1
|
Wang H, Wu Z, Zhao A, Wang Y, Li Q, Zhang L, Wang Z, Li T, Zhao J. Distinct patterns and processes of eukaryotic phytoplankton communities along a steep elevational gradient in highland rivers. ENVIRONMENTAL RESEARCH 2025; 275:121427. [PMID: 40113062 DOI: 10.1016/j.envres.2025.121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Phytoplankton play a crucial role in biogeochemical cycling and aquatic food webs while also susceptible to environmental variations. However, their response to altitude gradients remains poorly understood. In this study, we applied a metabarcoding approach to explore eukaryotic phytoplankton community structure, co-occurrence networks, and assembly processes along a steep altitudinal gradient (590-4500 m) in the Nyang River and the lower reaches of the Yarlung Zangbo River on the Qinghai-Tibetan Plateau during dry and wet seasons. Using 18S rDNA sequencing, we obtained 2852 amplicon sequence variants. Our results demonstrated that Ochrophyta was the dominant taxon in the eukaryotic phytoplankton community across both seasons. Alpha diversity exhibited distinct seasonal patterns, decreasing monotonically with increasing altitude in the dry season whereas the highest diversity was observed at medium altitudes in the wet season. Phytoplankton co-occurrence networks became more topologically complex as species diversity increased. Among environmental factors, altitude (r = 0.62), water temperature (r = 0.52) and pH (r = 0.51) significantly influenced phytoplankton communities. Stochastic processes globally dominated phytoplankton community assembly (66 %) and became increasingly influential from dry season (51 %) to wet season (71 %). Their impact gradually increased from low altitude (57 %) to medium altitude (64 %), but deterministic processes overwhelming dominated community assembly at the higher altitude in both seasons (dry season: 95 %, wet season 71 %). In summary, these findings enhance our understanding of the spatial and temporal dynamics of eukaryotic phytoplankton communities in highland rivers and the maintenance of planktonic diversity along elevational gradients.
Collapse
Affiliation(s)
- Haotian Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Aiwen Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Youxin Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Lin Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhong Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China; The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
2
|
Liu C, Xu J, Zhao J, Dong J, Jia X, Liu J, Wang X. Copper deposit development potential on the Qinghai-Xizang Plateau in China based on the pressure-state-response framework. Sci Rep 2025; 15:4589. [PMID: 39920214 PMCID: PMC11805962 DOI: 10.1038/s41598-025-89046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
The Qinghai-Xizang Plateau (QXP) in China is a geological treasure trove known for its complex structures and rich mineral resources. Among these, copper stands out as a critical metal for economic development. However, the exploitation of these resources is not without challenges, particularly in balancing the need for economic growth with the preservation of the plateau's delicate ecosystem. In this study, we take into account the intricate interplay between human activities, environmental conditions, and economic strategies. By applying a pressure-state-response (PSR) framework and innovatively establishing a comprehensive potential evaluation index, we are able to quantify the development potential of copper deposits on the QXP and to identify key factors influencing the development potential. The results indicate a varied landscape of copper deposit development potential across the QXP. The state layer in the PSR model represents the most significant obstacle to the development potential of copper resources on the QXP. Certain areas, specifically central Xizang, eastern Xizang, and northwestern Yunnan, show high development potential for copper deposits due to favorable geological conditions and policy environments, and strong infrastructure.
Collapse
Affiliation(s)
- Chonghao Liu
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China.
- Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Jinshan Xu
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
- The fourth geological brigade, Hebei Bureau of Geology and Mineral Resources Exploration and Development, Chengde, 067000, China
- China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jianan Zhao
- Guangdong Mineral Resources Exploration Institute, Guangdong Geological Bureau, Guangzhou, 510800, China
| | - Jian Dong
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
- China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiangying Jia
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
- Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Jing Liu
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
- Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Xiu Wang
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, No. 26, Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
- Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
3
|
Jin C, Jiao J, Wu C, Mu Y, Zheng S, You L, Wu W, Liu J, Jiang B. Sparse large trees in secondary and planted forests highlight the need to improve forest conservation and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176363. [PMID: 39299309 DOI: 10.1016/j.scitotenv.2024.176363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Large trees are essential for carbon storage and biodiversity conservation. While an increasing number of studies have focused on large trees in primary forests, little is known about them in secondary and planted forests. We surveyed 86,936 trees in secondary forests and 91,294 trees in planted forests in Zhejiang, China, to investigate the distribution patterns and determinants of large trees in these forests. We found a mean density of large trees (DBH ≥ 30 cm) of 15 ± 13 stems ha-1 in secondary forests and 11 ± 9 stems ha-1 in planted forests. Moreover, the mean density of trees with DBH ≥ 60 cm was 0.36 stems ha-1, indicating that large trees are particularly rare in secondary and planted forests. These large trees were primarily occurred in secondary forests that living in high-elevation area with less human exploitation and colder and wetter climates, and in planted forests with higher species richness and lower tree density. In addition, the density of large trees in these forests significantly increased with tree species richness and decreased with increasing tree density. These results indicate that the sparse large trees were the legacy of historical human activities in the studied area, but currently, the development of large trees is still limited by the improper forest structure characterized by low species diversity and high tree density. To better conserve large trees, there is an urgent need for enhanced conservation policies for secondary forests, such as establishing forest parks for forests with large trees, and implementing near-natural forest management practices for planted forests, which include planting mixed native tree species and maintaining moderate tree density.
Collapse
Affiliation(s)
- Chao Jin
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiejie Jiao
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China
| | - Chuping Wu
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China.
| | - Yumei Mu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shilu Zheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Lijia You
- Zhejiang Zhanyue Planning and Design Co., Ltd., Hangzhou, Zhejiang, China
| | - Wanben Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China; Department of Urban and Environmental Sociology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Bo Jiang
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Sun X, Li Y, Hu Y, Li Y. Human and natural factors affect habitat quality in ecologically fragile areas: evidence from Songnen Plain, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1444163. [PMID: 39628535 PMCID: PMC11612569 DOI: 10.3389/fpls.2024.1444163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Habitat quality (HQ) has been progressively degrading worldwide in recent decades due to rapid climate change and intensive human activities. These changes not only threaten biodiversity and ecosystem functions, but also impact socio-economic development. Therefore, a few studies have focused on the dynamics of HQ and its natural and anthropogenic drivers. However, many contributions have failed to reveal how these factors interact to impact HQ, especially in ecologically fragile areas. We estimated HQ in the Songnen Plain of Northeast China, an ecologically fragile area, from 2000 to 2020 using the InVEST model and explored the response of HQ to the interactions of natural factors (topography, climate, NDVI) and anthropogenic factors (nighttime light index, population density) influencing HQ using Structural Equation Modelling (SEM). The results showed that 1) HQ decreased constantly from 2000 to 2018, and then increased slightly from 2018 to 2020. 2) In terms of spatial distribution, HQ appeared to be highly heterogeneous with a pattern of 'high HQ in the east - low HQ in the center - high HQ in the west' at each time point. The high-HQ areas were significantly clustered in the eastern parts with dense forests, while the low-HQ areas in the central parts were dominated by a large number of man-made patches of agriculture and towns or cities. 3) The spatial patterns of HQ are mainly affected by the interactions of factors including the natural environment and human disturbance. Natural factors had a greater impact on HQ than human disturbance, and human disturbance factors had significant negative impact among all these factors at 4 time points. Furthermore, the intensity of the impact of various influencing factors on habitat quality, as well as the positive or negative effects of these drivers on habitat quality, changed over time. The most important influencing factor was temperature in 2000 and topography in 2010, 2018, and 2020. This study can provide important suggestions for future ecological protection and restoration in similar ecologically fragile areas.
Collapse
Affiliation(s)
- Xiuli Sun
- School of Environment, Liaoning University, Shenyang, China
| | - Yuehui Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yuanman Hu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yue Li
- School of Environment, Liaoning University, Shenyang, China
| |
Collapse
|
5
|
Huang X, Wu Y, Bao A, Zheng L, Yu T, Naibi S, Wang T, Song F, Yuan Y, De Maeyer P, Van de Voorde T. Habitat quality outweighs the human footprint in driving spatial patterns of Cetartiodactyla in the Kunlun-Pamir Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122693. [PMID: 39369535 DOI: 10.1016/j.jenvman.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
The Human Footprint (HFP) and Habitat Quality (HQ) are critical factors influencing the species' distribution, yet their relation to biodiversity, particularly in mountainous regions, still remains inadequately understood. This study aims to identify the primary factor that affects the biodiversity by comparing the impact of the HFP and HQ on the species' richness of Cetartiodactyla in the Kunlun-Pamir Plateau and four protected areas: The Pamir Plateau Wetland Nature Reserve, Taxkorgan Wildlife Nature Reserve, Middle Kunlun Nature Reserve and Arjinshan Nature Reserve through multi-source satellite remote sensing product data. By integrating satellite data with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)HQ model and utilizing residual and linear regression analysis, we found that: (1) The Wildness Area (WA) predominantly underwent a transition to a Highly Modified Area (HMA) and Intact Area (IA), with a notable 12.02% rise in stable regions, while 58.51% rather experienced a negligible decrease. (2) From 1985 to 2020, the Kunlun-Pamir Plateau has seen increases in the forestland, water, cropland and shrubland, alongside declines in bare land and grassland, denoting considerable land cover changes. (3) The HQ degradation was significant, with 79.81% of the area showing degradation compared to a 10.65% improvement, varying across the nature reserves. (4) The species richness of Cetartiodactyla was better explained by HQ than by HFP on the Kunlun-Pamir Plateau (52.99% vs. 47.01%), as well as in the Arjinshan Nature Reserve (81.57%) and Middle Kunlun Nature Reserve (56.41%). In contrast, HFP was more explanatory in the Pamir Plateau Wetland Nature Reserve (88.89%) and the Taxkorgan Wildlife Nature Reserve (54.55%). Prioritizing the restoration of degraded habitats areas of the Kunlun Pamir Plateau could enhance Cetartiodactyla species richness. These findings provide valuable insights for the biodiversity management and conservation strategies in the mountainous regions.
Collapse
Affiliation(s)
- Xiaoran Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Sciences, Xinjiang University, Urumqi, 830046, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Yangfeng Wu
- Northeast Institute of Geography and Agro-Ecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Anming Bao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; CAS Research Centre for Ecology and Environment of Central Asia, Urumqi, 830011, China; China-Pakistan Joint Research Centre on Earth Sciences, CAS-HEC, Islamabad, 45320, Pakistan
| | - Lei Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Tao Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Sulei Naibi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Ting Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Fengjiao Song
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Yuan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Philippe De Maeyer
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| | - Tim Van de Voorde
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Xu W, Rhemtulla JM, Luo D, Wang T. Common drivers shaping niche distribution and climate change responses of one hundred tree species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123074. [PMID: 39490022 DOI: 10.1016/j.jenvman.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Climate change is increasingly contributing to climatic mismatches, in which habitat suitability changes outpace the dispersal abilities of species. Climate niche models (CNM) have been widely used to assess such impacts on tree species. However, most studies have focused on either a single or a limited number of species, or have employed a fixed set of climate variables for multiple species. These limitations are largely due to the constraints of data availability, the complexity of the modeling algorithms, and integration approaches for the projections of diverse species. Therefore, whether specific climatic drivers determine the climatic niches of multiple tree species remains unclear. In this study, CNMs were developed for 100 economically and ecologically important tree species in China and were used to project their future distribution individually and collectively. Continentality was the predominant climate variable, affecting 71 species, followed by seasonal precipitation, which also significantly influenced over 50 species. Of the 100 tree species, the climate niche extent was projected to expand for 29 ("winners"), contract for 36 ("losers"), be stable for 27, and fluctuate for the remaining eight species. Principal component analysis showed that winners and losers were differentiated by geographic variables and the top five climatic variables, however, not by species type (deciduous vs. evergreen or conifer vs. broadleaf). The regions with the highest species richness were mainly distributed in the Hengduan Mountains, a global biodiversity hotspot, and were predicted to increase from 5.2% to 7.5% of the total area. Areas with low species richness were projected to increase from 33.0% to 42.4%. Significant shifts in species composition were anticipated in these biodiversity-rich areas, suggesting potential disruption owing to species reshuffling. This study highlights the urgent need for proactive forest management and conservation strategies to address the impacts of climate change on tree species and preserve ecological functions by mitigating climatic mismatches. In addition, this study establishes a framework to identify the common environmental drivers affecting niche distribution and evaluates the collective patterns of multiple tree species, thereby providing a scientific reference for enhanced forestry management and climate change mitigation.
Collapse
Affiliation(s)
- Wenhuan Xu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jeanine M Rhemtulla
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dawei Luo
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
7
|
He F, Liang L, Wang H, Li A, La M, Wang Y, Zhang X, Zou D. Amphibians rise to flourishing under climate change on the Qinghai-Tibetan Plateau. Heliyon 2024; 10:e35860. [PMID: 39224369 PMCID: PMC11367033 DOI: 10.1016/j.heliyon.2024.e35860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Amphibian populations are declining globally due to climate change. However, the impacts on the geographic distribution of amphibians on the Qinghai-Tibetan Plateau (QTP), a global biodiversity hotspot with 112 species of amphibians that is sensitive to global climate change, remains unclear. In this study, MaxEnt and barycentre shift analyses were performed to reveal the impact of climate change on the potential future habitats of amphibians on the QTP using the BCC-CSM2-MR global climate model of the Coupled Model Intercomparison Projects Phase 6 (CMIP6) climate pattern with three shared socioeconomic pathways (SSP). In contrast to the widespread decline in the amphibian population, the future scenarios projected an increase in most amphibian habitats on the QTP, accompanied by migration to higher elevations or latitudes under three climatic projections (SSP 1-2.6, 3-7.0, and 5-8.5). Average annual precipitation was the most crucial environmental variable impacting the future distribution of amphibians. The findings indicate that amphibians would flourish under climate change on the QTP, which is of great significance for the protection of amphibians and biodiversity on the QTP.
Collapse
Affiliation(s)
- Fangfang He
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Lu Liang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Huichun Wang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Aijing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, PR China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Xiaoting Zhang
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| | - Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, 810000, PR China
| |
Collapse
|
8
|
Wei M, Feng T, Lin Y, He S, Yan H, Qiao R, Chen Q. Elevation-associated pathways mediate aquatic biodiversity at multi-trophic levels along a plateau inland river. WATER RESEARCH 2024; 258:121779. [PMID: 38772321 DOI: 10.1016/j.watres.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.
Collapse
Affiliation(s)
- Mengru Wei
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Tao Feng
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Yuqing Lin
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Shufeng He
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hanlu Yan
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruxia Qiao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
9
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Zhao Y, Liu S, Liu H, Wang F, Dong Y, Wu G, Li Y, Wang W, Phan Tran LS, Li W. Multi-objective ecological restoration priority in China: Cost-benefit optimization in different ecological performance regimes based on planetary boundaries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120701. [PMID: 38531134 DOI: 10.1016/j.jenvman.2024.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.
Collapse
Affiliation(s)
- Yifei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gang Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, China
| | - Yetong Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wanting Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
11
|
Du B, Ye S, Gao P, Ren S, Liu C, Song C. Analyzing spatial patterns and driving factors of cropland change in China's National Protected Areas for sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169102. [PMID: 38056649 DOI: 10.1016/j.scitotenv.2023.169102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Farming in protected areas frequently challenges ecological conservation goals while supporting local livelihoods. To balance protection and agriculture, a comprehensive understanding of cropland dynamics in protected areas is of paramount importance. However, studies addressing this trade-off are relatively scarce, especially considering explicit Chinese government regulations on population relocation and cropland retirement in National Protected Areas (NPAs). Our study examined the spatial and temporal pattern of cropland in NPAs and explored the covariance between cropland density and species richness. Concurrently, the driving factors of cropland development in NPAs were analyzed using Multiple Linear Regression. The results indicate that the cropland area in NPAs continued to expand, growing from 1.93 to 2.34 million hectares in 2000-2020, with a cropland density of approximately 0.4. Cropland expansion in the northern NPAs, particularly in the resource-rich Northeast (28.12 %) and the Northwest with high marginal agricultural returns (38.26 %), have encroached upon species habitats and aggravated biodiversity loss. Moreover, cities with higher cropland densities in NPAs are usually located at borders, possibly due to decentralized management. The Multiple Linear Regression results show that high cropland density is usually associated with a high population density (β = 0.156) and lower levels of rural education (β = -0.101) and income (β = -0.122). To mitigate the issue of cropland development in NPAs, it is crucial to avoid one-size-fits-all management strategies, strengthen regional legal supervision, adjust fiscal incentives, and promote eco-friendly agriculture. In the north regions, the expansion of cropland in NPAs should be strictly controlled. For the southwest, the positive role of preserving cropland in NPAs for alleviating human-nature conflict and maintaining social stability should be emphasized. This study provides research support for China's exploration of geographically suitable strategies for controlling cropland in NPAs. Moreover, the findings could serve as a reference for the governance of NPAs in other countries.
Collapse
Affiliation(s)
- Bin Du
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Sijing Ye
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China.
| | - Peichao Gao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Shuyi Ren
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Chenyu Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Changqing Song
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Li R, Li X, Yang R, Farooq M, Tian Z, Xu Y, Shao N, Liu S, Xiao W. Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities. INSECTS 2024; 15:131. [PMID: 38392550 PMCID: PMC10889158 DOI: 10.3390/insects15020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
This study explores the impact of anthropogenic land use changes on the macroinvertebrate community structure in the streams of the Cangshan Mountains. Through field collections of macroinvertebrates, measurement of water environments, and delineation of riparian zone land use in eight streams, we analyzed the relationship between land use types, stream water environments, and macroinvertebrate diversities. The results demonstrate urban land use type and water temperature are the key environmental factors driving the differences in macroinvertebrate communities up-, mid-, and downstream. The disturbed streams had lower aquatic biodiversity than those in their natural state, showing a decrease in disturbance-sensitive aquatic insect taxa and a more similar community structure. In the natural woodland area, species distributions may be constrained by watershed segmentation and present more complex community characteristics.
Collapse
Affiliation(s)
- Rui Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Xianfu Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Ronglong Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Muhammad Farooq
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaning Xu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Nan Shao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Shuoran Liu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali 671003, China
| |
Collapse
|
13
|
Wang Y, Gesang Y, Wang Y, Yang Z, Zhao K, Liu J, Li C, Ouzhu L, Wang H, Chen Y, Jiang Q. Source and health risk of urinary neonicotinoids in Tibetan pregnant women. CHEMOSPHERE 2024; 349:140774. [PMID: 38016522 DOI: 10.1016/j.chemosphere.2023.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
High altitude could influence the level of exposure to neonicotinoids, but relevant data remain limited for people living in Tibet. We investigated 476 Tibetan pregnant women from Lhasa of Tibet, China in 2021 and measured eight neonicotinoids and four metabolites in urine. Food consumption was investigated by a food frequency questionnaire. Health risk was assessed by using hazard quotient (HQ) and hazard index (HI) based on acceptable daily dose or chronic reference dose. Neonicotinoids and metabolites were overall detected in 56.5% of urine samples with a median concentration being 0.73 μg g-1 creatinine. Four neonicotinoids or metabolites were detected in more than 10% of urine samples, including N-desmethyl-acetamiprid (47.5%), clothianidin (15.5%), thiamethoxam (16.0%), and imidacloprid (10.5%). Annual household income, family smoking, and pre-pregnancy body mass index were associated with the detection frequencies of neonicotinoids. Pregnant women with a higher consumption frequency of wheat, rice, fresh vegetable, fresh fruit, beef and mutton, fresh milk, yoghourt, candy and chocolate, or carbonated drinks had a higher detection frequency of neonicotinoids. Both HQ and HI were less than one. There was an evident exposure to neonicotinoids in Tibetan pregnant women with both plant- and animal-derived food items as exposure sources, but a low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yangzong Gesang
- Department of Science and Education, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Li Q, Xiong Z, Xiang P, Zhou L, Zhang T, Wu Q, Zhao C. Effects of uranium mining on soil bacterial communities and functions in the Qinghai-Tibet plateau. CHEMOSPHERE 2024; 347:140715. [PMID: 37979803 DOI: 10.1016/j.chemosphere.2023.140715] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The microecological effects of plateau uranium mining are still unknown. In this study, we used 16S rRNA high-throughput sequencing to analyze the impact of plateau uranium mining on the microbial diversity and community structure of tailings soil, tunnel soil, and soil at different depths in an open pit. The results showed that uranium mining significantly reduced soil microbial community richness and diversity indicators, including Chao1, Pielou evenness, and Shannon index (P < 0.05). Uranium mining activities significantly reduced the abundance of RB41, Vicinamidactaceae, and Nitrospira (P < 0.05). Interestingly, the abundance of Thiobacillus, Sphingomonas, and Sulfuriferula significantly increased in the soil samples from various environments and depths during uranium mining (P < 0.05). Beta diversity analysis found that uranium mining resulted in the differentiation of soil microbial communities. Functional enrichment analysis found that uranium mining resulted in the functional enrichment of DNA binding response regulator, DNA helicase, methyl-accepting chemotaxis protein, and Helicase conserved C-terminal domain, whereas cell wall synthesis, nonspecific serine/threonine protein kinase, RNA polymerase sigma-70 factor, and ATP binding cassette transporter were significantly affected by uranium mining (P < 0.05). In addition, we also found that different uranium mining environments and soil depths enriched diverse microbial populations and functions to cope with the environmental pressures that were elicited by uranium mining, including Gaiella, Gemmatimonas, Lysobacter, Pseudomonas, signal transformation histidine kinase, DNA-directed DNA polymerase, and iron complex outer membrane receptor protein functions (P < 0.05). The results have enhanced our understanding of the impact of uranium mining on plateau soil microecological stability and the mechanism of microbial response to uranium mining activities for the first time and aided us in screening microbial strains that can promote the environmental remediation of uranium mining in plateaus.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Xu B, Li J, Pei X, Yang H. Decoupling the response of vegetation dynamics to asymmetric warming over the Qinghai-Tibet plateau from 2001 to 2020. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119131. [PMID: 37783082 DOI: 10.1016/j.jenvman.2023.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Global land surface air temperature data show that in the past 50 years, the rate of nighttime warming has been much faster than that of daytime, with the minimum daily temperature (Tmin) increasing about 40% faster than the maximum daily temperature (Tmax), resulting in a decreased diurnal temperature difference. The Qinghai-Tibet Plateau (QTP) is known as the "roof of the world", where temperatures have risen twice as fast as the global average warming rate in the last few decades. The factors affecting vegetation growth on the QTP are complex and still not fully understood to some extent. Previous studies paid less attention to the explanations of the complicated interactions and pathways between elements that influence vegetation growth, such as climate (especially asymmetric warming) and topography. In this study, we characterized the spatial and temporal trends of vegetation coverage and investigated the response of vegetation dynamics to asymmetric warming and topography in the QTP during 2001-2020 using trend analysis, partial correlation analysis, and partial least squares structural equation model (PLS-SEM) analysis. We found that from 2001 to 2020, the entire QTP demonstrated a greening trend in the growing season (April to October) at a rate of 0.0006/a (p < 0.05). The spatial distribution pattern of partial correlation between NDVI and Tmax differed from that of NDVI and Tmin. PLS-SEM results indicated that asymmetric warming (both Tmax and Tmin) had a consistent effect on vegetation development by directly promoting greening in the QTP, with NDVI values being more sensitive to Tmin, while topographic factors, especially elevation, mainly played an indirect role in influencing vegetation growth by affecting climate change. This study offers new insights into how vegetation responds to asymmetric warming and references for local ecological preservation.
Collapse
Affiliation(s)
- Binni Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jingji Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hailong Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
16
|
Wang F, Liu S, Liu H, Zhao Y, Dong Y, Tran LSP, Li W. Resilience assessment of the nitrogen flow system in food production and consumption for sustainable development on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165223. [PMID: 37392886 DOI: 10.1016/j.scitotenv.2023.165223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A robust and resilient nitrogen (N) flow system can effectively ensure consistent food production and consumption activities while preserving environmental quality. In this study, we constructed an indicator system to evaluate N flow system resilience including food production and consumption, at the county scale on the Qinghai-Tibet Plateau (QTP) from 1998 to 2018. The subsystem coupling coordination degree (CCD) and the effect of N losses on N flow system resilience were subsequently explored. The results indicated that despite the overall N flow system resilience remaining low and exhibiting spatiotemporal disparities from 1998 to 2018, over 90 % of the counties experienced improvements. High resilience areas (>0.15) were mainly concentrated in some counties in Sichuan Province, where N losses were positively correlated with system resilience. The level of resilience depended on agricultural and livestock development, and the CCD of subsystems was also high (>0.5) in this region, with the most balanced environmental and socioeconomic development. The low system resilience areas were concentrated in the eastern part of the QTP, where human activities caused substantial disturbances. The fragmentation of the agro-pastoral system coupled with the low system resilience of the food production and driving pressure subsystems led to low CCD between subsystems. In contrast, the western regions, characterized by a stable food production system, high food self-sufficiency, and weak dependence on external systems, showed a higher degree of system resilience and resistance. Our findings provide a reference for N resource management and policy formulation for food production and consumption in the agricultural and pastoral areas of the QTP.
Collapse
Affiliation(s)
- Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yifei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
17
|
Zhang F, Wang H, Alatalo JM, Bai Y, Fang Z, Liu G, Yang Y, Zhi Y, Yang S. Spatial heterogeneity analysis of matching degree between endangered plant diversity and ecosystem services in Xishuangbanna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96891-96905. [PMID: 37584796 DOI: 10.1007/s11356-023-29172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Biodiversity and ecosystem services (ESs) are closely linked. Human activities have caused critical damage to the habitat and ecosystem function of organisms, leading to decline in global biodiversity and ecosystem services. To ensure sustainable development of local ecological environments, it is critical to analyze the spatial matching degree of biodiversity and ESs and identify ecologically vulnerable areas. Taking Xishuangbanna, southern China, as an example, we constructed a pixel-scale matching degree index to analyze the spatial matching degree of endangered plant diversity (EPD) and four ESs and classified the matching degree into low-low, low-high, high-low, and high-high four types. The results revealed a mismatch relationship of EPD and ESs in more than 70% of areas. Under the influence of altitude and land use/land cover (LULC) type, the matching degree of EPD and ESs showed obvious spatial heterogeneity. In low-altitude areas in the south of Xishuangbanna, EPD and ESs mainly showed mismatch, while high-altitude areas in the west had a better match. Natural forest was the main land cover in which EPD and ESs showed high-high match and its areal proportion was much larger than that of rubber plantation, tea plantation, and cropland. Our findings also stress the need to concentrate conservation efforts on areas exhibiting a low-low match relationship, indicative of potential ecological vulnerability. The pixel-scale spatial matching degree analysis framework developed in this study for EPD and ESs provides high-resolution maps with 30 m × 30 m pixel size, which can support the implementation of ecological protection measures and policy formulation, and has a wide range of applicability. This study provides valuable insights for the sustainable management of biodiversity and ESs, contributing to the strengthening of local ecological environment protection.
Collapse
Affiliation(s)
- Fan Zhang
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Huimin Wang
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, P.O.Box: 2713, Doha, Qatar
| | - Yang Bai
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, 666303, China.
| | - Zhou Fang
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Gang Liu
- Department of Economics and Management, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
| | - Yanling Zhi
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Shiliang Yang
- Research Institute of Management Science, Business School, Hohai University, Nanjing, 211100, China
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
18
|
Liu AK, Liu YY, Su J, Gao J, Dong LJ, Lv QY, Yang QH. Self-efficacy and self-management mediate the association of health literacy and quality of life among patients with TB in Tibet, China: a cross-sectional study. Int Health 2023; 15:585-600. [PMID: 37317980 PMCID: PMC10472895 DOI: 10.1093/inthealth/ihad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND This study aimed to analyze the relationship between health literacy and quality of life in patients with TB in Tibet and explore the mediating effects of self-efficacy and self-management in the relationship between health literacy and quality of life. METHODS We used a convenience sampling method to select 271 cases of patients with TB in Tibet to conduct a survey of their general information, health literacy, self-management, self-efficacy and quality of life, and to construct structural equation models. RESULTS The total health literacy score of patients with TB in Tibet was 84.28±18.57, while the lowest score was for information acquisition ability (55.99±25.66). Scores for quality of life were generally lower than the norm (patients with chronic diseases from other cities in China) (p<0.01). Moreover, self-efficacy and self-management mediated the relationship between health literacy and quality of life (p<0.05). CONCLUSIONS In Tibet, patients with TB have a low level of health literacy and an average level of quality of life. Emphasis should be placed on improving information access literacy, role-physicals and role-emotional to improve overall quality of life. The mediating roles of self-efficacy and self-management between health literacy and quality of life may provide a basis for further interventions.
Collapse
Affiliation(s)
- An-kang Liu
- School of Nursing, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-yao Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
- Internal Medicine, Nyingchi People's Hospital, Nyingchi, Tibet Autonomous Region, 860000, China
| | - Jin Su
- School of Nursing, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jing Gao
- Nursing Department, Nyingchi People's Hospital, Nyingchi, Tibet Autonomous Region, 860000, China
| | - Li-juan Dong
- Internal Medicine, Nyingchi People's Hospital, Nyingchi, Tibet Autonomous Region, 860000, China
| | - Qi-yuan Lv
- School of Nursing, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qiao-hong Yang
- School of Nursing, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
19
|
Geographic detector-based quantitative assessment enhances attribution analysis of climate and topography factors to vegetation variation for spatial heterogeneity and coupling. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
Wang F, Liu S, Liu H, Liu Y, Yu L, Wang Q, Dong Y, Sun J, Tran LSP, Li W. Aggravation of nitrogen losses driven by agriculture and livestock farming development on the Qinghai-Tibet Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116795. [PMID: 36442330 DOI: 10.1016/j.jenvman.2022.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) losses from crop-livestock production is a major threat to the environment and human health at regional, national and global scales. A comprehensive understanding of the sources, spatiotemporal distribution and drivers of N losses is of great significance for mitigating its negative impacts and promoting N sustainable management. Here, we used the county-scale N flow model to quantitatively analyze the N losses and their driving forces of crop-livestock production on the Qinghai-Tibet Plateau (QTP). Between 2000 and 2018, the total N losses increased for more than 79% of counties on the QTP. The hotspot areas accounted for over 80% of total N losses, expanding from the east and south to the north and west of the QTP. NH3 was the main source of atmospheric N losses (over 80%) while the direct discharge of manure was the main source of water N losses. Structural equation modeling (SEM) showed that chemical fertilizer caused the largest driving effect on atmospheric N losses, and the total output value of agriculture and forestry was the main driver of water N losses. Uneven distribution of crop production and livestock contributed to the aggravation of N losses. Over 70% of counties had grater manure N excretion than crops could take up, and large proportion of manure could not be returned to the field. More than 90% of the counties used grater amount of chemical fertilizer N than crops could take up, indicating that livestock manure has not yet fully replaced chemical fertilizer N. The results provide effective guidance and support for N utilization and management of livestock in agricultural and pastoral areas.
Collapse
Affiliation(s)
- Fangfang Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yixuan Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lu Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qingbo Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian Sun
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
21
|
Hu Y, Wang H, Zhou B, Li Z, Jia H, Deji P, Liu N, Wei J. Effects of cadmium stress on fruits germination and growth of two herbage species. Open Life Sci 2023; 18:20220544. [PMID: 37070076 PMCID: PMC10105554 DOI: 10.1515/biol-2022-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 04/19/2023] Open
Abstract
Cadmium (Cd) pollution is a global environmental problem. It is of great significance to find a kind of pasture that can grow normally in a cadmium environment, especially in the Tibetan Plateau. We studied the fruit germination and fruit growth of Elymus sinsubmuticus S.L. Chen and Elymus tangutorum (Nevski), native plants of the Tibetan Plateau, in different cadmium environments. The results showed that with increased cadmium stress, the fruit germination rate, final germination rate, fruit-vigor, average germination time, and germination-speed index for the two grass species gradually decreased, and the 50% germination time for the seed gradually increased. Root length, biomass, and the number of leaves decreased in both species. We quantified the fruit germination and growth of plants in the cadmium environment and found that E. sinosubmuticus S.L. Chen had better fruit germination and fruit growth, and it had the development potential of cadmium pollution control.
Collapse
Affiliation(s)
- Ying Hu
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Huichun Wang
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
- Key Lab. of Medicinal Animal and Plant Resources on the Qinghai–Tibet Plateau, Xi’ning 810008, China
- The south of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
| | - Biyao Zhou
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Zhengke Li
- Qinghai Province Ecological Environment Monitoring Center, Xi’Ning 810007, China
| | - Huiping Jia
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Pengmao Deji
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
| | - Nian Liu
- College of Life Sciences, Qinghai Normal University, Xi’ning 810008, China
- Key Lab. of Medicinal Animal and Plant Resources on the Qinghai–Tibet Plateau, Xi’ning 810008, China
| | - Jingjing Wei
- College of Geographical Sciences, Qinghai Normal University, Xi’ning 810008, China
| |
Collapse
|
22
|
Zhang X, Wang W, Cao Z, Yang H, Wang Y, Li S. Effects of altitude on the gut microbiome and metabolomics of Sanhe heifers. Front Microbiol 2023; 14:1076011. [PMID: 36910192 PMCID: PMC10002979 DOI: 10.3389/fmicb.2023.1076011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Extreme environments at high altitudes pose a significant physiological challenge to animals. We evaluated the gut microbiome and fecal metabolism in Sanhe heifers from different altitudes. Methods Twenty Sanhe heifers (body weight: 334.82 ± 13.22 kg, 15-month-old) selected from two regions of China: the Xiertala Cattle Breeding Farm in Hulunbeier, Inner Mongolia [119°57' E, 47°17' N; approximately 700 m altitude, low altitude (LA)] and Zhizhao Dairy Cow Farm in Lhasa, Tibet [91°06' E, 29°36' N; approximately 3,650 m altitude, high altitude (HA)], were used in this study. Fecal samples were collected and differences in the gut microbiota and metabolomics of Sanhe heifers were determined using 16S rRNA gene sequencing and metabolome analysis. Results and discussion The results showed that altitude did not significantly affect the concentrations of fecal volatile fatty acids, including acetate, propionate, butyrate, and total volatile fatty acids (p > 0.05). However, 16S rRNA gene sequencing showed that altitude significantly affected gut microbial composition. Principal coordinate analysis based on Bray-Curtis dissimilarity analysis revealed a significant difference between the two groups (p = 0.001). At the family level, the relative abundances of Peptostreptococcaceae, Christensenellaceae, Erysipelotrichaceae, and Family_XIII were significantly lower (p < 0.05) in LA heifers than in HA heifers. In addition, the relative abundances of Lachnospiraceae, Domibacillus, Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Porphyromonadaceae, and Spirochaetaceae were significantly higher in HA heifers than in LA heifers (p < 0.05). Metabolomic analysis revealed the enrichment of 10 metabolic pathways, including organismal systems, metabolism, environmental information processing, genetic information processing, and disease induction. The genera Romboutsia, Paeniclostridium, and g_unclassified_f_Lachnospiraceae were strongly associated with the 28 differential metabolites. This study is the first to analyze the differences in the gut microbiome and metabolome of Sanhe heifers reared at different altitudes and provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Wang X, Liu X, Wang L, Yang J, Wan X, Liang T. A holistic assessment of spatiotemporal variation, driving factors, and risks influencing river water quality in the northeastern Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157942. [PMID: 35995155 DOI: 10.1016/j.scitotenv.2022.157942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The Qinghai-Tibet Plateau (QTP) is the source for many of the most important rivers in Asia. It is also an essential ecological barrier in China and has the characteristic of regional water conservation. Given this importance, we analyzed the spatiotemporal distribution patterns and trends of 10 water quality parameters. These measurements were taken monthly from 67 monitoring stations in the northeastern QTP from 2015 to 2019. To evaluate water quality trends, major factors influencing water quality, and water quality risks, we used a series of analytical approaches including Mann-Kendall test, Boruta algorithm, and interval fuzzy number-based set-pair analysis (IFN-SPA). The results revealed that almost all water monitoring stations in the northeastern QTP were alkaline. From 2015 to 2019, the water temperature and dissolved oxygen of most monitoring stations were significantly reduced. Chemical oxygen demand, permanganate index, five-day biochemical oxygen demand, total phosphorus, and fluoride all showed a downward trend across this same time frame. The annual average total nitrogen (TN) concentration fluctuation did not significantly decrease across the measured time frame. Water quality index (WQI-DET) indicated bad or poor water quality in the study area; however, water quality index without TN (WQI-DET') reversed the water quality value. The difference between the two indexes suggested that TN was a significant parameter affecting river water quality in the northeastern QTP. Both Spearman correlation and Boruta algorithm show that elevation, urban land, cropland, temperature, and precipitation influence the overall water quality status in the northeastern QTP. The results showed that between 2015 and 2019, most rivers monitored had a relatively low risk of degradation in water quality. This study provides a new perspective on river water quality management, pollutant control, and risk assessment in an area like the QTP that has sensitive and fragile ecology.
Collapse
Affiliation(s)
- Xueping Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Liu Y, Liu S, Wang F, Liu H, Li M, Sun Y, Wang Q, Yu L. Identification of key priority areas under different ecological restoration scenarios on the Qinghai-Tibet Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116174. [PMID: 36095988 DOI: 10.1016/j.jenvman.2022.116174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
With the intensification of climate warming and human activities, the ecosystems on the Qinghai-Tibet Plateau (QTP) are facing increasing threats which leads to extensive ecological degradation. Ecological restoration measures need to be implemented to improve biodiversity and ecosystem services to mitigate the impact of climate change and human disturbances. However, the key priority areas (KPAs) for ecological restoration are not clear on the QTP, and the benefits of ecosystem services for ecological restoration are often ignored. In this study, we are the first to identify the KPAs based on the quantitative evaluation method and multicriteria optimization algorithm under five restoration scenarios aiming at ecosystem service improvement on the QTP. Results showed that: (1) The benefits of ecological restoration for climate change mitigation and associated costs under different scenarios showed generally similar spatial variability, exhibiting higher in the south and lower in the west, which were different from those for biodiversity. (2) The restoration priorities in Sichuan and Yunnan were generally higher under scenarios Ⅱ and Ⅴ, while in Xinjiang, Sichuan, Yunnan, and western and southern Tibet were higher under scenarios Ⅰ, Ⅲ and Ⅳ. (3) For different ecosystems, the similarities lied in that the restoration priorities of wetland ecosystem were the highest, while those of desert ecosystem were the lowest under five restoration scenarios. (4) When the restoration area requirement was 25% of the total degraded area, the highest restoration priority levels under scenarios Ⅰ, Ⅲ and Ⅳ were mainly distributed in Guinan, Renbu, Nierong and Chayu counties, and under scenarios Ⅱ and Ⅴ were mainly distributed in Renbu, Lang and Guinan counties. When the restoration area requirements were 50% and 75% of the total degraded area, the counties with higher restoration priority levels under scenario Ⅱ were different from those under other four scenarios. This study identified the KPAs under different restoration scenarios, which provided references for the restoration measures implementation on the QTP.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Shiliang Liu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China.
| | - Fangfang Wang
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Hua Liu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Mingqi Li
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Yongxiu Sun
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Qingbo Wang
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Lu Yu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
25
|
Pei X, Ren X, Hu J, Onditi KO, Xu Y, Zhang M, Chang W, Chen Z. Human Disturbance and Geometric Constraints Drive Small Mammal Diversity and Community Structure along an Elevational Gradient in Eastern China. Animals (Basel) 2022; 12:1915. [PMID: 35953902 PMCID: PMC9367490 DOI: 10.3390/ani12151915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms influencing patterns and processes of biological diversity is critical to protecting biodiversity, particularly in species-rich ecosystems such as mountains. Even so, there is limited knowledge of biodiversity patterns and processes in the mountains of eastern China, especially about small mammals. In this study, we examined the taxonomic, functional, and phylogenetic diversity of small mammal distribution and community structure along the elevational gradient of Qingliang Mountain, eastern China. We then evaluated how they are influenced by space (area and mid-domain effect (MDE)), environment (temperature, precipitation, and normalized difference vegetation index (NDVI)), and human disturbance. The results showed hump-shaped patterns of taxonomic and phylogenetic diversity along elevation gradients, peaking at 1000 m, unlike functional diversity, which peaked at lower elevations (600 m). The mean pairwise distance and mean nearest taxon distance of functional and phylogenetic variance (MFD and MPD, respectively) were also incongruent. The MFD and MPD showed hump-shaped patterns along elevations; however, unlike MFD, which peaked at lower elevations (600 m), MPD peaked at higher elevations (1200 m). The mean nearest functional taxon distance (MNFD) decreased, while the mean nearest phylogenetic taxon distance (MNTD) increased along the elevation gradient. The higher elevations were functionally more clustered, while the lower elevations were phylogenetically more clustered, suggesting that environmental filtering for traits was stronger at higher elevations. In comparison, phylogenetic conservatism of ecological niches had a stronger influence at lower elevations. The diversity and community structure indices were inconsistently explained, with human disturbance and MDE accounting for the biggest proportions of the model-explained variances. Overall, the results confirm that environmental filtering and human disturbance significantly influence small mammals' diversity and community structure. These findings also emphasize the need for increased conservation efforts in the middle and lower elevation regions of Qingliang Mountain.
Collapse
Affiliation(s)
- Xiaoxin Pei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| | - Xueyang Ren
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| | - Jiangxiao Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| | - Kenneth Otieno Onditi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China;
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Yifan Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| | - Min Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wenqing Chang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| | - Zhongzheng Chen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (X.P.); (X.R.); (J.H.); (Y.X.); (M.Z.); (W.C.)
| |
Collapse
|
26
|
Zhang X, Huang S, Li S, Wang W. Effects of Altitude on the Digestion Performance, Serum Antioxidative Characteristics, Rumen Fermentation Parameters, and Rumen Bacteria of Sanhe Heifers. Front Microbiol 2022; 13:875323. [PMID: 35572662 PMCID: PMC9097872 DOI: 10.3389/fmicb.2022.875323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The production efficiency of dairy cows is affected by altitude, with lower efficiency reported at higher altitudes. However, only a few studies have investigated the digestion performance, serum antioxidative characteristics, rumen fermentation performance, and rumen bacteria of Sanhe heifers at different altitudes. Therefore, in this study, we explored the effects of altitude on these aspects of Sanhe heifers. We evaluated the effects of altitude on the apparent digestibility of nutrients, serum antioxidative characteristics, rumen fermentation parameters, and rumen bacteria in Sanhe heifers. Twenty Sanhe heifers from the same herd and managed with the same practice were used. However, the heifers were from two regions in China: 10 were fed in Hulunbuir City, Inner Mongolia Autonomous Region (119°57'E, 47°17'N; approximately 700 m altitude, named LA) and 10 were fed in Lhasa City, Tibet Autonomous Region (91°06'E, 29°36'N; approximately 3,750 m altitude, named HA). The dry matter intake (DMI), average daily gain (ADG), and DMI/ADG ratio were higher (p < 0.05) in LA than in HA heifers, whereas the apparent total tract digestibility of dry matter, ether extract, and crude proteins were higher (p < 0.05) in the HA group. Compared with LA heifers, the HA heifers showed decreased (p < 0.05) serum concentrations of superoxide dismutase and glutathione peroxidase and increased serum concentration of hydrogen peroxide (p < 0.05). Altitude did not significantly affect the volatile fatty acid concentration in the rumen, but HA presented a lower acetate-to-propionate ratio than LA. The 16S rRNA gene sequencing data showed that altitude significantly affected the rumen microbial composition. At the phylum level, the HA heifers presented a lower relative abundance of Actinobacteria (p < 0.05) and higher relative abundance of Spirochaetae (p < 0.05) than the LA heifers. The correlation analysis revealed that the operational taxonomic units belonging to the genus Prevotella_1 were correlated (p < 0.05) with altitude and DMI. The results indicate that altitude can influence the apparent digestibility of nutrients, serum antioxidant capacity, rumen fermentation, and rumen bacteria composition of Sanhe heifers. The study provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
| | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
The Impacts of Different Anthropogenic Disturbances on Macroinvertebrate Community Structure and Functional Traits of Glacier-Fed Streams in the Tianshan Mountains. WATER 2022. [DOI: 10.3390/w14081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macroinvertebrates are sensitive to environmental disturbances, however, the effects of human activities on macroinvertebrate community structures and functional traits in glacier-fed streams are concerning. To elucidate the effects of horse, cattle and sheep grazing, hot spring scenic development, and historic iron ore mine development on macroinvertebrate communities, we conducted a study in three glacier-fed streams of the Tianshan Mountains in northwest China in April 2021. Our results showed that the species richness and density significantly decreased due to grazing (p < 0.05). There were more taxa with resilience traits such as “small size at maturity” in the grazing stream. The EPT richness and density affected by hot spring scenic development significantly decreased compared to the undisturbed point (p < 0.05). There was a significant increase in taxa with resistance traits such as “bi-or-multivoltine” in the hot spring stream. The stream affected by historic mine development is currently in the self-recovery stage following the closure of the mine ten years ago. Additionally, the species richness, EPT richness, and density at the mining site were significantly higher than the source site (p < 0.05), reflecting that the habitat fragmentation caused by previous mining activities prevented the upward dispersal of macroinvertebrates. The taxa in the mining stream were also characterized by higher resistance traits such as “abundant occurrence in drift”. These results were attributed to the impacts of human disturbance on habitat stability, habitat heterogeneity, water quality, and material cycling of stream ecosystems, indicating human disturbance on the efficiency of resource utilization and functional diversification. In addition, our results showed that functional indicators of macroinvertebrate communities are helpful for monitoring and evaluating habitat conditions.
Collapse
|
28
|
Lu J, Yang S, Wang C, Wang H, Gong G, Xi Y, Pan J, Wang X, Zeng J, Zhang J, Li P, Shen Q, Shan T, Zhang W. Gut Virome of the World's Highest-Elevation Lizard Species ( Phrynocephalus erythrurus and Phrynocephalus theobaldi) Reveals Versatile Commensal Viruses. Microbiol Spectr 2022; 10:e0187221. [PMID: 35196818 PMCID: PMC8865479 DOI: 10.1128/spectrum.01872-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
The gut virome is a reservoir of diverse symbiotic and pathogenic viruses coevolving with their hosts, and yet limited research has explored the gut viromes of highland-dwelling rare species. Using viral metagenomic analysis, the viral communities of the Phrynocephalus lizards living in the Qinghai-Tibet Plateau were investigated. Phage-encoded functional genes and antibiotic resistance genes (ARGs) were analyzed. The viral communities of different lizard species were all predominated by bacteriophages, especially the Caudovirales order. The virome of Phrynocephalus erythrurus living around the Namtso Lake possessed a unique structure, with the greatest abundance of the Parvoviridae family and the highest number of exclusive viral species. Several vertebrate-infecting viruses were discovered, including caliciviruses, astroviruses, and parvoviruses. Phylogenetic analyses demonstrated that the virus hallmark genes of bacteriophages possessed high genetic diversity. After functional annotation, the majority of phage-associated functional genes were classified in the energy metabolism category. In addition, plenty of ARGs belonging to the multidrug category were discovered, and five ARGs were exclusive to the virome from Phrynocephalus theobaldi. This study provided the first insight into the structure and function of the virome in highland lizards, contributing to the protection of threatened lizard species. Also, our research is of exemplary significance for the gut virome research of lizard species and other cold-blooded and highland-dwelling animals, prompting a better understanding of the interspecific differences and transmission of commensal viruses. IMPORTANCE The Phrynocephalus lizards inhabiting the Qinghai-Tibet Plateau (QTP) are considered to be the highest-altitude lizard species in the world, and they have been added to the IUCN list of threatened species. Living in the QTP with hypoxic, arid, natural conditions, the lizards presented a unique pattern of gut virome, which could provide both positive and negative effects, such as the enrichment of functional genes and the dissemination of antibiotic resistance genes (ARGs). This work provides the foundation for further research on the gut virome in these endangered lizard species and other cold-blooded and highland-dwelling animals, contributing to the maintenance of ecological balance on the plateau.
Collapse
Affiliation(s)
- Juan Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Wang
- The Affiliated Huai’an Hospital, Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiamin Pan
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ju Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
29
|
Wang X, Huang X, Zhang X, Yan Y, Zhou C, Zhou J, Feng X. Analysis of the spatio-temporal change of social-ecological system coupling: A case study in the Qinghai-Tibet Plateau. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|