1
|
Zang Y, Cao B, Yi X, Zha F, Ge Y, Liu H, Yi Y. Enhancing water toxicity determination sensitivity by using TMAO as electron acceptor of inward extracellular electron transfer in electrochemically active bacteria. Bioelectrochemistry 2025; 164:108925. [PMID: 39893835 DOI: 10.1016/j.bioelechem.2025.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Toxicity determination based on electrochemically active bacteria (EAB) shows great prospects for early warning of sudden water pollution. However, the main bottleneck for practical application is the low sensitivity. Extracellular electron transfer (EET) is a key parameter influencing sensitivity. Our previous research has demonstrated that EAB exhibit higher sensitivity when performing inward EET compared with outward EET. Inward EET relies on electron acceptors, but the effects of electron acceptors on sensitivity remain unclear. In this study, the sensitivity of toxicity determination with different electron acceptors was compared. Results indicated that the choice of electron acceptors significantly changed the sensitivity. When Trimethylamine N-oxide (TMAO) was chosen as the electron acceptor, EAB exhibited the highest sensitivity, with a lower response limit of 0.05 mg/L Cd2+. The main reason was that the utilization of TMAO for inward EET increases the membrane permeability of EAB cells, facilitates toxic pollutant penetration, and results in high mortality after toxicity exposure.
Collapse
Affiliation(s)
- Yuxuan Zang
- School of Medical, Shanxi Datong University, Datong 037009, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xuemei Yi
- School of Life, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Zha
- Infore Environment Technology Group, Foshan 528000, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yue Yi
- School of Life, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Lee H, Nguyen DV, Lee EJ, Han T, Park J. Integrating bioassay and machine learning data for ecological risk assessments of herbicide use on Ulva australis. MARINE POLLUTION BULLETIN 2025; 216:117984. [PMID: 40239277 DOI: 10.1016/j.marpolbul.2025.117984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Herbicide contamination of aquatic ecosystems poses a critical risk to biodiversity. Bioassays provide useful ecological insights on responses to herbicides; however, they require a model organism. Ulva australis is an ideal candidate for herbicide toxicity evaluations. Conventional monitoring methods have certain limitations, necessitating innovative approaches for ecological risk assessment. We evaluated the toxicity of six herbicides (atrazine, chlorimuron-ethyl, diuron, hexazinone, simazine, and pendimethalin) to U. australis by integrating experimental bioassays with advanced machine learning models. Three key endpoints were measured-reproduction, relative growth rate, and photosynthetic efficiency. Species sensitivity distribution modelling was employed to determine the hazardous concentration values for 5 % of species (HC5) and the predicted no-effect concentration (PNEC). The derived values aligned well with regulatory benchmarks. For diuron, the PNEC (0.37 ± 0.25 μg L-1) closely matched the value of the European Chemicals Agency (0.32 μg L-1). In contrast, the HC5 for hexazinone (26.8 ± 28.7 μg L-1) was lower than that specified by the Australian/New Zealand guideline (75 μg L-1). Machine learning models showed high predictive accuracy, with gradient boosting outperforming random forest (R2 = 0.933, RMSE = 0.0036 mg L-1 vs R2 = 0.878 and RMSE = 0.0048 mg L-1). Sensitivity analysis confirmed the robustness of gradient boosting to input variability, highlighting its suitability for ecological risk assessment. This approach establishes a scalable framework for ecological risk evaluation by integrating experimental and computational methodologies. The resulting data can also generate adaptive strategies to mitigate herbicide impacts and protect aquatic ecosystems.
Collapse
Affiliation(s)
- Hojun Lee
- Marine@UGent Korea, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Duc-Viet Nguyen
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Eun-Ji Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Taejun Han
- Marine@UGent Korea, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium; Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Republic of Korea.
| |
Collapse
|
3
|
Ramage CI, Lopes Dos Santos RA, Yon L, Johnson MF, Vane CH. Widespread pesticide pollution in two English river catchments of contrasting land-use: from sediments to fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126371. [PMID: 40328359 DOI: 10.1016/j.envpol.2025.126371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025]
Abstract
Water, sediments, fish and invertebrates were collected along two English rivers (R. Tone, Sommerset and R. Wensum, Norfolk) and analysed for 52 pesticides to assess source to sea spatial distribution and track bioaccumulation within wildlife. Chemical risk assessments, using Toxic Units, Risk Quotients, and Microtox® solid phase tests were applied to understand threats to river health. Widespread pesticide pollution was detected in the water and sediments of both rivers, often forming complex mixtures containing numerous pesticides. Hydrophobic pesticides, such as Fipronil and Propiconazole, were also observed widely bioaccumulating in fish. The veterinary pesticide Fipronil was measured in the highest concentrations, up to 87.7 ng/g in fish muscle and 322 ng/g in invertebrates. Of particular concern were neonicotinoids in water, which frequently exceeded environmental quality standards (detected ranges: Imidacloprid <1.2-97.1 ng/L; Clothianidin <28.7-63.4 ng/L) and presented a significant risk to aquatic invertebrates and overall river health. Chronic sub-lethal risks to fish resulting from pesticide exposure were also identified. In sediments, Fipronil regularly exceeded likely-effect benchmarks by up to 256 % (0-0.355 ng/g OC; 0-12.6 ng/g). The findings highlight the potentially negative impact of pesticide pollution on river health in England, and emphasise the need for stricter regulation of the most high-risk pesticides, particularly those used in veterinary care.
Collapse
Affiliation(s)
- Calum I Ramage
- British Geological Survey (BGS), Organic Geochemistry Facility, Keyworth, Nottingham, NG12 5GG, UK; University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | - Lisa Yon
- University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | - Christopher H Vane
- British Geological Survey (BGS), Organic Geochemistry Facility, Keyworth, Nottingham, NG12 5GG, UK.
| |
Collapse
|
4
|
Frassati S, Carena L, Barbaro E, Roman M, Feltracco M, Minella M, Sordello F, Minero C, Spolaor A, Scalabrin E, Barbante C, Gambaro A. Photodegradation of bisphenol A and identification of photoproducts in artificial snow under UVA radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126503. [PMID: 40403920 DOI: 10.1016/j.envpol.2025.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Bisphenol A (BPA) is an organic micropollutant detected in various environments, from urban to remote areas, including Arctic snow. As a known endocrine disruptor, it is essential to investigate its environmental fate and potential impact on ecosystems. Previous studies have explored BPA photodegradation and its transformation products in different aqueous environments (freshwater, seawater, and ice), by using photosensitizers to trigger specific reactions. However, there is still a significant gap in understanding the photodegradation processes in snow, which, although similar to ice, has distinct chemical and physical characteristics. In this work, we investigated the direct and indirect photodegradation of BPA in artificial snow and identified its degradation products through HPLC-HRMS. Nitrite and benzophenone-4-carboxylate, the latter used as a surrogate of chromophoric dissolved organic matter, induced significant BPA photodegradation under UVA irradiation. The photoproducts found in snow were partly similar to those previously observed in liquid water and ice. Their toxicity towards aquatic organisms was predicted with ECOSAR software as well. Finally, BPA photolysis and formation of photoproducts were investigated in two Alpine snow samples collected above and below the tree line, with a different organic matter content. Oxidation and nitration products of BPA were detected in these samples, suggesting that BPA photodegradation may indeed occur in natural snow. It was also noted that the aquatic toxicity of several identified photoproducts would be similar to that of BPA, but others may be even more toxic than the parent contaminant.
Collapse
Affiliation(s)
- Stefano Frassati
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy.
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Marco Roman
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Matteo Feltracco
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Fabrizio Sordello
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Elisa Scalabrin
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Carlo Barbante
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy
| | - Andrea Gambaro
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy
| |
Collapse
|
5
|
Pereira A, Cunha M, Cuccaro A, Vieira HC, He Y, Soares AMVM, Freitas R. The ecotoxicological effects of diclofenac and gentamicin on Mytilus galloprovincialis: What does in vivo reveal that in vitro fails to show? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126045. [PMID: 40081458 DOI: 10.1016/j.envpol.2025.126045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the toxicological effects of diclofenac (DIC) and gentamicin (GEN) on the gills (G) and digestive gland (DG) of Mytilus galloprovincialis through in vitro and in vivo assays. Biochemical markers related to oxidative stress, metabolic capacity, and neurotoxicity were evaluated at the end of each assay. For both assays, principal coordinates analysis (PCO) highlighted distinct biochemical profiles between G and DG, mostly related to higher basal values for several biomarkers in DG.The Integrated Biomarker Response (IBR) index revealed the highest scores in G for the in vitro assay, especially after exposure to GEN. In the in vivo assay, instead, the highest scores were recorded in DG, particularly in response to DIC. The distinct responses of G and DG underscore their respective roles in respiration and detoxification, with G being more sensitive to acute stress and DG exhibiting greater adaptive capacity over time. Furthermore, GEN appeared to cause the greatest impact on G in the in vitro assay, while DIC had the most significant effect on DG following the in vivo experiment. In vitro assays demonstrated limited oxidative stress and cellular damage, while in vivo results highlighted substantial metabolic depression and biomarker variability under prolonged exposure. When analyzed individually, the in vitro assay showed a clearer distinction between the two contaminants, particularly in DG. The findings underscore the differential vulnerability and adaptive capacities of G and DG, attributed to their distinct physiological functions. These results emphasize the complementary nature of in vitro and in vivo approaches, with the former providing mechanistic insights and the latter reflecting systemic organismal responses. This study highlights the importance of a multi-dimensional approach, combining both in vitro and in vivo methodologies, to better understand tissue-specific toxicity and the broader ecological consequences of pharmaceutical contamination.
Collapse
Affiliation(s)
- Afonso Pereira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Cunha
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
| | - Hugo C Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Conseil G, Cardoso O, Felten V, Rosin C, Pasquini L, Huguet-Cizo M, Milla S, Banas D. Caging Gammarus roeseli to track pesticide contamination: How agricultural practices shape water quality in small waterbodies? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118143. [PMID: 40185031 DOI: 10.1016/j.ecoenv.2025.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Contaminant monitoring in agroecosystems is increasingly revealing overlooked molecules, particularly within complex pesticide mixtures. This study assessed the effectiveness of chemical and ecotoxicological methods for evaluating contamination and biological responses in Gammarus roeseli exposed to pesticides and transformation products (TPs) in lentic small water bodies (LSWBs) near agricultural zones. We examined 7 LSWBs, finding variable contamination levels shaped by watershed composition differences. Analysis of 136 compounds identified key TPs, including chlorothalonil R471811, metazachlor ESA, and OXA, which collectively represented 86.2 % of the total quantified contaminants. These results underscore the persistence of both current and banned pesticides in the ponds studied. While G. roeseli showed favorable survival rates, significant reductions in locomotion and ventilation were observed at heavily contaminated sites, with biochemical analyses suggesting neurotoxic effects and activation of detoxification mechanisms in response to contaminants. Multivariate analyses revealed site-specific variations, highlighting the complex interactions between contamination levels and environmental conditions. Biomarker responses in gammarids served as sensitive indicators of residual toxicity in LSWBs, with frequent associations with historical contamination or current pesticide applications. This in situ caging approach across a contamination gradient demonstrates strong potential for biomonitoring and ecotoxicological assessments in agroecosystems. Extending exposure durations and including more heavily contaminated ponds could further enhance risk evaluation, thereby improving biomonitoring accuracy in headwater aquatic ecosystems. By integrating site-specific environmental conditions, contamination profiles, and biological responses, this study provides valuable insights into the influence of agricultural practices on LSWBs contamination and underscores the critical need to incorporate TPs into future risk assessment frameworks.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France; LTSER-Zone Atelier Moselle, Nancy F-57000, France.
| | - Olivier Cardoso
- Office Français de la Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 avenue Buffon, Orléans F45071, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | | | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France.
| |
Collapse
|
7
|
Lima GDS, Eismann CE, Elias LP, Moreira LFPP, Menegario AA. Bioavailability of Al, Fe, Mn and Zn in a Decommissioned Mining Area Evaluated by Biomonitoring and Passive Samplers: Robustness, Efficiency and Relationships Between Biotic and Abiotic Monitoring Approaches. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:340-355. [PMID: 40056219 DOI: 10.1007/s00244-025-01122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
In situ assessment of metal bioavailability is crucial for evaluating the degree of contamination in aquatic systems. This study evaluated the bioavailability of Al, Fe, Mn and Zn in water from three sites in a decommissioned mining area near the city of Poços de Caldas (State of Minas Gerais, Brazil). A multi-tool approach was used, combining DGT, transplanted fish (Oreochromis niloticus) and water samples (total and dissolved metal concentration analyses). Samples were taken at 14, 28 and 42-day intervals. Livers, gills and muscles of transplanted fish were analyzed after acid digestion in microwaves and determined by ICP-OES. Significant increases in transplanted fish for Mn and Zn concentrations were observed in the gills. Total and dissolved concentrations showed large fluctuations, possibly influenced by factors such as the rainy season, pH changes, and varying effluent discharges at each sampling point. The concentration of the element measured by DGT devices, proved to be an effective indicator of temporal and spatial variations in the bioavailable levels of Al, Fe, Mn and Zn across all sites analyzed. However, the weak correlations between the different monitoring methods highlight their complementary nature, as each approach captures distinct aspects of metal bioavailability. This underscores the importance of integrating multiple methodologies to provide a more comprehensive understanding of metal dynamics in complex environmental scenarios.
Collapse
Affiliation(s)
- Guilherme Dos Santos Lima
- Environmental Studies Center, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
- Institute of Geosciences and Exact Sciences, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
| | - Carlos Eduardo Eismann
- Environmental Studies Center, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
- Institute of Geosciences and Exact Sciences, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
- Institute of Geosciences and Exact Sciences, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
| | - Luiz Felipe Pompeu Prado Moreira
- Environmental Studies Center, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
- Institute of Geosciences and Exact Sciences, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil
| | - Amauri Antonio Menegario
- Environmental Studies Center, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil.
- Institute of Geosciences and Exact Sciences, São Paulo State University (Unesp), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
8
|
Marizzi Del Olmo A, López-Doval JC, Hidalgo M, Serra T, Colomer J, Salvadó V, Escolà Casas M, Medina JS, Matamoros V. Holistic assessment of chemical and biological pollutants in a Mediterranean wastewater effluent-dominated stream: Interactions and ecological impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125833. [PMID: 39952585 DOI: 10.1016/j.envpol.2025.125833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The discharge of treated wastewater from wastewater treatment plants (WWTPs) into river systems is a significant source of pollution, introducing a range of chemical and biological pollutants that impact the chemical and ecological quality status of rivers. This study evaluates the effect of a secondary treated wastewater effluent on the Onyar River, in the northeast of Spain. Water and biofilm samples were collected at one upstream and four downstream sampling points (up to 2.8 km from the discharge point) across four seasons. A wide array of pollutants, including metals, pharmaceuticals, microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), among other emerging pollutants, were detected downstream, with significant differences between upstream and downstream concentrations. Our results show that WWTP discharge also altered biofilm microbiome composition and ARGs presence, being these changes distinguishable from seasonal variations. Nevertheless, a partial recovery further downstream (525 m) was observed for biofilm microbiome and ARGs composition. These findings highlight the value of microbiome analysis in assessing wastewater impacts on river ecosystems and emphasize the need for further research to improve pollutant attenuation and biofilm recovery strategies in river streams.
Collapse
Affiliation(s)
- Anna Marizzi Del Olmo
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Julio C López-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), E-08500, Vic, Spain
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Jordi Colomer
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Victòria Salvadó
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Jessica Subirats Medina
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
9
|
Phan TTH, Nguyen HDP, Nguyen NP, Nguyen HN, Duong TLH, Tran BA, Quang TB, Duy NPT, Khoa TD, Pham TPT. Development of a bioreactor with an integrated non-dispersive infrared CO 2 sensor for rapid and sensitive detection of Cr(VI) toxicity in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137089. [PMID: 39764965 DOI: 10.1016/j.jhazmat.2025.137089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 03/12/2025]
Abstract
Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated. Online detection of microbial-generated CO2 in gas-phase which is considered as a non-invasive method could significantly improve real-time monitoring of microbial growth phases while addressing some of the aforementioned limitations of conventional whole-cell toxicity biosensors. Pseudomonas koreensis ICTTOX1, which was isolated from wastewater and identified using MALDI-TOF mass spectrometry and 16S rRNA sequencing, was employed as the microbial source for Cr(VI) toxicity testing. Using the cells selected in the early-log phase, where its protective mechanisms have not yet fully activated, and conducting parallel toxic and blank runs contribute to the promising limit of detection, sensitivity, and reproducibility of the method. By achieving an IC₅₀ of 0.16 mg/L for Cr(VI), this method demonstrates significantly higher sensitivity compared to other reported toxicity assays. Moreover, the sensitivity of the early-log cells was maintained for 24 h of storage at 10°C. A statistically significant difference between the blank sample and 0.01 mg/L Cr(VI) solution confirms the ability of the method to detect Cr(VI) toxicity at the limited value of surface water quality in Vietnam. The largest coefficient of variation of inhibition was found to be 12 %, aligning with the recommended value for the validation of bioanalytical methods according to USFDA. These findings support the development of an eco-friendly and sensitive method for rapid detection of Cr(VI) toxicity, enabling early warning of pollution events to enhance environmental safety. However, the study is limited by the absence of chromium speciation analysis during microbial metabolism, which should be explored in future research.
Collapse
Affiliation(s)
- Thanh-Truc H Phan
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Hoang-Duy P Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Nguyen-Phuong Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Hong-Nhung Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Thanh-Linh H Duong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Boi-An Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Tang Ba Quang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam
| | - Nguyen Phuc Thanh Duy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Ta Dang Khoa
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Thuy-Phuong T Pham
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam.
| |
Collapse
|
10
|
Goldmann E, Kudlek E, Bialas O, Górski M, Adamiak M, Klemczak B. Environmental Toxicity of Cement Nanocomposites Reinforced with Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1176. [PMID: 40077401 PMCID: PMC11901841 DOI: 10.3390/ma18051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The addition of carbon nanotubes (CNTs) to cement matrix brings multiple beneficial effects ranging from improving mechanical and physical properties to the creation of smart materials. When subjected to an erosive environment or as end-of-life waste, mortars with CNT addition might get released into the environment and come in contact with surface waters. The assessment of the environmental impact of mortars reinforced with carbon nanotubes is an important factor concerning their sustainability, as it has not yet been addressed in the literature. The presented paper aims to assess the water toxicity of cement mortars with various dosages of 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% of carbon nanotube. The effect of the quality of water dispersion of CNTs was also considered through two sonication times of the suspension: 20 min and 60 min. Tests using indicator organisms, Aliivibrio fischeri, Daphnia magna, and Lemna minor, were conducted on shredded and non-shredded mortars. The results reveal no to low toxicity for all tested mortars under the assumed framework of toxicity assessment. The toxicity results for samples containing CNTs were comparable to those without CNTs, indicating that the toxicity of mortars incorporating CNTs is not greater than that of conventional cement-based materials. The water toxicity of the cement mortars is rather connected with the washing away of the hydration products more than with the presence of carbon nanotubes.
Collapse
Affiliation(s)
- Eryk Goldmann
- Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.G.); (B.K.)
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Oktawian Bialas
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (O.B.); (M.A.)
| | - Marcin Górski
- Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.G.); (B.K.)
| | - Marcin Adamiak
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (O.B.); (M.A.)
| | - Barbara Klemczak
- Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.G.); (B.K.)
| |
Collapse
|
11
|
Cunha M, Nardi A, Soares AMVM, Gil AM, Freitas R. Revealing hidden risks: in vitro analysis of PFAS hazards in Mytilus galloprovincialis gills and digestive gland. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136823. [PMID: 39694002 DOI: 10.1016/j.jhazmat.2024.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their persistence and bioaccumulation, leading to widespread environmental contamination. Despite their recognised environmental risks, particularly to aquatic wildlife, including marine invertebrates, detailed impact studies are limited. PFAS can be categorised according to the length of the compound chain, with short-chain PFAS announced as a safer alternative to the more commonly used long-chain PFAS. However, recent evidence suggests that also short-chain PFAS pose significant environmental risks. The present study evaluated the adverse effects of six PFAS compounds-two short-chain (PFHxA, 6:2 FTA) and four long-chain (PFUnDA, PFDoA, PFTriDA, PFTeDA)- on the digestive gland and gills of mussels, Mytilus galloprovincialis, using in vitro assays. The results showed organ-specific responses: the digestive gland was more sensitive to PFHxA, with increased catalase activity and decreased total antioxidant capacity, and cellular damage was observed only at higher concentrations of PFTriDA. Gills were more affected by PFDoA and PFTeDA, with inhibited antioxidant enzyme activity and increased oxidative stress. PFHxA and PFTriDA also showed inhibition of acetylcholinesterase activity. 6:2 FTA had the lowest effects for both organs, while PFHxA was the most harmful. These findings underscore the need for thorough risk assessments of PFAS, considering both chain length and organ-specific effects.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana M Gil
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
12
|
Sánchez-González D, Blanco-Peña K, Solano-Campos F, Solano K, Mena F. Exposure to an environmentally relevant concentration of chlorpyrifos induces transcriptional changes and neurotoxicity in Poecilia gillii without clear behavioral effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117900. [PMID: 39978101 DOI: 10.1016/j.ecoenv.2025.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Overusing chlorpyrifos (CPF) in tropical countries such as Costa Rica poses a potential risk to freshwater ecosystems. This study investigated the effects of transient exposure to an environmentally relevant CPF concentration on the native fish species Poecilia gillii, employing a comprehensive approach that evaluated multiple levels of biological organization. Using RT-qPCR, we quantified transcript changes in genes involved in various biological processes, including inflammation and apoptosis; annexin A1 (anxa1b), cytokine regulation; cytokine-inducible SH2-containing protein (cish), redox reactions; NADH oxidoreductase subunit A2 (ndufa2), protein translocation; Sec61 gamma subunit (sec61g), and biotransformation; glutathione S-transferase rho (gstr). Additionally, we measured biochemical biomarkers such as phase I; 7-ethoxyresorufin-O-deethylase (EROD) and phase II; glutathione S-transferase (GST) biotransformation enzymes, oxidative stress markers; catalase (CAT) and lipid peroxidation (LPO), and conducted behavioral tests to assess swimming fitness and antipredator reactions. Neurotoxicity was assessed by measuring brain and muscle tissue cholinesterase (ChE) activity. Following 48 h of exposure to 5.5 µg/L CPF, we observed significant downregulation of the sec61g and gstr genes, decreased CAT activity, and neurotoxic effects, as indicated by reduced ChE activity in muscle. Although no significant behavioral changes were detected, our results suggest that short-term exposure to environmentally relevant CPF concentrations can disrupt gene expression, compromising biotransformation and protein synthesis in P. gillii juveniles. Moreover, the observed neurotoxicity, which is consistent with the mechanism of action of CPF, may lead to subtle behavioral changes. This study provides evidence of the sublethal effects of CPF on nontarget organisms, highlighting the importance of considering gene expression changes when assessing CPF toxicity.
Collapse
Affiliation(s)
- Daniel Sánchez-González
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Kinndle Blanco-Peña
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Frank Solano-Campos
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Karla Solano
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| |
Collapse
|
13
|
Zulfahmi I, Akbar SA, Perdana AW, Adani KH, Admaja Nasution IA, Ali R, Nasution AW, Nafis B, Sumon KA, Rahman MM. Growth disorders, respiratory distress and skin discoloration in zebrafish (Danio rerio) after chronic exposure to Palm Oil Mill Effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125513. [PMID: 39662577 DOI: 10.1016/j.envpol.2024.125513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Understanding the environmental and health impacts of Palm Oil Mill Effluent (POME) contamination is essential for driving sustainable practices and innovation within the industry. In this study, we elaborated the chronic toxicity of POME on growth disorder, respiratory distress, and skin discoloration of zebrafish (Danio rerio). Zebrafish were exposed to three concentrations of POME (0 mL/L, 0.5 mL/L and 1.0 mL/L) for 28 days. Results revealed that an increase in POME concentration significantly reduced the weight gain, length gain, specific growth rate, specific length rate and oxygen consumption rate of zebrafish. In contrast, the opercular rate increased significantly. Skin discoloration in zebrafish exposed to POME were characterized by reduced red percentage value on the body and tail, increased green and blue percentages on the tail, and decreased brightness values. This result suggests crucial insights for the management and regulation of POME.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala , Banda Aceh, 23111, Indonesia.
| | - Said Ali Akbar
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rizwan Ali
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ayu Wulandari Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
14
|
Alvariño L, Castañeda L, Panduro G, da Silva Acioly TM, Viana DC, Iannacone J. Use of multispecies (Nannochloropsis oceanica, Artemia franciscana, and Arbacia nigra) approach to assess the quality of marine water from Callao Bay, Peru. Sci Rep 2025; 15:1189. [PMID: 39774344 PMCID: PMC11707126 DOI: 10.1038/s41598-024-85025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Multi-species tests in bioassays offer a holistic view of the ecosystem's response to toxicity, as different species display varying sensitivities to pollutants. This research aimed to assess the ability of toxicity tests' to distinguish contamination levels, examine site-specific effects, and investigate seasonal variability. Using a multispecies approach (Nannochloropsis oceanica, Artemia franciscana, and Arbacia nigra), bioassays evaluated marine water quality from Callao Bay in Peru across four sampling areas (Naval School: PA1, Peruvian Marine Institute: PA2, Callao Pier: PA3, and San Lorenzo Island: PA4). These species, with varying sizes and morphologies, are relevant to marine systems and ideal for multispecies toxicity testing, contributing to broader environmental impact discussions. To conduct toxicity bioassays, seasonal evaluations were performed in fall, winter, spring, and summer. Brine shrimp displayed seasonal variations in toxicity values, with notable mortality rates during winter. Nannochloropsis oceanica was the most sensitive species, showing moderate toxicity across seasons. Areas impacted by pollution sources, such as wastewater and maritime traffic, exhibited the highest toxicity levels (PA3 and PA4). These fluctuations underscore the need to consider seasonal and local conditions when assessing organism sensitivity to seawater contaminants. Additionally, they reveal the complex interplay between environmental factors, water quality, and organism responses in marine ecosystems.
Collapse
Affiliation(s)
- Lorena Alvariño
- Animal Ecology and Biodiversity Laboratory (LEBA), Facultad de Ciencias Naturales y Matemática, Grupo de Investigación en Sostenibilidad Ambiental (GISA), Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal, El Agustino, Lima, Perú
| | - Luz Castañeda
- Animal Ecology and Biodiversity Laboratory (LEBA), Facultad de Ciencias Naturales y Matemática, Grupo de Investigación en Sostenibilidad Ambiental (GISA), Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal, El Agustino, Lima, Perú
| | - Grober Panduro
- Facultad de Ciencias Forestales y Ambientales, Departamento de Conservación de Recursos Naturales, Universidad Nacional de Ucayali, Carretera Federico Basadre Km 6, Pucallpa, Perú
| | | | - Diego Carvalho Viana
- Multi-User Laboratories in Postgraduate Research (LAMP), State University of Maranhão, São Luís, 65081-400, Brazil
- Center of Agrarian Sciences, Center for Advanced Morphophysiological Studies (NEMO), State University of the Tocantina Region of Maranhão (UEMASUL), Imperatriz, 65900-000, Brazil
| | - José Iannacone
- Animal Ecology and Biodiversity Laboratory (LEBA), Universidad Nacional Federico Villarreal, 15007, Lima, Peru.
| |
Collapse
|
15
|
Mendes da Silva L, Andrade-Vieira LF. Ecotoxicological bioassays with terrestrial plants: a holistic view of standards, guidelines, and protocols. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-39. [PMID: 39757559 DOI: 10.1080/10937404.2024.2440876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Terrestrial and aquatic ecosystems face various chemicals that might induce acute and/or long-term harm. To assess these impacts, ecotoxicological bioassays are essential. However, bioassays using animals, particularly mammals, are costly, time-consuming, and raise ethical concerns. In this context, terrestrial plants emerge as a viable alternative to conventional assays. Thus, the aim of this review was to address the history and evolution of plant bioassays, highlighting the main regulations, guidelines, and protocols governing the use of terrestrial plants in ecotoxicological tests. Initially, plant bioassays were employed to assess the cytogenotoxic effects of chemicals, gaining prominence with the GENE-TOX program in the 80s. Subsequently, plants were used in allelopathy bioassays and in studies aimed to examine the ecotoxicity of pesticides in soil. Currently, ecotoxicological bioassays with plants are regulated by specific standards, such as ASTM E1963-22, EPA 600/3-88/029, EPS 1/RM/45, ISO 11269-1, ISO 11269-2, ISO 17126, ISO 18763, ISO 29200, ISO 22030, OECD-208, OECD-227, OCSPP 850.4100, OCSPP 850.4230, OCSPP 850.4800 and OPPTS 850.4200. The existing protocols standardize bioassays in greenhouse and lab environments, and the duration of the tests varies from hours to months. The main ecotoxicological parameters to be analyzed after exposure include germination percentage, survival rate, root length, aerial part length, fresh mass of exposed plants, and phytotoxicity symptoms. In addition, the absorption rate of substances and genotoxic and mutagenic effects might also be assessed. Therefore, data in this review demonstrate that terrestrial plants represent an important tool in the analysis of environmental risks associated with chemicals and might serve as crucial allies in modern ecotoxicology.
Collapse
Affiliation(s)
- Leonardo Mendes da Silva
- Department of Ecology and Conservation, Institute of Natural Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | | |
Collapse
|
16
|
Gruszka D, Gruss I, Szopka K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. TOXICS 2024; 12:873. [PMID: 39771088 PMCID: PMC11679028 DOI: 10.3390/toxics12120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal soil contamination in urban areas poses a significant environmental hazard, particularly in regions with historical or ongoing industrial activities. These areas are often polluted with metals such as Pb, Cu, Cd, and Zn, which can be absorbed by plants and pose risks to both ecosystems and human health. This study investigates soil contamination in urban gardens in Wroclaw, Poland, where elevated levels of trace elements were detected. Standard soil analyses, including macroelement content, granulometry, and trace element concentrations, were performed alongside an ecotoxicological evaluation using an Ostracodtoxkit test. The test evaluates the impact of contaminants on organism growth. An uncontaminated urban garden soil served as a reference. This study revealed that Zn, Cu, Pb, and Cd concentrations in soils exceeded limits permitted by Polish regulations in several soil samples. Despite the high concentrations of total metals, the bioavailable forms of these metals (measured by extraction of 1 M NH4NO3 extraction) were significantly lower, highlighting that the total metal content may not fully reflect the environmental risk. Pb was identified as the primary contributor to growth inhibition of test organisms, showing a particularly strong correlation with ecotoxicity. These findings underscore the importance of using ecotoxicological tests to evaluate soil contamination risks.
Collapse
Affiliation(s)
- Dariusz Gruszka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Iwona Gruss
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Katarzyna Szopka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
17
|
Crespo D, Leston S, Rato LD, Moutinho AB, Martinho F, Novais SC, Pardal MA, Lemos MFL. The effects of different densities of Asparagopsis armata (Harvey, 1855) seaweed on the clam Ruditapes philippinarum (A. Adams and Reeve, 1850): Insights from a laboratory assessment. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106812. [PMID: 39481138 DOI: 10.1016/j.marenvres.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Several invasive species can occupy the same geographic area. Interaction between species depends on several factors, and the results of such interactions can be highly diverse. Asparagopsis armata is a invasive red seaweed whose exudates contain a cocktail of toxic halogenated compounds. In this study, the impact of high and low levels of A. armata on the bivalve Ruditapes philippinarum was assessed in a laboratory experiment. Both are prominent invasive species in Europe and could share the same habitats. The effects of the algae were measured at different biological levels, framed by an integrated approach: bioturbation as a proxy for organismal activity and behaviour within the sediment, and several subcellular biomarkers related to oxidative stress and damage, energy metabolism, detoxification, and neurotransmission. While bioturbation revealed the effects of exudates on the bivalve, with a decrease in most parameters when exposed to the different amounts of algae, only marginal responses were found for biomarkers, suggesting a possible temporal decoupling between the behavioural response and the intrinsic biochemical environment. These results denote that despite the recognized potential of biomarkers to address a myriad of situations, a proxy for higher levels of biological organization, such as behaviour, for its integration of lower-level effects, is a robust tool to address complex and lesser-known mixtures of stressors.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal; CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Sara Leston
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, Coimbra, 3000-548, Portugal
| | - Lénia D Rato
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Ariana B Moutinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Filipe Martinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
| |
Collapse
|
18
|
Bancel S, Cachot J, Bon C, Rochard É, Geffard O. A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124661. [PMID: 39111525 DOI: 10.1016/j.envpol.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Collapse
Affiliation(s)
| | - Jérôme Cachot
- Université de Bordeaux, CNRS and INP Bordeaux, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, Nouvelle-Aquitaine, France
| | - Corentin Bon
- INRAE, UR Riverly, F-69100, Villeurbanne, France
| | | | | |
Collapse
|
19
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Gan C, Langa E, Ballestero D, Pino-Otín MR. Comparative ecotoxicity assessment of highly bioactive isomeric monoterpenes carvacrol and thymol on aquatic and edaphic indicators and communities. CHEMOSPHERE 2024; 368:143666. [PMID: 39491687 DOI: 10.1016/j.chemosphere.2024.143666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The growing demand for sustainable natural products to replace harmful synthetic ones requires comprehensive ecotoxicity assessments to ensure their eco-friendly nature. This study explored for the first time the changes in microbial community growth and metabolic profiles from river and natural soil samples exposed to the two structural isomers, thymol (THY) and carvacrol (CARV), utilizing Biolog EcoPlate™ assays and 16S rRNA gene sequencing for taxonomic analysis. In addition, we addressed existing ecotoxicity data gaps for these two compounds by using aquatic (Daphnia magna and Vibrio fischeri) and soil (Eisenia fetida and Allium cepa) indicators. Results show acute toxicity of both CARV and THY on all indicators. V. fischeri (LC50 = 0.59 mg/L) > D. magna (4.75 mg/L) > A. cepa (6.47 mg/L) for CARV, and V. fischeri (LC50 = 1.71 mg/L) > A. cepa (4.05 mg/L) > D. magna (8.13 mg/L) for THY. E. fetida showed LC50 = 7.68 mg/kg for THY and 1.04 for CARV. River and soil microbial communities showed resilience, likely because they contain taxa capable of biodegrading these products. No significant growth inhibition effects were observed up to 100 mg/L, though substrate utilization decreased at higher concentrations, particularly for polymers and amines in soil microorganisms and polymers in aquatic communities. Soil microorganisms were more affected than aquatic ones, with CARV being more toxic than THY (EC50120h = THY 94.13 and CARV 29.79 mg/L in soil microorganisms). These findings suggest that an increase in the consumption of these products and their subsequent ecotoxicity effects from environmental discharge should still be monitored before being ruled out. However, long-term effects are unlikely due to microbial degradation of these natural products, potentially reducing risks to other target species and opening the way for their use as substitutes for commercial antibiotics.
Collapse
Affiliation(s)
- Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | | |
Collapse
|
21
|
Rasmussen SB, Bosker T, Barmentlo SH, Berglund O, Vijver MG. Non-conventional endpoints show higher sulfoxaflor toxicity to Chironomus riparius than conventional endpoints in a multistress environment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107074. [PMID: 39241466 DOI: 10.1016/j.aquatox.2024.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Evidence grows that standard toxicity testing might underestimate the environmental risk of neurotoxic insecticides. Behavioural endpoints such as locomotion and mobility have been suggested as sensitive and ecologically relevant additions to the standard tested endpoints. Possible interactive effects of chemicals and additional stressors are typically overlooked in standardised testing. Therefore, we aimed to investigate how concurrent exposure to environmental stressors (increased temperature and predation cues) and a nicotinic acetylcholine receptor (nAChR)-modulating insecticide ('sulfoxaflor') impact Chironomus riparius across a range of conventional and non-conventional endpoints. We used a multifactorial experimental design encompassing three stressors, sulfoxaflor (2.0-110 µg/L), predation risk (presence/absence of predatory cues), and elevated temperature (20 °C and 23 °C), yielding a total of 24 distinct treatment conditions. Additional stressors did not change the sensitivity of C. riparius to sulfoxaflor. To assess potential additive effects, we applied an Independent Action (IA) model to predict the impact on eight endpoints, including conventional endpoints (growth, survival, total emergence, and emergence time) and less conventional endpoints (the size of the adults, swimming abilities and exploration behaviour). For the conventional endpoints, observed effects were either lower than expected or well-predicted by the IA model. In contrast, we found greater than predicted effects of predation cues and temperature in combination with sulfoxaflor on adult size, larval exploration, and swimming behaviour. However, in contrast to the non-conventional endpoints, no conventional endpoints detected interactive effects of the neurotoxic insecticide and the environmental stressors. Acknowledging these interactions, increasing ecological context of ecotoxicological test systems may, therefore, advance environmental risk analysis and interpretation as the safe environmental concentrations of neurotoxic insecticides depend on the context of both the test organism and its environment.
Collapse
Affiliation(s)
- Sofie B Rasmussen
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - S Henrik Barmentlo
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
22
|
Vasantha Raman N, Gebreyohanes Belay BM, South J, Botha TL, Pegg J, Khosa D, Mofu L, Walsh G, Jordaan MS, Koelmans AA, Teurlincx S, Helmsing NR, de Jong N, van Donk E, Lürling M, Wepener V, Fernandes TV, de Senerpont Domis LN. Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124439. [PMID: 38942279 DOI: 10.1016/j.envpol.2024.124439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Berte M Gebreyohanes Belay
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands.
| | - Josie South
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Josephine Pegg
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, EC, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Dumisani Khosa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa; Scientific Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Lubabalo Mofu
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Gina Walsh
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, 2050, South Africa
| | - Martine S Jordaan
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa; CapeNature Scientific Services, Stellenbosch, South Africa
| | - Albert A Koelmans
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Nico R Helmsing
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Nina de Jong
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Ecology and Biodiversity Research Group, University of Utrecht, Utrecht, the Netherlands
| | - Miquel Lürling
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands; Department of Pervasive Systems, EEMCS, University of Twente & Department of Water Resources, ITC, University of Twente, the Netherlands
| |
Collapse
|
23
|
Lee YH, Kuk MU, Park JH, Lee H, Lee H, So MK, Yoon JH, Lee YJ, Kim D, So B, Kim M, Park J, Han T, Park JT. Rapid and Accurate Ecotoxicological Assessment of Heavy Metals Using Cyprinus carpio Cells. Life (Basel) 2024; 14:1119. [PMID: 39337902 PMCID: PMC11432982 DOI: 10.3390/life14091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Heavy metals have serious negative effects on various aquatic organisms, and therefore rapid and accurate ecotoxicological assessments of heavy metals are necessary. Fish-derived cells sensitive to heavy metals have been used as valuable tools for ecotoxicological assessments. However, this method requires a minimum toxicity treatment time of 96 h, which limits its use when rapid ecotoxicological assessments are required or ecotoxicological assessments of a large number of toxicants are performed. In this study, these limitations were overcome by adjusting parameters including the concentration of fetal bovine serum (FBS) in the medium and the treatment time of the toxicant. Specifically, we found that the maximum time for fish cells to remain unstarved was 6 h when using a medium containing 1% FBS. We applied both parameters to the ecotoxicological assessment (using a medium containing 1% FBS for the toxicity assessment and treating the toxicant for only 6 h). Surprisingly, these adjusted parameters allowed us to obtain faster and more accurate data than the traditional assessment. This improvement was due to the new assessment conditions that minimized the possibility that the growth-inducing effects of nutrients present in excess in the medium could interfere with the cellular response to the toxicant. The accuracy of this assessment was not limited to measuring the toxicity of heavy metals. In conclusion, we have established an ecotoxicity assessment that can generate rapid and accurate data on heavy metals. This new platform will become the cornerstone of rapid and accurate ecotoxicity assessments of heavy metals.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea;
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea;
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Duyeol Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Byeonghyeon So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Minseon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
| | - Jihae Park
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.H.L.); (M.U.K.); (J.H.P.); (H.L.); (M.K.S.); (J.H.Y.); (Y.J.L.); (D.K.); (B.S.); (M.K.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
24
|
Mukty SA, Hasan R, Bhuia MS, Saha AK, Rahman US, Khatun MM, Bithi SA, Ansari SA, Ansari IA, Islam MT. Assessment of sedative activity of fraxin: In vivo approach along with receptor binding affinity and molecular interaction with GABAergic system. Drug Dev Res 2024; 85:e22250. [PMID: 39154218 DOI: 10.1002/ddr.22250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.
Collapse
Affiliation(s)
- Sonaly Akter Mukty
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Anik Kumar Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Umme Sadea Rahman
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sumaya Akter Bithi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
25
|
Chepchirchir R, Mwalimu R, Tanui I, Kiprop A, Krauss M, Brack W, Kandie F. Occurrence, removal and risk assessment of chemicals of emerging concern in selected rivers and wastewater treatment plants in western Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174982. [PMID: 39053549 DOI: 10.1016/j.scitotenv.2024.174982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Water resources play a crucial role in sustaining life on earth yet chemicals of emerging concern (CECs) arising from extensive human applications are an increasing threat towards their existence. In this study, we examined the occurrence, removal and potential risk of CECs found in rivers and wastewater treatment plants (WWTPs) in western Kenya. Samples were prepared by solid-phase extraction and analysed using high performance liquid chromatography-mass spectrometry with a target list of 785 compounds. Out of these, 333 and 352 (influent 322, effluent 265) compounds were quantified in rivers and wastewater respectively, with pharmaceuticals, industrial compounds, and pesticides being frequently detected in both rivers and WWTPs. Compounds with highest concentrations included saccharin (9.9 μg/L), metformin (7.5 μg/L), and oxypurinol (6.5 μg/L) in rivers whereas caffeine (280 μg/L), deoxycholic acid (179 μg/L), 2-oxindole (10.9 μg/L) and ibuprofen (8.1 μg/L) were found at high concentrations in WWTPs. Based on the types of crops grown, samples from maize growing regions recorded the highest number of pesticides (75) which coincided with the spraying season. The WWTP showed the capacity to eliminate some compounds although the removal efficiencies varied greatly with 204 compounds exhibiting an average removal efficiency exceeding 50 %. Based on the risk assessment, crustaceans had the highest potential risk for toxicity with toxic unit (TU) values up to 5.4 driven primarily by diazinon and dichlorvos followed by algae (TU up to 0.07) and fish (TU up to 0.01) in rivers. A similar trend was observed in WWTP with diazinon (TU up to 5.5), diuron (TU up to 0.07) and carbendazim (TU up to 0.006) driving the risk for crustaceans, algae and fish respectively. These findings highlight the significance of surface water and WWTPs as sources and sinks of CECs in the environment translating to potential risks on aquatic organisms and humans.
Collapse
Affiliation(s)
- Ruth Chepchirchir
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Rashid Mwalimu
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Isaac Tanui
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya; Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute of Ecology, Evolution and Diversity-Goethe University, Frankfurt am Main, Germany
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute of Ecology, Evolution and Diversity-Goethe University, Frankfurt am Main, Germany
| | - Faith Kandie
- Department of Biological Sciences, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya; Stellenbosch Institute for Advanced Study, Marais Rd, Mostertsdrift, Stellenbosch 7600, South Africa.
| |
Collapse
|
26
|
Aladekoyi O, Siddiqui S, Hania P, Hamza R, Gilbride K. Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116513. [PMID: 38820820 DOI: 10.1016/j.ecoenv.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
In Canada, every day, contaminants of emerging concern (CEC) are discharged from waste treatment facilities into freshwaters. CECs such as pharmaceutical active compounds (PhACs), personal care products (PCPs), per- and polyfluoroalkyl substances (PFAS), and microplastics are legally discharged from sewage treatment plants (STPs), water reclamation plants (WRPs), hospital wastewater treatment plants (HWWTPs), or other forms of wastewater treatment facilities (WWTFs). In 2006, the Government of Canada established the Chemicals Management Plan (CMP) to classify chemicals based on a risk-priority assessment, which ranked many CECs such as PhACs as being of low urgency, therefore permitting these substances to continue being released into the environment at unmonitored rates. The problem with ranking PhACs as a low priority is that CMP's risk management assessment overlooks the long-term environmental and synergistic effects of PhAC accumulation, such as the long-term risk of antibiotic CEC accumulation in the spread of antibiotic resistance genes. The goal of this review is to specifically investigate antibiotic CEC accumulation and associated environmental risks to human and environmental health, as well as to determine whether appropriate legislative strategies are in place within Canada's governance framework. In this research, secondary data on antibiotic CEC levels in Canadian and international wastewaters, their potential to promote antibiotic-resistant residues, associated environmental short- and long-term risks, and synergistic effects were all considered. Unlike similar past reviews, this review employed an interdisciplinary approach to propose new strategies from the perspectives of science, engineering, and law.
Collapse
Affiliation(s)
- Oluwatosin Aladekoyi
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Salsabil Siddiqui
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Patricia Hania
- Department of Business and Law, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada.
| |
Collapse
|
27
|
Duran R, Cravo‐Laureau C. The hydrocarbon pollution crisis: Harnessing the earth hydrocarbon-degrading microbiome. Microb Biotechnol 2024; 17:e14526. [PMID: 39003601 PMCID: PMC11246598 DOI: 10.1111/1751-7915.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Affiliation(s)
- Robert Duran
- Universite de Pau et Des Pays de l'Adour, E2S UPPA, CNRS, IPREMPauFrance
| | | |
Collapse
|
28
|
Römer CI, Ashauer R, Escher BI, Höfer K, Muehlebach M, Sadeghi-Tehran P, Sherborne N, Buchholz A. Fate of synthetic chemicals in the agronomic insect pest Spodoptera littoralis: experimental feeding-contact assay and toxicokinetic model. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:982-992. [PMID: 38691062 DOI: 10.1093/jee/toae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects. We studied the toxicokinetics (TK) of insecticidally inactive test compounds incorporating agro-like structural motifs in larvae of the Egyptian cotton leafworm (Spodoptera littoralis, Lepidoptera), and their distribution across all biological matrices, using laboratory experiments and modeling. We measured Spodoptera larval behavior and temporal changes of whole-body concentrations of test compounds during feeding on treated soybean leaf disks and throughout a subsequent depuration period. Differences in the distribution of the total quantities of compounds were found between the biological matrices leaf, larva, and feces. Rate constants for uptake and elimination of test compounds were derived by calibrating a toxicokinetic model to the whole-body concentrations. Uptake and elimination rate constants depended on the physicochemical properties of the test compounds. Increasing hydrophobicity increased the bioaccumulation potential of test compounds. Incomplete quantities in larval matrices indicated that some compounds may undergo biotransformation. As fecal excretion was a major elimination pathway, the variable time of release and number of feces pellets led to a high variability in the body burden. We provide quantitative models to predict the toxicokinetics and bioaccumulation potential of inactive insecticide analogs (parent compounds) in Spodoptera.
Collapse
Affiliation(s)
- Clara I Römer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel 4058, Switzerland
- Environment Department, University of York, Wentworth Way, Heslington, York YO10 5NG, UK
| | - Beate I Escher
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Kristin Höfer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Michel Muehlebach
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Pouria Sadeghi-Tehran
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | | | - Anke Buchholz
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| |
Collapse
|
29
|
Aneggi E, Hussain S, Baratta W, Zuccaccia D, Goi D. Enhanced Heterogeneous Fenton Degradation of Organic Dyes by Bimetallic Zirconia-Based Catalysts. Molecules 2024; 29:2074. [PMID: 38731565 PMCID: PMC11085515 DOI: 10.3390/molecules29092074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The qualitative impact of pollutants on water quality is mainly related to their nature and their concentration, but in any case, they determine a strong impact on the involved ecosystems. In particular, refractory organic compounds represent a critical challenge, and several degradation processes have been studied and developed for their removal. Among them, heterogeneous Fenton treatment is a promising technology for wastewater and liquid waste remediation. Here, we have developed mono- and bimetallic formulations based on Co, Cu, Fe, and Mn, which were investigated for the degradation of three model organic dyes (methylene blue, rhodamine B, and malachite green). The treated samples were then analyzed by means of UV-vis spectrophotometry techniques. Bimetallic iron-based materials achieved almost complete degradation of all three model molecules in very short time. The Mn-Fe catalyst resulted in the best formulation with an almost complete degradation of methylene blue and malachite green at pH 5 in 5 min and of rhodamine B at pH 3 in 30 min. The results suggest that these formulations can be applied for the treatment of a broad range of liquid wastes comprising complex and variable organic pollutants. The investigated catalysts are extremely promising when compared to other systems reported in the literature.
Collapse
Affiliation(s)
- Eleonora Aneggi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Sajid Hussain
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
- Dipartimento di Ingegneria Industriale, Università di Padova, 35131 Padova, Italy
| | - Walter Baratta
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Zuccaccia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Goi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
| |
Collapse
|
30
|
Lombardero LR, Pérez DJ, Medici SK, Mendieta JR, Iturburu FG, Menone ML. Usefulness of oxidative stress biomarkers in native species for the biomonitoring of pesticide pollution in a shallow lake of the Austral Pampas, Argentina. CHEMOSPHERE 2024; 353:141578. [PMID: 38430938 DOI: 10.1016/j.chemosphere.2024.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.
Collapse
Affiliation(s)
- Lucas Rodrigo Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Débora Jesabel Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, 7620, Balcarce, Buenos Aires, Argentina
| | - Sandra Karina Medici
- Fares Taie Instituto de Análisis Magallanes 3019, 7600, Mar del Plata, Buenos Aires Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina; Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, 1900, La Plata, Buenos Aires, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104419. [PMID: 38508506 PMCID: PMC11042042 DOI: 10.1016/j.etap.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Ács A, Kovács AW, Győri J, Farkas A. Optimization of assay conditions to quantify ECOD activity in vivo in individual Daphnia magna. Assay performance evaluation with model CYP 450 inducers/inhibitors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116159. [PMID: 38417318 DOI: 10.1016/j.ecoenv.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Screening the activity of the cytochrome P450 (CYP450) mixed function oxidase system in aquatic invertebrates received seldom applications in ecotoxicology due to low baseline enzymatic activities characteristic for these organisms. In this study, an existing in vivo spectrofluorometric assay method based on quantifying the cytochrome P450 mediated conversion of 7-ethocycoumarin (EtC) used as substrate to the product 7-hydroxycoumarin (HCm) called: ethoxycoumarin-O-deethylase (ECOD) activity, initially applicable on pooled samples of Daphnia magna, was optimized for use on individual organisms. Optimal assay conditions have been established for as small as 3- and 6 days old individuals, and the limits of spectrofluorometric detection of HCm excreted by daphnids in the incubation media were defined. The modified assay was tested by screening the modulation of ECOD activity in daphnids following 24 h exposure to β-naphthoflavone (β-NF, reference CYP450 inducer) and to prochloraz (PCZ), a potent CYP450 inhibitor. Maximal ECOD activity levels in daphnids were recorded following 2 hours of incubation to 200 nM EtC. The limit of spectrofluorometric detection of HCm in the incubation media was 6.25 nM, achieved by more than 80% of three days old daphnids and all six days old individuals. Exposure of daphnids to β-NF demonstrated a bell-shaped ECOD activity induction potential, while PCZ elicited partial (60%) inhibition of ECOD activity. This optimized in vivo ECOD activity assay may serve as a cost-effective tool to study the responsiveness of Phase-I metabolism in D. magna to toxic pressure and its applicability to other aquatic invertebrates is also worth for consideration.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary.
| | - Attila W Kovács
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| |
Collapse
|
33
|
Rasmussen SB, Bosker T, Ramanand GG, Vijver MG. Participatory hackathon to determine ecological relevant endpoints for a neurotoxin to aquatic and benthic invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22885-22899. [PMID: 38418784 PMCID: PMC10997722 DOI: 10.1007/s11356-024-32566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon, during which they did creative toxicity testing on 5 freshwater invertebrate species: Daphnia magna, Chironomus riparius, Asellus aquaticus, Lymnaea stagnalis, and Anisus vortex. Involving the students in an active learning environment stimulated increased creativity and productivity. In total, 28 endpoints were investigated, including standard endpoints (e.g., mortality) as well as biomechanistic and energy-related endpoints. Despite high variances in the results, likely linked to the limited lab experience of the students and interpersonal differences, a promising set of endpoints was selected for further investigation. A more targeted follow-up experiment focused on the most promising organism and set of endpoints: biomechanistic endpoints of C. riparius larvae. Larvae were exposed to a range of sulfoxaflor concentrations (0.90-67.2 μg/L) for 21 days. Video tracking showed that undulation and swimming were significantly reduced at 11.1 μg sulfoxaflor/L after 9 days of exposure, and an EC50 = 10.6 μg/L for mean velocities of the larvae in the water phase was found. Biomechanistic endpoints proved much more sensitive than mortality, for which an LC50 value of 116 μg/L was found on Day 9. Our results show that performing a hackathon with students has excellent potential to find sensitive endpoints that can subsequently be verified using more targeted and professional follow-up experiments. Furthermore, utilising hackathon events in teaching can increase students' enthusiasm about ecotoxicology, driving better learning experiences.
Collapse
Affiliation(s)
- Sofie B Rasmussen
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501, EE, The Hague, The Netherlands
| | - Giovani G Ramanand
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
34
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. Yttrium effects on the Mediterranean mussel under a scenario of salinity shifts and increased temperature. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106365. [PMID: 38295610 DOI: 10.1016/j.marenvres.2024.106365] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Climate change (CC) induces significant worldwide alterations in salinity and temperature, impacting ecosystems and their services. Marine organisms, susceptible to these changes, may experience modified vulnerability to anthropogenic contaminants, including rare-earth elements (REEs) such as yttrium (Y) derived from electronic waste. This study investigated the influence of temperature and salinity changes on the impacts of Y in Mytilus galloprovincialis mussels. Organisms were subjected to Y (0 and 10 μg/L) for 28 days under three salinity scenarios (20, 30 (control), and 40, at a control temperature of 17 °C) or to two temperatures (17 and 22 °C, at the control salinity of 30). Under these conditions, Y bioaccumulation and different biomarkers were evaluated. Results showed that salinity and temperature did not affect Y accumulation, indicating effective detoxification mechanisms and physiological adaptations in the exposed organisms. However, in Y-exposed mussels effects were intensified under decreased salinity, evidenced by increased metabolism, defense enzyme activities, and acetylcholinesterase (AChE) levels. Similar responses occurred under heat stress with enhanced metabolic capacity, AChE activity, and activation of defense mechanisms such as glutathione S-transferases. These defense mechanisms mitigated cellular damage caused by Y, but under the highest temperature and especially lower salinity, Y-exposed mussels exhibited increased oxidative stress and decreased efficiency of activated defense enzymes, resulting in cellular damage compared to their uncontaminated counterpart. The present study sheds light on the effects that interactions between temperature, salinity, and the presence of emerging contaminants like REEs may have on marine organisms. Such assessments are crucial for developing effective strategies to mitigate the impacts of CC and protect the long-term health and resilience of marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Schuijt LM, van Smeden J, van Drimmelen CKE, Buijse LL, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Heikamp-de Jong I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Effects of antidepressant exposure on aquatic communities assessed by a combination of morphological identification, functional measurements, environmental DNA metabarcoding and bioassays. CHEMOSPHERE 2024; 349:140706. [PMID: 37992907 DOI: 10.1016/j.chemosphere.2023.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
The antidepressant fluoxetine is frequently detected in aquatic ecosystems, yet the effects on aquatic communities and ecosystems are still largely unknown. Therefore the aim of this study is to assess the effects of the long-term application of fluoxetine on key components of aquatic ecosystems including macroinvertebrate-, zooplankton-, phytoplankton- and microbial communities and organic matter decomposition by using traditional and non-traditional assessment methods. For this, we exposed 18 outdoor mesocosms (water volume of 1530 L and 10 cm of sediment) to five different concentrations of fluoxetine (0.2, 2, 20 and 200 μg/L) for eight weeks, followed by an eight-week recovery period. We quantified population and community effects by morphological identification, environmental DNA metabarcoding, in vitro and in vivo bioassays and measured organic matter decomposition as a measure of ecosystem functioning. We found effects of fluoxetine on bacterial, algal, zooplankton and macroinvertebrate communities and decomposition rates, mainly for the highest (200 μg/L) treatment. Treatment-related decreases in abundances were found for damselfly larvae (NOEC of 0.2 μg/L) and Sphaeriidae bivalves (NOEC of 20 μg/L), whereas Asellus aquaticus increased in abundance (NOEC <0.2 μg/L). Fluoxetine decreased photosynthetic activity and primary production of the suspended algae community. eDNA assessment provided additional insights by revealing that the algae belonging to the class Cryptophyceae and certain cyanobacteria taxa were the most negatively responding taxa to fluoxetine. Our results, together with results of others, suggest that fluoxetine can alter community structure and ecosystem functioning and that some impacts of fluoxetine on certain taxa can already be observed at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ineke Heikamp-de Jong
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
36
|
Kronberg MF, Rossen A, Clavijo A, Manetti M, Moya A, Calvo D, Mariani A, Hernández R, Salatino SE, Morábito J, Rossi M, Munarriz E. Integrated water quality assessment of two Rivers Basins from a semiarid region of Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2279-2296. [PMID: 38057677 DOI: 10.1007/s11356-023-31298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The Tunuyán and Mendoza River Basins (Province of Mendoza, Argentina) have been selected as a representative semiarid region to test the applicability of an integrated water quality evaluation. To detect spatio-temporal variations of anthropic contamination, physicochemical and bacteriological parameters, as well as three ecotoxicological assays, were assessed in reference sites for 3 years. Bioassays based on the nematode Caenorhabditis elegans, the vascular plant Lactuca sativa, and the algae Pseudokirchneriella subcapitata were performed and toxicological categories were established. Our results showed that water quality, as well as water toxicity, deteriorates as both river systems run through urban areas. Interestingly, monitoring sites with good physicochemical and bacteriological qualities but with toxicity were identified, illustrating that traditional water quality studies do not predict potential toxic effects on living organisms. In addition, a multivariate statistical analysis was performed to detect clusters of monitoring sites according to the water quality status. In the context of climate change, this study provides information to support that integrated water monitoring is an essential tool to ensure sustainable water management and to guarantee economic growth, human health, food security, and environmental protection.
Collapse
Affiliation(s)
- María Florencia Kronberg
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua (INA), Au. Ezeiza -Cañuelas, Tramo Jorge Newbery Km 1620, B1804, Ezeiza, Buenos Aires, Argentina
| | - Araceli Clavijo
- CONICET - Universidad Nacional de Salta, Instituto de Investigaciones en Energía No Convencional, Avda. Bolivia 5150, A4408FVY, Ciudad de Salta, Argentina
| | - Mariana Manetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aldana Moya
- Facultad de Agronomía, Cátedra de Protección Vegetal, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Calvo
- Subgerencia de Servicios Hidrológicos, INA, Au., Ezeiza-Cañuelas, Tamo Jorge Newbery Km 1620, B1804, Ezeiza, Buenos Aires, Argentina
| | - Adriana Mariani
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Rocio Hernández
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Santa E Salatino
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - José Morábito
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Mario Rossi
- CONICET - Universidad Austral Genómica Funcional y Ciencia de Datos, Instituto de Investigaciones en Medicina Traslacional (IIMT), Av. Pte. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Eliana Munarriz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
37
|
Stojanović J, Savić-Zdravković D, Jovanović B, Vitorović J, Bašić J, Stojanović I, Popović AŽ, Duran H, Kolarević MK, Milošević Đ. Histopathology of chironomids exposed to fly ash and microplastics as a new biomarker of ecotoxicological assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166042. [PMID: 37543338 DOI: 10.1016/j.scitotenv.2023.166042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
In the last few decades, industrial pollution has gained extensive attention in terms of its effect on the aquatic environment. This imposes the need to develop sensitive biomarkers for early detection of pollutant toxicity in ecotoxicological assessment. The advantages of histopathological biomarkers are many, including quick reaction to the presence of contaminants, and the small number of individuals needed for efficient analysis. The present study analyzed the negative effect of lignite coal fly ash (LCFA) and microplastic particles (MPs) on Chironomus riparius, a suggested model organism by the Organization for Economic Cooperation and Development (OECD). This study aimed to perform histological analyses of larval tissues and target potential changes in treated groups that could serve as promising histopathological biomarkers of the contaminant's negative effects. Following that, other known sensitive sub-organismal biomarkers were analyzed and paired with the histopathological ones. Histological analysis of larvae showed a significantly decreased length of microvilli in midgut regions II and III in both treatments. Treatments with MPs affected oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP), superoxide dismutase (SOD), and hemoglobin levels, while LCFA significantly affected all tested sub-organismal biomarkers (DNA damage, levels of AOPP, SOD, and hemoglobin), except catalase (CAT) and TBARS. When observing histological slides, a significant shortage of brush border length in the posterior parts of the midgut was detected in all treatments. In the case of LCFA, the appearance of intensive vacuolization of digestive cells with inclusions resembling apoptotic bodies, in mentioned regions was also detected. This study demonstrated high sensitivity of brush border length to the MPs and LCFA exposure, complementary to other tested sub-organismal biomarkers. Revealing the great potential of this histopathological biomarker in ecotoxicological studies contributes to the international standard ecotoxicology assessment of emerging pollutants.
Collapse
Affiliation(s)
- Jelena Stojanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia.
| | - Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Boris Jovanović
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Jelena Bašić
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Ivana Stojanović
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Andrea Žabar Popović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, 06560 Ankara, Türkiye; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Türkiye
| | - Margareta Kračun Kolarević
- Department of Hydroecology and water protection, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| |
Collapse
|
38
|
Zhang L, Zhang Y, Zhu M, Chen L, Wu B. A critical review on quantitative evaluation of aqueous toxicity in water quality assessment. CHEMOSPHERE 2023; 342:140159. [PMID: 37716564 DOI: 10.1016/j.chemosphere.2023.140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Conventional chemical techniques have inherent limitations in detecting unknown chemical substances in water. As a result, effect-based methods have emerged as a viable alternative to overcome these limitations. These methods provide more accurate and intuitive evaluations of the toxic effects of water. While numerous studies have been conducted, only a few have been applied to national water quality monitoring. Therefore, it is crucial to develop toxicity evaluation methods and establish thresholds based on quantifying toxicity. This article provides an overview of the development and application of bioanalytical tools, including in vitro and in vivo bioassays. The available methods for quantifying toxicity are then summarized. These methods include aquatic life criteria for assessing the toxicity of a single compound, comprehensive wastewater toxicity testing for all contaminants in a water sample (toxicity units, whole effluent toxicity, the potential ecotoxic effects probe, the potential toxicology method, and the lowest ineffective dilution), methods based on mechanisms and relative toxicity ratios for substances with the same mode of action (the toxicity equivalency factors, toxic equivalents, bioanalytical equivalents), and effect-based trigger values for micropollutants. The article also highlights the advantages and disadvantages of each method. Finally, it proposes potential areas for applying toxicity quantification methods and offers insights into future research directions. This review emphasizes the significance of enhancing the evaluation methods for assessing aqueous toxicity in water quality assessment.
Collapse
Affiliation(s)
- Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
39
|
Sylvester F, Weichert FG, Lozano VL, Groh KJ, Bálint M, Baumann L, Bässler C, Brack W, Brandl B, Curtius J, Dierkes P, Döll P, Ebersberger I, Fragkostefanakis S, Helfrich EJN, Hickler T, Johann S, Jourdan J, Klimpel S, Kminek H, Liquin F, Möllendorf D, Mueller T, Oehlmann J, Ottermanns R, Pauls SU, Piepenbring M, Pfefferle J, Schenk GJ, Scheepens JF, Scheringer M, Schiwy S, Schlottmann A, Schneider F, Schulte LM, Schulze-Sylvester M, Stelzer E, Strobl F, Sundermann A, Tockner K, Tröger T, Vilcinskas A, Völker C, Winkelmann R, Hollert H. Better integration of chemical pollution research will further our understanding of biodiversity loss. Nat Ecol Evol 2023; 7:1552-1555. [PMID: 37386085 DOI: 10.1038/s41559-023-02117-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Francisco Sylvester
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT CONICET Salta-Jujuy, Salta, Argentina
| | - Fabian G Weichert
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Verónica L Lozano
- Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT CONICET Salta-Jujuy, Salta, Argentina
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
| | - Lisa Baumann
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Claus Bässler
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Werner Brack
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Barbara Brandl
- Faculty of Social Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Paul Dierkes
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Petra Döll
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | | | - Eric J N Helfrich
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Johann
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sven Klimpel
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Helge Kminek
- Faculty of Educational Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florencia Liquin
- Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Darrel Möllendorf
- Faculty of Social Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Mueller
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Richard Ottermanns
- Institute for Environmental Research (IER), RWTH Aachen University, Aachen, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
- Senckenberg Society for Nature Research, Frankfurt am Main, Germany
| | - Meike Piepenbring
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob Pfefferle
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gerrit Jasper Schenk
- Institute of History, History of the Middle Ages, Technical University of Darmstadt, Darmstadt, Germany
| | - J F Scheepens
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- RECETOX, Masaryk University, Brno, Czech Republic
| | - Sabrina Schiwy
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Antje Schlottmann
- Department of Human Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Flurina Schneider
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Institute for Social-Ecological Research (ISOE), Frankfurt am Main, Germany
| | - Lisa M Schulte
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Schulze-Sylvester
- Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
- Geisenheim University, Department of Crop Protection, Geisenheim, Germany
- Instituto de Bio y Geociencias del Noroeste Argentino (IBIGEO-CONICET), Salta, Argentina
| | - Ernst Stelzer
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frederic Strobl
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrea Sundermann
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Society for Nature Research, Frankfurt am Main, Germany
| | - Klement Tockner
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Society for Nature Research, Frankfurt am Main, Germany
| | - Tobias Tröger
- Department of Law, Goethe University Frankfurt, Frankfurt am Main, Germany
- Leibniz Institute for Financial Research Sustainable Architecture for Finance in Europe, Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Carolin Völker
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Social-Ecological Research (ISOE), Frankfurt am Main, Germany
| | - Ricarda Winkelmann
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Henner Hollert
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.
- Department of Environmental Media-related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
40
|
Rialto TCR, Marino RV, Abe FR, Dorta DJ, Oliveira DP. Comparative Assessment of the Toxicity of Brominated and Halogen-Free Flame Retardants to Zebrafish in Terms of Tail Coiling Activity, Biomarkers, and Locomotor Activity. TOXICS 2023; 11:732. [PMID: 37755743 PMCID: PMC10534375 DOI: 10.3390/toxics11090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
BDE-47, a flame retardant that is frequently detected in environmental compartments and human tissues, has been associated with various toxic effects. In turn, information about the effects of aluminum diethyl-phosphinate (ALPI), a halogen-free flame retardant from a newer generation, is limited. This study aims to assess and compare the toxicity of BDE-47 and ALPI to zebrafish by analyzing the tail coiling, locomotor, acetylcholinesterase activities, and oxidative stress biomarkers. At 3000 µg/L BDE-47, the coiling frequency increased at 26-27 h post-fertilization (hpf), but the burst activity (%) and mean burst duration (s) did not change significantly. Here, we considered that the increased coiling frequency is a slight neurotoxic effect because locomotor activity was impaired at 144 hpf and 300 µg/L BDE-47. Moreover, we hypothesized that oxidative stress could be involved in the BDE-47 toxicity mechanisms. In contrast, only at 30,000 µg/L did ALPI increase the catalase activity, while the motor behavior during different developmental stages remained unaffected. On the basis of these findings, BDE-47 is more toxic than ALPI.
Collapse
Affiliation(s)
- Taisa Carla Rizzi Rialto
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Renan Vieira Marino
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Flavia Renata Abe
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Danielle Palma Oliveira
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| |
Collapse
|
41
|
Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, Nelson K, Majumder ELW, Huber GW. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem Rev 2023; 123:9915-9939. [PMID: 37470246 DOI: 10.1021/acs.chemrev.2c00876] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Zheng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Microbiology Doctoral Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Klier
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kevin Nelson
- Amcor, Neenah Innovation Center, Neenah, Wisconsin 54956, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Salamanca M, Peña M, Hernandez A, Prádanos P, Palacio L. Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review. MEMBRANES 2023; 13:655. [PMID: 37505021 PMCID: PMC10384920 DOI: 10.3390/membranes13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
43
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
44
|
Bertrand L, Iturburu FG. Pesticides bioassays using neotropical aquatic species: Trends during the last twenty years and future challenges in Argentina. CHEMOSPHERE 2023; 326:138369. [PMID: 36935061 DOI: 10.1016/j.chemosphere.2023.138369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of pesticides in aquatic ecosystems is one of the most relevant stressors which biota usually face. Laboratory tests using model organisms for pesticides toxicity assessment are employed worldwide. The use of these species has been encouraged in the scientific community due to their advantageous features and their acceptation by regulatory and standardization organizations. However, non-model species as well as those belonging particular ecosystems could contribute in the laboratory-field toxicity extrapolation. In this context, this work aims on exploring the state of the ecotoxicological studies of pesticides in neotropical aquatic species, focusing on bioassays performed in Argentina over the last 20 years as a case of study. Furthermore, we analyzed the possible advantages and disadvantages of these studies, possible differential sensitivities among native and model species, and future challenges to be faced. The analysis of more than 150 publications allowed identify the chemical identity of tested compounds, organisms used for the bioassays, characteristics of the experimental designs, and the toxicity endpoints. Particularly, the studied cases showed that the tested chemicals are related to those most used in the agricultural activity in Argentina, the predilection for particular species in some taxonomic groups (e.g. amphibians), and the wide election of biochemical biomarkers in the studies. Regarding the sensitivity comparison between native and non-native species, the amount of data available indicates that there is not a clear difference beyond some particular cases. However, deeper understanding of toxic effects of pesticides on non-model species could help in a more comprehensive ecological risk assessment in different ecosystems.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de La Torre Esq. Medina Allende, 5000, Córdoba, Argentina.
| | - Fernando Gastón Iturburu
- Instituto de Investigaciones Marinas y Costeras - IIMyC, Facultad de Ciencias Exactas y Naturales, CONICET, UNMdP, Dean Funes 3350, 7600, Mar del Plata, Argentina.
| |
Collapse
|
45
|
Sigmund G, Ågerstrand M, Antonelli A, Backhaus T, Brodin T, Diamond ML, Erdelen WR, Evers DC, Hofmann T, Hueffer T, Lai A, Torres JPM, Mueller L, Perrigo AL, Rillig MC, Schaeffer A, Scheringer M, Schirmer K, Tlili A, Soehl A, Triebskorn R, Vlahos P, Vom Berg C, Wang Z, Groh KJ. Addressing chemical pollution in biodiversity research. GLOBAL CHANGE BIOLOGY 2023; 29:3240-3255. [PMID: 36943240 DOI: 10.1111/gcb.16689] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/12/2023] [Indexed: 05/16/2023]
Abstract
Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Department of Biology, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | | | - David C Evers
- Biodiversity Research Institute, Portland, Maine, 04103, USA
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Thorsten Hueffer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany
| | - Joao P M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonie Mueller
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Allison L Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
- Lund University Botanical Garden, Lund, Sweden
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, 210023, Nanjing, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400045, Chongqing, China
| | - Martin Scheringer
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
| | - Kristin Schirmer
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anna Soehl
- International Panel on Chemical Pollution, 8092, Zürich, Switzerland
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
- Transfer Center Ecotoxicology and Ecophysiology, Blumenstr. 13, D-72108, Rottenburg, Germany
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014, St. Gallen, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
46
|
Li X, Lang D, Wang J, Zhang W, Zhang X. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27362-x. [PMID: 37145360 DOI: 10.1007/s11356-023-27362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Environmental challenges like salinity, drought, fungal phytopathogens, and pesticides directly or/and indirectly influence the environment and agricultural yields. Certain beneficial endophytic Streptomyces sp. can ameliorate environmental stresses and be utilized as crop growth promoters under adverse conditions. Herein, Streptomyces dioscori SF1 (SF1) isolated from seeds of Glycyrrhiza uralensis tolerated fungal phytopathogens and abiotic stresses (drought, salt, and acid base). Strain SF1 showed multifarious plant growth promotion characteristics, including the production of indole acetic acid (IAA), ammonia, siderophores, ACC deaminase, extracellular enzymes, the ability of potassium solubilization, and nitrogen fixation. The dual plate assay showed that strain SF1 inhibited 63.21 ± 1.53%, 64.84 ± 1.35%, and 74.19 ± 2.88% of Rhizoctonia solani, Fusarium acuminatum, and Sclerotinia sclerotiorum, respectively. The detached root assays showed that strain SF1 significantly reduced the number of rotten sliced roots, and the biological control effect on sliced roots of Angelica sinensis, Astragalus membranaceus, and Codonopsis pilosula was 93.33%, 86.67%, and 73.33%, respectively. Furthermore, the strain SF1 significantly increased the growth parameters and biochemical indicators of adversity in G. uralensis seedlings under drought and/or salt conditions, including radicle length and diameter, hypocotyl length and diameter, dry weight, seedling vigor index, antioxidant enzyme activity, and non-enzymatic antioxidant content. In conclusion, the strain SF1 can be used to develop environmental protection biological control agents, improve the anti-disease activity of plants, and promote plant growth in salinity soil within arid and semi-arid regions.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, China.
| |
Collapse
|
47
|
Topić Popović N, Čižmek L, Babić S, Strunjak-Perović I, Čož-Rakovac R. Fish liver damage related to the wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48739-48768. [PMID: 36869954 PMCID: PMC9985104 DOI: 10.1007/s11356-023-26187-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an in-depth analysis of the WWTP contaminants' impact on the fish liver structure, physiology, and metabolism. The paper also gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with the potential to affect fish liver tissue.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
48
|
Gomes G, Argolo ADS, Felix LDC, Bila DM. Interferences in the yeast estrogen screen (YES) assay for evaluation of estrogenicity in environmental samples, chemical mixtures, and individual substances. Toxicol In Vitro 2023; 88:105551. [PMID: 36603778 DOI: 10.1016/j.tiv.2022.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
The Yeast Estrogen Screen (YES) has a specific mechanism of action that allows for the analysis of estrogenic EDC at low concentrations, and it has been broadly used to estimate the estrogenic potential of environmental samples. However, the experimental parameters of this assay still demand an investigation, such as cell density, incubation time, wavelength on the experimental outcome, cytotoxicity, and estrogenic activity adsorbed on suspended solids. We studied these interferences and applied the assay to single substances, mixtures, and environmental matrices from different sources. The increase in cell density amplifies the assay sensitivity only to a limited extent, while the reduction in incubation time decreased assay sensitivity - although it was not significant for surface water, no differences were observed between estradiol-equivalents derived of 48 h and 72 h measurements. The particulate phase was of utmost importance for the total estrogenic activity of the landfill leachate and surface water. Surface waters, landfill leachates and sediments also showed antiestrogenic activity and the integration of both estrogenic and antiestrogenic endpoints provided deeper insights into the potential risk associated with EDC. This study elucidated experimental interferences that may arise during the implementation and use of this assay, bringing more understanding to experimental parameters during the application of the assay for estrogenicity screening.
Collapse
Affiliation(s)
- Giselle Gomes
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Allan Dos Santos Argolo
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louise da Cruz Felix
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniele Maia Bila
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Souza-Silva G, de Souza CR, Pereira CADJ, Dos Santos Lima W, Mol MPG, Silveira MR. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28506-28524. [PMID: 36701061 DOI: 10.1007/s11356-023-25455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Over time, a growing increase in human pollutants in the aquatic environment has been observed. The global presence of residues in water bodies reinforces the need to develop improved methods to detect them and evaluate their ecotoxicological effects in aquatic environments. Thus, this study aimed to present the main assays using Biomphalaria glabrata as a biological model for ecotoxicological studies. We performed a systematic literature review with data published up to June 2022 on the Web of Science, SCOPUS, Science Direct, PubMed, and SciELO databases. Thirty studies were selected for this review after screening. Biomphalaria glabrata has been studied as an ecotoxicological model for different substances through toxicity, embryotoxicity, cytotoxicity, genotoxicity, and bioaccumulation assays. Studies evaluating the impact of B. glabrata exposure to several substances have reported effects on their offspring, as well as toxicity and behavioral and reproductive effects. This review presents various assays using B. glabrata as a biological model for ecotoxicological studies. The use of a representative species of ecosystems from tropical regions is a necessary tool for tropical environmental monitoring. It was observed that the freshwater snail B. glabrata was effective for the evaluation of the ecotoxicity of several types of chemical substances, but further studies are needed to standardize the model.
Collapse
Affiliation(s)
- Gabriel Souza-Silva
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil.
| | - Clessius Ribeiro de Souza
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Cíntia Aparecida de Jesus Pereira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundation-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Micheline Rosa Silveira
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Singer A, Nickisch D, Gergs A. Joint survival modelling for multiple species exposed to toxicants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159266. [PMID: 36228790 DOI: 10.1016/j.scitotenv.2022.159266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In environmental risk assessment (ERA), the multitude of compounds and taxa demands cross-species extrapolation to cover the variability in sensitivity to toxicants. However, only the impact of a single compound to a single species is addressed by the general unified threshold model of survival (GUTS). The reduced GUTS is the recommended model to analyse lethal toxic effects in regulatory aquatic ERA. GUTS considers toxicokinetics and toxicodynamics. Two toxicodynamic approaches are considered: Stochastic death (SD) assumes that survival decreases with an increasing internalized amount of the toxicant. Individual tolerance (IT) assumes that individuals vary in their tolerance to toxic exposure. Existing theory suggests that the product of the threshold zw and killing rate bw (both SD toxicodynamic parameters) are constant across species or compounds if receptors and target sites are shared. We extend that theory and show that the shape parameter β of the loglogistic threshold distribution in IT is also constant. To verify the predicted relationships, we conducted three tests using toxicity studies for eight arthropods exposed to the insecticide flupyradifurone. We confirmed previous verifications of the relation- between SD parameters, and the newly established relation for the IT parameter β. We enhanced GUTS to jointly model survival for multiple species with shared receptors and pathways by incorporating the relations among toxicodynamic parameters described above. The joint GUTS exploits the shared parameter relations and therefore constrains parameter uncertainty for each of the separate species. Particularly for IT, the joint GUTS more precisely predicted risk to the separate species than the standard single species GUTS under environmentally realistic exposure. We suggest that joint GUTS modelling can improve cross-species extrapolation in regulatory ERA by increasing the reliability of risk estimates and reducing animal testing. Furthermore, the shared toxicodynamic response provides potential to reduce complexity of ecosystem models.
Collapse
Affiliation(s)
| | - Dirk Nickisch
- RIFCON GmbH, Goldbeckstraße 13, 69493 Hirschberg, Germany.
| | - André Gergs
- Bayer AG, Crop Science Division, Alfred-Nobel Straße 50, 40789 Monheim, Germany.
| |
Collapse
|