1
|
Hawkins SJ, O'Shaughnessy KA, Branch GM, Airoldi L, Bray S, Brooks P, Burrows MT, Castilla JC, Crowe TP, Davies TW, Firth LB, Hiscock K, Jenkins SR, Knights AM, Langmead O, Leung KMY, Mieszkowska N, Moschella P, Steyl I, Tidau S, Whittington M, Thompson RC. Hindsight informs foresight: revisiting millennial forecasts of impacts and status of rocky shores in 2025. MARINE POLLUTION BULLETIN 2025; 219:118214. [PMID: 40513277 DOI: 10.1016/j.marpolbul.2025.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/27/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025]
Abstract
Rocky shorelines are characterised by vulnerability to both land- and sea-derived impacts. They face acute impacts such as pollution from shipping accidents, chronic pollution from point sources, run-off and catchments plus disturbances by food gathering, recreation and sediment deposition in sheltered areas. Coastal urbanisation can both impact natural shores and create impoverished artificial rocky shores. Superimposed upon local and regional scale impacts are global environmental changes including warming, sea-level rise, increasing storm frequency, ocean acidification and non-native invasive species. Rocky shores are, however, amenable to long-term ecological monitoring and ecological experimentation. Thompson, Crowe and Hawkins (2002) reviewed anthropogenic impacts on rocky intertidal habitats and forecasted their status for the next 25 years. The paper was critiqued by invited experts (Branch, Castilla) at a subsequent conference in 2003 (Environmental Future of Aquatic Ecosystems, Zurich, 23-27 March 2003), culminating in a consensus chapter in Aquatic Ecosystems: Trends and Global Prospects (Branch et al., 2008). Nearly 25 years later, we revisit and evaluate their predictions to explore implications for the next 25 years as new potential impacts emerge in parallel with societal attempts to transition to net zero carbon outputs. An update is provided on what was largely correct (oil-spills, food harvest, invasive species, sedimentation/run-off, organotins, global-change, artificial habitats, recreation/research/education) and what was partially/completely wrong (eutrophication, aquaculture/GMOs, renewable energy, UV radiation) or omitted (coastal mining, ocean acidification, plastic, light, noise pollution). We also consider the challenges and uncertainties inherent in predicting impacts of environmental changes by using hindsight to inform foresight.
Collapse
Affiliation(s)
- Stephen J Hawkins
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, UK; The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Kathryn A O'Shaughnessy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK; Dauphin Island Sea Lab, Dauphin Island, AL, USA
| | - George M Branch
- Department of Biological Sciences, University of Cape Town, South Africa
| | - Laura Airoldi
- Chioggia Hydrobiological Station 'Umberto D'Ancona', Department of Biology, University of Padova, Chioggia, Italy; NBFC, National Biodiversity Future Center, Italy
| | - Simon Bray
- School of Biological Sciences, University of Southampton, Southampton, UK; AQASS Ltd., Southampton, United Kingdom
| | - Paul Brooks
- Earth Institute and School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Juan Carlos Castilla
- Faculty of Biological Sciences and Centre for Global Change, P. Universidad Católica de Chile, Santiago de Chile, Casilla 114 D, Chile
| | - Tasman P Crowe
- Earth Institute and School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Louise B Firth
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Keith Hiscock
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| | | | - Antony M Knights
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Olivia Langmead
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Nova Mieszkowska
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK; School of Environmental Science, University of Liverpool, UK
| | - Paula Moschella
- CIESM - Mediterranean Science Commission, Villa Girasole, Monaco
| | - Ilse Steyl
- School of Biological Sciences, University of Southampton, Southampton, UK; AQASS Ltd., Southampton, United Kingdom
| | - Svenja Tidau
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
2
|
Stilo G, Beltramo C, Christoforou E, Partipilo T, Kormas K, Spatharis S, Peletto S. Blue mussel (Mytilus edulis L.) exposure to nylon microfibers leads to a shift in digestive gland microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125914. [PMID: 40032227 DOI: 10.1016/j.envpol.2025.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Microplastics are an increasingly prevalent form of pollution in coastal ecosystems. Current research focuses on understanding the impacts of such synthetic particles on the health and functioning of aquatic organisms. Recent studies have shown that invertebrates can accumulate microplastics in their tissue, impacting key functions such as growth, reproduction, feeding activity, and metabolism. Owing to their chemical composition, microplastics accumulating in the digestive tract of animals may alter the diversity and abundance of microbiota. Despite the important implications of such microbiota shifts on digestive ability and fitness, investigations on microplastics as causative agents are so far limited. In this study, we tested the effect of microfibers, on the digestive gland microbiota of the blue mussel Mytilus edulis after a 52-day exposure. Our findings show that exposure to microplastics can alter the composition of the digestive gland microbiota, with significant decreases in the classes of Actinobacteria, Bacteroidia, and significant increases for Alphaproteobacteria and Gammaproteobacteria. Furthermore, an increase in the number of genera containing potential pathogenic species for bivalves, such as Francisella and Vibrio, was detected. This suggests that accumulated microplastics pose a dual threat to filter-feeding organisms and the ecosystem services they provide. Further comparative studies are necessary to establish whether the microbiota shift is linked to the specific chemical composition of microplastics or whether there is an indirect link such as physiological stress resulting from ingestion.
Collapse
Affiliation(s)
- G Stilo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| | - C Beltramo
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - E Christoforou
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - T Partipilo
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - K Kormas
- Department of Ichthyology & Aquatic Environment, University of Thessaly, 384 46, Volos, Greece
| | - S Spatharis
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - S Peletto
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
3
|
Chen L, Tu Z, Zhong Z, Wei S, Hu M, Wang Y. Differential effects of polyvinyl chloride microplastics and kaolin particles on gut immunity of mussels at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136711. [PMID: 39647329 DOI: 10.1016/j.jhazmat.2024.136711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Both microplastics (MPs) and kaolin are marine suspended particles capable of influencing the physiology of bivalve mollusks. However, the current research on MPs lacks the analysis of their own physical and chemical toxicity, and the comparative study of the toxicity of microplastics and natural suspended particles (NSPs) in aquatic environment. In this work, three experiments are layered, with Experiment 1 directly comparing polyvinyl chloride MPs (PVC MPs) and kaolin and showing that MPs have greater deleterious effects on thick-shelled mussels than kaolin, with the exception of physical damage and effects on gut microorganisms. As the presence or absence of chemicals may be the main difference between MPs and kaolin, in Experiment 2 the toxicity drivers of PVC MPs itself were investigated, demonstrating that the chemicals in MPs are indeed toxic and that the harmful effects of MPs on mussels may be due to the superposition of their own physical and chemical toxicity. Finally, in Experiment 3 mussels were exposed to the chemicals in PVC MPs and kaolin in a composite and found that the toxicity of the composite exposure was greater than that of the single exposure to kaolin, suggesting that the chemicals may be the main factor contributing to the difference in toxicity between PVC MPs and kaolin. In conclusion, this work addresses the lack of a natural particle control group in current studies of MPs, confirms that the toxicity drivers of MPs are due to both physical and chemical factors, highlights the role of NSPs in the environment, and provides new insights for evaluating the toxic effects of MPs in the natural marine environment.
Collapse
Affiliation(s)
- Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
4
|
Ortiz-Moriano MP, Garcia-Vazquez E, Machado-Schiaffino G. Genes of filter-feeding species as a potential toolkit for monitoring microplastic impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107234. [PMID: 39787666 DOI: 10.1016/j.aquatox.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes -Caspase, HSP70, HSP90, PK, SOD, and VTG- and nine filter-feeding species -two branchiopods, one copepod, five bivalves and one fish- were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.
Collapse
Affiliation(s)
- Marta Pilar Ortiz-Moriano
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain.
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| |
Collapse
|
5
|
Gao C, Xu B, Li Z, Wang Z, Huang S, Jiang Z, Gong X, Yang H. From plankton to fish: The multifaceted threat of microplastics in freshwater environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107242. [PMID: 39799759 DOI: 10.1016/j.aquatox.2025.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems. This article provides a comprehensive analysis of the ecological toxicity effects of MP pollution, both in isolation and in combination with other pollutants, on freshwater aquatic organisms, including plankton, benthic organisms, and fish. The review elucidates potential mechanisms underlying these effects, which encompass oxidative stress, metabolic disorders, immune and inflammatory responses, dysbiosis of the gut microbiota, DNA damage, and cell apoptosis. This paper advocates for the integrated application of multi-omics technologies to investigate the molecular mechanisms underlying the toxicity of MPs to freshwater aquatic organisms from interdisciplinary and multifaceted perspectives. Additionally, it emphasizes the importance of enhancing research on the compounded pollution effects arising from various pollution modes, particularly in conjunction with other pollutants. This study aims to establish a foundation for assessing the ecological risks posed by MPs in freshwater ecosystem and offers valuable insights for the protection of aquatic biodiversity and ecosystem stability.
Collapse
Affiliation(s)
- Cuimei Gao
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Baohong Xu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhongyuan Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Zhuoman Wang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Siqi Huang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Zijian Jiang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Xiaomin Gong
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Huilin Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China.
| |
Collapse
|
6
|
Silva DCC, Marques JC, Gonçalves AMM. Microplastics in commercial marine bivalves: Abundance, characterization and main effects of single and combined exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107227. [PMID: 39778426 DOI: 10.1016/j.aquatox.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are persistent and ubiquitous pollutants in marine ecosystems, and they can be ingested and accumulated by marine organisms with economic value to humans, such as marine bivalves, which may pose a threat to the marine food chains and to human health. In this literature review, we summarized the recent findings on the abundance and main characteristics (shape, size, color, polymer) of MPs detected in valuable marine bivalve species. Furthermore, we surveyed the major impacts triggered by MP exposure, alone or in combination with other pollutants, in these organisms. Additionally, we discussed the methodologies, techniques and equipment commonly used by researchers for the determination of the abundance, characterization and effects of the MP particles in these organisms. We verified that MPs have been widely detected in multiple species of commercial marine bivalves, with a great variety of shapes, sizes, colors and polymer types. In general, the methodologies used by researchers to determine the MP abundance in marine bivalves need to be harmonized to facilitate the comparability between studies. So far, previous research showed that the main effects of MPs, either alone or combined with other pollutants, on commercial marine bivalves include the induction of immunological, physiological and behavioral responses, reproductive modifications, genotoxicity and neurotoxicity, which were surveyed by using a wide variety of techniques and analytical equipment. In the future, researchers should focus on less studied bivalve species and should use the most precise and innovative methodologies to assess the effects of MPs and other pollutants on marine bivalves.
Collapse
Affiliation(s)
- Daniela C C Silva
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - João C Marques
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Ana M M Gonçalves
- Department of Life Sciences, Marine Resources, Conservation and Technology, CFE-Centre for Functional Ecology: Science for People & Planet, University of Coimbra, Coimbra 3000-456, Portugal; Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
7
|
Arslan Yüce P, Günal AÇ, Erkmen B, Yurdakok-Dikmen B, Çağan AS, Çırak T, Başaran Kankılıç G, Seyfe M, Filazi A, Tavşanoğlu ÜN. In vitro and in vivo effects of commercial and environmental microplastics on Unio delicatus. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:22-37. [PMID: 39387969 DOI: 10.1007/s10646-024-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants in freshwater environments. In this study, freshwater mussels, Unio delicatus, were exposed to both environmental MPs (e-MP) and commercial MPs (c-MP) that include green fluorescent MP (gf-MP), polyethylene (c-PE) and polystyrene (c-PS) at environmental concentrations (5 mg/L and 50 mg/L) over duration of 7 and 30 days. According to in vivo experiment results, both e-MPs and c-MPs induced significant changes in the total hemocyte counts of mussels (p < 0.05). Exposure to high concentrations of e-MPs and c-MPs for 7 days led to decreased cellular glutathione levels in the mussels, while exposure to low concentrations of e-MPs and c-PS for 7 days resulted in increased advanced oxidation protein products (AOPP). Mussels exposed to high concentrations of e-MPs for 30 days exhibited decreases in both glutathione levels and AOPP values. Although no damage was observed in tissues other than gills and digestive gland, histopathological alterations were observed in these tissues following exposure to 50 mg/L c-MPs. Additionally, MPs were observed in the intestine tissues. In vitro experiments using the MTT assay showed no significant difference in cell viability between the MP-exposed group and the control group at tested concentrations, with no observed dose-response relationship (p > 0.05). Nevertheless, certain cells exhibited signs of cell death, such as disrupted cellular structures, condensed nuclei, and loss of cellular integrity. These observations were consistent with mechanical compression, indicating that physical contact with MPs may result in cell damage or death. These findings demonstrate that environmentally relevant concentrations of MPs have toxic effects on freshwater mussels and multiple parameters provide valuable insight for the evaluation of health risks of organisms.
Collapse
Affiliation(s)
- Pınar Arslan Yüce
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Aysel Çağlan Günal
- Biology Education Department, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Belda Erkmen
- Biology Department, Faculty of Science, Aksaray University, Aksaray, Türkiye
| | - Begüm Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ali Serhan Çağan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
- Kastamonu University, Araç Rafet Vergili Vocational School, Wildlife Programme, Kastamonu, Türkiye
| | - Tamer Çırak
- Aksaray Technical Sciences Vocational School, Alternative Energy Sources Technology Program, Aksaray University, Aksaray, Türkiye
| | - Gökben Başaran Kankılıç
- Biology Department, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Türkiye
| | - Melike Seyfe
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ülkü Nihan Tavşanoğlu
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye.
| |
Collapse
|
8
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Bouzekry A, Mghili B, Bottari T, Bouadil O, Mancuso M, Benomar M, Aksissou M. Polycyclic aromatic hydrocarbons in sediments and bivalves along the Moroccan Mediterranean coast: Spatial distribution, sources, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125073. [PMID: 39374757 DOI: 10.1016/j.envpol.2024.125073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly found in the marine environment and can have harmful impacts on marine biodiversity. Therefore, investigation of the occurrence, source and risks of PAHs is of great importance to protect ecosystem and human health. The objectives of this work were to assess the concentrations and distribution of PAHs in marine sediments and in mollusc bivalve (Callista chione) along the Mediterranean coasts of Morocco and finally evaluate the risk to human health caused by exposure to PAHs. Five sediments samples and seventy five C. chione specimens, were collected along the Moroccan Mediterranean coasts. The ∑PAHs levels in sediment varied considerably, varying from 1 to 251 ng/g with an average of 50.38 ng/g, while values for bivalves varied from 1 to 51 ng/g dw with an average concentration of 16.76 ng/g dw. The PAHs profile indicates the dominance of 2 and 3 rings PAHs both in bivalves and sediments. PAH concentrations generally rise as one moves from northeast to northwest part of the studied area, closer to the Strait of Gibraltar. The assessment of PAH isomeric ratios revealed a mixed pyrolytic/petrogenic source. Based on the sediment quality guidelines (SQGs), the risk of PAHs in the sediments was considered to be comparatively low. Similarly, Ecological risk assessment based on risk quotient (RQ) and toxic equivalency factors (TEFs) revealed potentially low ecological risks from PAHs. Exposure to PAHs via bivalve consumption does not cause adverse impacts on the health of consumers following the calculated health risk indices. As the levels of PAHs in biota are not negligible, continuous mentioning marine organisms campaigns should be performed to highlight the distribution and concentration of PAHs and assess the risk for human health from consumption of seafood.
Collapse
Affiliation(s)
- Assia Bouzekry
- LESCB, URL-CNRST N° 18, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Teresa Bottari
- Institute Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), 98122 8 Messina, Italy
| | - Oumayma Bouadil
- Chemistry Laboratory, National Institut of Fisheries Research, Mnar, Cap Malabata, Km 15 Road of Ksar Sghir, 93000 Tangier, Morocco
| | - Monique Mancuso
- Institute Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), 98122 8 Messina, Italy
| | - Mostapha Benomar
- Laboratory of Applied Sciences, Environmental Management and Civil Engineering Research Team, ENSAH, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mustapha Aksissou
- LESCB, URL-CNRST N° 18, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
10
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Khalil MA, Schagerl M, Al-Zahrani M, Sun J. Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. TOXICS 2024; 12:909. [PMID: 39771124 PMCID: PMC11728610 DOI: 10.3390/toxics12120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling methods, MP production and environmental accumulation are expanding at an alarming rate, resulting in a range of economic, social, and environmental repercussions. Aquatic organisms, including fish and various crustaceans, consume MPs, which are ultimately consumed by humans at the tertiary level of the food chain. Blocking the digestive tracts, disrupting digestive behavior, and ultimately reducing the reproductive growth of entire living organisms are all consequences of this phenomenon. In order to assess the potential environmental impacts and the resources required for the life of a plastic product, the importance of life cycle assessment (LCA) and circularity is underscored. MPs-related ecosystem degradation has not yet been adequately incorporated into LCA, a tool for evaluating the environmental performance of product and technology life cycles. It is a technique that is designed to quantify the environmental effects of a product from its inception to its demise, and it is frequently employed in the context of plastics. The control of MPs is necessary due to the growing concern that MPs pose as a newly emergent potential threat. This is due to the consequences of their use. This paper provides a critical analysis of the formation, distribution, and methods used for detecting MPs. The effects of MPs on ecosystems and human health are also discussed, which posed a great challenge to conduct an LCA related to MPs. The socio-economic impacts of MPs and their management are also discussed. This paper paves the way for understanding the ecotoxicological impacts of the emerging MP threat and their associated issues to LCA and limits the environmental impact of plastic.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | | | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Maha A. Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
11
|
Silva DCC, Marques JC, Gonçalves AMM. Polycyclic aromatic hydrocarbons in commercial marine bivalves: Abundance, main impacts of single and combined exposure and potential impacts for human health. MARINE POLLUTION BULLETIN 2024; 209:117295. [PMID: 39579485 DOI: 10.1016/j.marpolbul.2024.117295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are emerging pollutants with a broad distribution in marine environments. They can interact with other pollutants and be bioaccumulated by marine bivalves, which can be consumed by humans. This is the first review that focuses on the presence and effects of PAHs, single or combined with other pollutants, in commercial marine bivalves. Around the world, researchers have detected several PAHs in valuable marine bivalves and reported immunological, genotoxic, neurotoxic, physiological, reproductive, and biochemical effects in these species caused by exposure to PAHs, alone or combined with other pollutants, using efficient and accurate methods. Commercial marine bivalves contaminated with PAHs may pose a risk to marine food chains and environments and to human health. We recommend further research on the abundance and neurotoxic, physiological, reproductive and biochemical effects of PAHs, alone and with other pollutants, in commercial marine bivalves and more human health risk assessments.
Collapse
Affiliation(s)
- Daniela C C Silva
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - João C Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- Marine Resources, Conservation and Technology, CFE-Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Oh JS, Kim NY, Park J, Jung H, Kim GB. Nationwide monitoring of freely dissolved polycyclic aromatic hydrocarbons (PAHs) using high speed rotation-type passive sampling device in Korean coastal waters. MARINE POLLUTION BULLETIN 2024; 209:117175. [PMID: 39489053 DOI: 10.1016/j.marpolbul.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Measuring the concentration of PAHs in the freely dissolved phase is crucial for assessing ecological impacts in the marine environment. However, various environmental conditions make short-term monitoring challenging. This study used an optimized High Speed Rotation-Type Passive Sampling Device (HSR-PSD) equipped with linear low-density polyethylene (LLDPE) to conduct the first nationwide monitoring of freely dissolved PAHs in Korean coastal waters. The HSR-PSD enabled faster short-term monitoring by measuring Cfree of PAHs within 12 h and was less affected by environmental conditions compared to conventional PSDs. Σ15PAH concentrations ranged from 2.8 to 9.4 ng/L, with significantly higher levels on the western coast. Anthropogenic activities and oceanic conditions affected Cfree distribution in coastal areas. Based on Cfree, the estimated PAH levels in bivalves and fish were aligned with reported tissue concentrations, exhibiting low ecological risk to aquatic organisms. Therefore, the HSR-PSD with LLDPE is a suitable tool for nationwide short-term monitoring.
Collapse
Affiliation(s)
- Jin-Su Oh
- The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Na Yeong Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - JoonHyeong Park
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Hyeonju Jung
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Gi Beum Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
13
|
Jiang Y, Yu J, Tian JY, Yang GP, Liu LF, Song XR, Chen R. Microplastics and copper impacts on feeding, oxidative stress, antioxidant enzyme activity, and dimethylated sulfur compounds production in Manila clam Ruditapes philippinarum. MARINE POLLUTION BULLETIN 2024; 208:117022. [PMID: 39332333 DOI: 10.1016/j.marpolbul.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
Microplastics (MPs) are widespread ocean pollutants and many studies have explored their effects. However, research on MPs combined impact with copper (Cu) on dimethylated sulfur compound production is limited. Dimethyl sulfide (DMS) is an important biogenic sulfur compound related to global temperatures. This study examined the ecotoxicological effects of polyamide 6 MPs and Cu on dimethylsulfoniopropionate (DMSP), DMS, and dimethyl sulfoxide (DMSO) production in Manila clams (Ruditapes philippinarum). Our findings showed that MPs and Cu increased oxidative stress, indicated by higher superoxide anion radical production and malondialdehyde levels while decreasing glutathione contents and increasing superoxide dismutase activities. Additionally, MPs and Cu exposure reduced DMS and dissolved DMSO (DMSOd) concentrations due to decreased grazing. These results contribute to a better understanding of the ecotoxicological effects of MPs/Cu on bivalves and their roles in the organic sulfur cycle, suggesting a need for further research on long-term impacts on them.
Collapse
Affiliation(s)
- Yu Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Juan Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Ji-Yuan Tian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Long-Fei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xin-Ran Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rong Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
14
|
Shen H, Tan H, Lu Y, Gao Y, Xia Y, Cai Z. The combination of detection and simulation for the distribution and sourcing of microplastics in Shing Mun River estuary, Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174305. [PMID: 38936714 DOI: 10.1016/j.scitotenv.2024.174305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
For the first time, combined detection and simulation was performed on microplastic (MP) debris in surface water, sediment, and oyster samples at ten coastal sites of Shing Mun River estuary, Hong Kong at different tidal conditions. The MP debris were extracted and detected using Fourier transform infrared (FT-IR) spectroscopy, and the simulation was conducted using Weather Research & Forecasting Model (WRF) / Regional Ocean Modelling System (ROMS) coupled hydro-dynamic modelling and the subsequent Lagrangian particle tracking. The results demonstrated the majority of polyethylene (with partial chlorine substitution) debris among all the MPs found, and great spatial and tidal variabilities of MP concentrations were observed. The combination of MP observation and simulations referred to the interpretation that a considerable percentage of MPs found in this study originated from South China Sea. Those MPs were probably transported to Tolo Harbour through sea currents and drifted inshore and offshore with tides. This study provided baseline measures of MP concentrations in Shing Mun River estuary and comprehensive understanding for how MPs transport and distribute within a dynamic estuarine system.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yi Lu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yongjun Xia
- School of Heath Science and Engineering, University of Shanghai for Science and Technology, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China.
| |
Collapse
|
15
|
Zhang W, Tang Y, Han Y, Tian D, Yu Y, Yu Y, Li W, Shi W, Liu G. Pentachlorophenol impairs the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk. CHEMOSPHERE 2024; 364:143230. [PMID: 39222693 DOI: 10.1016/j.chemosphere.2024.143230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- School of Life and Environmental, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity of environmental and polystyrene plastic particles on the bivalve Corbicula fluminea: focus on the molecular responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:709-721. [PMID: 38990495 DOI: 10.1007/s10646-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 μg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 μg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 μg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 μg L-1 did not trigger the same effects as ENV MPs 10 and 100 μg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.
Collapse
Affiliation(s)
- Oïhana Latchere
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France.
| | - Coraline Roman
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Isabelle Métais
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | | | - Mohammed Mouloud
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Didier Georges
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Agnès Feurtet-Mazel
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Patrice Gonzalez
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux, Pessac, France
| | - Julien Gigault
- Département de Biologie, Pavillon Alexandre-Vachon, Université Laval, Québec, QC, Canada
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
- Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, France
| | - Magalie Baudrimont
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| |
Collapse
|
17
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
18
|
Chen YT, Xu RQ, Cheng JW, Singhania RR, Chen CW, Dong CD, Hsieh SL. Immunotoxicity and oxidative damage in Litopenaeus vannamei induced by polyethylene microplastics and copper co-exposure. MARINE POLLUTION BULLETIN 2024; 205:116683. [PMID: 38972218 DOI: 10.1016/j.marpolbul.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This study examines the combined effects of polyethylene microplastics (PE-MP) and copper (Cu2+) on the immune and oxidative response of Litopenaeus vannamei. PE-MP adsorbed with Cu2+ at 2.3, 6.8, and 16.8 ng (g shrimp)-1) were injected into L. vannamei. Over 14 days, survival rates were monitored, and immune and oxidative stress parameters were assessed. The results showed that combined exposure to PE-MP and Cu2+ significantly reduced the survival rate and decreased total haemocyte count. Immune-related parameters (phagocytic rate, phenoloxidase and superoxide dismutase (SOD)) and antioxidant-related parameters (SOD, catalase and glutathione peroxidase mRNA and enzyme) also decreased, while respiratory burst activity significantly increased, indicating immune and antioxidant system disruption. Additionally, there was a significant increase in oxidative stress, as measured by malondialdehyde levels. Histopathological analysis revealed severe muscle, hepatopancreas, and gill damage. These results suggest that simultaneous exposure to PE-MP and Cu2+ poses greater health risks to white shrimp.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jia-Wei Cheng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
19
|
Sreeparvathi CK, Amal R, Remia KM, Devipriya SP. Ecological assessment of microplastic contamination in surface water and commercially important edible fishes off Kadalundi estuary, Southwest coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:735. [PMID: 39009737 DOI: 10.1007/s10661-024-12900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
This study focuses on the Kadalundi estuary, Kerala's first community reserve, investigating the prevalence and impacts of microplastics on both the estuarine environment and selected fish species. This study presents the initial evidence indicating the consumption of microplastic particles by 12 commercially important edible fish species inhabiting the Kadalundi estuary. Analysis revealed significant accumulations of microplastic fibers within the surface water. In examining 12 fish species from demersal and pelagic habitats, microplastics were found in both the gastrointestinal tracts and gills. In the digestive tracts, microplastic fragments constituted the highest proportion (46%), while in the gills, microplastic fibers were dominant (52.4%). This study observed a prevalence of blue microplastics over other colors in both water and fish samples. Notably, demersal species showed a higher incidence of ingested microplastics. Polymer analysis identified Polypropylene (PP), Nylon, Low-Density Polyethylene (LDPE), Polyethylene (PE), Polypropylene isotactic (iPP), PE 1 Octene copolymer, and Rayon in water samples, while fish samples predominantly contained LDPE, PP, PE, and Nylon. Risk assessment utilizing the Polymer Hazard Index (PHI) categorized certain polymers as posing minor to moderate risks. Pollution Load Index (PLI) computations indicated moderate to high levels of microplastic contamination across various sampling sites in the estuary. Principal Component Analysis (PCA) revealed a lack of correlation between fish size and microplastic ingestion, underscoring environmental factors' influence on microplastic intake. The study emphasizes the implications of microplastic pollution on the fragile ecosystem of the Kadalundi estuary, posing potential risks to biodiversity and human health.
Collapse
Affiliation(s)
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Kulamullathil Maroli Remia
- Department of Zoology, MES Mampad College (Autonomous), Affiliated to University of Calicut, Malappuram, Kerala, India
| | | |
Collapse
|
20
|
Yin L, Zhang S, Liu B, Zheng Q, Wang Z, Qu R. Investigation of the photolysis process of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) and polystyrene (PS) microplastics: Plastics aging effect, transformation products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172394. [PMID: 38636850 DOI: 10.1016/j.scitotenv.2024.172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) and persistent pollutants (POPs) are new pollutants that are extensively studied worldwide. To fill the gaps that the degradation processes and mechanisms of polycyclic aromatic hydrocarbons (PAHs) on the surface of most MPs are still unclear, the photochemical transformation of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) MPs and polystyrene (PS) MPs in water were investigated and compared. The photolysis of BaA on the surface of PS in water proceeded easier than that on PVC within the 48 h irradiation period, with the pseudo-first-order rate constant of 0.0489 min-1 and 0.0181 min-1, respectively, which can be ascribed to the smaller particle size and more OH production of PS MPs. Due to the light competition between the chromophore and BaA as well as the light-shielding effect, aged MPs showed an inhibitory effect on the degradation of BaA compared with pristine MPs. For BaA/PVC MPs system, the degradation of BaA in real water was not significantly affected by coexisting ions and humic acid (HA) (p < 0.05), while slight inhibitory effect on the degradation of BaA appeared for PS MPs in different water matrices (UP: 86.97 %, YR: 84.47 %, PR: 81.42 % and HR: 83.21 %). According to the electron paramagnetic resonance (EPR) test, quenching experiment and probe experiment, the relative contribution of direct photolysis (PVC: 82.02 %; PS: 69.54 %) and indirect photolysis (PVC: 17.98 %; PS: 30.46 %) was confirmed. A total of 14 products were identified, and the product types were not affected by plastics aging. The results of the toxicity assessment indicated that although some intermediate products remained toxic to aquatic organisms, the toxicity of most products was lower than that of BaA. This study provides new insights into the environmental fate of PAHs and the role of MPs in the photolysis process of contaminants in surface water.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qing Zheng
- School Marine & Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
21
|
da S Moreira TC, de Oliveira AFB, de Lucena PGC, do Nascimento ES, de Almeida LMF, de Araújo-Castro CMV, Rojas LAV, Yogui GT, Zanardi-Lamardo E, Santos JM. Polycyclic aromatic hydrocarbons in seawater after the mysterious oil spill of 2019 on the Pernambuco coast, northeast Brazil. MARINE POLLUTION BULLETIN 2024; 203:116395. [PMID: 38703626 DOI: 10.1016/j.marpolbul.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
In 2019, one of Brazil's most significant environmental disasters occurred, involving an oil spill that directly affected Pernambuco state. Contamination along the coast was evaluated by the quantification of polycyclic aromatic hydrocarbons (PAHs) in fifty seawater samples collected in the summer and winter of 2021. Analysis using fluorescence spectroscopy revealed that for all the samples, levels of dissolved/dispersed petroleum hydrocarbons (DDPHs) were higher than the regional baseline for tropical western shores of the Atlantic Ocean. GC-MS analyses quantified 17 PAHs in the samples, with highest total PAHs concentrations of 234 ng L-1 in summer and 33.3 ng L-1 in winter, which were consistent with the highest risks observed in ecotoxicity assays. The use of diagnostic ratios showed that the coast was impacted by a mixture of PAHs from petrogenic and pyrolytic sources. The results indicated the need for continuous monitoring of the regions affected by the 2019 spill.
Collapse
Affiliation(s)
- Thayane Cristina da S Moreira
- Grupo de Pesquisa em Petróleo, Energia e Espectrometria de Massas (PEM), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil
| | - Ana Flávia B de Oliveira
- Grupo de Pesquisa em Petróleo, Energia e Espectrometria de Massas (PEM), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil
| | - Pedro Gabriel C de Lucena
- Grupo de Pesquisa em Petróleo, Energia e Espectrometria de Massas (PEM), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil
| | - Estefani S do Nascimento
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil
| | - Leonardo M F de Almeida
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil
| | | | - Lino Angel V Rojas
- Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco (UFPE), Recife, PE 50740-550, Brazil
| | - Gilvan T Yogui
- Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco (UFPE), Recife, PE 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco (UFPE), Recife, PE 50740-550, Brazil
| | - Jandyson M Santos
- Grupo de Pesquisa em Petróleo, Energia e Espectrometria de Massas (PEM), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE 52171-900, Brazil.
| |
Collapse
|
22
|
Huang J, Zhang J, Sun J, Gong M, Yuan Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171653. [PMID: 38485023 DOI: 10.1016/j.scitotenv.2024.171653] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.
Collapse
Affiliation(s)
- Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
23
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
24
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
25
|
Wang S, Li C, Zhang L, Chen Q, Wang S. Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. ENVIRONMENTAL RESEARCH 2024; 245:117901. [PMID: 38092235 DOI: 10.1016/j.envres.2023.117901] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| | - Congcong Li
- College of Civil Engineering and Architecture, Binzhou University, Binzhou City, Shandong Province, 256600, PR China.
| | - Lisheng Zhang
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Qian Chen
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Shuoliang Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
26
|
Hou T, Yu J, Li C, Wang Z, Liu H. Immunotoxicity of microplastics and polychlorinated biphenyls alone or in combination to Crassostrea gigas. MARINE POLLUTION BULLETIN 2024; 200:116161. [PMID: 38364644 DOI: 10.1016/j.marpolbul.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 μg/L MPs (30-μm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 μg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Jinyu Yu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Zibin Wang
- Shenzhen Ocean Center, Ministry of Natural Resources, Shenzhen 518131, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
27
|
Wang X, Wang X, Zhu W, Ding L, Liang X, Wu R, Jia H, Huang X, Guo X. Insight into interactions between microplastics and fulvic acid: Mechanisms affected by microplastics type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169427. [PMID: 38135066 DOI: 10.1016/j.scitotenv.2023.169427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weimin Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Athulya PA, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss CGP, Chandrasekaran N. Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:85. [PMID: 38367078 DOI: 10.1007/s10653-023-01800-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 02/19/2024]
Abstract
The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.
Collapse
Affiliation(s)
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andres Rodriguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/N, 32004, Ourense, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo-Campus Auga, 32004, Ourense, Spain
| | - Sandhya Devalla
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
29
|
Kim JA, Park YS, Kim JH, Choi CY. Toxic effects of polystyrene microbeads and benzo[α]pyrene on bioaccumulation, antioxidant response, and cell damage in goldfish Carassius auratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115825. [PMID: 38101975 DOI: 10.1016/j.ecoenv.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
30
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
31
|
Han Y, Zhang W, Tang Y, Shi W, Liu Z, Lamine I, Zhang H, Liu J, Liu G. Triclosan exposure induces immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis in blood clam (Tegillarca granosa). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106778. [PMID: 38056281 DOI: 10.1016/j.aquatox.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Omnipresent presence of triclosan (TCS) in aqueous environment puts a potential threat to organisms. However, it's poorly understood about its immunometabolic impacts of marine invertebrates. In present study, we use a representative bivalve blood clam (Tegillarca granosa) as a model, investigating the effects of TCS exposure at 20 and 200 μg/L for 28 days on immunometabolism, detoxification, and cellular homeostasis to explore feasible toxicity mechanisms. Results demonstrated that the clams exposed to TCS resulting in evident immunotoxic impacts on both cellular and humoral immune responses, through shifting metabolic pathways and substances, as well as suppressing the expressions of genes from the immune- and metabolism-related pathways. In addition, significant alterations in contents (or activity) of detoxification enzymes and the expression of key detoxification genes were detected in TCS-exposed clams. Moreover, exposure to TCS also disrupted cellular homeostasis of clams through increasing MDA contents and caspase activities, and promoting activation of the apoptosis-related genes. These findings suggested that TCS might induce immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis.
Collapse
Affiliation(s)
- Yu Han
- School of life sciences, Central South University, Changsha, China, 410083; Hangzhou Normal University, Hangzhou, China, 311121; College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Weixia Zhang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Yu Tang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Wei Shi
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China, 311121
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | | | - Jing Liu
- School of life sciences, Central South University, Changsha, China, 410083
| | - Guangxu Liu
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058.
| |
Collapse
|
32
|
Jiang J, Cai X, Ren H, Cao G, Meng J, Xing D, Vollertsen J, Liu B. Effects of polyethylene terephthalate microplastics on cell growth, intracellular products and oxidative stress of Scenedesmus sp. CHEMOSPHERE 2024; 348:140760. [PMID: 37989440 DOI: 10.1016/j.chemosphere.2023.140760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Polyethylene terephthalate (PET) has been widely utilized in the synthesis of textile materials and packaging of foods and beverages. In recent years, it has been commonly detected in the form of microplastics (MPs) in wastewater. However, the effects of PET MPs on microalgal intracellular products and their interrelationships have been poorly investigated. In this study, the microalgae Scenedesmus sp. Strain H-1 was exposed to PET MPs to explore their effects on the growth, intracellular products (such as lipids, carbohydrates, and proteins), and antioxidative defense systems of Scenedesmus sp. The results demonstrated that PET MPs significantly reduced Scenedesmus sp. cell growth, with a maximum inhibition rate of 38.25% in the 500 mg L-1 treatment group. PET MPs had negative effects on glucose and nitrate utilization rates and reduced intracellular carbohydrates, intracellular proteins, and photosynthetic pigments. Surprisingly, PET MPs reduced acetyl-CoA carboxylase activity but induced lipid accumulation in microalgae. In addition, PET MPs significantly decreased the essential linoleic acid concentration and increased the palmitic acid content, resulting in reduced biodiesel quality. PET MPs induced the production of reactive oxygen species and malondialdehyde as well as the activities of superoxide dismutase and catalase. The results of the PCA indicated that the response mechanism of Scenedesmus sp. to PET MPs exposure was synergistic. This study provides fundamental data on the impact of MPs on the intracellular products of microalgae.
Collapse
Affiliation(s)
- Jiahui Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Xiaoyu Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst 9220, Denmark
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China.
| |
Collapse
|
33
|
Kladchenko ES, Tkachuk AA, Podolskaya MS, Andreyeva AY. Short communication: ROS production and mitochondrial membrane potential in hemocytes of marine bivalves, Mytilus galloprovincialis and Magallana gigas, under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110901. [PMID: 37683884 DOI: 10.1016/j.cbpb.2023.110901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Bivalve mollusks that inhabit low-depth coastal and estuarine areas frequently experience osmotic stress that may be also associated with alterations of antioxidant enzyme activities and markers of oxidative stress. Mitochondria are a major source of reactive oxygen species (ROS) in eucaryotic cells. Overpoduction of ROS induces oxidative stress leading to a damage of intracellular compartments and cell death. In euryhaline bivalves, information concerning cellular ROS production upon osmotic stress and changes in mitochondrial membrane potential is scarce. The present study investigates osmotic stability and hemocytes` regulatory volume decrease (RVD) of Mediterranean mussel (Mytilus galloprovincialis) and the Pacific oyster (Magallana gigas). We also studied dynamic changes in intracellular ROS levels and mitochondrial membrane potential in hemocytes undergoing the RVD response following hypoosmotic swelling. Our data revealed that osmotic stability of mussel and oyster hemocytes did not significantly differ. Loss of environmental osmolarity from 460.0 ± 2.0 mOsm l-1 to 216.0 ± 4.0 mOsm l-1 resulted in an increase of hemocyte volume by 60% of the initial cellular volume in mussels and by 28% in oysters. After rapid hypoosmotic swelling hemocytes of both species demonstrated the RVD response. At the end of 60 min exposure to hypoosmotic environment, hemocyte volume significantly decreased in both species by 10-12% compared to the maximal hemocyte volume. Hypoosmotic shock induced an increase of mitochondrial membrane potential in hemocytes of mussels and oysters. In mussels, increased mitochondrial membrane potential was accompanied with decreased ROS levels in hemocytes, whereas oyster hemocytes showed enhanced ROS production.
Collapse
Affiliation(s)
- E S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 14, Moscow, Russia, 119991.
| | - A A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 14, Moscow, Russia, 119991
| | - M S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 14, Moscow, Russia, 119991
| | - A Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave 14, Moscow, Russia, 119991
| |
Collapse
|
34
|
Kong C, Pan T, Chen X, Junaid M, Liao H, Gao D, Wang Q, Liu W, Wang X, Wang J. Exposure to polystyrene nanoplastics and PCB77 induced oxidative stress, histopathological damage and intestinal microbiota disruption in white hard clam Meretrix lyrata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167125. [PMID: 37722427 DOI: 10.1016/j.scitotenv.2023.167125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
The toxic effects of organic pollutants and nanoplastics on fish have been extensively studied, but there is limited research available on their combined toxicity to bivalves. This research aimed to investigate the accumulation and ecotoxicological impacts such as antioxidant capacity, histopathology and intestinal microbiota in white hard clam Meretrix lyrata, resulting from 7 days of single and mixture exposure to 3,3',4,4'-tetrachlorobiphenyl (PCB77, 0.1 mg/L) and polystyrene nanoplastics (PS-NPs, 80 nm, 1 mg/L). Our findings revealed that PS-NPs accumulated in various tissues such as the intestine, gill, mantle, foot, and siphon. And when compared to the PCB-PSNPs (PP) co-exposure group, the intestinal fluorescence intensity mediated by plastic particles in the PS-NPs (PS group) was significantly higher. The gill, digestive gland, and intestine were all damaged to varying extent by single exposure to PS-NPs or PCB77, according to histopathological analysis, which was aggravated by PP group. Moreover, the co-exposure induced a higher level of oxidative stress, which reflected by increase of activities of superoxide dismutase, catalase, glutamate oxaloacetate transaminase and glutamic-pyruvic transaminase and malondialdehyde content. In addition, the intestine microbial composition was dramatically altered by the combined exposure, reducing the abundance of probiotics such as Firmicutes, thereby posing a great threat to the health and metabolism of M. lyrata. In conclusion, our findings showed that PS-NPs and PCB77 co-exposure induced a higher toxicity to M. lyrata, including histopathological changes, altered antioxidant capacity and intestinal microbiota disruption. This study provides novel insights into PCB77 and PS-NPs' combined toxicity to marine organisms and its underlying molecular mechanisms of ecotoxicological effects.
Collapse
Affiliation(s)
- Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Wang
- Guangdong Provincial Key Laboratory of Quality&Safety Risk Assessment for Agro-products, Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Science, Guangzhou 510642, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
35
|
Gao Y, Huang W, Jiang N, Fang JKH, Hu M, Shang Y, Wang Y. Combined effects of microfibers and polychlorinated biphenyls on the immune function of hemocytes in the mussel Mytilus coruscus. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106214. [PMID: 37865594 DOI: 10.1016/j.marenvres.2023.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Numerous studies have shown that microplastics can interact with other pollutants in the environment to produce synergistic effects, leading to more serious impacts. To date, there is little consensus on the combined effects of microfibers (MFs) and polychlorinated biphenyls (PCBs, Aroclor 1254), two legacy and alarming environmental pollutants. There is an urgent need to assess the impact of combined exposures on bivalve immune defences. In this study, we assessed the immune response of the mussels (Mytilus coruscus) hemocyte to MFs and PCBs alone and in combination by using flow cytometry. M. coruscus were exposed to MFs (1000 pieces/L) and PCBs (PCBs) (100 ng/L and 1000 ng/L) alone or in combination for 14 consecutive days and recovered for 7 days. The hemocyte of M. coruscus was collected on day 7, 14 and 21. MF exposure alone had no effect on the hemocyte. The total hemocyte count (THC), esterase (EA), lysosomal contents (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) of mussels showed a decreasing trend with increasing PCB concentrations, both individually and in combination; The decreases in EA, MN and MMP were associated with the induction of reactive oxygen species (ROS). Hemocyte mortality (HM) was associated with a decrease in THC. Combined exposure to MFs and PCBs would exacerbate the effects on hemocyte immunity. These new findings improve our understanding of the toxic effects of MFs and organic chemical pollutants, and demonstrate the potential mechanism of PCBs to bivalves through changes in hemolymph immunity-related indicators.
Collapse
Affiliation(s)
- Yiming Gao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Ningjin Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
36
|
Bérgamo DB, Craveiro N, Magalhães KM, Yogui GT, Soares MO, Zanardi-Lamardo E, Rojas LAV, Lima MCSD, Rosa Filho JS. Tar balls as a floating substrate for long-distance species dispersal. MARINE POLLUTION BULLETIN 2023; 196:115654. [PMID: 37839129 DOI: 10.1016/j.marpolbul.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Recent arrivals of tar balls have been observed in several tropical beaches associated with the oceanic circulation that flows to the Brazilian continental shelf. Between August and September 2022, tar balls were collected in the northeastern coast of Brazil and analyzed. Nearly 90 % of the oils were colonized by barnacles, polychaetes, decapods, and algae. Most rafting organisms were Lepas anserifera with capitulum measuring 0.32 to 22.21 mm. Based on the growth rate of barnacles and the speed of the SEC it was estimated that tar balls were floating since July and August 2022 and traveled a maximum of 1938.82 km. The organisms and tar balls' possible origin is in the international waters, near to the meso-Atlantic ridge, known for oil tanker traffic. The tar balls, in addition to the oil-related impacts, can act as a vector of long-distance species dispersion, and it needs to raise an alert, considering the possible ecological impacts.
Collapse
Affiliation(s)
- Davy Barbosa Bérgamo
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil.
| | - Nykon Craveiro
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil
| | - Karine Matos Magalhães
- Universidade Federal Rural de Pernambuco (UFRPE), Centro de Ciências Biológicas, Departamento de Biologia - Laboratório de Ecossistemas Aquáticos (LEAQUA), 52171- 900 Recife, PE, Brazil
| | - Gilvan Takeshi Yogui
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Marcelo Oliveira Soares
- Universidade Federal do Ceará (UFC) - Instituto de Ciências do Mar (LABOMAR), 60165-081 Fortaleza, CE, Brazil
| | - Eliete Zanardi-Lamardo
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Lino Angel Valcarcel Rojas
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Maria Cecília Santana de Lima
- Universidade Federal Rural de Pernambuco (UFRPE), Centro de Ciências Biológicas, Departamento de Biologia - Laboratório de Ecossistemas Aquáticos (LEAQUA), 52171- 900 Recife, PE, Brazil
| | - José Souto Rosa Filho
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil
| |
Collapse
|
37
|
Leistenschneider D, Wolinski A, Cheng J, Ter Halle A, Duflos G, Huvet A, Paul-Pont I, Lartaud F, Galgani F, Lavergne É, Meistertzheim AL, Ghiglione JF. A critical review on the evaluation of toxicity and ecological risk assessment of plastics in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164955. [PMID: 37348714 DOI: 10.1016/j.scitotenv.2023.164955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The increasing production of plastics together with the insufficient waste management has led to massive pollution by plastic debris in the marine environment. Contrary to other known pollutants, plastic has the potential to induce three types of toxic effects: physical (e.g intestinal injuries), chemical (e.g leaching of toxic additives) and biological (e.g transfer of pathogenic microorganisms). This critical review questions our capability to give an effective ecological risk assessment, based on an ever-growing number of scientific articles in the last two decades acknowledging toxic effects at all levels of biological integration, from the molecular to the population level. Numerous biases in terms of concentration, size, shape, composition and microbial colonization revealed how toxicity and ecotoxicity tests are still not adapted to this peculiar pollutant. Suggestions to improve the relevance of plastic toxicity studies and standards are disclosed with a view to support future appropriate legislation.
Collapse
Affiliation(s)
- David Leistenschneider
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France; SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France.
| | - Adèle Wolinski
- SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France; Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Écogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, France
| | - Jingguang Cheng
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Alexandra Ter Halle
- CNRS, Université de Toulouse, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR, 5623, Toulouse, France
| | - Guillaume Duflos
- Unité Physico-chimie des produits de la pêche et de l'aquaculture, ANSES, Boulogne-sur-Mer, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Ika Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Écogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, France
| | - François Galgani
- Unité Ressources marines en Polynésie Francaise, Institut français de recherche pour l'exploitation de la mer (Ifremer), Vairao, Tahiti, French Polynesia
| | | | | | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France.
| |
Collapse
|
38
|
Albarano L, De Rosa I, Santaniello I, Montuori M, Serafini S, Toscanesi M, Trifuoggi M, Lofrano G, Guida M, Libralato G. Synergistic, antagonistic, and additive effects of naphthalene, phenanthrene, fluoranthene and benzo(k)fluoranthene on Artemia franciscana nauplii and adult. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122286. [PMID: 37524240 DOI: 10.1016/j.envpol.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe and can be highly toxic for the marine environment. This research investigated the short-term (48 h of exposure) effects of PAHs mixtures on the nauplii and adult of crustacean Artemia franciscana considering the impact in term of toxicity and changes in gene expression. Results showed that all combinations caused additive or synergic effects with the exception of naphthalene + phenanthrene (NAP + PHE; Combination Index (CI) = 22.3), while naphthalene + benzo(k)fluoranthene (NAP + BkF; CI = 7.8) mixture evidenced an antagonistic effect. Real-time qPCR showed that all mixtures impacted the expression level of the five known genes involved in Artemia stress response. The effects of PAHs at environmental concentrations on both adult and nauplii suggested the need for further investigations about the impact of such contaminants on the marine biota considering that crustaceans can accumulate PAHs at concentrations comparable to those assessed in the present study.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy.
| | - Ilaria De Rosa
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Ilaria Santaniello
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Montuori
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Toscanesi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Marco Trifuoggi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| |
Collapse
|
39
|
Yu X, Qi Z, Xiong D, An Y, Gao H, Yang M, Liu Z. Impact of mixing energy and dispersant dosage on oil dispersion and sedimentation with microplastics in the marine environment. MARINE POLLUTION BULLETIN 2023; 195:115542. [PMID: 37714077 DOI: 10.1016/j.marpolbul.2023.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Recently, the fate of spilled oil in the presence of microplastics (MPs) in the sea has attracted attention of researchers. Merey crude oil and polyethylene terephthalate (PET) were used as the experimental materials in this study. The effects of mixing energy and dispersant dosage on oil dispersion and sedimentation in the presence of MPs in the water column were investigated by laboratory experiments simulating actual sea conditions. The increase of mixing energy showed a promoting effect on oil dispersion. When the oscillation frequency increased from 140 rpm to 180 rpm, the oil dispersion efficiency (ODE) ranged from 2.1 %-3.7 % to 17.4 %-30.8 %, and the volumetric mean diameter (VMD) of the suspended oil droplets/MPs-oil agglomerates (MOA) decreased from 99.9-131.4 μm to 76.6-88.2 μm after 2 h oscillation. The application of chemical dispersant led to an increase in both the quantity and size of the formed sunken MPs-oil-dispersant agglomerates (MODA). At the dispersant-to-oil ratio (DOR) of 1:5, the ODE declined from 77.7 % to 62.6 % when the MPs concentration increased from 0 to 150 mg/L, while the oil sinking efficiency (OSE) rose from 3.4 % to 15.6 % when the MPs increased from 25 to 150 mg/L; the maximum size of the sunken MODA reached 13.0 mm, and the total volume of the MODA formed per unit volume oil reached 389.7 μL/mL oil at the MPs concentration of 150 mg/L. Meanwhile, the results showed that the presence of MPs inhibited the oil dispersion by increasing the oil-water interfacial tension. The outcomes of this work may provide assistance in predicting the transport of spilled oil and developing emergency measures.
Collapse
Affiliation(s)
- Xinping Yu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhixin Qi
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Deqi Xiong
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yaya An
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Huan Gao
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Miao Yang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ziyue Liu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
40
|
Barathi S, J G, Rathinasamy G, Sabapathi N, Aruljothi KN, Lee J, Kandasamy S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. CHEMOSPHERE 2023; 337:139396. [PMID: 37406936 DOI: 10.1016/j.chemosphere.2023.139396] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are distributed worldwide due to long-term anthropogenic pollution sources. PAHs are recalcitrant and highly persistent in the environment due to their inherent properties, such as heterocyclic aromatic ring structures, thermostability, and hydrophobicity. They are highly toxic, carcinogenic, immunotoxic, teratogenic, and mutagenic to various life systems. This review focuses on the unique data of PAH sources, exposure routes, detection techniques, and harmful effects on the environment and human health. This review provides a comprehensive and systematic compilation of eco-friendly biological treatment solutions for PAH remediation, such as microbial remediation approaches utilizing microbial cultures. In situ and Ex situ bioremediation of PAH methods, including composting land farming, biopiles, bioreactors bioaugmentation, and phytoremediation processes, are discussed in detail, as is a summary of the factors affecting and limiting PAH bioremediation. This review provides an overview of emerging technologies that use multi-process combinatorial treatment approaches and answers to generating value-added by-products during PAH remediation.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Gitanjali J
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, 63014, Tamil Nadu, India
| | - Gandhimathi Rathinasamy
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, Tamilnadu, India
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming District, Shenzhen, 518107, China
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India.
| |
Collapse
|
41
|
Jessica, Cheng S, Cross JS. Effects of virgin and BaP-adsorbed microplastics ingestion by Manila clams (Ruditapes philippinarum). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104259. [PMID: 37660959 DOI: 10.1016/j.etap.2023.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Numerous microplastic-related studies have investigated the impact of plastic materials on the marine food chain. In this study, Manila clams were exposed to microplastic (MP) of various polymer types, shapes, and concentrations to determine the ingestion selectivity and adverse effects caused. Benzo[a]pyrene was introduced as the second stressor to investigate the role of MP as a vector of contaminant. The result of a 2-day acute exposure showed that clams are more likely to ingest those in sphere shapes due to their similarity to microalgae. The feeding rate continuously declined when clams were exposed to at least 2to/L particles. Additionally, co-exposure of MP and B[a]P resulted in higher DNA fragmentation but lower catalase activity compared to single exposure to MP. Our study revealed that the uptake of MP by clams is not only determined by its shape and concentration but also by the presence of existing contaminants.
Collapse
Affiliation(s)
- Jessica
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Jeffrey Scott Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 I4-13 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
42
|
Zeng L, Wang YH, Song W, Ai CX, Liu ZM, Yu MH, Zou WG. Different effects of continuous and pulsed Benzo[a]pyrene exposure on metabolism and antioxidant defense of large yellow croaker: Depend on exposure duration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115370. [PMID: 37586193 DOI: 10.1016/j.ecoenv.2023.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study aims to compare differential effects of continuous and pulsed BaP exposures on metabolism and antioxidant defense in the liver of large yellow croaker. Fish were subjected to BaP for 4 days and 36 days in three exposure regimes with the same time-averaged concentration of BaP: 4 μg/L BaP continuously, 8 μg/L BaP for 24 h every other day or 16 μg/L BaP for 24 h every 4 days. Our results showed that compared to pulsed BaP exposures, continuous BaP exposure reduced BaP metabolism (CYP1A, CYP3A and AHR transcriptional expressions, GSH content, GSH/GSSG ratio, EROD and GST activities) and antioxidant defense (T-SOD activity) on day 4, resulting to the increases in MDA and PC contents, indicating that continuous BaP exposure induced more severe oxidative damage during the early stage of exposure. But continuous BaP exposure reduced MDA and PC contents by improving BaP metabolism and antioxidant defense during the late stage of exposure. CYP1B transcriptional expression and CAT activity were unsuitable biomarkers of both continuous and pulsed BaP exposures. In conclusion, our results demonstrated differential effects of continuous and pulsed exposures on BaP metabolism and antioxidant responses, which were depend on exposure duration.
Collapse
Affiliation(s)
- Lin Zeng
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China.
| | - Yong-Hong Wang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao 266237, PR China.
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui 323000, PR China
| | - Min-Hui Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Wei-Guang Zou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
43
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
44
|
Lu L, Huang W, Han Y, Tong D, Sun S, Yu Y, Liu G, Shi W. Toxicity of microplastics and triclosan, alone and in combination, to the fertilisation success of a broadcast spawning bivalve Tegillarca granosa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104208. [PMID: 37390575 DOI: 10.1016/j.etap.2023.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/02/2023]
Abstract
Since most marine invertebrates adopted external fertilisation, their fertilisation process is particularly vulnerable to aquatic pollutants. Both antimicrobial ingredients and microplastics (MPs) are ubiquitous in aquatic environments; however, their synergistic effects on the fertilisation of marine invertebrates remain unclear. Therefore, in this study, the fertilisation toxicity of MPs and triclosan (TCS), alone and in combination, was investigated in the broadcast spawning bivalve Tegillarca granosa. Results showed that MPs and TCS significantly suppressed the fertilisation success of T. granosa. As the fertilisation success of broadcast spawning invertebrates depends on successful gamete collisions, gamete fusion, and egg activation, sperm swimming velocity, viability, gamete collision probability, ATP status, and ion-transport enzyme activities were also analysed to further ascertain the underlying toxicity mechanisms. In summary, our findings indicate that the presence of MPs may enhance the fertilisation toxicity of TCS by hampering sperm-egg collision probability, reducing gamete fusion efficiency, and restricting Ca2+ oscillation formation.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China; Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, PR China.
| |
Collapse
|
45
|
Ribeiro VV, Nobre CR, Moreno BB, Semensatto D, Sanz-Lazaro C, Moreira LB, Castro ÍB. Oysters and mussels as equivalent sentinels of microplastics and natural particles in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162468. [PMID: 36858238 DOI: 10.1016/j.scitotenv.2023.162468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Filter-feeder organisms such as oyster and mussels are exposed to particles like microplastics (MPs). Although widely used to monitor MPs contamination, little is known about their performance as sentinels, which are biological monitors accumulating contaminants without significant adverse effects. This study comparatively evaluated the quantitative and qualitative accumulation of MPs by oysters (Crassostrea brasiliana) and mussels (Perna perna) along a gradient of contamination in a highly urbanized estuarine system of Brazil. In the most contaminated site, both species presented the worst status of nutrition and health, and also one of the highest MPs levels reported for molluscs to date (up to 44.1 particles·g-1). Despite some inter-specific differences, oysters and mussels were suitable and showed an equivalent performance as sentinels, reflecting the gradient condition demonstrated for other contaminants in the region. The similarity in MPs accumulation was also observed for qualitative aspects (polymer composition, sizes, shapes and colors). Particles were mostly <1000 μm, fibrous, colorless and composed by cellulose and polymethyl methacrylate (PMMA). Thus, despite small variations, the usage of C. brasiliana and P. perna is recommended and provides reliable information for environmental levels of microplastics.
Collapse
Affiliation(s)
| | | | | | - Décio Semensatto
- Laboratory of Integrated Sciences (LabInSciences), Universidade Federal de São Paulo (Unifesp), Diadema, Brazil
| | | | | | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Santos, Brazil.
| |
Collapse
|
46
|
Sim Y, Cho HJ, Lee JS, Lee WS, Kim H, Jeong J. Combined effects of microplastics and benz[a]anthracene on cardiotoxicity in zebrafish (Danio rerio) larvae: Size matters. CHEMOSPHERE 2023; 330:138723. [PMID: 37084899 DOI: 10.1016/j.chemosphere.2023.138723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The size of microplastics (MPs) plays an important role in combined toxic effects including synergistic or antagonistic effects. However, the influence of the size of MPs on the combined toxicity of contaminants remains unclear. In this study, we employed a zebrafish model to investigate the effects of MP size on the combined toxicity of benz[a]anthracene (BaA), a representative polyaromatic hydrocarbon, using three different sizes of polystyrene MPs (PSMPs) (0.2, 1.0, and 10 μm). Treatment of all groups did not result in any mortality of the zebrafish larvae. However, small-sized PSMPs (0.2 μm) enhanced the toxic effect of BaA in larvae such as cardiac defect and disruption of vessel formation. Medium-sized PSMPs (1.0 μm) were boundary in terms of the combined toxic effect; however, large-sized PSMPs (10 μm) alleviated the cardiotoxicity of BaA, including cardiac defect, ROS levels, and cell death. The combined effects showed a correlation with the body burden of MPs and BaA in larvae according to particle size (in the order of 0.2 μm > 1.0 μm > 10 μm). The synergistic effects occurred likely because the small PSMPs facilitated the body burden of BaA, induced excessive ROS by Ahr-mediated activity, and caused cell death in the heart, resulting in increased heart defects in the larvae. In contrast, large PSMPs abated the combined toxic effect through decreased body burden, whereas medium PSMPs form a boundary in combined effects. Therefore, the combined toxic effects of MPs are dependent on their size, which plays an important role in the transport and accumulation of environmental pollutants.
Collapse
Affiliation(s)
- Yugyeong Sim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Soo Lee
- KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunjung Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
47
|
Zhou R, Zhou D, Ding Z, Bao X, Jin Q. Effects of polystyrene nanoplastics on melanin interference toxicity and transgenerational toxicity of ethylhexyl salicylate based on DNA methylation sequencing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106402. [PMID: 36709616 DOI: 10.1016/j.aquatox.2023.106402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Organic ultraviolet filters (OUVFs) are new hydrophobic organic pollutants in the aquatic environment. When ingested by aquatic organisms, OUVFs can induce a variety of toxic effects in organisms and be transferred to offspring. However, as the main active ingredient in sunscreens, OUVFs have rarely been investigated for their melanin interference toxicity or transgenerational toxic effects on aquatic organisms and their interactive toxic effects with nanoplastics (NPs). Here, we show the mechanism by which OUVFs interfere with melanogenesis in parental or offspring zebrafish and the effect of polystyrene (PS) NPs on the melanin-interference effect of OUVFs. We found that EHS induced significant enrichment of the melanogenesis pathway, inhibited the expression of the key melanin gene microphthalmia-associated transcription factor a (mitfa) and induced the mitf tyrosinase (tyr)-dopachrome tautomerase (dct)-tyrosinase related protein 1 (tyrp1) signaling cascade in parents, which ultimately induced a decrease in melanin content. After reproduction, transgenerational melanin interference effects of EHS may occur through the maternal inheritance of mitfa. Coexisting PS-NPs may inhibit the melanin interference toxicity or transgenerational toxicity of EHS by reducing ultraviolet irritation to the skin through adsorption of EHS. Our results demonstrate the ecotoxic potential of OUVFs in terms of melanin interference and the interference of PS-NP carrier effects on the toxicity of OUVFs. We anticipate that our assay will contribute to the assessment of the toxic effects of OUVFs and provide a basis for the interactive ecotoxicity assessment of PS-NPs and hydrophobic organic pollutants.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| | - Xuhui Bao
- Shanghai Investigation, Design & Research Institute Co., Ltd, No.1-6, Lane 65, Linxin Road, Changning District, Shanghai 200335, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| |
Collapse
|
48
|
Yu Y, Tian D, Ri S, Kim T, Ju K, Zhang J, Teng S, Zhang W, Shi W, Liu G. Gamma-aminobutyric acid (GABA) suppresses hemocyte phagocytosis by binding to GABA receptors and modulating corresponding downstream pathways in blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108608. [PMID: 36764632 DOI: 10.1016/j.fsi.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, North Korea
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | | | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
49
|
Roman C, Mahé P, Latchere O, Catrouillet C, Gigault J, Métais I, Châtel A. Effect of size continuum from nanoplastics to microplastics on marine mussel Mytilus edulis: Comparison in vitro/in vivo exposure scenarios. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109512. [PMID: 36396088 DOI: 10.1016/j.cbpc.2022.109512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
For several decades, plastic has been a global threat in terms of pollution. Plastic polymers, when introduce in the aquatic environment, are exposed to fragmentation processes into microplastics (MPs) and nanoplastics (NPs) which could potentially interact with living organisms. The objective of this work was to study the effects of plastic particles representative of those found in the environment, on the marine mussels Mytilus edulis, under two exposure scenarios: in vivo and in vitro. Whole mussels or cultured hemocytes were exposed for 24 h to NPs and MPs generated from macro-sized plastics collected in the field, but also to reference NPs, at concentrations found in the environment: 0.08, 10 μg and 100 μg·L-1. Results showed that immune response was only activated when mussels were exposed in vivo. However, cytotoxicity (hemocyte mortality) and genotoxicity (DNA damage) parameters were induced after both types of exposure, but in a dose-dependent manner after in vitro hemocyte exposure to all tested plastic conditions. These results indicate that in vitro approaches could be considered as potential predictors of in vivo exposures.
Collapse
Affiliation(s)
- Coraline Roman
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Pauline Mahé
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Oihana Latchere
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | | | - Julien Gigault
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, Rennes, France
| | - Isabelle Métais
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Amélie Châtel
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France.
| |
Collapse
|
50
|
Wu Y, Liu G, Li Z, Chen M, Wang Q. ATG13 is involved in immune response of pathogen invasion in blood clam Tegillarca granosa. Front Vet Sci 2023; 10:1141284. [PMID: 36937017 PMCID: PMC10017841 DOI: 10.3389/fvets.2023.1141284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mammalian autophagy-related gene 13 (ATG13) is a vital component of the ATG1 autophagy initiation complex which plays an essential role in autophagy. However, the molecular function of ATG13 in pathogen defense in invertebrates is still poorly understood. In this study, the full-length cDNA sequence of blood clam Tegillarca granosa ATG13 (TgATG13) was obtained, which was 1,918 bp in length, including 283 bp 5' UTR, 252 bp 3' UTR and 1,383 bp open reading frame (ORF) encoding 460 amino acids. Phylogenetic analysis revealed that TgATG13 had the closest relationship with that of Crassostrea Virginica. Quantitative real-time PCR results showed that the transcript of TgATG13 was universally expressed in various tissues of blood clam, with the highest expression level in hemocytes. The expression level of TgATG13 was robustly increased after exposure of both Vibrio alginolyticus and LPS. Fluorescence confocal microscopy further showed that TgATG13 promoted the production of autophagosome. In summary, our study demonstrated that TgATG13 was involved in the immune regulation of blood clam during pathogen invasion, deepening our understanding of the innate immune mechanism of blood clam.
Collapse
Affiliation(s)
- Yuling Wu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Life Science, Xiamen University, Xiamen, China
| | - Guosheng Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- *Correspondence: Zengpeng Li
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen, China
- Mingliang Chen
| | - Qin Wang
- School of Life Science, Xiamen University, Xiamen, China
- Qin Wang
| |
Collapse
|