1
|
Huang Y, Lin Y, Lavin RP, Luo L, Luo M, Leng S, Mullen NM, Hawley K, Gong X. Industrial air pollution and newborn hearing screening failure. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138241. [PMID: 40233453 DOI: 10.1016/j.jhazmat.2025.138241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Hearing loss in newborns is a prevalent issue that can hinder the growth of language skills and cognitive development. Given that hearing loss often co-occurs with other adverse birth outcomes and the recognized role of metals in causing such outcomes, it is conceivable that metals may also serve as a risk factor of hearing loss. This study examined the associations between maternal residential exposure to thirteen PM2.5-bound metals and failure in Newborn Hearing Screening (NHS) in offspring in New Mexico from 2008 to 2017 to ascertain possible implications of these environmental exposures. This retrospective cohort study included 141,406 births (7670 births in disease group and 133,736 births in non-diseased group) in New Mexico during 2008-2017. Thirteen PM2.5-bound metals released from the U.S. Environmental Protection Agency (EPA) Toxic Release Inventory (TRI) facilities were investigated potentially as risk factors. The RSEI model estimated maternal residential exposure to PM2.5-bound metals during pregnancy, and spatial log-binomial regressions, adjusted for confounders, calculated adjusted relative risks (aRRs) for the association with NHS failure. Findings indicated that maternal residential exposure to PM2.5-bound metals - including antimony, barium, beryllium, chromium, cobalt, manganese, mercury, vanadium, and zinc - during pregnancy were positively associated with NHS failure in offspring, showing aRRs ranging from 1.07 to 2.18. A significant trend was observed when exposures were categorized as zero, low, medium, and high of these metals. Our findings indicate that maternal exposure to these PM2.5-bound metals may adversely affect newborn hearing, underscoring air pollution as a modifiable risk factor for improving hearing health outcomes.
Collapse
Affiliation(s)
- Yanhong Huang
- Department of Geography & Environmental Studies and UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Yan Lin
- Department of Geography, The Pennsylvania State University, University Park, PA, 16802, USA; Social Science Research Institute (SSRI) , The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Roberta P Lavin
- Center for Health Equity and Preparedness, College of Nursing, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Li Luo
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, 87131, USA; Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Ming Luo
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Shuguang Leng
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, 87131, USA; Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - Netanya M Mullen
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Karen Hawley
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Xi Gong
- Department of Geography & Environmental Studies and UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA; Institute for Computational and Data Sciences (ICDS), The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Khan MM, Wang J, Gao Y, Wu D, Qiu B, Zhu Z. Impact of long-term cadmium exposure on insecticidal cross-resistance and biological traits of Brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138203. [PMID: 40209407 DOI: 10.1016/j.jhazmat.2025.138203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Cadmium (Cd) pollution threatens ecosystems and agricultural productivity, especially in rice-growing regions. This study examines the effects of long-term Cd exposure on the brown planthopper (Nilaparvata lugens), a major rice pest, focusing on biological traits, physiological responses, and insecticide cross-resistance. Cd bioaccumulation occurred across the soil-plant-insect chain, with higher concentrations in advanced N. lugens stages. Cd exposure prolonged development, reduced fecundity, and altered life table parameters, impairing population fitness. Physiological analyses showed increased activities of antioxidant (SOD, CAT, POD) and detoxification enzymes (GST and P450) and neurotransmission-regulating enzyme AChE in Cd-exposed insects, indicating adaptive stress responses. Prolonged Cd exposure also induced cross-resistance to insecticides like triflumezopyrim, dinotefuran, and sulfoxaflor, evidenced by higher LC50 values. Energy reserves, including glycogen, triglycerides, and total cholesterol, were significantly reduced in Cd-exposed N. lugens, further affecting reproduction. These findings reveal the complex link between heavy metal stress and insecticide resistance, highlighting challenges for pest management in Cd-contaminated areas. The study emphasizes the need for integrated pest management and soil remediation to mitigate heavy metal pollution's ecological and agricultural impacts. Future research should explore molecular mechanisms of Cd-induced cross-resistance and their implications for sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China.
| | - Jin Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Yang Gao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Dongming Wu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China.
| | - Zengrong Zhu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China.
| |
Collapse
|
3
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10331-10347. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
Rezaeian M, Ahmadinia H, Rabori MS, Dini A, Esmaeili A, Mohammadi H, Ghaffarian-Bahraman A. Human health risk assessment of toxic metals in Nass smokeless tobacco in Iran. Sci Rep 2025; 15:9525. [PMID: 40108331 PMCID: PMC11923225 DOI: 10.1038/s41598-025-93755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Smokeless tobacco (ST) products create a deadly combination of addiction to nicotine and exposure to toxic substances. Nass is the predominant smokeless tobacco (ST) product consumed in Iran. This study was conducted to evaluate the levels of arsenic (As), lead (Pb), nickel (Ni), and cadmium (Cd) in Nass brands available in the Iranian market. A total of 42 samples were analyzed for the levels of heavy metals using flame atomic absorption spectrometry. The study also evaluated the risk associated with carcinogenic and non-carcinogenic toxic metal contamination in smokeless tobacco in Iran. The level of heavy metals measured in various Nass samples was ranked as Pb > Ni > Cd > As .The mean levels (range) of Pb, Cd, As, and Ni in Nass samples were determined to be 38.71 µg/g (17.60-57.70), 2.90 µg/g (1.20-3.65), 0.71 µg/g (0.25-1.17), and 23.24 µg/g (4.95-44.65), respectively. The levels of Pb, Cd, As and Ni in handmade samples are higher than products manufactured at the plant. The levels of Pb, Cd and Ni in all samples were higher than the Swedish Match recommended limits. While the levels of As in 12% of samples were lower than the standard defined by the Swedish Match. The Estimated daily intake (EDI) values for As, Cd, Ni and Pb are below the reference dose (RfD) established by the Environmental Protection Agency. The findings indicate that the target hazard quotient (THQ) and the hazard index (HI) values in the study were below 1. In this study, for the first time demonstrated that Nass consumers in Iran are at risk of exposure to Pb, As, Cd, and Ni. Consequently, the health system should prioritize raising public awareness about the health risks associated to Nass.
Collapse
Affiliation(s)
- Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Marzie Salandari Rabori
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Dini
- Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abbas Esmaeili
- Department of Environmental Health Engineering, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Kemmerling LR, Darst AL, Adabag M, Koch NM, Snell-Rood EC. Lead (Pb) concentrations across 22 species of butterflies correlate with soil and air lead and decreased wing size in an urban field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178900. [PMID: 40024041 DOI: 10.1016/j.scitotenv.2025.178900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Pollution is a global issue contributing to biodiversity loss, climate change, and human health concerns. Lead (Pb) has long been recognized as a toxic heavy metal pollutant but few studies have investigated the impact and routes of exposure to lead in field conditions and across multiple species. We collected 22 common species of butterflies across a gradient of lead pollution in the Twin Cities metropolitan area (Minneapolis and St. Paul, MN, USA). We measured their thorax lead concentrations and their body condition including wing area, number of eggs, and brain mass. We quantified lead in the soil, host plant leaves, and air (through lichen bio-monitors) at sites where the butterflies were collected to investigate potential routes of exposure. We found a negative correlation between sublethal lead concentrations and butterfly wing size across all species. Contrary to expectations from previous literature, we did not find correlations between butterfly lead concentration and number of eggs or brain mass. Our data indicate that routes of lead exposure for butterflies are particularly pronounced through soil and air, relative to exposure through their host plants, as there were positive correlations between butterfly lead and lead in nearby soil and air, but not that of host plants. Such sublethal effects of lead, even at low levels of pollution, underline the importance of continuing to reduce emissions and impacts of pollutants to protect biodiversity.
Collapse
Affiliation(s)
- Lindsey R Kemmerling
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA.
| | - Ashley L Darst
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; Michigan State University, Department of Integrative Biology, East Lansing, MI, USA; Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - Mina Adabag
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; University of California, Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA, USA
| | - Natália M Koch
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| | - Emilie C Snell-Rood
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| |
Collapse
|
6
|
Gekière A. Terrestrial insect defences in the face of metal toxicity. CHEMOSPHERE 2025; 372:144091. [PMID: 39788384 DOI: 10.1016/j.chemosphere.2025.144091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Recently, there has been growing concern about the impacts of metal pollutants on insect populations, particularly as human societies increasingly rely on metal-based technologies. Unlike organic pollutants, metals - both essential and non-essential - are non-degradable and readily accumulate in insect tissues, sometimes reaching hazardous levels. While numerous studies address how insects cope with pesticide pollution, there is a notable scarcity of knowledge regarding their abilities to confront metal pollution. This paper reviews the routes of entry for metals into insect cells and the molecular damages they trigger. Additionally, it examines the defence mechanisms insects may employ to counteract metal pollution. Firstly, insects may detect and avoid metals in their environment, thereby escaping contaminated food, substrates, and oviposition sites. Secondly, the insect cuticle and gut lining, including the gut microbiota, may serve as physical barriers preventing metal entry into the hemolymph, thereby protecting other organs. Thirdly, insect cells may detoxify metals by sequestering them in metal-scavenging proteins (e.g., metallothioneins) and excreting them via faeces or the cuticle. Fourthly, when metal-related damage occurs, including oxidative stress, protein unfolding, and DNA deformation, insect cells may respond by upregulating antioxidant molecules, chaperone proteins, and DNA repair mechanisms. Enhancing our knowledge of insect-metal interactions sounds crucial for the conservation of insect populations in an increasingly metal-dependent world.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
7
|
Hernández-Medina ME, Montiel Pimentel JV, Castellanos I, Zuria I, Sánchez-Rojas G, Gaytán Oyarzun JC. Metal concentration in honeybees along an urbanization gradient in Central Mexico. ENVIRONMENTAL RESEARCH 2025; 264:120199. [PMID: 39427947 DOI: 10.1016/j.envres.2024.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Urbanization is rapidly increasing worldwide, leading to rising levels of pollution, one of the major drivers of environmental change; yet little is known about the relationship between urbanization intensity and pollution levels in pollinator taxa. Toxic metals are among the most common contaminants in urban environments, but few data exist on their presence in the flora and fauna of cities in Latin America, one of the world's most urbanized and biologically diverse regions. In this study, we used an urban-rural gradient approach to analyze the relationship between the concentrations of eleven metals present in adult honeybees (Apis mellifera) and the degree of urbanization within twelve landscapes in the metropolitan area of Pachuca, Hidalgo, which forms part of the megalopolis of Mexico City. Metal concentrations were compared with previously reported values contrasting honeybees from urban and rural areas after standardizing urbanization levels among published reports. The concentrations of Ag, Cr, Cu, and Zn in honeybees increased significantly with the degree of urbanization. Urbanization was not found to influence the levels of Al, Ba, Cd, Mn, and Sr in honeybees. The maximum concentrations of six metals in our urban sites (Al, Ba, Cd, Cu, Mn, and Sr) were higher than the maximum values reported for bees in other urban areas. The concentrations of two metals measured in our study (Cr and Zn) were within the range of values previously published for urban areas. Compared to other studies, we did not detect Pb in the body of honeybees. We conclude that the concentrations of Ag, Cr, Cu, and Zn present in honeybees are a quantitative reflection of the degree of urbanization in central Mexico. Our results highlight the need to monitor metal emission sources in this and other areas and investigate their effects on bees and other pollinator taxa.
Collapse
Affiliation(s)
- María Eyenith Hernández-Medina
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Janice V Montiel Pimentel
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico.
| | - Iriana Zuria
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Gerardo Sánchez-Rojas
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Juan Carlos Gaytán Oyarzun
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
8
|
Gekière A, Breuer L, Dorio L, Vanderplanck M, Michez D. Lethal effects and sex-specific tolerance of copper and cadmium in the buff-tailed bumble bee. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104546. [PMID: 39197507 DOI: 10.1016/j.etap.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Exposure to environmental pollutants, including trace metals, is a major driver of bee decline worldwide. While pesticides undergo standardised risk assessments (i.e., LD50) and the implementation of online databases, no such approaches exist for trace metals. Here, using acute oral exposure, we determined the LC50, LD50, and mass-standardised LD50 of copper and cadmium, essential and non-essential metals, respectively, in workers and males of the buff-tailed bumble bee. We also evaluated gut damage and sucrose consumption in workers post-exposure. Cadmium was more toxic than copper for workers at same doses, although both metals induced severe gut melanisation and reduced sucrose consumption at high concentrations. Males displayed higher tolerance to cadmium, but it was correlated to their higher body mass, emphasising the necessity for reporting mass-standardised LD50 for genuine sex comparisons in risk assessments. Our findings advocate for the establishment of databases focusing on metal-induced lethal effects on model bee species.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Maryse Vanderplanck
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, 1919 Route de Mende, Montpellier 34293, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| |
Collapse
|
9
|
Humann-Guilleminot S, Fuentes A, Maria A, Couzi P, Siaussat D. Cadmium and phthalate impacts developmental growth and mortality of Spodoptera littoralis, but not reproductive success. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116605. [PMID: 38936052 DOI: 10.1016/j.ecoenv.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France.
| |
Collapse
|
10
|
Valek RA, Tanner KB, Taggart JB, Ryan RL, Cardall AC, Woodland LM, Oxborrow MJ, Williams GP, Miller AW, Sowby RB. Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion. WATER 2024; 16:2170. [DOI: 10.3390/w16152170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
During the 2021 (n = 15) and 2022 (n = 13) summers, we measured the total and dissolved (<0.45 μm) concentration of 25 elements in Utah Lake using Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) with detection limits in the order of a few parts-per-billion (ppb). This resulted in 1400 measurements, which is a unique dataset in terms of sensitivity and temporal resolution. Regulated elements are not commonly measured at the ppb-level; thus, these data provide insight into both the behavior and existence of these elements in an aquatic environment and have implications for both the management and regulation of the lake. Utah regulates twelve of these elements. While ICP-OES has ppb-level sensitivity, it is not the approved regulatory analysis method for these elements. All regulations are for dissolved concentrations, except aluminum (Al) and phosphorus (P), which are for total recovery. We found total Al above the allowable concentration, but dissolved concentrations were well below allowable concentrations. We attribute high total concentrations to suspended clays. This suggests that regulatory methods should be reviewed for lakes with a high suspended-solid content. Dissolved copper (Cu) concentrations were below regulatory levels in 2021, but some samples were above regulatory levels in 2022. This could be related to the use of Cu-based algaecide treatments, or from other sources. Lead (Pb) data were inconclusive; dissolved Pb concentrations were well below the acute (1 h average) limit, but the chronic concentration limit (4 h average) was below the ICP-OES minimal detection limit. Arsenic (As) concentrations exhibited a seasonal trend that we attribute to groundwater inflows—they were below regulatory levels for aquatic environments but around the levels for drinking water. This ppb-level study with high temporal resolution provides insight into regulated elements in Utah Lake previously not available due to the high sensitivity of the method and measurements of both total and dissolved concentrations.
Collapse
Affiliation(s)
- Rachel A. Valek
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kaylee B. Tanner
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B. Taggart
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Rebecca L. Ryan
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Anna C. Cardall
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Lauren M. Woodland
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Maddeline J. Oxborrow
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Gustavious P. Williams
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - A. Woodruff Miller
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Robert B. Sowby
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Kirichenko-Babko M, Bulak P, Kaczor M, Proc-Pietrycha K, Bieganowski A. Arthropods in landfills and their accumulation potential for toxic elements: A review. ENVIRONMENTAL RESEARCH 2024; 251:118612. [PMID: 38442814 DOI: 10.1016/j.envres.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.
Collapse
Affiliation(s)
- Marina Kirichenko-Babko
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland; Department of Invertebrate Fauna and Systematics, Schmalhausen Institute of Zoology National Academy of Sciences, B. Khmelnitsky 15, 01054, Kyiv, Ukraine.
| | - Piotr Bulak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Monika Kaczor
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Kinga Proc-Pietrycha
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
12
|
Cheng K, Liu Y, Tang M, Zhang H. Suillusgrevillei and Suillus luteus promote lead tolerance of Pinus tabulaeformis and biomineralize lead to pyromorphite. Front Microbiol 2024; 15:1296512. [PMID: 38784799 PMCID: PMC11111985 DOI: 10.3389/fmicb.2024.1296512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lead (Pb) is a hazardous heavy metal that accumulates in many environments. Phytoremediation of Pb polluted soil is an environmentally friendly method, and a better understanding of mycorrhizal symbiosis under Pb stress can promote its efficiency and application. This study aims to evaluate the impact of two ectomycorrhizal fungi (Suillus grevillei and Suillus luteus) on the performance of Pinus tabulaeformis under Pb stress, and the biomineralization of metallic Pb in vitro. A pot experiment using substrate with 0 and 1,000 mg/kg Pb2+ was conducted to evaluate the growth, photosynthetic pigments, oxidative damage, and Pb accumulation of P. tabulaeformis with or without ectomycorrhizal fungi. In vitro co-cultivation of ectomycorrhizal fungi and Pb shots was used to evaluate Pb biomineralization. The results showed that colonization by the two ectomycorrhizal fungi promoted plant growth, increased the content of photosynthetic pigments, reduced oxidative damage, and caused massive accumulation of Pb in plant roots. The structural characteristics of the Pb secondary minerals formed in the presence of fungi demonstrated significant differences from the minerals formed in the control plates and these minerals were identified as pyromorphite (Pb5(PO4)3Cl). Ectomycorrhizal fungi promoted the performance of P. tabulaeformis under Pb stress and suggested a potential role of mycorrhizal symbiosis in Pb phytoremediation. This observation also represents the first discovery of such Pb biomineralization induced by ectomycorrhizal fungi. Ectomycorrhizal fungi induced Pb biomineralization is also relevant to the phytostabilization and new approaches in the bioremediation of polluted environments.
Collapse
Affiliation(s)
- Kang Cheng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaqin Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Khan MM, Fan ZY, Wang XM, Qiu BL. Distribution and accumulation of Cadmium in different trophic levels affecting Serangium japonicum, the predatory beetle of whitefly Bemisia tabaci, biologically, physiologically and genetically: An experimental study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133244. [PMID: 38147756 DOI: 10.1016/j.jhazmat.2023.133244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Cadmium (Cd) is a heavy metal that is of great concern in agroecosystems due to its toxicity to plants, herbivores, carnivores, and human beings. The current study evaluated the allocation and bioaccumulation of Cd from soil to cotton plants, cotton plants to herbivore pests, and herbivorous pests to a natural enemy predator. When soil was spiked with 100 mg/kg Cd, results demonstrated that cotton roots accumulated more Cd than the stems and leaves. The bioaccumulation of Cd was less in 4th instar larvae, pupa, and adults of Serangium japonicum than in Bemisia tabaci adults. The bioaccumulation in S. japonicum elongated the immature development period and reduced adult longevity, oviposition days, fertility, and total pre-oviposition duration. The net reproduction of S. japonicum was also reduced, as was female mature weight and feeding potential; as a result, Cd exposure could reduce the future population size compared to uncontaminated populations. There was decreased activity of the antioxidant enzymes (SOD, CAT, and POD) and energy-conserving lipids (glycogen, triglyceride, and total cholesterol) in Cd-contaminated S. japonicum compared to controls. The detoxifying enzyme activity of GST and P450 increased while AChE activity did not change. The qRT-PCR research showed that SOD1, CAT, POD, glycogen, and triglyceride gene expression was higher than in controls, whereas detoxification gene expression did not change. Our results indicate that Cd exposure has a physiological trade-off between its adverse effects on life history traits and elevated detoxification and antioxidation of S. japonicum, which could result from gene expression alteration. Further studies are needed to assess whether Cd exposure causes irreversible DNA damage in S. japonicum.
Collapse
Affiliation(s)
- Muhammad Musa Khan
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, Guangzhou 510640, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Ze-Yun Fan
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, Guangzhou 510640, China
| | - Xing-Min Wang
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, Guangzhou 510640, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
14
|
Meldrum JR, Larson DL, Hoelzle TB, Hinck JE. Considering pollinators' ecosystem services in the remediation and restoration of contaminated lands: Overview of research and its gaps. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:322-336. [PMID: 37431069 DOI: 10.1002/ieam.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The concept of ecosystem services provides a useful framework for understanding how people are affected by changes to the natural environment, such as when a contaminant is introduced (e.g., oil spills, hazardous substance releases) or, conversely, when contaminated lands are remediated and restored. Pollination is one example of an important ecosystem service; pollinators play a critical role in any functioning terrestrial ecosystem. Other studies have suggested that consideration of pollinators' ecosystem services could lead to better remediation and restoration outcomes. However, the associated relationships can be complex, and evaluation requires synthesis from numerous disciplines. In this article, we discuss the possibilities for considering pollinators and their ecosystem services when planning remediation and restoration of contaminated lands. To inform the discussion, we introduce a general conceptual model of how pollinators and the ecosystem services associated with them could be affected by contamination in the environment. We review the literature on the conceptual model components, including contaminant effects on pollinators and the direct and indirect ecosystem services provided by pollinators, and identify information gaps. Though increased public interest in pollinators likely reflects increasing recognition of their role in providing many important ecosystem services, our review indicates that many gaps in understanding-about relevant natural and social systems-currently impede the rigorous quantification and evaluation of pollinators' ecosystem services required for many applications, such as in the context of natural resource damage assessment. Notable gaps include information on non-honeybee pollinators and on ecosystem services beyond those benefitting the agricultural sector. We then discuss potential research priorities and implications for practitioners. Focused research attention on the areas highlighted in this review holds promise for increasing the possibilities for considering pollinators' ecosystem services in the remediation and restoration of contaminated lands. Integr Environ Assess Manag 2024;20:322-336. © 2023 SETAC.
Collapse
Affiliation(s)
- James R Meldrum
- US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Diane L Larson
- US Geological Survey, Northern Prairie Wildlife Research Center, St. Paul, Minnesota, USA
| | - Timothy B Hoelzle
- U.S. Department of the Interior, Office of Restoration and Damage Assessment-Restoration Support Unit, Denver, Colorado, USA
| | - Jo Ellen Hinck
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| |
Collapse
|
15
|
Paylar B, Bezabhe YH, Mangu JCK, Thamke V, Igwaran A, Modig C, Jass J, Olsson PE. Assessing organism differences in mixed metal sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167340. [PMID: 37751843 DOI: 10.1016/j.scitotenv.2023.167340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Metal contamination of aquatic environments remains a major concern and has received significant attention in recent years. The present study aimed to evaluate the effects of metal mixtures of varying concentrations over time in a lake receiving runoff water from a decommissioned mine. By subjecting several organisms to this water, we aimed to identify the most susceptible species, thus enabling a comprehensive evaluation of the risk posed by different toxins to the biotic environment. We have evaluated the effects of mixed metal exposure on survival and stress gene expression in selected invertebrate and vertebrate model species. Our observations revealed differences in sensitivity among the invertebrate models Caenorhabditis elegans, Daphnia magna, Ceriodaphnia dubia, and Heterocypris incongruens, as well as in the vertebrate model Zebrafish (Danio rerio) and two cell lines; a zebrafish liver cell line (ZFL) and a human hepatocellular carcinoma cell line (HepG2). While the sensitivity shows great variation among the tested species, the expression of metallothionein was consistent with the levels of metals found in the mixed exposure media. Despite differences in acute toxicity, the universal induction of mt1/A and mt2/B genes make them important biomarkers for assessing the environmental risk of metals.
Collapse
Affiliation(s)
- Berkay Paylar
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden.
| | - Yared H Bezabhe
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | | | - Viresh Thamke
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Aboi Igwaran
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Carina Modig
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
16
|
Vorobeichik EL, Korkina IN. A bizarre layer cake: Why soil animals recolonizing polluted areas shape atypical humus forms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166810. [PMID: 37689209 DOI: 10.1016/j.scitotenv.2023.166810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
During soil recolonization by macrofauna in areas previously defaunated by industrial pollution, non-typical humus forms are produced. Given that the evidence of zoogenic activity cessation with increased forest litter depth in these humus forms, we tested the hypothesis that the lower organic layers are more toxic than the upper ones. The studies were conducted in the southern taiga, near the Middle Ural Copper Smelter (Revda city, Russia), in spruce-fir and birch forests. We investigated the series of degraded humus forms at different recovery stages, including those without signs of regradation, as well as at the initial and advanced recovery stages. In the organic layers, each of which were 1-2 cm thick and 6-8 cm in total, we measured the following parameters: pH(water), total acidity, the content of exchangeable Ca2+ and Mg2+, acid-soluble and exchangeable metals (Cu, Pb, Fe, Cd, and Zn), organic carbon, and total nitrogen. Simultaneously, we diagnosed the degree of zoogenicity of the organic layers following the European morpho-functional classification of humus forms. Concentrations of the metals increased with forest litter depth, reaching a maximum at the boundary between the organic and organic-mineral horizons (the difference exceeded an order of magnitude). In the same direction, the acidity increased, but the saturation of the exchange complex with Ca2+ and Mg2+ decreased. Within a particular forest litter profile, metal concentrations and acidity were lower in the layer with the highest zoogenicity compared to the layer with the lowest zoogenicity. Based on the metals, pH(water), and exchange complex, the accuracy of the predictions of the degree of layer zoogenicity within the OF horizon in the discriminant analysis reached 100 %. These findings suggest that the vertical gradient of toxic burden persisting in the forest litter after pollution cessation can explain the recovery pattern of humus forms in the contaminated areas.
Collapse
Affiliation(s)
- Evgenii L Vorobeichik
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta Str. 202, 620144 Yekaterinburg, Russia.
| | - Irina N Korkina
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta Str. 202, 620144 Yekaterinburg, Russia.
| |
Collapse
|
17
|
Schmarsow R, Moliné MDLP, Damiani N, Domínguez E, Medici SK, Churio MS, Gende LB. Toxicity and sublethal effects of lead (Pb) intake on honey bees (Apis mellifera). CHEMOSPHERE 2023; 344:140345. [PMID: 37793549 DOI: 10.1016/j.chemosphere.2023.140345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Heavy metal pollution is becoming a worldwide problem affecting pollinators. The massive use of lead (Pb), the most harmful metal for the biosphere, in industries has increased the risk for honey bees. Pb exerts toxicity on living organisms inducing mainly oxidative stress. We assessed the toxicity and sublethal effects of Pb ingestion on protein content, catalase (CAT) activity, fat content and fatty acid (FA) profile of honey bee workers (Apis mellifera L.) under different nutritional conditions during chronic exposure tests. The LD50 was 15.13 ± 6.11 μg Pb2+/bee, similar to other reports. A single oral sublethal dose of 15 μg of Pb2+ affected the survival of bees fed with sugary food for ten days after Pb ingestion while supplementing the diet with bee bread improved Pb tolerance. The highest protein content was found in bees fed with the sugar paste and bee bread diet without Pb. CAT activity tended to decrease in bees of Pb groups independently of diet. Fat content was not affected by the diet type received by bees or Pb ingestion, but the FAs profile varied according to the nutritional quality of the diet. The results highlight that a single sublethal dose of Pb negatively affected the body proteins of bees despite the nutritional condition but did not disturb the FAs profile of workers. Nutrition plays an important role in preventing Pb-induced toxicity in honey bees.
Collapse
Affiliation(s)
- Ruth Schmarsow
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina
| | - María de la Paz Moliné
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina.
| | - Enzo Domínguez
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - Sandra Karina Medici
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| | - María Sandra Churio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR). CONICET-UNMDP, Funes 3350, 7600, Mar del Plata, Argentina
| | - Liesel Brenda Gende
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Funes 3350, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT Mar del Plata, Moreno 3527 Piso 3, 7600, Mar del Plata, Argentina; Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM). CONICET-UNMDP. Centro de Asociación Simple Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA), Funes 3350, 7600, Mar del Plata, Argentina
| |
Collapse
|
18
|
Carreira BM, Kolář V, Chmelová E, Jan J, Adašević J, Landeira-Dabarca A, Vebrová L, Poláková M, Horká P, Otáhalová Š, Musilová Z, Borovec J, Tropek R, Boukal DS. Bioaccumulation of chemical elements at post-industrial freshwater sites varies predictably between habitats, elements and taxa: A power law approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165794. [PMID: 37527719 DOI: 10.1016/j.scitotenv.2023.165794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Elevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons. We found nonlinear, power-law relationships between the environmental and tissue concentrations of the elements, which may explain differences in bioaccumulation factors (BAF) reported in the literature. Tissue concentrations were driven by the environmental concentrations in non-essential elements (Al, As, Co, Cr, Ni, Pb and V), but this dependence was limited in essential elements (Cu, Mn, Se and Zn). Tissue concentrations of most elements were also more closely related to substrate than to water concentrations. Bioaccumulation was habitat specific in eight elements: stronger in mining ponds for Al and Pb, and stronger in fly ash lagoons for As, Cu, Mn, Pb, Se, V and Zn, although the differences were often minor. Bioaccumulation of some elements further increased in mineral-rich localities. Proximity to substrate, rather than trophic level, drove increased bioaccumulation levels across taxa. This highlights the importance of substrate as a pollutant reservoir in standing freshwaters and suggests that benthic taxa, such as molluscs (e.g., Physella) and other macroinvertebrates (e.g., Nepa), constitute good bioindicators. Despite the higher environmental risks in fly ash lagoons than in mining ponds, the observed ability of freshwater biota to sustain pollution supports the conservation potential of post-industrial sites. The power law approach used here to quantify and disentangle the effects of various bioaccumulation drivers may be helpful in additional contexts, increasing our ability to predict the effects of other contaminants and environmental hazards on biota.
Collapse
Affiliation(s)
- Bruno M Carreira
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences of the University of Lisbon, Edifício C2, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Vojtěch Kolář
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| | - Eliška Chmelová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia; Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia.
| | - Jiří Jan
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| | - Josip Adašević
- HAS Den Bosch University of Applied Science, Department of Biology, Animal and Environment, Has Green Academy, Po Box 90108, 5200 MA's-Hertogenbosch, the Netherlands.
| | - Andrea Landeira-Dabarca
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| | - Lucie Vebrová
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia.
| | - Martina Poláková
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 61137 Brno, Czechia.
| | - Petra Horká
- Charles University, Faculty of Science, Institute of Environmental Studies, Benátská 2, 12801 Prague, Czechia.
| | - Šárka Otáhalová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| | - Zuzana Musilová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 12844 Prague, Czechia.
| | - Jakub Borovec
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| | - Robert Tropek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia; Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia.
| | - David S Boukal
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czechia.
| |
Collapse
|
19
|
Gekière A, Vanderplanck M, Michez D. Trace metals with heavy consequences on bees: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165084. [PMID: 37379929 DOI: 10.1016/j.scitotenv.2023.165084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The pervasiveness of human imprint on Earth is alarming and most animal species, including bees (Hymenoptera: Apoidea: Anthophila), must cope with several stressors. Recently, exposure to trace metals and metalloids (TMM) has drawn attention and has been suggested as a threat for bee populations. In this review, we aimed at bringing together all the studies (n = 59), both in laboratories and in natura, that assessed the effects of TMM on bees. After a brief comment on semantics, we listed the potential routes of exposure to soluble and insoluble (i.e. nanoparticle) TMM, and the threat posed by metallophyte plants. Then, we reviewed the studies that addressed whether bees could detect and avoid TMM in their environment, as well as the ways bee detoxify these xenobiotics. Afterwards, we listed the impacts TMM have on bees at the community, individual, physiological, histological and microbial levels. We discussed around the interspecific variations among bees, as well as around the simultaneous exposure to TMM. Finally, we highlighted that bees are likely exposed to TMM in combination or with other stressors, such as pesticides and parasites. Overall, we showed that most studies focussed on the domesticated western honey bee and mainly addressed lethal effects. Because TMM are widespread in the environment and have been shown to result in detrimental consequences, evaluating their lethal and sublethal effects on bees, including non-Apis species, warrants further investigations.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| | - Maryse Vanderplanck
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34090 Montpellier, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
20
|
Pallottini M, Goretti E, Argenti C, La Porta G, Tositti L, Dinelli E, Moroni B, Petroselli C, Gravina P, Selvaggi R, Cappelletti D. Butterflies as bioindicators of metal contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95606-95620. [PMID: 37552448 PMCID: PMC10482766 DOI: 10.1007/s11356-023-28930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Anthropogenic trace metal contamination has significantly increased and has caused many hazardous consequences for the ecosystems and human health. The Terni basin valley (Central Italy) shows a heavy load of pollutants from industrial activities, while the characteristic orography structure of the valley favours air stagnation, thus limiting air pollution dispersal. The present study conducted in 2014 aimed to determine the concentration of ten metals in five species of butterflies at nine sites in the Terni valley along a 21-km-long transect, including both relatively pristine and industrial areas. At sites where soil contamination was high for a given metal, such as for chromium as in the case of site 4 (the closest to the steel plant) and for lead as in the case of site 2 (contaminated by a firing range), higher levels of contamination were observed in the tissues of butterflies. We found a correlation between soil contamination and the concentration of Cr, Al and Sr in the tissues of some species of butterflies. The sensitivity to contamination differed among the five species; in particular, Coenonympha pamphilus was generally the species that revealed the highest concentrations of all the ten trace metals at the sites closer to the industrial area. It is known that C. pamphilus is a sedentary species and that its host plants are the Poaceae, capable of accumulating high quantities of metals in their rhizosphere region, thus providing the link with soil contamination. Therefore, monitoring the metal concentration levels in butterflies might be a good indicator and a control tool of environmental quality, specifically in areas affected by high anthropogenic pollution loads linked to a specific source.
Collapse
Affiliation(s)
- Matteo Pallottini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Enzo Goretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy.
| | - Chiara Argenti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Gianandrea La Porta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Laura Tositti
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, BO, Italy
| | - Enrico Dinelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, BO, Italy
| | - Beatrice Moroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Chiara Petroselli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Paola Gravina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - Roberta Selvaggi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, PG, Italy
| |
Collapse
|
21
|
Chan KH, Gowidjaja JAP, Urera MQ, Wainwright BJ. Analysis of Toxic Metals Found in Shark Fins Collected from a Global Trade Hub. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12620-12631. [PMID: 37582282 DOI: 10.1021/acs.est.3c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As human activities release increasingly more fossil fuel-derived emissions directly into the atmosphere, terrestrial, aquatic, or marine ecosystems, the biomagnification and bioaccumulation of toxic metals in seafood is an ever more pressing concern. As apex predators, sharks are particularly susceptible to biomagnification and bioaccumulation. The consumption of shark fin is frequent throughout Asia, and their ingestion represents a pathway through which human exposure to potentially unsafe levels of toxic metals can occur. Shark fins processed for sale are difficult, if not impossible to identify to the species level by visual methods alone. Here, we DNA-barcoded 208 dried and processed fins and in doing so, identified fourteen species of shark. Using these identifications, we determined the habitat of the shark that the fin came from and the concentrations of four toxic metals (mercury, arsenic, cadmium, and lead) in all 208 samples via inductively coupled plasma mass spectrometry. We further analyzed these concentrations by habitat type, either coastal or pelagic, and show that toxic metal concentrations vary significantly between species and habitat. Pelagic species have significantly higher concentrations of mercury in comparison to coastal species, whereas coastal species have significantly higher concentrations of arsenic. No significant differences in cadmium or lead concentrations were detected between pelagic or coastal species. Our results indicate that a number of analyzed samples contain toxic metal concentrations above safe human consumption levels.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | | | - Mariana Quesada Urera
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
| | - Benjamin J Wainwright
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
22
|
Naccarato A, Vommaro ML, Amico D, Sprovieri F, Pirrone N, Tagarelli A, Giglio A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. TOXICS 2023; 11:499. [PMID: 37368599 DOI: 10.3390/toxics11060499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
23
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
24
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
25
|
Elturki MA. Using Peromyscus leucopus as a biomonitor to determine the impact of heavy metal exposure on the kidney and bone mineral density: results from the Tar Creek Superfund Site. PeerJ 2022; 10:e14605. [PMID: 36570008 PMCID: PMC9774004 DOI: 10.7717/peerj.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Human population growth and industrialization contribute to increased pollution of wildlife habitats. Heavy metal exposure from industrial and environmental sources is still a threat to public health, increasing disease susceptibility. In this study, I investigated the effects of heavy metals (cadmium (Cd), lead (Pb), and zinc (Zn)) on kidney and bone density. Objective This study aims to determine the concentrations of Cd, Pb, and Zn in soil and compare them to the levels of the same metals in Peromyscus leucopus kidney tissue. Furthermore, the study seeks to investigate the impact of heavy metals on bone density and fragility using the fourth lumbar vertebra (L4) of P. leucopus. Methods Cd, Pb, and Zn concentrations in soil specimens collected from Tar Creek Superfund Site (TCSFS), Beaver Creek (BC), and two reference sites (Oologah Wildlife Management Area (OWMA) and Sequoyah National Wildlife Refuge (SNWR)). Heavy metal concentrations were analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS). Micro-computed tomography (µCT) was used to assess the influence of heavy metals on bone fragility and density. Results On the one hand, soil samples revealed that Pb is the most common pollutant in the sediment at all of the investigated sites (the highest contaminated site with Pb was TCSFS). Pb levels in the soil of TCSFS, BC, OWMA, and SNWR were found to be 1,132 ± 278, 6.4 ± 1.1, and 2.3 ± 0.3 mg/kg in the soil of TCSFS, BC and OWMA and SNWR, respectively. This is consistent with the fact that Pb is one of the less mobile heavy metals, causing its compounds to persist in soils and sediments and being barely influenced by microbial decomposition. On the other hand, the kidney samples revealed greater Cd levels, even higher than those found in the soil samples from the OWMA and SNWR sites. Cd concentrations in the kidney specimens were found to be 4.62 ± 0.71, 0.53 ± 0.08, and 0.53 ± 0.06 µg/kg, respectively. In addition, micro-CT analysis of L4 from TCSFS showed significant Pearson's correlation coefficients between Cd concentrations and trabecular bone number (-0.67, P ≤ 0.05) and trabecular separation (0.72, P ≤ 0.05). The results showed no correlation between bone parameters and metal concentrations at reference sites. This study is one of the few that aims to employ bone architecture as an endpoint in the field of biomonitoring. Furthermore, this study confirmed some earlier research by demonstrating substantial levels of heavy metal contamination in soil samples, kidney samples, and P. leucopus L4 trabecular bone separations from TCSFS. Moreover, this is the first study to record information regarding bone microarchitecture parameters in P. leucopus in North America.
Collapse
Affiliation(s)
- Maha Abdulftah Elturki
- Department of Environmental Sciences, Oklahoma State University, Stillwater, Oklahoma, United States,Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States,Zoology Department, Faculty of Science, University of Benghazi, Benghazi, Libya
| |
Collapse
|
26
|
Astolfi ML, Conti ME, Messi M, Marconi E. Probiotics as a promising prophylactic tool to reduce levels of toxic or potentially toxic elements in bees. CHEMOSPHERE 2022; 308:136261. [PMID: 36057357 DOI: 10.1016/j.chemosphere.2022.136261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Bees are precious living beings for our planet. Thanks to their essential service of pollination, these insects allow the maintenance of biodiversity and the variety and amount of food available. Unfortunately, we are observing an increasingly devastating reduction of bee families and other pollinating insects for factors related to human activities, environmental pollution, diseases and parasites, compromise of natural habitats, and climate change. We show that probiotics can protect bees from element pollution. We collected bees, beeswax, honey, pollen, and propolis directly from hives in a rural area of central Italy to investigate the content of 41 elements in control (not supplemented with probiotics) and experimental (supplemented with probiotics) groups. Our data show a significantly lower concentration of some elements (Ba, Be, Cd, Ce, Co, Cu, Pb, Sn, Tl, and U) in experimental bees than in control groups, indicating a possible beneficial effect of probiotics in reducing the absorption of chemicals. This study presents the first data on element levels after probiotics have been fed to bees and provides the basis for future research in several activities relating to the environment, agriculture, economy, territory, and medicine.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy; CIABC, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, Via Del Castro Laurenziano 9, 00161 Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Elisabetta Marconi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
27
|
Khosravi V, Gholizadeh A, Saberioon M. Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119828. [PMID: 35961573 DOI: 10.1016/j.envpol.2022.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR-SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements' prediction models.
Collapse
Affiliation(s)
- Vahid Khosravi
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500, Prague, Czech Republic
| | - Asa Gholizadeh
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500, Prague, Czech Republic.
| | - Mohammadmehdi Saberioon
- Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Telegrafenberg, Potsdam, 14473, Germany
| |
Collapse
|
28
|
Signorini M, Midolo G, Cesco S, Mimmo T, Borruso L. A Matter of Metals: Copper but Not Cadmium Affects the Microbial Alpha-Diversity of Soils and Sediments - a Meta-analysis. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02115-4. [PMID: 36180621 DOI: 10.1007/s00248-022-02115-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) accumulation in soil affects plants and soil fauna, yet the effect on microbial alpha-diversity remains unclear, mainly due to the absence of dedicated research synthesis (e.g. meta-analysis). Here, we report the first meta-analysis of the response of soil microbial alpha-diversity to the experimental addition of cadmium (Cd) and copper (Cu). We considered studies conducted between 2013 and 2022 using DNA metabarcoding of bacterial and fungal communities to overcome limitations of other cultivation- and electrophoresis-based techniques. Fungi were discarded due to the limited study number (i.e. 6 studies). Bacterial studies resulted in 66 independent experiments reported in 32 primary papers from four continents. We found a negative dose-dependent response for Cu but not for Cd for bacterial alpha-diversity in the environments, only for Cu additions exceeding 29.6 mg kg-1 (first loss of - 0.06% at 30 mg kg-1). The maximal loss of bacterial alpha-diversity registered was 13.89% at 3837 mg kg-1. Our results first highlight that bacterial communities behave differently to soil pollution depending on the metal. Secondly, our study suggests that even extreme doses of Cu do not cause a dramatic loss in alpha-diversity, highlighting how the behaviour of bacterial communities diverges from soil macro-organisms.
Collapse
Affiliation(s)
- Marco Signorini
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| | - Gabriele Midolo
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| |
Collapse
|
29
|
Perspective on the heavy metal pollution and recent remediation strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100166. [DOI: 10.1016/j.crmicr.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
30
|
Abraham A, Duvall E, Ferraro K, Webster A, Doughty C, le Roux E, Ellis‐Soto D. Understanding anthropogenic impacts on zoogeochemistry is essential for ecological restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Abraham
- School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff USA
| | - Ethan Duvall
- Department of Ecology and Evolutionary Biology Cornell University Ithaca USA
| | - Kristy Ferraro
- School of the Environment Yale University Connecticut USA
| | - Andrea Webster
- Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Chris Doughty
- School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff USA
| | - Elizabeth le Roux
- Mammal Research Institute University of Pretoria Pretoria South Africa
- Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE), Section of EcoInformatics and Biodiversity, Department of Biology Aarhus University Denmark
- Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary Biology Yale University Connecticut USA
| |
Collapse
|
31
|
Morales-Silva T, Silva BC, Faria LDB. Soil contamination with permissible levels of lead negatively affects the community of plant-associated insects: A case of study with kale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119143. [PMID: 35301032 DOI: 10.1016/j.envpol.2022.119143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study investigated whether lead (Pb), at concentrations allowed for soil, affects the community of insects that live in the aerial part of plants. We evaluated the effect of Pb concentrations on accumulated species richness, composition, and abundance of different functional groups of insects. Kale plants were grown in soil experimentally contaminated with four concentrations of lead nitrate: 0 (control), 144 (T1), 360 (T2), and 600 (T3) mg/kg of soil. The experiment was conducted in an open greenhouse for the natural colonization of insects. Insects were collected twice using trap bags attached to the plant leaf and by direct removal. The concentration of Pb in the stem and leaf samples increased with the increased soil contamination, even showing values above the limit allowed by the legislation for this plant species. Control plants showed a higher richness of accumulated insect species. In addition, the treatments had an effect on the community composition, in which Diaeretiella rapae (primary parasitoid) was found as an indicator of the control + T1 treatments and the top species Pachyneuron sp. (parasitoid of predators) was associated with the control. The abundance of chewing and sucking herbivores, their respective parasitoids, predators, and parasitoids of predators were negatively affected. Hyperparasitoid abundance was not affected, but their accumulated species richness was. This study was innovative in demonstrating that soil contamination by different concentrations of a heavy metal (Pb) can negatively affect the community of plant-associated insects, even at concentrations allowed for soil, reflecting possible damage to the ecosystem.
Collapse
Affiliation(s)
- Tiago Morales-Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil.
| | - Bruna C Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| | - Lucas D B Faria
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| |
Collapse
|
32
|
Zhu HJ, Duan CP, Qin L, Liu JL, Wang YQ, Li J, Zhang YL, Zhang MD. Luminescence sensing for one Zn MOF and improvement of hydrogen evolution performance by cobalt doping. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Monchanin C, Gabriela de Brito Sanchez M, Lecouvreur L, Boidard O, Méry G, Silvestre J, Le Roux G, Baqué D, Elger A, Barron AB, Lihoreau M, Devaud JM. Honey bees cannot sense harmful concentrations of metal pollutants in food. CHEMOSPHERE 2022; 297:134089. [PMID: 35240159 DOI: 10.1016/j.chemosphere.2022.134089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Whether animals can actively avoid food contaminated with harmful compounds through taste is key to assess their ecotoxicological risks. Here, we investigated the ability of honey bees to perceive and avoid food resources contaminated with common metal pollutants known to impair behaviour at low concentrations. In laboratory assays, bees did not discriminate food contaminated with arsenic, lead or zinc and ingested it readily, up to estimated doses of 929.1 μg g-1 As, 6.45 mg g-1 Pb and 72.46 mg g-1 Zn. A decrease of intake and appetitive responses indicating metal detection was only observed at the highest concentrations of lead (3.6 mM) and zinc (122.3 mM) through contact with the antennae and the proboscis. Electrophysiological analyses confirmed that only high concentrations of the three metals in a sucrose solution induced a consistently reduced neural response to sucrose in antennal taste receptors (As: >0.1 μM, Pb: >1 mM; Zn: >100 mM). Overall, cellular and behavioural responses did not provide evidence for specific mechanisms that would support selective detection of toxic metals (arsenic, lead), as compared to zinc, which has important biological functions. Our results thus show that honey bees can avoid metal pollutants in their food only at high concentrations unlikely to be encountered in the environment. By contrast, they appear to be unable to detect low, yet harmful, concentrations found in flowers. Metal pollution at trace levels is therefore a major threat for pollinators.
Collapse
Affiliation(s)
- Coline Monchanin
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France; Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Maria Gabriela de Brito Sanchez
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Loreleï Lecouvreur
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Océane Boidard
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Grégoire Méry
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Jérôme Silvestre
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - David Baqué
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Mathieu Lihoreau
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France
| | - Jean-Marc Devaud
- Centre de Recherches sur La Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, France.
| |
Collapse
|
34
|
Shephard AM, Brown NS, Snell‐Rood EC. Anthropogenic Zinc Exposure Increases Mortality and Antioxidant Gene Expression in Monarch Butterflies with Low Access to Dietary Macronutrients. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1286-1296. [PMID: 35119130 PMCID: PMC9314993 DOI: 10.1002/etc.5305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Biologists seek to understand why organisms vary in their abilities to tolerate anthropogenic contaminants, such as heavy metals. However, few studies have considered how tolerance may be affected by condition-moderating factors such as dietary resource availability. For instance, the availability of crucial limiting macronutrients, such as nitrogen and phosphorous, can vary across space and time either naturally or due to anthropogenic nutrient inputs (e.g., agricultural fertilizers or vehicle emissions). Organisms developing in more macronutrient-rich environments should be of higher overall condition, displaying a greater ability to tolerate metal contaminants. In monarch butterflies (Danaus plexippus), we factorially manipulated dietary macronutrient availability and exposure to zinc, a common metal contaminant in urban habitats that can be toxic but also has nutritional properties. We tested whether (1) the ability to survive zinc exposure depends on dietary macronutrient availability and (2) whether individuals exposed to elevated zinc levels display higher expression of antioxidant genes, given the roles of antioxidants in combatting metal-induced oxidative stress. Exposure to elevated zinc reduced survival only for monarchs developing on a low-macronutrient diet. However, for monarchs developing on a high-macronutrient diet, elevated zinc exposure tended to increase survival. In addition, monarchs exposed to elevated zinc displayed higher expression of antioxidant genes when developing on the low-macronutrient diet but lower expression when developing on the high-macronutrient diet. Altogether, our study shows that organismal survival and oxidative stress responses to anthropogenic zinc contamination depend on the availability of macronutrient resources in the developmental environment. In addition, our results suggest the hypothesis that whether zinc acts as a toxicant or a nutrient may depend on macronutrient supply. Environ Toxicol Chem 2022;41:1286-1296. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Noah S. Brown
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| |
Collapse
|
35
|
Beribaka M, Jelić M, Tanasković M, Lazić C, Stamenković-Radak M. Life History Traits in Two Drosophila Species Differently Affected by Microbiota Diversity under Lead Exposure. INSECTS 2021; 12:insects12121122. [PMID: 34940211 PMCID: PMC8708062 DOI: 10.3390/insects12121122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Microbiota have a significant functional role in the life of the host, including immunity, lifespan and reproduction. Drosophila species are attractive model organisms for investigating microbiota diversity from different aspects due to their simple gut microbiota, short generation time and high fertility. Considering such an important role of the microbiota in the life of Drosophila, we investigated the extent to which lead (Pb), as one of the most abundant heavy metals in the environment, affects the microbiota and the fitness of this insect host. The results indicate that different factors, such as population origin and sex, may affect individual traits differently and this could be species-specific. In addition, there are members of microbiota that help the host to overcome environmental stress and they could play a key role in reducing the fitness cost in such situations. Studying the influence of microbiota on the adaptive response to heavy metals and the potential implications on overall host fitness is of great pertinence. Abstract Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.
Collapse
Affiliation(s)
- Mirjana Beribaka
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
- Correspondence:
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Cvijeta Lazić
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| |
Collapse
|
36
|
Chen Y, Wu H, Qian S, Yu X, Chen H, Wu J. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal Chim Acta 2021; 1192:339356. [DOI: 10.1016/j.aca.2021.339356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
|
37
|
Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous impact of natural and anthropogenic organic and inorganic substances continuously released into the environment requires a better understanding of the chemical status of aquatic ecosystems. Water contamination monitoring studies were performed for different classes of substances in different regions of the world. Reliable analytical methods and exposure assessment are the basis of a better management of water resources. Our research comprised publications from 2010 regarding the Lower Danube and North West Black Sea region, considering regulated and unregulated persistent and emerging pollutants. The frequently reported ones were: pharmaceuticals (carbamazepine, diclofenac, sulfamethoxazole, and trimethoprim), pesticides (atrazine, carbendazim, and metolachlor), endocrine disruptors—bisphenol A and estrone, polycyclic aromatic hydrocarbons, organochlorinated pesticides, and heavy metals (Cd, Zn, Pb, Hg, Cu, Cr). Seasonal variations were reported for both organic and inorganic contaminants. Microbial pollution was also a subject of the present review.
Collapse
|