1
|
Taylor AJ, Marques JA, Marangoni LFDB, Taylor MMN, Pereira CM, Abrantes DP, Castro CBE, Calderon EN, Costa PG, Bianchini A. Linking riverine metal and pesticide pollution to biochemical biomarker responses in the scleractinian coral Mussismilia hispida. MARINE POLLUTION BULLETIN 2025; 218:118181. [PMID: 40409060 DOI: 10.1016/j.marpolbul.2025.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Concentrations of metals (Cu, Cd, Cr, and Pb) were assessed in the skeleton (sCu, sCd, sCr, and sPb) and tissue (sCu, sCd, sCr, and sPb) of the scleractinian coral Mussismilia hispida, alongside pesticide (organophosphate and organochlorine) concentrations and biomarker (Ca-ATPase and carbonic anhydrase) responses in tissue samples. Corals were collected from four sites at varying distances (2.0-9.4 km) from the Buranhém River mouth towards the Recife de Fora Municipal Natural Park - RFMNP (Porto Seguro, Bahia, Brazil). sCu, tCu and sPb concentrations were higher in corals closer to the river mouth. Tissue pesticide concentrations and Ca-ATPase activity remained consistent across sampling sites and seasons. However, carbonic anhydrase activity was greater in corals from sampling sites closer to the river mouth. Biomarkers were not significantly related to seawater physicochemical parameters and pesticide concentrations regardless of the sampling site and season. However, Ca-ATPase activity was positively influenced by tCd and tPb concentrations and negatively affected by tCu and tCr concentrations. A positive influence of sCu and sPb on carbonic anhydrase activity was observed, especially towards the sampling sites closer to the river mouth. These findings point out the Buranhém River as source of chemical contaminants, posing biological risks to corals in the RFMNP. This study provides crucial data on metal and pesticide contamination in South Atlantic's coral reefs, contributing to the development of conservation and management strategies in coastal coral reefs. Notably, this is the first report of pesticide contamination in corals from the South Atlantic Ocean.
Collapse
Affiliation(s)
- Andrew James Taylor
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Joseane Aparecida Marques
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Laura Fernandes de Barros Marangoni
- Programa de Pós-graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Marina Marinho Novazzi Taylor
- Curso de Graduação em Oceanologia, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Cristiano Macedo Pereira
- Programa de Pós-graduação em Zoologia, Universidade Federal do Rio de Janeiro, Parque Quinta da Boa Vista, São Cristovão, Rio de Janeiro, RJ 20940-040, Brazil
| | - Douglas Pinto Abrantes
- Programa de Pós-graduação em Zoologia, Universidade Federal do Rio de Janeiro, Parque Quinta da Boa Vista, São Cristovão, Rio de Janeiro, RJ 20940-040, Brazil
| | - Clovis Barreira E Castro
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil
| | - Emiliano Nicolas Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil; Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, 27965-045 Macaé, RJ, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45.807-000, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
2
|
Zhou Y, Liu F, Yuan M, Liu X, Li Q, Zhao H. Herbicide prometryn aggravates the detrimental effects of heat stress on the potential for mutualism of Symbiodiniaceae. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137389. [PMID: 39893977 DOI: 10.1016/j.jhazmat.2025.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Ocean warming threatens the health of corals globally, and superimposed coastal environmental pollution can result in severe and irreversible coral bleaching. However, the responses of the coral symbiont Symbiodiniaceae to multiple stresses remain largely unknown. This study investigated the response of the coral symbiotic algae Cladocopium sp. to short-term exposure (4 days) to an environmentally relevant concentration (1 μg L-1) of the photosystem II (PSII) herbicide prometryn under heat stress (32 ℃) through physiological and omic analyses. These results showed that co-stress affected the photosynthetic efficiency of Cladocopium sp. negatively. Overproduction of reactive oxygen species and subsequent oxidative stress under co-stress activated distinct regulatory pathways in Cladocopium sp. Transcriptomic and proteomic analyses revealed that prometryn exacerbated heat stress-induced photosystem damage and reduced the regulatory capacity of Cladocopium sp. Moreover, co-stress disrupted energy metabolism, and further impaired nitrogen assimilation and nutrient transfer processes, potentially compromising the symbiotic potential between corals and Symbiodiniaceae. In summary, this study offers a valuable insight into understanding the molecular responses of Symbiodiniaceae to thermal and prometryn co-stress. It helps uncover the potential toxicity mechanisms induced by herbicide on coral symbionts in the context of climate change.
Collapse
Affiliation(s)
- Yanyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Fucun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Meile Yuan
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Qipei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Mulà C, Bradshaw CJA, Cabeza M, Manca F, Montano S, Strona G. Restoration cannot be scaled up globally to save reefs from loss and degradation. Nat Ecol Evol 2025; 9:822-832. [PMID: 40200110 PMCID: PMC12122368 DOI: 10.1038/s41559-025-02667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
Coral restoration is gaining popularity as part of a continuum of approaches addressing the widespread, recurring mass mortality events of corals that-together with elevated and chronic mortality, slower growth and recruitment failure-threaten the persistence of coral reefs worldwide. However, the monetary costs associated with broad-scale coral restoration are massive, making widespread implementation challenging, especially with the lack of coordinated and ecologically informed planning. By combining a comprehensive dataset documenting the success of coral restoration with current and forecasted environmental, ecological and climate data, we highlight how such a coordinated and ecologically informed approach is not forthcoming, despite the extent of previous and ongoing efforts. We show that: (1) restoration sites tend to be disproportionally close to human settlements and therefore more vulnerable to local anthropogenic impacts; (2) the immediate outcomes of restoration do not appear to be influenced by relevant ecological and environmental predictors such as cumulative impact; and (3) most restored localities have a high and severe bleaching risk by the middle of this century, with more than half of recently restored sites already affected. Our findings highlight the need for the coral reef community to reinforce joint development of restoration guidelines that go beyond local objectives, with attention to ocean warming trends and their long-term impacts on coral resilience and restoration success.
Collapse
Affiliation(s)
- Clelia Mulà
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Corey J A Bradshaw
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
- Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, Cairns, Queensland, Australia
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Federica Manca
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Simone Montano
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- Marine Research and High Education Center, Magoodhoo Island, Republic of Maldives
| | | |
Collapse
|
4
|
de Jong C, van Os I, Sepúlveda-Rodríguez G, de Baat ML, Schoepf V. High-resolution temporal assessment of physicochemical variability and water quality in tropical semi-enclosed bays and coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178810. [PMID: 39965373 DOI: 10.1016/j.scitotenv.2025.178810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Tropical coastlines featuring mangrove, seagrass, and coral habitats are of immense ecological and socio-economic importance, supporting biodiversity, carbon storage, coastal protection, fisheries, and tourism. However, climate change, coastal development, and low water quality increasingly threaten these interconnected coastal ecosystems, particularly in semi-enclosed bays where the impacts of these stressors are often amplified. Yet, physicochemical conditions are rarely assessed at sufficient temporal resolution (i.e., diel and seasonal variation) and time-integrated pollution monitoring is rarely performed. Here, we used a multi-disciplinary approach to assess >20 abiotic parameters characterizing two mangrove- and seagrass-dominated inland bays and two nearby coral reefs in Curaçao (southern Caribbean) during the cool, dry season and warm, wet season. This was combined with time-integrated pollution monitoring using bioindicators to assess nutrients and trace metal pollution (inland bays only), and passive samplers and bioassays to assess organic chemical pollution (all four sites) during the wet season. This approach revealed a previously undocumented extent of strong diel and seasonal environmental variability in Curaçao's inland bays, with temperature, pH, and dissolved oxygen frequently reaching values predicted under moderate-to-severe future climate scenarios as outlined by the IPCC (2021). In addition, the inland bays had greater nutrient concentrations (especially ammonium) and potential ecotoxicological risks than the nearby reefs during the wet season due to run-off and anthropogenic activities. These findings emphasize the importance of high-resolution monitoring to understand risks across appropriate temporal scales and establish an environmental baseline against which future monitoring can be benchmarked. Moreover, our study provides a robust water quality assessment framework that can be used by natural resource managers to monitor reef-associated habitats and conserve their high ecological and socio-economic value. Overall, our work highlights the urgent need to improve monitoring, water quality, and protection of these valuable reef-associated habitats.
Collapse
Affiliation(s)
- Chiara de Jong
- Dept. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Iris van Os
- Dept. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Guadalupe Sepúlveda-Rodríguez
- Dept. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Dept. of Zoology, Stockholm University, Svante Arrhenius Väg 18b, 11418 Stockholm, Sweden
| | - Milo L de Baat
- Dept. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Verena Schoepf
- Dept. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; UWA Ocean Institute, University of Western Australia, Fairway, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Liang H, Pan CG, Peng FJ, Hu JJ, Zhu RG, Zhou CY, Liu ZZ, Yu K. Integrative transcriptomic analysis reveals a broad range of toxic effects of triclosan on coral Porites lutea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136033. [PMID: 39368358 DOI: 10.1016/j.jhazmat.2024.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 μg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 μg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.
Collapse
Affiliation(s)
- Hao Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen-Zhu Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Luo L, Xue P, Chen X, Gan P, Li X, Yu K, Zhang Y. Possible toxification mechanisms of acute and chronic pentachlorophenol to Montipora digitata: Limitation of energy supply and immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175069. [PMID: 39079632 DOI: 10.1016/j.scitotenv.2024.175069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Pentachlorophenol (PCP) is widely found in coastal environments and has various adverse effects, and its potential impact on coral reef ecosystems concerning. The scleractinian coral Montipora digitata was used for PCP stress experiments in this study. Phenotypes, physiological indicators, microbial diversity analysis and RNA sequencing were used to investigate the mechanisms underlying the responses of corals to acute and chronic PCP exposure. After 96 h of acute exposure, coral bleaching occurred at 1000 μg/LPCP and there was a significant decrease in Symbiodiniaceae density, Fv/Fm, and chlorophyll a content. Exposure to different concentrations of PCP significantly increased the content of malondialdehyde (MDA), leading to oxidative stress in corals. Chronic PCP exposure resulted in bleaching at 60 days, with the Fv/Fm significantly reduced to 0.461. Microbial diversity analysis revealed an increase in the abundance of potential pathogens, such as Vibrio, during acute PCP exposure and the emergence of the degrading bacterium Delftia during chronic PCP exposure. Transcriptional analysis showed that PCP exposure caused abnormal carbohydrate and amino acid metabolism in zooxanthella, which affected energy supply, induced immune responses, and disrupted symbiotic relationships. Corals respond to injury by boosting the expression of genes associated with signal transduction and immune response. Additionally, the expression of genes associated with environmental adaptation increased with chronic PCP exposure, which is consistent with the results of the microbial diversity analysis. These results indicate that PCP exposure might affect the balance of coral- zooxanthellae symbiosis in the stony coral M. digitata, impairing coral health and leading to bleaching.
Collapse
Affiliation(s)
- Lan Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pin Gan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Paxton AB, Foxfoot IR, Cutshaw C, Steward DN, Poussard L, Riley TN, Swannack TM, Piercy CD, Altman S, Puckett BJ, Storlazzi CD, Viehman TS. Evidence on the ecological and physical effects of built structures in shallow, tropical coral reefs: a systematic map. ENVIRONMENTAL EVIDENCE 2024; 13:12. [PMID: 39294693 PMCID: PMC11378790 DOI: 10.1186/s13750-024-00336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Shallow, tropical coral reefs face compounding threats from climate change, habitat degradation due to coastal development and pollution, impacts from storms and sea-level rise, and pulse disturbances like blast fishing, mining, dredging, and ship groundings that reduce reef height and complexity. One approach toward restoring coral reef physical structure from such impacts is deploying built structures of artificial, natural, or hybrid (both artificial and natural) origin. Built structures range from designed modules and repurposed materials to underwater sculptures and intentionally placed natural rocks. Restoration practitioners and coastal managers increasingly consider incorporating - and in many cases have already begun to incorporate - built structures into coral reef-related applications, yet synthesized evidence on the ecological (coral-related; e.g., coral growth, coral survival) and physical performance of built structures in coral ecosystems across a variety of contexts (e.g., restoration, coastal protection, mitigation, tourism) is not readily available to guide decisions. To help fill this gap and inform management decisions, we systematically mapped the global distribution and abundance of published evidence on the ecological (coral-related) and physical performance of built structure interventions in shallow (≤ 30 m), tropical (35°N to 35°S) coral ecosystems. METHODS To identify potentially relevant articles, we used predefined and tested strategies to search two indexing platforms, one bibliographic database, two open discovery citation indexes, one web-based search engine, one novel literature discovery tool, 19 organizational websites, and information requested from stakeholders. Discovered articles were screened according to preset eligibility criteria first by title and abstract and second by full text. Articles included during full text screening were coded to extract metadata following a predefined framework. We analyzed and visualized the evidence base to answer our primary and secondary research questions and to identify knowledge clusters and gaps. Findings are reported in a narrative synthesis. RESULTS Our search discovered > 20,000 potentially relevant unique articles, of which 258 were included in the systematic map. The evidence base spans 50 countries, and the volume of evidence increased over the past five decades. Built structures were most commonly installed for coral restoration (61%) or coastal protection (12%). Structures were predominately characterized as artificial (87%), with fewer hybrid or natural interventions. Evidence clusters existed for intentionally designed artificial structures and outcomes associated with coral-related ecological performance, including coral mortality, growth, recruitment, cover, and diversity. Pronounced evidence gaps occurred at the intersection of several ecological coral-related performance outcomes (e.g., connectivity, microbiome) across all types of built structures; gaps also existed across most ecological coral-related outcomes for artwork and repurposed artificial structures. Physical performance of built structures was most frequently evaluated for outcomes related to waves (n = 14) and sediment and morphology (n = 11) with pervasive evidence gaps across other outcomes like storm surge and water level. CONCLUSIONS While the systematic map highlighted several evidence clusters, it also revealed pronounced evidence gaps surrounding the coral-related ecological and physical performance of built structures in coral ecosystems. The compiled evidence base will help inform policy, management, and future consideration of built structures in reef-related applications, including habitat restoration, environmental mitigation, and coastal protection. Map findings also point to promising future research avenues, such as investigating seascape-scale ecological effects of and the physical performance of built structures.
Collapse
Affiliation(s)
- Avery B Paxton
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA.
| | - Iris R Foxfoot
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
- UIC Government Services, 6564 Loisdale Ct #900, Springfield, VA, 22150, USA
| | - Christina Cutshaw
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
- CSS-Inc, 10301 Democracy Lane, Suite 300, Fairfax, VA, 22030, USA
| | - D'amy N Steward
- CSS-Inc, 10301 Democracy Lane, Suite 300, Fairfax, VA, 22030, USA
| | - Leanne Poussard
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Trevor N Riley
- Central Library, Office of Science Support, Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, 1315 East‑West Highway, Silver Spring, MD, 20910, USA
| | - Todd M Swannack
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Candice D Piercy
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Safra Altman
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Brandon J Puckett
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Curt D Storlazzi
- Pacific Coastal and Marine Science Center, U.S. Geological Survey, 2885 Mission Street, Santa Cruz, CA, 95060, USA
| | - T Shay Viehman
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| |
Collapse
|
8
|
Burdett HL, Albright R, Foster GL, Mass T, Page TM, Rinkevich B, Schoepf V, Silverman J, Kamenos NA. Including environmental and climatic considerations for sustainable coral reef restoration. PLoS Biol 2024; 22:e3002542. [PMID: 38502663 PMCID: PMC10950257 DOI: 10.1371/journal.pbio.3002542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Coral reefs provide ecosystem benefits to millions of people but are threatened by rapid environmental change and ever-increasing human pressures. Restoration is becoming a priority strategy for coral reef conservation, yet implementation remains challenging and it is becoming increasingly apparent that indirect conservation and restoration approaches will not ensure the long-term sustainability of coral reefs. The important role of environmental conditions in restoration practice are currently undervalued, carrying substantial implications for restoration success. Giving paramount importance to environmental conditions, particularly during the pre-restoration planning phase, has the potential to bring about considerable improvements in coral reef restoration and innovation. This Essay argues that restoration risk may be reduced by adopting an environmentally aware perspective that gives historical, contemporary, and future context to restoration decisions. Such an approach will open up new restoration opportunities with improved sustainability that have the capacity to dynamically respond to environmental trajectories.
Collapse
Affiliation(s)
- Heidi L. Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Rebecca Albright
- Institute for Biodiversity and Sustainability Science, California Academy of Sciences, San Francisco, California, United States of America
| | - Gavin L. Foster
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Tali Mass
- Department of Marine Biology, The Leon H Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tessa M. Page
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Buki Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Verena Schoepf
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- UWA Oceans Institute, University of Western Australia, Perth, Australia
| | - Jacob Silverman
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Nicholas A. Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Suedel BC, Wilkens JL, McQueen AD, Gailani JZ, Lackey TC, Mays N. Adaptation of a risk-based framework for evaluating indirect effects of dredging on sensitive habitats near federal navigation channels: An application of the framework to coral reefs at Honolulu Harbor, Hawai'i. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:547-561. [PMID: 37593916 DOI: 10.1002/ieam.4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
In major harbors and ports in the United States and its territories, the US Army Corps of Engineers maintains federal navigation channels in proximity to coral reefs (e.g., Honolulu Harbor, HI; Miami Harbor, FL; Apra Harbor, Guam) and other sensitive habitats. To effectively predict potential adverse impacts from dredging activities near these sensitive habitats, a holistic approach to improve understanding of the pressures on these habitats is needed to foster a more complete prediction of risk drivers. To achieve this, risk-based frameworks that account for the full range of natural and anthropogenic impacts need to be adapted and applied specifically for assessing and managing indirect dredging impacts on sensitive environments. In this article, we address this need by incorporating a drivers-pressures-stressors-condition-response (DPSCR4 ) conceptual framework to broaden a comprehensive conceptual model of the coupled human-ecological system. To help understand these complex interactions, DPSCR4 was applied to evaluate dredging and other unrelated environmental pressures (e.g., terrestrial runoff) in a proof-of-concept dredging project in Honolulu Harbor, Hawai'i, USA, with a focus on the indirect effects of dredge plumes. Particle tracking models and risk-based tools were used to evaluate sediment resuspended during a hypothetical mechanical dredging activity near sensitive coral habitats. Stoplight indicators were developed to predict indirect sediment plume impacts on coral and then compared to exposure modeling results. The strengths and limitations of the approach are presented and the incorporation of the risk framework into environmental management decisions is discussed. Integr Environ Assess Manag 2024;20:547-561. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Burton C Suedel
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Justin L Wilkens
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Andrew D McQueen
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Joseph Z Gailani
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Tahirih C Lackey
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Nathan Mays
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| |
Collapse
|
10
|
Cui L, Li X, Luo Y, Gao X, Wang Y, Lv X, Zhang H, Lei K. A comprehensive review of the effects of salinity, dissolved organic carbon, pH, and temperature on copper biotoxicity: Implications for setting the copper marine water quality criteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169587. [PMID: 38154639 DOI: 10.1016/j.scitotenv.2023.169587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
In recent years, there has been a growing concern about the ecological hazards associated with copper, which has sparked increased interest in copper water quality criteria (WQC). The crucial factors affecting the bioavailability of copper in seawater are now acknowledged to be salinity, dissolved organic carbon (DOC), pH, and temperature. Research on the influence of these four water quality parameters on copper toxicity is rapidly expanding. However, a comprehensive and clear understanding of the relevant mechanisms is currently lacking, hindering the development of a consistent international method to establish the seawater WQC value for copper. As a response to this knowledge gap, this study presents a comprehensive summary with two key focuses: (1) It meticulously analyzes the effects of salinity, DOC, pH, and temperature on copper toxicity to marine organisms. It takes into account the adaptability of different species to salinity, pH and temperature. (2) Additionally, the study delves into the impact of these four water parameters on the acute toxicity values of copper on marine organisms while also reviewing the methods used in establishing the marine WQC value of copper. The study proposed a two-step process: initially zoning based on the difference of salinity and DOC, followed by the establishment of Cu WQC values for different zones during various seasons, considering the impacts of water quality parameters on copper toxicity. By providing fundamental scientific insights, this research not only enhances our understanding and predictive capabilities concerning water quality parameter-dependent Cu toxicity in marine organisms but also contributes to the development of copper seawater WQC values. Ultimately, this valuable information facilitates more informed decision-making in marine water quality management efforts.
Collapse
Affiliation(s)
- Liang Cui
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, China
| | - Xiangyun Gao
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xubo Lv
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hua Zhang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Kun Lei
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Brefeld D, Di Mauro V, Kellermann MY, Nietzer S, Moeller M, Lütjens LH, Pawlowski S, Petersen-Thiery M, Schupp PJ. Acute Toxicity Assays with Adult Coral Fragments: A Method for Standardization. TOXICS 2023; 12:1. [PMID: 38276714 PMCID: PMC10818607 DOI: 10.3390/toxics12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Coral reefs are globally declining due to various anthropogenic stressors. Amongst those, chemical pollutants, such as pesticides from agricultural runoff, sewage or an overabundance of personal care products in coastal waters due to intense tourism, may be considered as a local stressor for reef-building corals. The extent to which such chemicals exhibit toxic effects towards corals at environmentally relevant concentrations is currently controversially discussed and existing studies are often based on varying and sometimes deficient test methods. To address this uncertainty, we adapted available methods into a reliable and comprehensive acute coral toxicity test method for the reef-building coral Montipora digitata. The toxicities of the four substances benzophenone-3 (BP-3), Diuron (DCMU), copper (Cu2+ as CuCl2, positive control) and dimethylformamide (DMF, solvent) were assessed in a 96 h semi-static test design. Endpoints such as maximum quantum yield, bleaching, tissue loss and mortality were evaluated with respect to their suitability for regulatory purposes. Overall, the endpoints bleaching and mortality yielded sensitive and robust results for the four tested substances. As the test method follows the principles of internationally standardized testing methods (ISO, OECD), it can be considered suitable for further validation and standardization. Once validated, a standardized test method will help to obtain reproducible toxicity results useful for marine hazard and risk assessment and regulatory decision making.
Collapse
Affiliation(s)
- David Brefeld
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Valentina Di Mauro
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Matthias Y. Kellermann
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Samuel Nietzer
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Mareen Moeller
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Laura H. Lütjens
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sascha Pawlowski
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Mechtild Petersen-Thiery
- Product Stewardship and EHS Data Management, BASF Personal Care and Nutrition GmbH, Rheinpromenade 1, 40789 Monheim am Rhein, Germany
| | - Peter J. Schupp
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
12
|
Vasseghian Y, Alimohamadi M, Dragoi EN, Sonne C. A global meta-analysis of phthalate esters in drinking water sources and associated health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166846. [PMID: 37673273 DOI: 10.1016/j.scitotenv.2023.166846] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Phthalate esters (PAEs) are known as esters of phthalic acid, which are commonly used as plasticizers in the plastic industry. Due to the lack of chemical bonding with the polymer matrix, these compounds are easily separated from plastic products and enter the environment. To investigate the growth of concentration of PAEs like DBP (Dibutyl phthalate), DEP (Diethyl phthalate), DMP (Dimethyl phthalate), DIBP (Diisobutyl phthalate), and TPMBP (tris(2-methylbutyl) phosphate) in different water sources, a study from January 01, 1976, to April 30, 2021, was implemented via a global systematic review plus meta-analysis in which, 109 articles comprising 4061 samples, 4 water types, and 27 countries were included. Between various types of water sources, river water and lake water were the most contaminated resources with PAEs. Among all studies of PAEs, DBP and DEP with the values >15,573 mg L-1 have the highest average concentration and TPMBP with the value 0.002885 mg L-1 has the lowest average concentration in water sources. The most contaminated water sources with PAEs were in Nigeria and the least contaminated was in China. Besides, Monte-Carlo simulation indicated that for DMP and DEP minimum values that are lower than the acceptable limit are generated. However, most of the population (>75 %) is at risk for both adults and child cases. For DIBP and DBP the situation is much worse, the simulations not providing at least one case where the R index is lower than the acceptable limit of 1E-06.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan
| | - Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron no 73, Iasi 700050, Romania
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
13
|
Donovan MK, Counsell CWW, Donahue MJ, Lecky J, Gajdzik L, Marcoux SD, Sparks R, Teague C. Evidence for managing herbivores for reef resilience. Proc Biol Sci 2023; 290:20232101. [PMID: 38052442 DOI: 10.1098/rspb.2023.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
Herbivore management is an important tool for resilience-based approaches to coral reef conservation, and evidence-based science is needed to enact successful management. We synthesized data from multiple monitoring programs in Hawai'i to measure herbivore biomass and benthic condition over a 10-year period preceding any major coral bleaching. We analysed data from 20 242 transects alongside data on 27 biophysical and human drivers and found herbivore biomass was highly variable throughout Hawai'i, with high values in remote locations and the lowest values near population centres. Both human and biophysical drivers explained variation in herbivore biomass, and among the human drivers both fishing and land-based pollution had negative effects on biomass. We also found evidence that herbivore functional group biomass is strongly linked to benthic condition, and that benthic condition is sensitive to changes in herbivore biomass associated with fishing. We show that when herbivore biomass is below 80% of potential biomass, benthic condition is predicted to decline. We also show that a range of management actions, including area-specific fisheries regulations and gear restrictions, can increase parrotfish biomass. Together, these results provide lines of evidence to support managing herbivores as an effective strategy for maintaining or bolstering reef resilience in a changing climate.
Collapse
Affiliation(s)
- Mary K Donovan
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Center for Global Discovery and Conservation Science, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Chelsie W W Counsell
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Megan J Donahue
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Joey Lecky
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Pacific Islands Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Laura Gajdzik
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Stacia D Marcoux
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Russell Sparks
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| | - Christopher Teague
- Hawai'i Monitoring and Reporting Collaborative (HIMARC), Honolulu, HI, USA
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai'i, Honolulu, HI, USA
| |
Collapse
|
14
|
Rani-Borges B, Gomes E, Maricato G, Lins LHFDC, Moraes BRD, Lima GV, Côrtes LGF, Tavares M, Pereira PHC, Ando RA, Queiroz LG. Unveiling the hidden threat of microplastics to coral reefs in remote South Atlantic islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165401. [PMID: 37451469 DOI: 10.1016/j.scitotenv.2023.165401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The widespread presence of marine microplastics (< 5 mm) is a significant concern, as it may harm marine biodiversity and ocean ecosystems. Corals' capacity to ingest microplastics has emerged as a significant threat to reef ecosystems, owing to the detrimental physiological and ecological effects it can trigger. The extent of the impact of microplastics on Brazilian corals remains unclear and this study aimed to investigate its distribution and characteristics in four coral species: Favia gravida, Mussismilia hispida, Montastrea cavernosa, and Siderastrea stellata, found in the Trindade and Martim Vaz Islands - the most isolated archipelago of Brazil, located about 1200 km (680 miles) east of the coast. This study aims to reveal the extent of microplastic distribution in the coral reef environment, assess the amount of microplastics in different coral species, and compare each species' capacity to adhere and accumulate microplastics. A high concentration of ingested and adhered microplastics was detected in all coral species evaluated in the present study. No significant differences were observed in the sampling points which indicates that although the sampling points are located at different distances from the coast, the microplastic pollution is equally distributed in the region. Polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), poly(methyl methacrylate) (PMMA), Rayon, and Nylon particles were detected, with a predominance of PE (45.5 %). No significant differences in microplastic concentration were detected among the various species and locations studied. Our research presents findings that demonstrate the extensive occurrence of microplastic contamination in coral colonies located on remote islands.
Collapse
Affiliation(s)
- Bárbara Rani-Borges
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| | - Erandy Gomes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Brazilian Institute of Citizenship and Social Action, IBRAS, Amapá St. 709, 69305-520, Roraima, Brazil; Estácio University Center, Salete St. 290, 02016-001 São Paulo, Brazil
| | - Guilherme Maricato
- Ecology and Evolution Graduate Program, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, UERJ, 28 de Setembro Blvd 87, 20551-030 Rio de Janeiro, Brazil
| | | | - Beatriz Rocha de Moraes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Gislaine Vanessa Lima
- Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Federal University of São Paulo, UNIFESP, Silva Jardim St. 136, 11015-020 Santos, Brazil
| | - Luís Guilherme França Côrtes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil
| | - Marcos Tavares
- Museum of Zoology, University of São Paulo, Nazaré Ave. 481, 04263-000 São Paulo, Brazil
| | | | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
15
|
Li Q, Fu D, Zhou Y, Li Y, Chen L, Wang Z, Wan Y, Huang Z, Zhao H. Individual and combined effects of herbicide prometryn and nitrate enrichment at environmentally relevant concentrations on photosynthesis, oxidative stress, and endosymbiont community diversity of coral Acropora hyacinthus. CHEMOSPHERE 2023; 339:139729. [PMID: 37543226 DOI: 10.1016/j.chemosphere.2023.139729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/30/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution and pesticides such as photosystem II (PSII) inhibitor herbicides have several detrimental impacts on coral reefs, including breakdown of the symbiosis between host corals and photosynthetic symbionts. Although nitrogen and PSII herbicide pollution separately cause coral bleaching, the combined effects of these stressors at environmentally relevant concentrations on corals have not been assessed. Here, we report the combined effects of nitrate enrichment and PSII herbicide (prometryn) exposure on photosynthesis, oxidative status and endosymbiont community diversity of the reef-building coral Acropora hyacinthus. Coral fragments were exposed in a mesocosm system to nitrate enrichment (9 μmol/L) and two prometryn concentrations (1 and 5 μg/L). The results showed that sustained prometryn exposure in combination with nitrate enrichment stress had significant detrimental impacts on photosynthetic apparatus [the maximum quantum efficiency of photosystem II (Fv/Fm), nonphotochemical quenching (NPQ) and oxidative status in the short term. Nevertheless, the adaptive mechanism of corals allowed the normal physiological state to be recovered following 1 μg/L prometryn and 9 μmol/L nitrate enrichment individual exposure. Moreover, exposure for 9 days was insufficient to trigger a shift in Symbiodiniaceae community. Most importantly, the negative impact of exposure to the combined environmental concentrations of 1 μg/L prometryn and 9 μmol/L nitrate enrichment was found to be significantly greater on the Fv/Fm, quantum yield of non-regulated energy dissipation [Y(NO)], NPQ, and oxidative status of corals compared to the impact of individual stressors. Our results show that interactions between prometryn stress and nitrate enrichment have a synergistic impact on the photosynthetic and oxidative stress responses of corals. This study provides valuable insights into combined effects of nitrate enrichment and PSII herbicides pollution for coral's physiology. Environmental concentrations of PSII herbicides may be more harmful to photosystems and antioxidant systems of corals under nitrate enrichment stress. Thus, future research and management of seawater quality stressors should consider combined impacts on corals rather than just the impacts of individual stressors alone.
Collapse
Affiliation(s)
- Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yanyu Zhou
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Zhaofan Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yinglang Wan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| |
Collapse
|
16
|
Paxton AB, Swannack TM, Piercy CD, Altman S, Poussard L, Puckett BJ, Storlazzi CD, Viehman TS. What evidence exists on the ecological and physical effects of built structures in shallow, tropical coral reefs? A systematic map protocol. ENVIRONMENTAL EVIDENCE 2023; 12:19. [PMID: 39294770 PMCID: PMC11378851 DOI: 10.1186/s13750-023-00313-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Shallow, tropical coral reefs face compounding threats from habitat degradation due to coastal development and pollution, impacts from storms and sea-level rise, and pulse disturbances like blast fishing, mining, dredging, and ship groundings that reduce coral reefs' height and variability. One approach toward restoring coral reef structure from these threats is deploying built structures. Built structures range from engineered modules and repurposed materials to underwater sculptures and intentionally placed natural rocks. Restoration practitioners and coastal managers increasingly consider incorporating built structures, including nature-based solutions, into coral reef-related applications. Yet, synthesized evidence on the ecological and physical performance of built structure interventions across a variety of contexts (e.g., restoration, coastal protection, mitigation, tourism) is not readily available to guide decisions. To help inform management decisions, here we aim to document the global evidence base on the ecological and physical performance of built structures in shallow (≤ 30 m) tropical (35° N to 35° S latitude) coral ecosystems. The collated evidence base on use cases and associated ecological and physical outcomes of built structure interventions can help inform future consideration of built structures in reef restoration design, siting, and implementation. METHOD To discover evidence on the performance of built structures in coral reef-related applications, such as restoration, mitigation, and coastal protection, primary literature will be searched across indexing platforms, bibliographic databases, open discovery citation indexes, a web-based search engine, a novel literature discovery tool, and organizational websites. The geographic scope of the search is global, and there is no limitation to temporal scope. Primary literature will be screened first at the level of title and abstract and then at the full text level against defined eligibility criteria for the population, intervention, study type, and outcomes of interest. Metadata will be extracted from studies that pass both screening levels. The resulting data will be analyzed to determine the distribution and abundance of evidence. Results will be made publicly available and reported in a systematic map that includes a narrative description, identifies evidence clusters and gaps, and outlines future research directions on the use of built structures in coral reef-related applications.
Collapse
Affiliation(s)
- Avery B Paxton
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA.
| | - Todd M Swannack
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Candice D Piercy
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Safra Altman
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Leanne Poussard
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Brandon J Puckett
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Curt D Storlazzi
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, 2885 Mission Street, Santa Cruz, CA, 95060, USA
| | - T Shay Viehman
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| |
Collapse
|
17
|
Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, Counsell C, Davis G, Donovan MK, Falinski K, Kramer L, Kozar K, Li N, Maynard JA, McCutcheon A, McKenna SA, Neilson BJ, Safaie A, Teague C, Whittier R, Asner GP. Coral reefs benefit from reduced land-sea impacts under ocean warming. Nature 2023; 621:536-542. [PMID: 37558870 PMCID: PMC10511326 DOI: 10.1038/s41586-023-06394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.
Collapse
Affiliation(s)
- Jamison M Gove
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Honolulu, HI, USA.
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | - Joey Lecky
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Eric Brown
- National Park of American Samoa, Pago Pago, American Samoa, USA
| | | | - Chelsie Counsell
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Gerald Davis
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Mary K Donovan
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | | | | | - Kelly Kozar
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Ning Li
- Department of Ocean and Resources Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Amanda McCutcheon
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Sheila A McKenna
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | | | - Aryan Safaie
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Ocean Futures, Arizona State University, Hilo, HI, USA
| |
Collapse
|
18
|
Li Y, Mu D, Wu HQ, Liu HJ, Wang YH, Ma GC, Duan XM, Zhou JJ, Zhang CM, Lu XH, Liu XH, Sun J, Ji ZY. Derivation of copper water quality criteria in Bohai Bay for the protection of local aquatic life and the ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 190:114863. [PMID: 36989599 DOI: 10.1016/j.marpolbul.2023.114863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Developing effective marine water quality criteria (WQC) is crucial for controlling marine contamination and protecting marine life. The WQC for copper is urgently needed due to the toxicity and widespread of copper contamination. In this work, both short-term water quality criteria (SWQC) and long-term water quality criteria (LWQC) under 10 % effect endpoints were derived by using the model averaging of species sensitivity distribution (SSD10) method for Bohai Bay. The WQC values were obtained directly from the hazardous concentration for 5 % of species (HC5) values, which removes the influence of arbitrary assessment factor (AF). Modifications to the acute-chronic ratio (ACR) strategies and the inclusion of the test toxicity data of local species also improved the accuracy and applicability of the WQC values. The derived SWQC and LWQC were 2.21 and 0.45 μg/L, respectively. Furthermore, the overall risk level of copper in Bohai Bay was evaluated by using the risk quotient (RQ) method, and the results showed it was at a moderate-low level. This study provides a new approach for the derivation of the WQC for Cu and the risk assessment of Bohai Bay, which is essential for the protection of local aquatic life and provides guidance to the establishment of the national WQC.
Collapse
Affiliation(s)
- Yang Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China
| | - Di Mu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Hong-Qing Wu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Hai-Jiao Liu
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong-Hui Wang
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Ruihui Aquaculture Co. LTD, Tangshan 063604, China
| | - Guo-Chen Ma
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Fishery Comprehensive Administrative Law Enforcement Detachment, Tangshan 063210, China
| | - Xue-Min Duan
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Fishery Comprehensive Administrative Law Enforcement Detachment, Tangshan 063210, China
| | - Jian-Jun Zhou
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Fishery Comprehensive Administrative Law Enforcement Detachment, Tangshan 063210, China
| | - Chun-Ming Zhang
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Fishery Comprehensive Administrative Law Enforcement Detachment, Tangshan 063210, China
| | - Xing-Hua Lu
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; Tangshan Aquatic Technology Extension Station, Tangshan 063004, China
| | - Xian-Hua Liu
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jun Sun
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Zhi-Yong Ji
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| |
Collapse
|
19
|
Schoepf V, Baumann JH, Barshis DJ, Browne NK, Camp EF, Comeau S, Cornwall CE, Guzmán HM, Riegl B, Rodolfo-Metalpa R, Sommer B. Corals at the edge of environmental limits: A new conceptual framework to re-define marginal and extreme coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163688. [PMID: 37105476 DOI: 10.1016/j.scitotenv.2023.163688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The worldwide decline of coral reefs has renewed interest in coral communities at the edge of environmental limits because they have the potential to serve as resilience hotspots and climate change refugia, and can provide insights into how coral reefs might function in future ocean conditions. These coral communities are often referred to as marginal or extreme but few definitions exist and usage of these terms has therefore been inconsistent. This creates significant challenges for categorising these often poorly studied communities and synthesising data across locations. Furthermore, this impedes our understanding of how coral communities can persist at the edge of their environmental limits and the lessons they provide for future coral reef survival. Here, we propose that marginal and extreme coral communities are related but distinct and provide a novel conceptual framework to redefine them. Specifically, we define coral reef extremeness solely based on environmental conditions (i.e., large deviations from optimal conditions in terms of mean and/or variance) and marginality solely based on ecological criteria (i.e., altered community composition and/or ecosystem functioning). This joint but independent assessment of environmental and ecological criteria is critical to avoid common pitfalls where coral communities existing outside the presumed optimal conditions for coral reef development are automatically considered inferior to coral reefs in more traditional settings. We further evaluate the differential potential of marginal and extreme coral communities to serve as natural laboratories, resilience hotspots and climate change refugia, and discuss strategies for their conservation and management as well as priorities for future research. Our new classification framework provides an important tool to improve our understanding of how corals can persist at the edge of their environmental limits and how we can leverage this knowledge to optimise strategies for coral reef conservation, restoration and management in a rapidly changing ocean.
Collapse
Affiliation(s)
- Verena Schoepf
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia.
| | - Justin H Baumann
- Department of Biology, Mount Holyoke College, South Hadley, MA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nicola K Browne
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Steeve Comeau
- Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | - Christopher E Cornwall
- School of Biological Sciences and Coastal People: Southern Skies, Victoria University of Wellington, Wellington, New Zealand
| | - Héctor M Guzmán
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Bernhard Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia; Labex ICONA, International CO(2) Natural Analogues Network, Japan
| | - Brigitte Sommer
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Spring DL, Williams GJ. Influence of upwelling on coral reef benthic communities: a systematic review and meta-analysis. Proc Biol Sci 2023; 290:20230023. [PMID: 36946114 PMCID: PMC10031406 DOI: 10.1098/rspb.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Highly competitive coral reef benthic communities are acutely sensitive to changes in environmental parameters such as temperature and nutrient concentrations. Physical oceanographic processes that induce upwelling therefore act as drivers of community structure on tropical reefs. How upwelling impacts coral communities, however, is not fully understood; upwelling may provide a natural buffer against climate impacts and could potentially enhance the efficacy of spatial management and reef conservation efforts. This study employed a systematic review to assess existing literature linking upwelling with reef community structure, and a meta-analysis to quantify upwelling impact on the percentage cover of coral reef benthic groups. We show that upwelling has context-dependant effects on the cover of hard coral and fleshy macroalgae, with effect size and direction varying with depth, region and remoteness. Fleshy macroalgae were found to increase by 110% on inhabited reefs yet decrease by 56% around one well-studied remote island in response to upwelling. Hard coral cover was not significantly impacted by upwelling on inhabited reefs but increased by 150% when direct local human pressures were absent. By synthesizing existing evidence, this review facilitates adaptive and nuanced reef management which considers the influence of upwelling on reef assemblages.
Collapse
Affiliation(s)
- Danielle L. Spring
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Gareth J. Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
21
|
Ouédraogo DY, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MMM, Castelin M, Calvayrac C, Kerkhof O, Sordello R, Reyjol Y, Ferrier-Pagès C. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:4. [PMID: 39294817 PMCID: PMC11378836 DOI: 10.1186/s13750-023-00298-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Tropical coral reefs cover only ca. 0.1% of the Earth's surface but harbour exceptional marine biodiversity and provide vital ecosystem services to millions of people living nearby. They are currently threatened by global (e.g. climate change) and local (e.g. chemical pollution) stressors that interact in multiple ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. Here, we aimed to systematically review experimental studies assessing the toxicity of chemical pollutants to tropical reef-building corals to generate accessible and usable knowledge and data that can be used to calculate measurement endpoints in ecological risk assessment. From the quantitative estimates of effects, we determined toxicity thresholds as the highest exposures tested at which no statistically significant adverse effects were observed, and we compared them to regulatory predicted no effect concentrations for the protection of marine organisms, to assess whether these reference values are indeed protective of corals. METHODS The evidence was taken from a systematic map of the impacts of chemicals arising from human activity on tropical reef-building corals published in 2021. All studies in the map database corresponding to the knowledge cluster "Evidence on the ecotoxicological effects of chemicals on corals" were selected. To identify subsequently published literature, the search was updated using a subset of the search string used for the systematic map. Titles, abstracts and full-texts were screened according to the criteria defining the selected cluster of the map. Because the eligibility criteria for the systematic review are narrower than the criteria used to define the cluster in the systematic map, additional screening was performed. Studies included were critically appraised and each study was rated as low, unclear, medium, or high risk of bias. Data were extracted from the studies and synthesised according to a strategy dependent on the type of exposure and outcome. REVIEW FINDINGS The systematic review reports the known effects of chemical exposures on corals from 847 studies corresponding to 181 articles. A total of 697 studies (161 articles) were included in the quantitative synthesis and 150 studies (50 articles) in the narrative synthesis of the findings. The quantitative synthesis records the effects of 2706 exposure concentrations-durations of 164 chemicals or mixtures of chemicals, and identifies 105 toxicity thresholds corresponding to 56 chemicals or mixtures of chemicals. When toxicity thresholds were compared to reference values set for the protection of marine organisms by environmental agencies, the reference values appear to be protective of corals for all but three chemicals assessed: the metal copper and the pesticides diuron and irgarol 1051. CONCLUSIONS This open-access database of known ecotoxicological effects of chemical exposures on corals can assist managers in the ecological risk assessment of chemicals, by allowing easy determination of various ecotoxicological thresholds. Several limitations of the toxicity tests synthesised here were noted (in particular the lack of measurement of effective concentrations for more than half of the studies). Overall, most of the currently available data on coral toxicity should be replicated independently and extended to corals from less studied geographical regions and functional groups.
Collapse
Affiliation(s)
- Dakis-Yaoba Ouédraogo
- Direction de L'Expertise, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France.
| | - Hugo Mell
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Olivier Perceval
- Office Français de la Biodiversité (OFB), 94300, Vincennes, France
| | - Karen Burga
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Laetitia Hédouin
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- USR 3278 CRIOBE, PSL Université Paris : EPHE-UPVD-CNRS, 98729, Papetoai, Mo'orea, French Polynesia
| | - Mathilde Delaunay
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOrEA), Muséum National d'Histoire Naturelle-CNRS - SorbonneU - IRD - UCN - UA EcoFunc - Aviv, 75005, Paris, France
| | - Magalie Castelin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle - CNRS - Sorbonne Université - EPHE - Université des Antilles, 75005, Paris, France
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, University of Perpignan via Domitia, 66000, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités - CNRS, 66650, Banyuls Sur Mer, France
| | - Odile Kerkhof
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Romain Sordello
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Yorick Reyjol
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | | |
Collapse
|
22
|
Nalley EM, Pirkle CM, Schmidbauer MC, Lewis CJ, Dacks RS, Thompson MD, Sudnovsky MD, Whitney JL, Donahue MJ. Trophic and spatial patterns of contaminants in fishes from the Republic of the Marshall Islands in the equatorial Pacific. CHEMOSPHERE 2023; 314:137593. [PMID: 36572359 DOI: 10.1016/j.chemosphere.2022.137593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The Republic of the Marshall Islands (RMI) has been affected by marine pollution from militarization and urbanization. To address concerns raised by the Marshall Islands Marine Resources Authority, this study examined concentrations of dissolved contaminants in reef and pelagic fishes in the RMI and assessed potential associated risks. Metals, organochlorine pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were examined in reef and pelagic fishes from six atolls: Kwajalein, Majuro, Jaluit, Utirik, Rongelap, and Wotje. Clear trophic patterns emerged for metals. Total arsenic was highest in higher trophic level reef fishes, particularly in the camouflage grouper (Epinephelus polyphekadion) (>100 μg g-1 total As), but inorganic arsenic was negligible in higher trophic levels and showed an inverse trend with the highest percentages present in parrotfishes and herbivores. Copper and mercury were elevated in higher trophic level reef and pelagic fishes, respectively, and the maximum mercury concentrations (6.45 μg g-1 in Gymnosarda unicolor) were among the highest reported in the Pacific. Conversely, cadmium and lead were highest in lower trophic levels, like surgeonfishes and parrotfishes. PCBs were more clearly linked to locations and were highest at two atolls with military history (Kwajalein and Jaluit) (>U.S. EPA Screening Value of 2.5 ppb). PAHs were ubiquitous across taxa (detected in 97% of samples), but the highest concentrations were in lower trophic levels. Organochlorine pesticides were detected at very low concentrations that do not likely pose a risk. We compare concentrations to established thresholds for human health and find that - for specific locations and species - contaminant concentrations may pose a risk to fish and other marine taxa, as well as human consumers. This study provides baseline information that aids the development of marine conservation and public health recommendations and addresses a data gap that persists for marine pollution throughout the Pacific Islands.
Collapse
Affiliation(s)
- E M Nalley
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA.
| | - C M Pirkle
- University of Hawai'i at Mānoa, Office of Public Health Studies, 1960 East-West Road, BioMed Tower 102, Honolulu, HI, 96822, USA
| | - M C Schmidbauer
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - C J Lewis
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA; University of Hawai'i at Mānoa, School of Life Sciences, 3190 Maile Way, St. John 101, Honolulu, HI, 96822, USA
| | - R S Dacks
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA; University of Hawai'i at Mānoa, School of Life Sciences, 3190 Maile Way, St. John 101, Honolulu, HI, 96822, USA
| | - M D Thompson
- University of Hawai'i at Mānoa, Office of Public Health Studies, 1960 East-West Road, BioMed Tower 102, Honolulu, HI, 96822, USA
| | - M D Sudnovsky
- University of Hawai'i Sea Grant College Program, College of the Marshall Islands, P.O. Box 1258, Majuro, 96960, Marshall Islands
| | - J L Whitney
- NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, USA
| | - M J Donahue
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
23
|
Emanuela F, Erik C, Silvia F, Fiorella P, Mauro M, Stefano G. Peculiar polycyclic aromatic hydrocarbons accumulation patterns in a non-zooxanthellate scleractinian coral. MARINE POLLUTION BULLETIN 2022; 184:114109. [PMID: 36115194 DOI: 10.1016/j.marpolbul.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Frapiccini Emanuela
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Caroselli Erik
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Franzellitti Silvia
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Prada Fiorella
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Marini Mauro
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Goffredo Stefano
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
24
|
Li Y, Mu D, Wu HQ, Tan DD, Liu XH, Sun J, Ji ZY. Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119666. [PMID: 35750306 DOI: 10.1016/j.envpol.2022.119666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Copper has become one of the most important heavy metal pollutants in the environment because of its wide application and high toxicity, but research on water quality criteria (WQCs) on copper is limited, especially the derivation of seawater WQC. In addition, the toxicity of copper in the seawater system is affected by various environmental factors. Therefore, establishing a WQC that meets the characteristics of the regional environment is a top priority. The correlations between four factors of temperature, salinity, pH, dissolved organic carbon (DOC) and the toxic effect values of copper were analyzed in this study, and the temperature was determined as the most influential factor among the four factors in the Bohai Sea. A specific correlation between temperature and the toxic effects of copper was identified, and WQCs were derived based on the identified correlation and the variations of the Bohai Sea's temperature in different seasons by species sensitivity distribution (SSD) method. Under the condition of the winter, spring, autumn, and summer with an average water temperature of 0.09, 15.96, 17.83, and 24.87 °C, the obtained short-term water quality criteria (SWQCs) were 44.29, 4.70, 4.31, and 3.33 μg/L; the long-term water quality criteria (LWQCs) were 18.14, 1.93, 1.77 and 1.36 μg/L. The findings indicated the importance of introducing specific environmental conditions during the derivation process. This work could provide valuable information for pollution prevention and aquatic life protection in the Bohai Sea and provide a valuable reference for the derivation of criteria in other regions alike.
Collapse
Affiliation(s)
- Yang Li
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Di Mu
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Hong-Qing Wu
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Dan-Dan Tan
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Xian-Hua Liu
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jun Sun
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Zhi-Yong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China.
| |
Collapse
|
25
|
Virta L, Teittinen A. Threshold effects of climate change on benthic diatom communities: Evaluating impacts of salinity and wind disturbance on functional traits and benthic biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154130. [PMID: 35219662 DOI: 10.1016/j.scitotenv.2022.154130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The responses of biotic communities and ecosystems to climate change may be abrupt and non-linear. Thus, resolving ecological threshold mechanisms is crucial for understanding the consequences of climate change and for improving environmental management. Here, we present a study on the threshold responses of benthic diatom communities that are an important component of all aquatic environments and strongly contribute to global primary production. We reach beyond the taxonomic perspective by focusing on the diversity and functions of diatom communities and benthic biomass along gradients of salinity and wind disturbance, whose climate-change-induced changes have been predicted to strongly affect biotic communities in the marine and brackish systems in the future. To improve the generality of our results, we examine three self-collected datasets from different spatial scales (6-830 km) and ecosystem types. We collected samples from rock pools or from littoral stones and studied taxonomic thresholds using Threshold Indicator Taxa Analysis (TITAN2). We investigated threshold responses of community diversity, community functions, and benthic biomass using t-tests and regression analyses. Our results indicated that decreasing salinity may result in increasing diversity but decreasing biomass of brackish communities, while the effects of increasing wind disturbance were contradictory among spatial scales. Benthic biomass correlated with the taxonomic and functional diversity, as well as with the body size distribution of communities, highlighting the importance of considering community functions and organismal size when predicting ecosystem functions. The most pronounced effects of decreasing salinity and increasing wind disturbance on community functions were changes in the abundance of low-profile diatom species, which, due to the high resilience of low-profile diatoms, may lead to changes in ecosystem functioning and resilience. To conclude, decreasing salinity and increasing wind disturbance may lead to threshold responses of biotic communities, and these changes may have profound effects on ecosystem functioning along marine coastal areas.
Collapse
Affiliation(s)
- Leena Virta
- Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, FI-10900 Hangö, Finland.
| | - Anette Teittinen
- Department of Geosciences and Geography, PO Box 64, FIN-00014, University of Helsinki, Finland.
| |
Collapse
|
26
|
Vasseghian Y, Alimohamadi M, Khataee A, Dragoi EN. A global systematic review on the concentration of organophosphate esters in water resources: Meta-analysis, and probabilistic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150876. [PMID: 34627903 DOI: 10.1016/j.scitotenv.2021.150876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate esters (OPEs) are used as additives in various industries. They do not chemically bond with the polymeric structure of materials, so they can stay for a long time and have a very adverse effect on the environment. To analyze the development of the prevalence and concentration of OPEs such as TCEP, TCPP, TDCP, TnBP, TPHP, TBOEP, TEHP, TMP, TCIPP, TDCIPP, TMPP, and TDBPP in water resources, a search between January 01, 2000, to April 08, 2021, was followed by a systematic review and meta-analysis. Among of the 888 articles scanned in the identity step, 58 articles containing 2676 samples, 10 countries, and 4 water types were included in the meta-analysis study. Among all studied OPEs, the concentration of TcrP, TCPP, TDCPP, and TnBP were at the top in water resources, with values >715 μg L-1 and lowest average concentrations were obtained for TDBPP and TpeP with values <0.0004 μg L-1. The most polluted area in terms of the concentration of OPEs in water resources was China. Besides, data analysis showed that there only was carcinogenic risk for China. A Monte-Carlo simulation indicated that although these obtained averages are in the same order of magnitude as the acceptable limit, for both adults and children, 95% of the population is at risk.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| |
Collapse
|
27
|
Tuttle LJ, Donahue MJ. Effects of sediment exposure on corals: a systematic review of experimental studies. ENVIRONMENTAL EVIDENCE 2022; 11:4. [PMID: 39294657 PMCID: PMC8818373 DOI: 10.1186/s13750-022-00256-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that 'adversely' affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. METHODS We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose-response relationship between exposure level and the magnitude of a coral's response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. REVIEW FINDINGS After critical appraisal of over 15,000 records, our systematic review of corals' responses to sediment identified 86 studies to be included in meta-analyses (45 studies for deposited sediment and 42 studies for suspended sediment). The lowest sediment exposure levels that caused adverse effects in corals were well below the levels previously described as 'normal' on reefs: for deposited sediment, adverse effects occurred as low as 1 mg/cm2/day for larvae (limited settlement rates) and 4.9 mg/cm2/day for adults (tissue mortality); for suspended sediment, adverse effects occurred as low as 10 mg/L for juveniles (reduced growth rates) and 3.2 mg/L for adults (bleaching and tissue mortality). Corals take at least 10 times longer to experience tissue mortality from exposure to suspended sediment than to comparable concentrations of deposited sediment, though physiological changes manifest 10 times faster in response to suspended sediment than to deposited sediment. Threshold estimates derived from continuous response variables (magnitude of adverse effect) largely matched the lowest-observed adverse-effect levels from a summary of studies, or otherwise helped us to identify research gaps that should be addressed to better quantify the dose-response relationship between sediment exposure and coral health. CONCLUSIONS We compiled a global dataset that spans three oceans, over 140 coral species, decades of research, and a range of field- and lab-based approaches. Our review and meta-analysis inform the no-observed and lowest-observed adverse-effect levels (NOAEL, LOAEL) that are used in management consultations by U.S. federal agencies. In the absence of more location- or species-specific data to inform decisions, our results provide the best available information to protect vulnerable reef-building corals from sediment stress. Based on gaps and limitations identified by our review, we make recommendations to improve future studies and recommend future synthesis to disentangle the potentially synergistic effects of multiple coral-reef stressors.
Collapse
Affiliation(s)
- Lillian J. Tuttle
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744 USA
- NOAA NMFS Pacific Islands Regional Office, Honolulu, HI 96860 USA
| | - Megan J. Donahue
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744 USA
| |
Collapse
|
28
|
Purwanto M, Kusuma NC, Sudrajat MA, Jaafar J, Nasir AM, Aziz MHA, Othman MHD, Rahman MA, Raharjo Y, Widiastuti N. Seawater Desalination by Modified Membrane Distillation: Effect of Hydrophilic Surface Modifying Macromolecules Addition into PVDF Hollow Fiber Membrane. MEMBRANES 2021; 11:924. [PMID: 34940425 PMCID: PMC8708951 DOI: 10.3390/membranes11120924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Hollow fiber membranes of polyvinylidene fluoride (PVDF) were prepared by incorporating varying concentrations of hydrophilic surface-modifying macromolecules (LSMM) and a constant amount of polyethylene glycol (PEG) additives. The membranes were fabricated by the dry-wet spinning technique. The prepared hollow fiber membranes were dip-coated by hydrophobic surface-modifying macromolecules (BSMM) as the final step fabrication. The additives combination is aimed to produce hollow fiber membranes with high flux permeation and high salt rejection in the matter of seawater desalination application. This study prepares hollow fiber membranes from the formulation of 18 wt. % of PVDF mixed with 5 wt. % of PEG and 3, 4, and 5 wt. % of LSMM. The membranes are then dip-coated with 1 wt. % of BSMM. The effect of LSMM loading on hydrophobicity, morphology, average pore size, surface porosity, and membrane performance is investigated. Coating modification on LSMM membranes showed an increase in contact angle up to 57% of pure, unmodified PVDF/PEG membranes, which made the fabricated membranes at least passable when hydrophobicity was considered as one main characteristic. Furthermore, The PVDF/PEG/4LSMM-BSMM membrane exhibits 161 °C of melting point as characterized by the DSC. This value indicates an improvement of thermal behavior shows so as the fabricated membranes are desirable for membrane distillation operation conditions range. Based on the results, it can be concluded that PVDF/PEG membranes with the use of LSMM and BSMM combination could enhance the permeate flux up to 81.32 kg·m-2·h-1 at the maximum, with stable salt rejection around 99.9%, and these are found to be potential for seawater desalination application.
Collapse
Affiliation(s)
- Mochammad Purwanto
- Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia; (M.P.); (N.C.K.); (M.A.S.)
| | - Nindita Cahya Kusuma
- Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia; (M.P.); (N.C.K.); (M.A.S.)
| | - Ma’rup Ali Sudrajat
- Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia; (M.P.); (N.C.K.); (M.A.S.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (A.M.N.); (M.H.A.A.); (M.H.D.O.); (M.A.R.)
| | - Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (A.M.N.); (M.H.A.A.); (M.H.D.O.); (M.A.R.)
| | - Mohd Haiqal Abd Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (A.M.N.); (M.H.A.A.); (M.H.D.O.); (M.A.R.)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (A.M.N.); (M.H.A.A.); (M.H.D.O.); (M.A.R.)
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (A.M.N.); (M.H.A.A.); (M.H.D.O.); (M.A.R.)
| | - Yanuardi Raharjo
- Membrane Science and Technology Research Group, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Nurul Widiastuti
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| |
Collapse
|
29
|
Soledad BRM, Oscar TM, Sergio GI, Alicia SV, José Luis AN, Adrián SSS, Catalina GE, Víctor RG. Source of detritus and toxic elements of seabed sediments from Acapulco Bay (southern Mexico) and their ecological risk. MARINE POLLUTION BULLETIN 2021; 172:112797. [PMID: 34391010 DOI: 10.1016/j.marpolbul.2021.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Total concentrations of Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, Zn, and As together with Sr and Pb isotopic compositions of seabed sediments from the worldwide famous tourist destination of Acapulco Bay, Guerrero (southern Mexico) were determined to reveal the origin of detritus and toxic elements (TEs), their potential natural and anthropogenic sources, elemental distribution and their ecological risk. Sediments derive entirely from the nearby Acapulco Granite and their concentrations of TEs are variable and rather low, although, several are above the Local Geochemical Baseline in some sites of the bay. The enrichment factor (EF) and Pb isotopes indicate that TEs derive from the Acapulco Granite with contributions of an anthropogenic source represented, very likely, by ship-bottom paints. Wastewaters are a significant source of Pb and Cu. The ecological risk of TEs is low and only Cu represents a moderate ecological risk in a few sites.
Collapse
Affiliation(s)
- Bahena-Román Marbella Soledad
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran Vía Tropical 20, Fraccionamiento Las Playas, Acapulco de Juárez, Guerrero, Mexico
| | - Talavera-Mendoza Oscar
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico.
| | - García-Ibáñez Sergio
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran Vía Tropical 20, Fraccionamiento Las Playas, Acapulco de Juárez, Guerrero, Mexico
| | - Sarmiento-Villagrana Alicia
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Periférico Poniente s/n Frente a la Colonia Villa de Guadalupe, CP40040 Iguala de la Independencia, Guerrero, Mexico
| | - Aguirre-Noyola José Luis
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, AP. 565-A, CP 62210 Cuernavaca, Morelos, Mexico
| | - Salgado-Souto Sergio Adrián
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico
| | - Gómez-Espinosa Catalina
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, ExHacienda San Juan Bautista s/n, 40323 Taxco el Viejo, Guerrero, Mexico
| | - Rosas-Guerrero Víctor
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Carretera Nacional Acapulco-Zihuatanejo km 106+900. Col.Las Tunas, 40900 Técpan de Galeana, Guerrero, Mexico
| |
Collapse
|