1
|
Schmied G, Kappen J, Del Río M, Moser WK, Gundale MJ, Hilmers T, Ambs D, Uhl E, Pretzsch H. Positive mixture effects in pine-oak forests during drought are context-dependent. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40341707 DOI: 10.1111/plb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/21/2025] [Indexed: 05/10/2025]
Abstract
The increasing severity and frequency of droughts will play a pivotal role in shaping future forest ecosystems worldwide. Trees growing in mixtures are thought to be less susceptible to drought stress, but evidence for such positive admixture effects remains limited. This study examines how interspecific neighbourhood structures affect the growth responses of pine and oak species under recurrent drought stress in two contrasting forest ecosystems. We sampled naturally occurring, unmanaged mixed stands of Gambel oak (Quercus gambelii) and ponderosa pine (Pinus ponderosa) in semi-arid Arizona, USA, and pedunculate oak (Quercus robur) and Scots pine (Pinus sylvestris) in sub-humid Bavaria, Germany. Tree growth responses to recurrent drought events were assessed across a wide gradient of species admixture. Species admixture significantly influenced tree growth responses to drought stress, but the effects varied by species and forest ecosystem. In semi-arid Arizona, increasing species admixture buffered trees, especially Gambel oak, against drought stress. In sub-humid Bavaria, the effects of species admixture on pedunculate oak and Scots pine were more variable. Our findings emphasize the positive mixture effects in semi-arid environments, likely due to distinct niche complementarity and facilitation. Under sub-humid conditions, the effects were less consistent, aligning with the stress-gradient hypothesis. This study provides valuable insights into the complex dynamics of pine-oak interactions under drought stress and emphasizes the relevance of complementary species admixtures for climate-smart forest management in the face of climate change.
Collapse
Affiliation(s)
- G Schmied
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Kappen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - M Del Río
- Instituto de Ciencias Forestales ICIFOR-INIA, CSIC, Madrid, Spain
| | - W K Moser
- USDA Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA
| | - M J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - T Hilmers
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - D Ambs
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - E Uhl
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Freising, Germany
| | - H Pretzsch
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Cavelier G, Weigel R, Enderle L, Leuschner C. Douglas fir - A victim of its high productivity in a warming climate? Predominantly negative growth trends in the North German Lowlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179100. [PMID: 40112551 DOI: 10.1016/j.scitotenv.2025.179100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Recent hot droughts and a rising atmospheric vapor pressure deficit are exposing Central European forests to growing stress, causing growth decline, crown damage and elevated mortality of some of the economically most important tree species. Foresters therefore advocate the planting of introduced Douglas fir as a replacement of more vulnerable tree species, but the species' drought and heat resistance is not sufficiently understood. Here, we analyze long-term basal area increment (BAI) trends and the climate sensitivity of growth of 15 mature Douglas fir stands along a precipitation gradient (940-580 mm yr-1) in the North German Lowlands on similar soil. We searched for recent growth declines and assessed the potential of acclimatization to a drier climate. After a pronounced growth increase from 1980 to 2000, BAI has shifted in the last 15 years to a negative trend in the majority of stands, with drier stands being more affected. Thirty percent of the 304 studied trees show significant negative BAI trends, another 47 % non-significant negative trends, compared to 5 % with significant and 12 % with non-significant positive trends. The strongest drivers of a negative BAI trend were climate continentality (seasonal temperature amplitude), a cold February, a negative summer climatic water balance, and low precipitation, indicating declining growth rates especially in continental climates with cold winters and dry summers. A highly significant negative relation exists between recent BAI trend direction and highest growth rate in the past, indicating that faster growth in the past led to greater recent growth decline. We conclude that Douglas fir is more vulnerable to climate change in Central Europe's warmer lowlands than previously thought, which has to be considered in silvicultural planning.
Collapse
Affiliation(s)
| | - Robert Weigel
- Plant Ecology, University of Goettingen, Göttingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Lena Enderle
- Plant Ecology, University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
3
|
Vukmirović A, Škvorc Ž, Bogdan S, Krstonošić D, Bogdan IK, Karažija T, Bačurin M, Brener M, Sever K. The Role of Phosphorus Fertilization in Antioxidant Responses of Drought-Stressed Common Beech and Sessile Oak Provenances. Int J Mol Sci 2025; 26:3053. [PMID: 40243643 PMCID: PMC11988520 DOI: 10.3390/ijms26073053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
During drought, a major abiotic stressor for European forests, excessive reactive oxygen species (ROS) are produced, causing oxidative damage that affects structural and metabolic tree functions. This research examines the effects of drought, phosphorus (P) fertilization, and provenance on photosynthetic pigments, malondialdehyde (MDA) concentrations, and antioxidant enzyme activities in common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) saplings from two provenances. In a common garden experiment, four treatments were applied: regular watering with (+PW) and without P fertilization (-PW), and drought with (+PD) and without (-PD) P fertilization. Results showed that drought increased both MDA concentrations and antioxidant enzyme activity, particularly superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), which are responsible for ROS scavenging. Additionally, chlorophyll a + b concentrations were lower in drought-exposed plants. Phosphorus fertilization minimally affected MDA levels but enhanced antioxidant responses, particularly APX and CAT activities in oak during drought. Provenance differences were notable, with oak and beech from the drier provenance showing better adaptation, reflected in lower MDA levels and higher enzyme activities. This study underscores the importance of antioxidant defenses in coping with drought stress, with phosphorus fertilization and provenance shaping the species' adaptive capacity.
Collapse
Affiliation(s)
- Antonia Vukmirović
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Saša Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Daniel Krstonošić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Ida Katičić Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Tomislav Karažija
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
| | - Marko Bačurin
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Magdalena Brener
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| | - Krunoslav Sever
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (Ž.Š.); (S.B.); (D.K.); (I.K.B.); (M.B.); (M.B.)
| |
Collapse
|
4
|
Ruehr NK, Nadal-Sala D. Legacies from early-season hot drought: how growth cessation alters tree water dynamics and modifies stress responses in Scots pine. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39812157 DOI: 10.1111/plb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψleaf) to assess the impacts of stress timing on drought resilience in Scots pine saplings. The early summer hot drought had peak temperatures of 36.5 °C, while the late summer hot drought peaked at 38.2 °C. Soil water content during both periods declined to ca. 50% of control values. The early-season hot drought caused growth cessation already at Ψleaf - 1.1 MPa, visible as an almost 30 days earlier end to needle elongation, resulting in needles 2.7 cm shorter, on average. This reduction in leaf area decreased productivity, resulting in a reduction of 50% in seasonal transpiration. However, the reduced water use of early-stressed saplings appeared to enhance resistance to a late-season drought, as reflected in a smaller decline in Ψleaf and lower tree water deficit compared to saplings that did not experience early-season stress. In summary, we observed persistant drought legacy effects from early-season hot-drought stress, as evident in a 35% reduction of leaf area, which impacted tree water use, stress resistance, and productivity. These structural adjustments of leaf development and reduced bud mass from early-season stress could be critical in evergreen conifers, whose long-lived foliage influences future water use and growth potential.
Collapse
Affiliation(s)
- N K Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D Nadal-Sala
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Ecology Section, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Szymański N, Wilczyński S, Kowalczyk J, Kowalkowski W. The tree-ring width and interval trend values as indicators of sensitivity to temperature and precipitation in different provenances of European larch. Sci Rep 2025; 15:1656. [PMID: 39794406 PMCID: PMC11723930 DOI: 10.1038/s41598-025-85652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
The study assessed the sensitivity of 20 provenances of European larch (Larix decidua Mill.) growing at provenance experimental trials located in lowland (Siemianice) and upland (Bliżyn) climate in Central Poland to air temperature and precipitation, including drought. The measure of the tree' sensitivity was their radial growth reactions, i.e. changes in the radial growth in years 1971-2015. We found that rainwater supplies in a soil stored in autumn of the previous year, length of the growing season and thermal conditions in its beginning, as well as thermal and moisture conditions of the year of tree ring formation had a significant impact on the wood volume formed by the larches, regardless of their origin and climatic region in which they grew. The degree of homogeneity of tree' radial growth reactions to precipitation deficit and high temperature was the lowest in a warmer and drier climate in the lowlands in Central Poland. Larch provenances with the lowest and the highest values of drought resilience components (resistance, recovery, resilience, relative resilience of radial growth) originated in different regions of Poland. Greater resistance to drought was observed in larch provenances growing at the trial located in the uplands. The relative resilience index seems to be the most helpful in predicting the future radial growth reactions of the studied provenances, and consequently their viability and survival, as this index showed the highest variability among trees of a given provenance and was most often significantly different between pairs of provenances.
Collapse
Affiliation(s)
- Norbert Szymański
- Department of Forest Ecology and Silviculture, University of Agriculture in Krakow, al. 29 Listopada 46, Krakow, 31-425, Poland.
| | - Sławomir Wilczyński
- Department of Forest Ecosystem Protection, University of Agriculture in Krakow, al. 29 Listopada 46, Krakow, 31-425, Poland
| | - Jan Kowalczyk
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Sękocin Stary, ul. Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Wojciech Kowalkowski
- Department of Silviculture, Poznań University of Life Sciences, ul. Wojska Polskiego 71A, Poznań, 60-625, Poland
| |
Collapse
|
6
|
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak ( Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:109. [PMID: 39795368 PMCID: PMC11723010 DOI: 10.3390/plants14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Pedunculate oak (Quercus robur L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change. Genetic and dendrochronological studies offer complementary perspectives on this adaptability. Tree-ring analysis (dendrochronology) reveals how Q. robur has historically responded to environmental stressors, linking growth patterns to specific conditions such as drought or temperature extremes. By examining tree-ring width, density, and dynamics, researchers can identify periods of growth suppression or enhancement and predict forest responses to future climatic events. Genetic studies further complement this by uncovering adaptive genetic diversity and inheritance patterns. Identifying genetic markers associated with stress tolerance enables forest managers to prioritize the conservation of populations with higher adaptive potential. These insights can guide reforestation efforts and support the development of climate-resilient oak populations. By integrating genetic and dendrochronological data, researchers gain a holistic understanding of Q. robur's mechanisms of resilience. This knowledge is vital for adaptive forest management and sustainable planning in the face of environmental challenges, ultimately helping to ensure the long-term viability of oak populations and their ecosystems. The topics covered in this review are very broad. We tried to include the most relevant, important, and significant studies, but focused mainly on the relatively recent Eastern European studies because they include the most of the species' area. However, although more than 270 published works have been cited in this review, we have, of course, missed some published studies. We apologize in advance to authors of those relevant works that have not been cited.
Collapse
Affiliation(s)
- Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway;
| | - Yulai A. Yanbaev
- Department of Forestry and Landscape Design, Bashkir State Agrarian University, 450001 Ufa, Russia;
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey M. Matveev
- Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| |
Collapse
|
7
|
Liu S, Xue L, Yang M, Liu Y, Pan Y, Han Q. Exploring the comprehensive link between climatic factors and vegetation productivity in China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2579-2595. [PMID: 39235598 DOI: 10.1007/s00484-024-02770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Understanding the influence of climatic factors on vegetation dynamics and cumulative effects is critical for global sustainable development. However, the response of vegetation to climate and the underlying mechanisms in different climatic zones remains unclear. In this study, we analyzed the response of vegetation gross primary productivity (GPP) to climatic factors and the cumulative effects across various vegetation types and climatic zones, utilizing data on precipitation (Pr), temperature (Ta), and the standardized precipitation evapotranspiration index (SPEI). The results showed that: (1) GPP showed significant differences among the seven climatic zones, with the highest value observed in zone VII, reaching 1860.07 gC·m- 2, and the lowest in zone I, at 126.03 gC·m- 2. (2) GPP was significantly and positively correlated with temperature in climatic zones I, IV, V, and VI and with precipitation in climatic zones I, II, and IV. Additionally, a significant positive correlated was found between SPEI and GPP in climatic zones I, II, and IV. (3) Drought exerted a cumulative effect on GPP in 45.10% of the regions within China, with an average cumulative duration of 5 months. These effects persisted for 6-8 months in zones I, II, and VII, and for 2-4 months in zones III, IV and VI. Among different vegetation types, forests experienced longest cumulative effect time of 6 months, followed by grasslands (5 months), croplands (4 months), and shrublands (4 months). The cumulative time scale decreased with increasing annual SPEI. The varying responses and accumulation of GPP to drought among different vegetation types in various climatic zones underscore the complexity of vegetation-climate interactions the response and accumulation of GPP to drought.
Collapse
Affiliation(s)
- SaiHua Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lianqing Xue
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
- School of Hydraulic Engineering, Wanjiang University of Technology, Anhui, 243031, China.
| | - Mingjie Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yuanhong Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ying Pan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qiang Han
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Lee SJ, Lee AR, Byeon JG, Oh SH. Pre-drought effects on northern temperate trees and vine invasion in forest gaps hindering regeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175707. [PMID: 39179041 DOI: 10.1016/j.scitotenv.2024.175707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Northern temperate coniferous forests serve as crucial connectors between boreal and temperate forests, yet they are vulnerable to various stressors such as climate change and human activities. Severe drought poses a significant threat to plant species within these forests, prompting recent research into its impacts. However, many studies lack explicit definitions of post-disturbance vegetation processes and fail to identify potential interactions with disturbance factors, necessitating comprehensive discussions. This study examines the effects of drought on tree growth patterns of the main dominant species in northern temperate regions: Abies nephrolepis and Picea jezoensis, along with two commonly associated Betula ermanii, and Quercus mongolica. Additionally, new disturbance factors in forests inhabited by these species (A. nephrolepis and P. jezoensis) were evaluated based on community classification. The study sites were located in the Mt. Baekdu (Changbai) and South Korea regions, which are positioned at the southern limit of the phytogeographical patterns of target species. Results indicate that A. nephrolepis and P. jezoensis exhibit high levels of recovery and resilience, while B. ermanii and Q. mongolica demonstrate high resistance. Species-specific responses align with drought intensity, with resistance, recovery, and resilience decreasing notably with increasing pre-drought radial growth. South Korean forests, the invasion of the vine species Tripterygium regelii after the death of A. nephrolepis in the overstory vegetation threatens the regeneration of new trees. However, certain environmental factors, such as high rock exposure and dense overstory canopy, limit vine invasion. Based on the results, pre-drought radial growth emerges as a key determinant in how trees respond to drought. Additionally, the results suggest the potential for new disturbances to emerge in forest gaps due to overstory vegetation mortality induced by global warming. These findings contribute to a deeper understanding of increasing drought stress, aid in identifying climate refugia, and inform conservation priorities based on habitat characteristics.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah-Rim Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Gi Byeon
- Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute, Bonghwa 36209, Republic of Korea
| | - Seung-Hwan Oh
- School of Forest Sciences and Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Konter O, Ziaco E, Büntgen U, Esper J. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174370. [PMID: 38945248 DOI: 10.1016/j.scitotenv.2024.174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Konter
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emanuele Ziaco
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, United Kingdom; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jan Esper
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
| |
Collapse
|
10
|
Enderle L, Gribbe S, Muffler L, Weigel R, Hertel D, Leuschner C. A warmer climate impairs the growth performance of Central Europe's major timber species in lowland regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173665. [PMID: 38823720 DOI: 10.1016/j.scitotenv.2024.173665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Recent hot droughts have caused tree vitality decline and increased mortality in many forest regions on earth. Most of Central Europe's important timber species have suffered from the extreme 2018/2019 hot drought, confronting foresters with difficult questions about the choice of more drought- and heat-resistant tree species. We compared the growth dynamics of European beech, sessile oak, Scots pine and Douglas fir in a warmer and a cooler lowland region of Germany to explore the adaptive potential of the four species to climate warming (24 forest stands). The basal area increment (BAI) of the two conifers has declined since about 1990-2010 in both regions, and that of beech in the warmer region, while oak showed positive BAI trends. A 2 °C difference in mean temperatures and a higher frequency of hot days (temperature maximum >30 °C) resulted in greater sensitivity to a negative climatic water balance in beech and oak, and elevated sensitivity to summer heat in Douglas fir and pine. This suggests to include hot days in climate-growth analyses. Negative pointer years were closely related to dry years. Nevertheless, all species showed growth recovery within one to three years. We conclude that all four species are sensitive to a deteriorating climatic water balance and hot temperatures, and have so far not been able to successfully acclimate to the warmer climate, with especially Douglas and beech, but also Scots pine, being vulnerable to a warming and drying climate.
Collapse
Affiliation(s)
- Lena Enderle
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany.
| | - Stella Gribbe
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Lena Muffler
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Robert Weigel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Martes L, Pfleiderer P, Köhl M, Sillmann J. Using climate envelopes and earth system model simulations for assessing climate change induced forest vulnerability. Sci Rep 2024; 14:17076. [PMID: 39048656 PMCID: PMC11269643 DOI: 10.1038/s41598-024-68181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Changing climatic conditions threaten forest ecosystems. Drought, disease and infestation, are leading to forest die-offs which cause substantial economic and ecological losses. In central Europe, this is especially relevant for commercially important coniferous tree species. This study uses climate envelope exceedance (CEE) to approximate species risk under different future climate scenarios. To achieve this, we used current species presence-absence and historical climate data, coupled with future climate scenarios from various Earth System Models. Climate scenarios tended towards drier and warmer conditions, causing strong CEEs especially for spruce. However, we show that annual averages of temperature and precipitation obscure climate extremes. Including climate extremes reveals a broader increase in CEEs across all tree species. Our study shows that the consideration of climate extremes, which cannot be adequately reflected in annual averages, leads to a different assessment of the risk of forests and thus the options for adapting to climate change.
Collapse
Affiliation(s)
- Leam Martes
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany.
| | - Peter Pfleiderer
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
- Climate Analytics, Berlin, Germany
| | - Michael Köhl
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany
| | - Jana Sillmann
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
| |
Collapse
|
12
|
Niemczyk M, Wrzesiński P, Szyp-Borowska I, Krajewski S, Żytkowiak R, Jagodziński AM. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174912. [PMID: 39038682 DOI: 10.1016/j.scitotenv.2024.174912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.
Collapse
Affiliation(s)
- Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland.
| | - Piotr Wrzesiński
- Dendrolab IBL, Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Iwona Szyp-Borowska
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Szymon Krajewski
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
13
|
Zhang P, Jiao L, Xue R, Wei M, Wang X, Li Q. Wet events increase tree growth recovery after different drought intensities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171595. [PMID: 38492585 DOI: 10.1016/j.scitotenv.2024.171595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Understanding the dynamics of tree recovery after drought is critical for predicting the state of tree growth in the context of future climate change. While there has been a great deal of researches showing that drought events can cause numerous significant negative effects on tree growth, the positive effects of post-drought wetting events on tree growth remain unclear. Therefore, we analyzed the effect of wet and dry events on the radial growth of trees in Central Asia using data on the width of tree rings. The results showed that 1) Drought is the main limiting factor for radial growth of trees in Central Asia, and that as the intensity and sensitivity of drought increases, tree resistance decreases and recovery rises, and more frequent droughts reduce tree resistance. 2) Tree radial growth varied significantly with wet and dry conditions, with wet events before and after drought events significantly enhancing tree radial growth. 3) When drought is followed by a wetting event, the relationship between tree resistance and recovery is closer to the "line of full resilience", with a significant increase in recovery, and compensatory growth is more likely to occur. Thus, wetting events have a significant positive effect on tree radial growth and are a key factor in rapid tree growth recovery after drought.
Collapse
Affiliation(s)
- Peng Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Liang Jiao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China.
| | - Ruhong Xue
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Mengyuan Wei
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Xuge Wang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Qian Li
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| |
Collapse
|
14
|
Mazza G, Monteverdi MC, Altieri S, Battipaglia G. Climate-driven growth dynamics and trend reversal of Fagus sylvatica L. and Quercus cerris L. in a low-elevation beech forest in Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168250. [PMID: 37926261 DOI: 10.1016/j.scitotenv.2023.168250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In highly climate-change-sensitive regions, such as the Mediterranean, increasing knowledge of climate-driven growth dynamics is required for habitat conservation and forecasting species adaptability under future climate change. In this study, we test a high spectrum of climatic signals, not only monthly and seasonal but also on a multi-year scale and include the single tree analysis to answer this issue, focusing on a low-elevation thermophilic old-growth beech forest surrounding the Bracciano Lake in Central Italy. Through a dendroecological and isotope analysis, we evaluate both short- and long-term sensitivity of F. sylvatica and the coexisting better-drought-adapted species Q. cerris to climatic and hydrological variability in terms of growth reduction and δ13C responses. After the 1990s, beech trees showed a climate-driven decrease in growth compared to oak, especially after 2003 (-20 % of basal area increment), with a significant growth trend reversal between the species. For F. sylvatica, the significant correlations with precipitation decreased, whereas for Q. cerris, they increased, with a higher number of trees positively influenced. However, the temperature highlighted more clearly the contrasting climate-growth correlation pattern between the two species. In F. sylvatica after the '90s, the negative effect of temperatures has significantly intensified, as shown by past summer values up to four years previously, involving about half of the trees. Surprisingly, the water-level fluctuations showed a highly significant influence on tree-ring growth in both species. Nevertheless, it reduced after the '90s. Finally, Q. cerris trees showed a significantly higher ability to recover their growth levels after extreme droughts (+55 %). The growth trend reversal and the shift in iWUE of the last years may point to potential changes in the future species composition, raising the need for climate-adaptive silviculture (e.g., selective thinning) to reduce growth decline, enhance resilience and favour the natural regeneration of the target species for habitat conservation.
Collapse
Affiliation(s)
| | | | - Simona Altieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
15
|
Matula R, Knířová S, Vítámvás J, Šrámek M, Kníř T, Ulbrichová I, Svoboda M, Plichta R. Shifts in intra-annual growth dynamics drive a decline in productivity of temperate trees in Central European forest under warmer climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166906. [PMID: 37689186 DOI: 10.1016/j.scitotenv.2023.166906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Climate change shifts tree growth phenology and dynamics in temperate forests. However, there is still little information on how warming climate changes intra-annual growth patterns and how these changes affect the productivity and carbon uptake of temperate trees. To address this knowledge gap, we used high-precision growth data from automatic dendrometers to quantify the impacts of unusually warm weather in 2022 (hot year) on growth phenology, dynamics and aboveground biomass (AGB) production in eight common temperate species (both conifers and broadleaved) in the Czech Republic. Mixed-effect models were used to investigate inter-annual changes in the start, end, and length of the growing season and intra-annual growth dynamics. We also modelled how changes in growth phenology, growth rates, and tree size affected yearly AGB production of individual trees. In the hot year, the growth started 5 days earlier, peaked 22 days earlier and ended 20 days earlier than in the climatically normal year, resulting in a shorter growing season with fewer growing days. AGB production decreased 36 % in the hot year, mainly due to fewer growing days and lower maximum growth rates, but with significant variation among tested species. The decline in AGB production in the hot year was most significant in the most productive species, which were also the species with the greatest reduction in the number of growing days. Tree size strongly enhanced AGB production, but its effect did not change with climate variation. Our findings suggest that climate change is likely to advance but also shorten the growing season of temperate trees, resulting in lower biomass production and carbon uptake. The results also indicate that the fast-growing and highly productive temperate tree species will have their growth reduced most by climate change, which will increasingly limit their high carbon sequestration potential.
Collapse
Affiliation(s)
- Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic.
| | - Soňa Knířová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Vítámvás
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Martin Šrámek
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Tomáš Kníř
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Iva Ulbrichová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| |
Collapse
|
16
|
Xue R, Jiao L, Zhang P, Du D, Wu X, Wei M, Li Q, Wang X, Qi C. The key role of ecological resilience in radial growth processes of conifers under drought stress in the subalpine zone of marginal deserts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166864. [PMID: 37683873 DOI: 10.1016/j.scitotenv.2023.166864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Global climate change is exacerbating drought pressure on forests. However, the response patterns and physiological mechanisms of conifer species to drought, specifically in terms of radial growth, ecological resilience and soil water utilization, are not clearly understood. This study aims to quantify the effects of resilience on radial growth and identify the role of soil moisture utilization strategies in the resilience of species under drought intensities. We focus on two conifer species, Picea crassifolia (spruce) and Pinus tabuliformis (pine), located on the southern edge of the Tengger Desert in northwestern China. The dynamics of radial growth and ecological resilience were identified, and the seasonal growth rates of species based on soil water were simulated using the VS-oscilloscope model under varying drought stress. The results showed that spruce growth and recovery contributed by soil water were suppressed with frequent severe droughts, leading to a decline in growth (-0.5 cm2 year-1/10a, p < 0.05), despite its greater resistance to mild and moderate drought (-4.63 %). However, pine exhibited a stronger recovery (+40.25 %, p < 0.05) and higher variation in growth (-0.3 cm2 year-1/10a, p < 0.05) under soil moisture stress, despite its weaker resistance to drought (-23.53 %, p < 0.05). These findings provide insights into the growth, resilience, and water adaptation mechanisms of species under drought events, and theoretical support for the conservation and management of conifer diversity and forest ecosystem stability in climate-sensitive regions.
Collapse
Affiliation(s)
- Ruhong Xue
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Liang Jiao
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China.
| | - Peng Zhang
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Dashi Du
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuan Wu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Mengyuan Wei
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Qian Li
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuge Wang
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Changliang Qi
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
17
|
Rybar J, Sitková Z, Marcis P, Pavlenda P, Pajtík J. Declining Radial Growth in Major Western Carpathian Tree Species: Insights from Three Decades of Temperate Forest Monitoring. PLANTS (BASEL, SWITZERLAND) 2023; 12:4081. [PMID: 38140406 PMCID: PMC10747720 DOI: 10.3390/plants12244081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
This study investigates the radial growth response of five key European forest tree species, i.e., Fagus sylvatica, Picea abies, Abies alba, Quercus petraea, and Pinus sylvestris, to dry years in the West Carpathians, Slovakia. Utilizing data from ICP Forests Level I plots, we identified species-specific growth declines, particularly in Pinus sylvestris and Fagus sylvatica, with milder radial growth declines for Quercus petraea and Picea abies. Abies alba exhibited a growth peak in the mid-2000s, followed by a decline in the end of the observed period. Elevation emerged as the only significant environmental predictor, explaining 3.5% of growth variability during dry periods, suggesting a potential mitigating effect. The scope of this study was limited by the complex interplay of ecological factors that influence tree growth, which vary across the ICP Forests Level I monitoring sites. Nonetheless, our findings enhance the understanding of species-specific growth responses and offer insights for the climate-smart management of temperate forests under changing conditions.
Collapse
Affiliation(s)
- Jergus Rybar
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Zuzana Sitková
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| | - Peter Marcis
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Pavel Pavlenda
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| | - Jozef Pajtík
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| |
Collapse
|
18
|
Kim EH, Hitchmough JD, Cameron RW, Schrodt F, Martin KWE, Cubey R. Applying the concept of niche breadth to understand urban tree mortality in the UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166304. [PMID: 37619719 DOI: 10.1016/j.scitotenv.2023.166304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Accelerated climate change has raised concerns about heightened vulnerability of urban trees, spurring the need to reevaluate their suitability. The urgency has also driven the widespread application of climatic niche-based models. In particular, the concept of niche breadth (NB), the range of environmental conditions that species can tolerate, is commonly estimated based on species occurrence data over the selected geographic range to predict species response to changing conditions. However, in urban environments where many species are cultivated out of the NB of their natural distributions, additional empirical evidence beyond presence and absence is needed not only to test the true tolerance limits but also to evaluate species' adaptive capacity to future climate. In this research, mortality trends of Acer and Quercus species spanning a 21-year period (2000-2021) from tree inventories of three major UK botanic gardens - the Royal Botanic Gardens, Kew (KEW), Westonbirt, the National Arboretum (WESB), and the Royal Botanic Garden Edinburgh (RBGE) - were analyzed in relation to their NB under long-term drought stress. As a result, Acer species were more responsive to drought and heat stress. For Acer, positioning below the lower limits of the precipitation of warmest quarter led to an increase in the probability of annual mortality by 1.2 and 1.3 % at KEW and RBGE respectively. In addition, the mean cumulative mortality rate increased corresponding to an increase in the number of niche positions below the lower limits of the selected bioclimatic variables. On the other hand, Quercus species in general exhibited comparable resilience regardless of their niche positions. Moreover, Mediterranean oaks were most tolerant, with cumulative mortality rates that were lower than those of native oaks in the UK. These findings further highlight the importance of incorporating ecological performance and recognizing species-specific adaptive strategies in climatic niche modeling.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK.
| | - James D Hitchmough
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK
| | - Ross W Cameron
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK
| | - Franziska Schrodt
- Department of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
19
|
Correa-Díaz A, Villanueva-Díaz J, Gómez-Guerrero A, Martínez-Bautista H, Castruita-Esparza LU, Horwath WR, Silva LCR. A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. GLOBAL CHANGE BIOLOGY 2023; 29:3652-3666. [PMID: 37026182 DOI: 10.1111/gcb.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 06/06/2023]
Abstract
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (-0.56 by decade) and resilience (-0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.
Collapse
Affiliation(s)
- A Correa-Díaz
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales CENID-COMEF, INIFAP, Ciudad de México, Mexico
| | - J Villanueva-Díaz
- Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta, Atmósfera CENID-RASPA, INIFAP, Durango, Mexico
| | - A Gómez-Guerrero
- Posgrado en Ciencias Forestales, Colegio de Postgraduados, Estado de México, Mexico
| | - H Martínez-Bautista
- Centro de Investigación en Matemáticas, A.C. (CIMAT), Unidad Aguascalientes, Aguascalientes, Mexico
| | | | - W R Horwath
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - L C R Silva
- Environmental Studies Program, Department of Geography, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
20
|
Weigel R, Bat-Enerel B, Dulamsuren C, Muffler L, Weithmann G, Leuschner C. Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany. GLOBAL CHANGE BIOLOGY 2023; 29:763-779. [PMID: 36426513 DOI: 10.1111/gcb.16506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500-850 mm year-1 ) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April-September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.
Collapse
Affiliation(s)
- Robert Weigel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Banzragch Bat-Enerel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | | | - Lena Muffler
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Greta Weithmann
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
21
|
D'Andrea R, Corona C, Poszwa A, Belingard C, Domínguez-Delmás M, Stoffel M, Crivellaro A, Crouzevialle R, Cerbelaud F, Costa G, Paradis-Grenouillet S. Combining conventional tree-ring measurements with wood anatomy and strontium isotope analyses enables dendroprovenancing at the local scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159887. [PMID: 36351500 DOI: 10.1016/j.scitotenv.2022.159887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Dendroprovenancing provides critical information regarding the origin of wood, allowing further insights into economic exploitation strategies and source regions of timber products. Traditionally, dendroprovenancing relies on pattern-matching of tree rings, but its spatial resolution is limited by the geographical coverage of species-specific chronologies available for crossdating and, in the case of short-distance trades, by scarce environmental variability. Here, we present an approach to provenance timber with high spatial resolution from forested areas that have been exploited intensively throughout history, with the aim to understand the sustainability of the various woodland management practices used to supply timber products. To this end, we combined tree-ring width (TRW), wood anatomical and geochemical analyses in addition to multivariate statistical validation procedures to trace the origin of living oak trees (Quercus robur) sampled in four stands located within a 30-km radius around the city of Limoges (Haute-Vienne, France). We demonstrate that TRW and wood anatomical variables (and in particular cell density) robustly discriminate the eastern from the western site, while failing to trace the origin of trees from the northern and southern sites. Here, strontium isotopic ratios (87Sr/86Sr) and Ca concentrations identify clusters of trees which could not be identified with TRW or wood anatomy. Ultimately, our study demonstrates that the coupling of wood anatomy with geochemical signatures allows to correctly pinpoint the origin of trees. Given the small geographic scale of our study and the limited differences in elevation and climate between study sites, our results are particularly promising for future dendroprovenancing studies. We thus conclude that the combination of multiple approaches will not only increase the accuracy of dendroprovenancing studies at local scales, but could also be implemented at much larger scales to identify trends in historic timber supply throughout Europe.
Collapse
Affiliation(s)
- R D'Andrea
- GEOLAB, Université de Limoges, Limoges, France.
| | - C Corona
- GEOLAB, UMR 6042 CNRS, Université Clermont Auvergne, Clermont-Ferrand, France; Climate Change Impacts and Risks in the Anthropocene, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; Department F.A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, Switzerland
| | - A Poszwa
- Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, Nancy, France
| | - C Belingard
- GEOLAB, Université de Limoges, Limoges, France
| | - M Domínguez-Delmás
- Amsterdam School for Heritage and Memory Studies, University of Amsterdam, Amsterdam, the Netherlands
| | - M Stoffel
- Climate Change Impacts and Risks in the Anthropocene, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; Department F.A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, Switzerland; Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - A Crivellaro
- Forest Biometrics Laboratory, Faculty of Forestry, University of Suceava, Suceava, Ukraine; Éveha, Bureau d'étude archéologique, Limoges, France
| | | | - F Cerbelaud
- GEOLAB, Université de Limoges, Limoges, France
| | - G Costa
- Laboratoire PEIRENE, Université de Limoges, Limoges, France
| | - S Paradis-Grenouillet
- GEOLAB, Université de Limoges, Limoges, France; Éveha, Bureau d'étude archéologique, Limoges, France
| |
Collapse
|
22
|
Miller TW, Stangler DF, Larysch E, Honer H, Puhlmann H, Schindler D, Jung C, Seifert T, Rigling A, Kahle HP. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158703. [PMID: 36099953 DOI: 10.1016/j.scitotenv.2022.158703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Severe drought events negatively affect tree growth and often cause legacy effects, expressed by smaller tree rings in the post-drought recovery years. While the pattern of reduced tree-ring widths is frequently described the processes underlying such legacy effects, i.e., whether it is due to shorter growth periods or lower growth rates, remains unclear and is investigated in this study. To elucidate these post-drought effects, we examined radial stem growth dynamics monitored with precision band-dendrometers on 144 Douglas fir, Norway spruce and silver fir sample trees distributed along four elevational gradients in the Black Forest (Southwest Germany) during the post-drought years 2019 and 2020. Growth onset of all investigated species occurred between 11 and 24 days significantly earlier in 2020 compared to 2019. Modelling growth onset based on chilling and forcing units and taking the study year into account explained 88-98 % of the variance in the growth onset data. The highly significant effect of the study year (p < 0.001) led to the conclusion, that other factors than the prevailing site conditions (chilling and forcing units) must have triggered the earlier growth onset in 2020. On the other hand, for Douglas fir growth rates were significantly higher in 2020 compared to 2019 (2.9 μm d-1) and marginally significantly higher for silver fir (1.3 μm d-1), underlining the explanatory power of growth rate on recovery processes in general and suggesting that Douglas fir copes better with droughts, as it recovered faster. Growth dynamics at the beginning of the year showed limited growth for earlier growth onsets, which, however, could not explain the difference between the investigated years. Our results provide evidence that legacy effects of drought events are expressed by a delayed growth onset and a reduced growth rate in the post-drought year and that Douglas fir has a superior recovery potential.
Collapse
Affiliation(s)
- Tobias Walter Miller
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany.
| | - Dominik Florian Stangler
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Elena Larysch
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Harald Honer
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Heike Puhlmann
- Department of Soil and Environment, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Dirk Schindler
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Christopher Jung
- Environmental Meteorology, University of Freiburg, Werthmann-str. 10, 79085 Freiburg, Germany
| | - Thomas Seifert
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany; Department for Forest and Wood Science, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; SwissForestLab, Birmensdorf, Switzerland; Institute of Terrestrial Ecology, ETH Zürich, Zürich, Switzerland
| | - Hans-Peter Kahle
- Institute of Forest Sciences, Chair of Forest Growth and Dendroecology, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| |
Collapse
|
23
|
Germplasm Resources of Oaks ( Quercus L.) in China: Utilization and Prospects. BIOLOGY 2022; 12:biology12010076. [PMID: 36671768 PMCID: PMC9855944 DOI: 10.3390/biology12010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Oaks exhibit unique biological characteristics and high adaptability to complex climatic and soil conditions. They are widely distributed across various regions, spanning 40 degrees latitude and 75 degrees longitude. The total area of oak forest in China is 16.72 million hm2. There are 60 lineages of Quercus in China, including 49 species, seven varieties, and four subgenera. Archaeological data indicate that oaks were already widely distributed in ancient times, and they are dominant trees in vast regions of China's forests. In addition, the acorn was an important food for ancestral humans, and it has accompanied human civilization since the early Paleolithic. Diverse oak species are widely distributed and have great functional value, such as for greening, carbon sequestration, industrial and medicinal uses, and insect rearing. Long-term deforestation, fire, diseases, and pests have led to a continuous decline in oak resources. This study discusses the Quercus species and their distribution in China, ecological adaptation, and the threats facing the propagation and growth of oaks in a changing world. This will give us a better understanding of Quercus resources, and provide guidance on how to protect and better utilize germplasm resources in China. The breeding of new varieties, pest control, and chemical and molecular research also need to be strengthened in future studies.
Collapse
|
24
|
Bose AK, Rohner B, Bottero A, Ferretti M, Forrester DI. Did the 2018 megadrought change the partitioning of growth between tree sizes and species? A Swiss case-study. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1146-1156. [PMID: 34939277 PMCID: PMC10078792 DOI: 10.1111/plb.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
By killing or weakening trees, drought could change the partitioning of growth between tree sizes or species, thereby altering stand structure. Growth partitioning, often quantified using the growth dominance coefficient (DC) or the shape of tree size versus growth relationships (SGR), indicates the relative contribution of differently sized trees to the total stand growth. Changes in growth partitioning due to droughts are rarely examined but provide valuable information that links tree- and stand-level responses to droughts. The objective of this study was to test whether the 2018 European megadrought altered the growth partitioning among tree sizes and species. For this purpose, we first evaluated whether DC or SGR can be calculated from small sample sizes of trees typical of individual forest inventory plots. DC, and particularly SGR, were sensitive to sample size, forest type (even-aged and uneven-aged), target variable (tree diameter, basal area or stem mass) and range of tree sizes within the sample. SGR could therefore not be used for our analyses. We found no differences in DC prior to and during the 2018 drought. However, when considering only beech (Fagus sylvatica)-dominated stands, DC was lower during post-drought years than during the 2018 drought. The growth of larger trees, especially beech, was more negatively affected during post-drought years. Therefore, an extreme drought event can indeed alter the growth partitioning within forest stands. The DC indicates such changes in partitioning and, hence, which trees can be selected for commercial thinning, or released from competition, to minimize potential impacts of droughts.
Collapse
Affiliation(s)
- A. K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - B. Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - A. Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center (CERC)Davos DorfSwitzerland
| | - M. Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - D. I. Forrester
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| |
Collapse
|
25
|
Zhang P, Jiao L, Wei M, Wu X, Du D, Xue R. Drought timing and severity affect radial growth of Picea crassifolia at different elevations in the western Qilian Mountains. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2449-2462. [PMID: 36201038 DOI: 10.1007/s00484-022-02368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In the context of continued global climate change, the intensity and frequency of droughts have increased to varying degrees in many places. Due to the complexity of drought events, the mechanisms by which trees respond to drought are not well understood. In this study, we analyzed the growth trends of Qinghai spruce (Picea crassifolia) at different elevations in the western part of Qilian Mountains and the dynamic response to climate change. We also compared the differences in radial growth of trees at different elevations in response to drought events in the growing and non-growing seasons based on resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that (1) trees at all three elevations were limited by drought stress and the lower the elevation the more sensitive the trees were to drought. (2) The response of middle- and low-elevation trees to the standardized precipitation evaporation index in June of that year was stable. (3) Growing season drought limits radial growth of trees more than non-growing season drought, and Rt is smaller and Rc is larger at low elevations. With increasing drought severity, trees at all three elevations exhibited a trend of decreasing Rt and Rs and increasing Rc. (4) There were significant differences in the growth trends of trees at the three elevations. Therefore, we should continuously pay attention to the dynamics of the forest ecosystem in the western part of Qilian Mountains and take improved measures to cope with the adverse effects of drought on Qinghai spruce.
Collapse
Affiliation(s)
- Peng Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China.
| | - Mengyuan Wei
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Xuan Wu
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Dashi Du
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Ruhong Xue
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
26
|
Stand Structure Impacts on Forest Modelling. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modelling is essential in forest management as it enables the prediction of productions and yields, and to develop and test alternative models of silviculture. The allometry of trees depends on a set of factors, which include species, stand structure, density and site. Several mathematical methods and techniques can be used to model the individual tree allometry. The variability of tree allometry results in a wide range of functions to predict diameter at breast height, total height and volume. The first functions were developed for pure even-aged stands from crown closure up to the end of the production cycle. However, those models originated biased predictions when used in mixed, uneven-aged, young or older stands and in different sites. Additionally, some modelling methods attain better performances than others. This review highlights the importance of species, stand structure and modelling methods and techniques in the accuracy and precision of the predictions of diameter at breast height, total height and volume.
Collapse
|
27
|
Etzold S, Sterck F, Bose AK, Braun S, Buchmann N, Eugster W, Gessler A, Kahmen A, Peters RL, Vitasse Y, Walthert L, Ziemińska K, Zweifel R. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol Lett 2021; 25:427-439. [PMID: 34882952 PMCID: PMC9299935 DOI: 10.1111/ele.13933] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns. Day length set a window of opportunity for radial growth. Within this window, the probability of daily growth was constrained particularly by air and soil moisture, resulting in intermittent growth to occur only on 29 to 77 days (30% to 80%) within the growth period. The number of days with growth largely determined annual growth, whereas the growth period length contributed less. We call for accounting for these non-linear intra-annual and species-specific growth dynamics in tree and forest models to reduce uncertainties in predictions under climate change.
Collapse
Affiliation(s)
- Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Sterck
- Forest Ecology and Management Group, Wageningen University, Wageningen, The Netherlands
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sabine Braun
- Institute of Applied Plant Biology AG, Witterswil, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner Eugster
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Science, Physiological Plant Ecology, University of Basel, Basel, Switzerland
| | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.,Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Liège, Belgium
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kasia Ziemińska
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
28
|
Vitasse Y, Baumgarten F, Zohner CM, Kaewthongrach R, Fu YH, Walde MG, Moser B. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. THE NEW PHYTOLOGIST 2021; 232:537-550. [PMID: 34235742 PMCID: PMC8518844 DOI: 10.1111/nph.17606] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Microclimatic effects (light, temperature) are often neglected in phenological studies and little information is known about the impact of resource availability (nutrient and water) on tree's phenological cycles. Here we experimentally studied spring and autumn phenology in four temperate trees in response to changes in bud albedo (white-painted vs black-painted buds), light conditions (nonshaded vs c. 70% shaded), water availability (irrigated, control and reduced precipitation) and nutrients (low vs high availability). We found that higher bud albedo or shade delayed budburst (up to +12 d), indicating that temperature is sensed locally within each bud. Leaf senescence was delayed by high nutrient availability (up to +7 d) and shade conditions (up to +39 d) in all species, except oak. Autumn phenological responses to summer droughts depended on species, with a delay for cherry (+7 d) and an advance for beech (-7 d). The strong phenological effects of bud albedo and light exposure reveal an important role of microclimatic variation on phenology. In addition to the temperature and photoperiod effects, our results suggest a tight interplay between source and sink processes in regulating the end of the seasonal vegetation cycle, which can be largely influenced by resource availability (light, water and nutrients).
Collapse
Affiliation(s)
- Yann Vitasse
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfCH‐8903Switzerland
| | - Frederik Baumgarten
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfCH‐8903Switzerland
| | - Constantin M. Zohner
- Institute of Integrative BiologyETH Zürich (Swiss Federal Institute of Technology)ZürichCH‐8092Switzerland
| | | | - Yongshuo H. Fu
- College of Water SciencesBeijing Normal UniversityBeijing100875China
| | - Manuel G. Walde
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfCH‐8903Switzerland
| | - Barbara Moser
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfCH‐8903Switzerland
| |
Collapse
|
29
|
Assessing Tree Drought Resistance and Climate-Growth Relationships under Different Tree Age Classes in a Pinus nigra Arn. ssp. salzmannii Forest. FORESTS 2021. [DOI: 10.3390/f12091161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The magnitude of drought impact in forest ecosystems depends on which group of trees are more severely affected; greater mortality of smaller trees can modulate the trajectories of succession, while the mortality of larger trees can disproportionately offset the ecosystem’s carbon balance. Several studies have documented a greater vulnerability of large trees to extreme droughts while some other studies reported a greater growth reduction in smaller trees during droughts. We tested these hypotheses by comparing tree basal area increment (BAI), drought resistance (i.e., magnitude of growth decline during drought), and resilience (i.e., magnitude of growth recovery after drought) across five different age-classes in black pine (Pinus nigra Arn. ssp. salzmannii) forests in Spain. Our results showed that the BAI patterns, drought resistance, and resilience were strongly influenced by tree age-classes. In addition, the effect of climatic water balance (precipitation minus potential evapotranspiration) on BAI significantly varied among age-classes. The effect of water balance on BAI was lower for younger age-classes (1–39 years of age) compared to older age-classes. We observed a greater growth reduction (i.e., lower resistance) in older trees (>40 years of age) during droughts compared to younger trees (<40 years of age). However, all trees, irrespective of their ages, were able to recover the growth rates after the drought. In general, younger trees showed a greater capacity in recovering the growth rate (i.e., more resilient) than older trees. We detected no significant effects of stand basal area and stand density on BAI, drought resistance, and resilience. Overall, our results indicated that growth of older trees was more negatively affected during drought. Therefore, these older/larger trees can be selected for commercial thinning, or can be released from competition, which can minimize the potential impacts of future droughts in black pine forests in Spain.
Collapse
|