + GBC1%) on K-HP soil and 18.24% with combined (FE 1% + GBC 1%) effects on K-LP soil. The maximum immobilization of Cu, Zn, Fe, and Cd was observed by 36% with GBC1%, 11.90% with FE1%, 98.97% with combined RP1% + GBC1%, 51.9% with FE1% + GBC1% for K-HP, 11.90% with FE1%, 28.6% with FE1%, 22.22% with RP1% + GBC1%, and 57.05% with FE 1% + GBC 1% for K-LP soil. After the addition of proposed substances, modification of soil OM, SOC, TOC, and pH level appeared this lead to the changes in the phyto-availability of Cu, Zn, Fe, and Cd in maize plant. It was concluded that the application of individual and combined effects of novel fuller earth, rock phosphate, and biochar (grapefruit peel) have potential to stabilize pollutants from multi-metal polluted soils for safe crop production.
Collapse
Affiliation(s)
- Daniyal Sher Bahadur
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Tanveer Hussain
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Sofia Khalique Alvi
- Applied Chemistry Research Center, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Sheraz Shafique
- Applied Chemistry Research Center, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Sadia Fatima
- Applied Chemistry Research Center, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Department of Applied Ecology and Environmental Sciences, National University Yuri Kondratyuk Poltava Polytechnic, 36011 Poltava, Ukraine
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Preeta Hinduja
- Education Department, Iqra University, Karachi 75300, Pakistan
| | - Sergij Vambol
- Department of Life Safety, State Biotechnological University, 61002 Kharkiv, Ukraine
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
32
|
Mazarji M, Minkina T, Sushkova S, Mandzhieva S, Barakhov A, Barbashev A, Dudnikova T, Lobzenko I, Giannakis S. Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119096. [PMID: 35248616 DOI: 10.1016/j.envpol.2022.119096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation.
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | | | - Anatoly Barakhov
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Iliya Lobzenko
- Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES, 28040, Madrid, Spain.
| |
Collapse
|
33
|
Gupta M, Savla N, Pandit C, Pandit S, Gupta PK, Pant M, Khilari S, Kumar Y, Agarwal D, Nair RR, Thomas D, Thakur VK. Use of biomass-derived biochar in wastewater treatment and power production: A promising solution for a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153892. [PMID: 35181360 DOI: 10.1016/j.scitotenv.2022.153892] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Over the past few years, we are witnessing the advent of a revolutionary bioengineering technology in biochar production and its application in waste treatment and an important component in power generation devices. Biochar is a solid product, highly rich in carbon, whose adsorption properties are ideal for wastewater decontamination. Due to its high specific surface area to volume ratio, it can be utilized for many environmental applications. It has diverse applications in various fields. This review focuses on its various applications in wastewater treatment to remove various pollutants such as heavy metals, dyes, organic compounds, and pesticides. This review also highlights several energy-based applications in batteries, supercapacitors, and microbial fuel cells. It described information about the different feedstock materials to produce LB-derived biochar, the various conditions for the production process, i.e., pyrolysis and the modification methods of biochar for improving properties required for wastewater treatment. The present review helps the readers understand the importance of biochar in wastewater treatment and its application in power generation in terms of batteries, supercapacitors, microbial fuel cells, applications in fuel production, pollutant and dye removal, particularly the latest development on using LB-derived biochar. This review also highlights the economic and environmental sustainability along with the commercialization of biochar plants. It also describes various pyrolytic reactors utilized for biochar production.
Collapse
Affiliation(s)
- Meenal Gupta
- Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Nishit Savla
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, India
| | - Chetan Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India.
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Manu Pant
- Department of Life Sciences, Graphic Era Deemed to be University Dehradun Uttarakhand, 248002, India
| | - Santimoy Khilari
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, C.G, Koni, Bilaspur, Chhattisgarh 495009, India
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, New Delhi 110 021, India
| | - Daksh Agarwal
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Remya R Nair
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, India
| | - Dessy Thomas
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, The King's Buildings, West Mains Road, Edinburgh, EH9 3JG Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
34
|
Katiyar R, Chen CW, Singhania RR, Tsai ML, Saratale GD, Pandey A, Dong CD, Patel AK. Efficient remediation of antibiotic pollutants from the environment by innovative biochar: current updates and prospects. Bioengineered 2022; 13:14730-14748. [PMID: 36098071 PMCID: PMC9481080 DOI: 10.1080/21655979.2022.2108564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increased antibiotic consumption and their improper management led to serious antibiotic pollution and its exposure to the environment develops multidrug resistance in microbes against antibiotics. The entry rate of antibiotics to the environment is much higher than its exclusion; therefore, efficient removal is a high priority to reduce the harmful impact of antibiotics on human health and the environment. Recent developments in cost-effective and efficient biochar preparation are noticeable for their effective removal. Moreover, biochar engineering advancements enhanced biochar remediation performance several folds more than in its pristine forms. Biochar engineering provides several new interactions and bonding abilities with antibiotic pollutants to increase remediation efficiency. Especially heteroatoms-doping significantly increased catalysis of biochar. The main focus of this review is to underline the crucial role of biochar in the abatement of emerging antibiotic pollutants. A detailed analysis of both native and engineered biochar is provided in this article for antibiotic remediation. There has also been discussion of how biochar properties relate to feedstock, production conditions and manufacturing technologies, and engineering techniques. It is possible to produce biochar with different surface functionalities by varying the feedstock or by modifying the pristine biochar with different chemicals and preparing composites. Subsequently, the interaction of biochar with antibiotic pollutants was compared and reviewed. Depending on the surface functionalities of biochar, they offer different types of interactions e.g., π-π stacking, electrostatic, and H-bonding to adsorb on the biochar surface. This review demonstrates how biochar and related composites have optimized for maximum removal performance by regulating key parameters. Furthermore, future research directions and opportunities for biochar research are discussed.
Collapse
Affiliation(s)
- Ravi Katiyar
- Institute of Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung city, Kaohsiung, 81157, Taiwan
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, 226 001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Institute of Aquatic Science and Technology, National Kaohsiung University of Technology, Kaohsiung City, 81157, Taiwan
| |
Collapse
|
35
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
36
|
Patel AK, Singhania RR, Pal A, Chen CW, Pandey A, Dong CD. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153054. [PMID: 35026237 DOI: 10.1016/j.scitotenv.2022.153054] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is gaining incredible importance for remediation applications due to their attractive removal properties. Moreover, it is becoming ecofriendly, cost-effective and sustainable bioadsorbents towards replacing expensive activated carbons. Studies reveal biochar effectiveness for removal of important and potentially severe organic pollutants such as antibiotics and pesticides. Recent research advancements on biochar modification (physical, chemical and biological) opens greater opportunity to form tailored biochar with improved surface properties than their native forms for offering better removal efficiencies. Further attentions paid towards emergent new modification methods to cover broad-spectrum pollutants using tailored biochar. Current review aims to summarize recent updates upon biochar tailoring, comparative account of tailored biochars removal efficiencies with respect to their native forms and to provide in-depth discussion covering specific interactions of tailored biochars with antibiotics, polycyclic aromatic hydrocarbons (PAHs) and pesticides for their effective removals and degradation from polluted environments. Application of inducer compounds e.g., peroxymonosulfate and sodium percarbonate further improved the biochar role towards degradation of toxic organic pollutants into their less or nontoxic forms. Biochar engineered with specific metals enable them for the same role without inducer compounds. Moreover, microbial interactions with biochar not only improve the bioremediation level further but also degrade the pollutants from the environment and open up better environmental and socio-economic prospects. Application of green, cost-effective and sustainable biochar for remediation of environmentally potential organic pollutants offers economical treatment methods as well as safe environment. These benefits are inline with global trends towards developing a sustainable process for biocircular economy.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anugunj Pal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
37
|
Awasthi MK. Engineered biochar: A multifunctional material for energy and environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118831. [PMID: 35032603 DOI: 10.1016/j.envpol.2022.118831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a stable carbon-rich product loaded with upgraded properties obtained by thermal cracking of biomasses in an oxygen-free atmosphere. The pristine biochar is further modified to produce engineered biochar via various physical, mechanical, and chemical methods. The hasty advancement in engineered biochar synthesis via different technologies and their application in the field of energy and environment is a topical issue that required an up-to-date review. Therefore, this review deals with comprehensive and recent mechanistic approaches of engineered biochar synthesis and its further application in the field of energy and the environment. Synthesis and activation of engineered biochar via various methods has been deliberated in brief. Furthermore, this review systematically covered the impacts of engineered biochar amendment in the composting process, anaerobic digestion (AD), soil microbial community encouragement, and their enzymatic activities. Finally, this review provided a glimpse of the knowledge gaps and challenges associated with application of engineered biochar in various fields, which needs urgent attention in future research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
38
|
Improved remediation of co-contaminated soils by heavy metals and PAHs with biosurfactant-enhanced soil washing. Sci Rep 2022; 12:3801. [PMID: 35260619 PMCID: PMC8904480 DOI: 10.1038/s41598-022-07577-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the huge toxicity of co-contaminated soil with PAHs and heavy metals and the complexity of their remediation, it is thus critical to take effective remediation actions to remove heavy metals and PAHs simultaneously from the co-contaminated soil. Biosurfactant-enhanced soil washing (BESW) were investigated in this study for remediation of soil co-contaminated with phenanthrene (PHE) and cadmium (Cd). The co-existence of PHE and Cd caused the change of the structure of soil and rhamnolipid micelle, which lead to different removal rate of PHE and Cd from co-contaminated soil compared with single contaminated soil. The results of FT-IR and NMR showed that PHE entered micelles of rhamnolipid and Cd formed the complexation with the external carboxyl groups of rhamnolipid micelle. We also found that pH, concentration of rhamnolipid solution, temperature and ionic strength had influence on co-contaminated soil remediation. The effects of above mentioned four factors on co-contaminated soil remediation in BESW processes were analyzed by using Taguchi design of experiment method. Taguchi based Grey Relational Analysis was conducted to identify the optimal remediation conditions, which included pH = 9, concentration of rhamnolipid = 5 g/L, temperature = 15 °C and ionic strength = 0.01 M. Under the optimal conditions for BESW, removal rates of cadmium and phenanthrene reached 72.4% and 87.8%, respectively in co-contaminated soil.
Collapse
|
39
|
Adsorption of Arsenic on Fe-Modified Biochar and Monitoring Using Spectral Induced Polarization. WATER 2022. [DOI: 10.3390/w14040563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This work demonstrates the potential of Fe-modified biochar for the treatment of arsenic (As) simulated wastewater and the monitoring of adsorption in real-time. Specifically, we propose the utilization of date-palm leaves for the production of biochar, further modified with Fe in order to improve its adsorption function against inorganic pollutants, such as As. Both the original biochar and the Fe-modified biochar were used for adsorption of As in laboratory batch and column experiments. The monitoring of the biochar(s) performance and As treatment was also enhanced by using the spectral induced polarization (SIP) method, offering real-time monitoring, in addition to standard chemical monitoring. Both the original and the Fe-modified biochar achieved high removal rates with Fe-modified biochar achieving up to 98% removal of As compared to the 17% by sand only (control). In addition, a correlation was found between post-adsorption measurements and SIP measurements.
Collapse
|
40
|
Shentu J, Li X, Han R, Chen Q, Shen D, Qi S. Effect of site hydrological conditions and soil aggregate sizes on the stabilization of heavy metals (Cu, Ni, Pb, Zn) by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149949. [PMID: 34525744 DOI: 10.1016/j.scitotenv.2021.149949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Biochar is a popular material that would effectively immobilize heavy metals in soil, which can greatly decrease the health risk of heavy metals. Although many previous studies have studied the immobilization of heavy metals by biochar, the influence of hydrological conditions on the immobilization effect is still not clear. This paper carried out column experiments to study the effect of fluctuating groundwater table on Cu, Ni, Pb, Zn distribution and speciation with the addition of biochar from pyrolysis of swine manure. Experimental results showed that biochar could significantly decrease the leaching toxicity of Cu and Ni by 24.4% and 44.7% respectively, while the immobilization effect of Pb and Zn was relatively insignificant. The average reduction percentage of bioavailable Cu was 14.5%, 39.5% and 33.3% in the unsaturated zone, fluctuating zone and saturated zone respectively, showing the better immobilization effect in the fluctuating zone and saturated zone. The residual fraction of heavy metals increased significantly after the addition of biochar, and the increase of residual fraction was larger in small soil aggregates. This study helped illustrate the influence of hydrological conditions and soil aggregate sizes on the stabilization effect of heavy metals by biochar, which could be used to guide the remediation process of sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoxiao Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Ruifang Han
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
41
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
42
|
Rana AK, Mishra YK, Gupta VK, Thakur VK. Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149129. [PMID: 34303252 DOI: 10.1016/j.scitotenv.2021.149129] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, over utilization of pesticides in agrarian and non- agrarian sectors has resulted in a significant increment in the deposition of their remnants in different segments of the environmental media. The presence of pesticides and transportation of their different metabolites in rivers, ponds, lakes, soils, air, groundwater sources and drinkable water sources has demonstrated a high threat to human wellbeing and the climate. Thus, the removal of pesticides and their metabolites from contaminated water is imperative to lessen the ill effects of pesticides on human beings. In the present article, we have appraised recent advances in pesticides removal utilizing low cost pristine and functionalized cellulose biomass-based derivatives. One of the key focus has been on better understand the destiny of pesticides in the environment as well as their behaviour in the water. In addition, the impact of magnetite cellulose nanocomposites, cellulose derived photo nano-catalyst, cellulose/clay nano composites, CdS/cellulose nanocomposites and activated carbons/biochar on percent removal of pesticides have also been a part of the current review. The impact of different parameters such as adsorbent dosage, pH, time of contact and initials pesticide concentration on adsorption capacity and adsorption kinetics followed during absorption by different cellulosic bio-adsorbents has also been given. The cellulosic biomass is highly efficient in the removal of pesticides and their efficiency further increases upon functionalization or their conversion into activated carbons forms. Nano particles loaded cellulosic materials have in general found to be less efficient than raw, functionalized cellulosic materials and activated carbons. Further, among different nano particles loaded with cellulose-based materials, cellulose/MnO2 photonanocatalyst were noticed to be more effective. So considerable efforts should be given to determine the finest practices that relate to the dissipation of different pesticides from the water.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
43
|
Lu Y, Gu K, Zhang Y, Tang C, Shen Z, Shi B. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148608. [PMID: 34323765 DOI: 10.1016/j.scitotenv.2021.148608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Biochar has recently been widely used in environmental geotechnical engineering. However, its impact on soil cracking is not fully understood. In this study, the influence of different wood biochar dosages on the desiccation cracking characteristics of silty clay was studied, and the mechanism was elucidated through a combination of image and microstructural analysis. The results indicate biochar affects the desiccation cracking characteristics of soil across the whole process of water evaporation and crack development. The evaporation rate decreased with low amounts of biochar, but increased as the biochar content increased. At the stage of crack development, the addition of biochar increased the soil cracking water content, induced the formation of annular cracks in soil, and changed the soil crack development process. Quantitative results of the stabilized cracks show the surface crack ratio was decreased by 11.59% and 34.32%, and the average crack width was decreased by 14.83%, and 34.51%, after 5% and 10% biochar addition, respectively. Meanwhile, most of the single cracks in biochar-amended soil are fine. In addition, the surface crack ratio of soil without biochar addition first increased and then stabilized with an increase in the number of wetting-drying (W-D) cycles, while that of the biochar-amended soil decreased slightly. Comparing the crack networks after one and five W-D cycles, the number of cracks formed with 5% and 10% biochar addition decreased by -1.51% and 19.24%, and 15.29%, and 36.92%, respectively, indicating that after the addition of biochar, the soil becomes more resistant to cracking under W-D cycles. In summary, the addition of biochar may have inhibited desiccation cracking by (1) reducing the tensile stress on the soil surface, (2) increasing the repulsive forces between soil particles, (3) occupying the shrinkage space between soil particles, and (4) reducing the tensile strength between soil particles.
Collapse
Affiliation(s)
- Yu Lu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Gu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yuping Zhang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chaosheng Tang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhengtao Shen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
44
|
Jia H, Wu Y, Daolin D, Yuan B, Zhou Z. Effects of different order spiking on bioavailability and ecological risk of phenanthrene in mangrove sediment-biochar system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112951. [PMID: 34739933 DOI: 10.1016/j.ecoenv.2021.112951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Biochar shows unique advantage in decreasing the bioavailability of phenanthrene and has huge potential into the in-situ remediation of contaminated sediment. The different order spiking influences the bioavailability and ecological risk of phenanthrene, this study provides a comprehensive investigation of biochar (derived from mangrove Kandelia obovata -sediment system under three conditions: I) co-addition of biochar and sediment; II) biochar and subsequently sediment addition (after biochar adsorption reached equilibrium); III) sediment and subsequently biochar addition (after sediment adsorption reached equilibrium). It was observed that the adsorption capability under model I and III was much smaller than that under model II (p < 0.05). Regardless of time, K. obovate - biochar significantly (p < 0.05) increase the sorption of phenanthrene in sediment -water system. The results provide valuable studies for further in-situ remediation of phenanthrene and engineering applications.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Du Daolin
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Zhengkun Zhou
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
45
|
Lan J, Zhang S, Dong Y, Li J, Li S, Feng L, Hou H. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: Mechanisms and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126588. [PMID: 34252659 DOI: 10.1016/j.jhazmat.2021.126588] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by multiple heavy metals and As is one of the major environmental hazards recognized worldwide. In this study, pinecone-biochar was used for stabilization and passivation of Pb, Cu, Zn, Cr, and As in contaminated soil around a smelter in Hubei province, China. The stabilization rate of heavy metals in soil can exceed 99%, and the leaching amount can meet the national standard of China (GB/T 5085.3-2007, less than 5, 100, 100, 15, and 5 mg/L, respectively.) within 90 days. The study confirmed that the addition of pinecone-biochar and the coexistence of indigenous microorganisms can effectively reduce the bioavailability of heavy metals. Among the heavy metals, As(III) can be oxidized to As(V) and then stabilized, and other heavy metals can be stabilized in a complex and chelated state characterized by X-ray photoelectron spectroscopy. After pinecone-biochar was added, the abundance of microbial community and intensity of metabolic activities became vigorous, the types and contents of dissolved organic matter increased significantly. A novel innovation is that the addition of pinecone-biochar increased the Bacillus and Acinetobacter in soil, which enhanced the function of inorganic ion transport and metabolism to promote the passivation and stabilization of heavy metals throughout the remediation process.
Collapse
Affiliation(s)
- Jirong Lan
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, Guangdong 526200, PR China
| | - Shanshan Zhang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, Guangdong 526200, PR China
| | - Yiqie Dong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, Guangdong 526200, PR China.
| | - Jiahao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, Guangdong 526200, PR China
| | - Shiyao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lu Feng
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, Guangdong 526200, PR China.
| |
Collapse
|
46
|
Biochar from Spent Malt Rootlets and Its Application to an Energy Conversion and Storage Device. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9030057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activated carbon obtained from biomass wastes was presently studied in order to evaluate its applicability in an energy storage device. Biochar was obtained by the carbonization of spent malt rootlets and was further processed by mild treatment in NaOH. The final product had a specific surface of 362 m2 g−1 and carried Na, P and a few mineral sites. This material was first characterized by several techniques. Then it was used to make a supercapacitor electrode, which reached a specific capacitance of 156 F g−1. The supercapacitor electrode was combined with a photocatalytic fuel cell, making a simple three-electrode device functioning with a single alkaline electrolyte. This device allows solar energy conversion and storage at the same time, promoting the use of biomass wastes for energy applications.
Collapse
|