1
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Wen J, Li T, Pu Q, Li Y, Ding X, Wang L, Li X. Co-exposure of TMPs and antibiotics in zebrafish: The influence of additives on the risk of hepatotoxicity. ENVIRONMENTAL RESEARCH 2025; 275:121430. [PMID: 40120740 DOI: 10.1016/j.envres.2025.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Co-exposure of tire microplastics (TMPs) and antibiotics has been confirmed to pose toxic risks to aquatic organisms. However, the contributions of TMP additives to these risks and the underlying mechanisms remain underreported. In this study, factor analysis and molecular docking and molecular dynamics simulations were employed to investigate the differential additive-related hepatotoxicity risks associated with TMP-antibiotic exposure in zebrafish. The differential hepatotoxicity risks of five types of TMPs and six antibiotics were simulated in the presence of additives. Zebrafish exposed to different TMPs showed significant differences in hepatotoxicity risks, with styrene-butadiene rubber (SBR) exhibiting the most pronounced toxic effects. The additive contribution analysis revealed that in the presence of SBR additives, TMPs-antibiotics posed higher toxicity risks to the cytochrome P 17A2 (CYP17A2) isoenzymes CYP2K19, CYP1A, CYP3A65, and CYP2K22 in zebrafish, showing synergistic effects primarily driven by plasticizers. Furthermore, the hepatotoxicity risks of TMPs-antibiotics in zebrafish in the presence of additives were significantly mitigated by the selection of alternative plasticizers. The micromechanisms by which additives affected the TMP-antibiotic hepatotoxicity risks in zebrafish were elucidated through mechanistic analysis. This study aimed to characterize the additive-influenced hepatotoxicity risks of TMPs-antibiotics, providing micro-level insights and theoretical support for ecological risk assessments in aquatic environments.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Lu Wang
- Jilin Province Ecological Environmental Monitoring Centre, 130011, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
3
|
Naccarato A, Vommaro ML, Elliani R, Babczyńska A, Tagarelli A, Giglio A. Tyre and road wear particles as carriers of metals and rare earth elements: Evidence of bioaccumulation in Tenebrio molitor. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138556. [PMID: 40373413 DOI: 10.1016/j.jhazmat.2025.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Tyre and road wear particles (TRWPs) are a significant source of micro- and nanoparticles contamination of aquatic environments. However, their occurrence and biological effects in terrestrial ecosystems remain poorly investigated, including their role as carriers of trace elements. This study, therefore, examines the accumulation of trace elements in Tenebrio molitor following exposure to TRWPs. Adults were fed organic wheat flour contaminated with 5 % and 10 % (w/w) TRWP powder, simulating concentration in soils near high-traffic areas. Chemical analyses of TRWPs and treated and control beetles at 10- and 20-days post-eclosion were performed using inductively coupled plasma-mass spectrometry (ICP-MS), supported by unsupervised pattern recognition techniques. A total of 36 trace elements, including heavy metals and rare earth elements (REEs), were identified as being associated with TRWPs. Element transfer from contaminated food to beetle tissues was observed, with accumulation of essential (Na, Mg, Zn, Ca, Ni), and non-essential (Ba, Al, V, Cr, Fe, As, Ga, Pb, Cd) elements and REEs (Gd, La, Nd, Pr, Sm, Y). Our findings suggest that TWRPs may pose a risk of contaminant transfer in the environment, potentially impacting food webs in ecosystems near high-traffic areas.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy.
| | - Rosangela Elliani
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| |
Collapse
|
4
|
Weyrauch S, Seiwert B, Voll M, Reemtsma T. Long term biodegradation study on tire and road wear particles and chemicals thereof. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179240. [PMID: 40157032 DOI: 10.1016/j.scitotenv.2025.179240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Tire and road wear particles (TRWP) are continuously formed by automotive traffic on roads. This study reports effects of long-term degradation over 2 years in water and in soil in the presence of microbes on TRWP and on cryo-milled tire tread (CMTT). Degradation in water had little measurable effect on physical properties of TRWP; a shift towards larger particle sizes was mainly due to the mechanical stress from stirring. The total quantified extractables (TQE) of 27 chemicals and transformation products determined from tire particles were reduced by 90 % from TRWP and CMTT in water and by 85 % in soil. Most of this decrease occurs within the first months. For both materials, however, the speed of loss of TQE in water and in soil decreased drastically over time. Its kinetics was approximated by two phases of 1st order kinetics, resulting in half-lives from 17 days for diphenylguanidine (DPG) in phase 1 to 520 days for 6-PPD-quinone (6-PPDQ) in phase 2 of TRWP biodegradation in water. For soil, half-lives tend to be clearly longer in phase 2 compared to water but remained <1000 days for chemicals such as benzothiazole sulfonic acid (BTSA), N,N'-diphenyl-p-phenylendiamine (DPPD) and hydroxybenzothiazole (OH-BT). For N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 6-PPDQ they exceeded 2000 days from TRWP. Only 1-15 % of TQE lost from the tire materials remained detectable at the end of the experimental period in the supernatant of the suspension or in leachates of the soil. Mostly benzothiazoles were determined from solution. The biodegradation experiments show an effective reduction of a large part of the chemical burden of TRWP of polar and moderately polar compounds. Despite that, TRWP may serve as a long-term reservoir for some of the tire related chemicals or their transformation products in the environment.
Collapse
Affiliation(s)
- Steffen Weyrauch
- Helmholtz-Centre for Environmental Research - UFZ, Department Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Helmholtz-Centre for Environmental Research - UFZ, Department Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Milena Voll
- Helmholtz-Centre for Environmental Research - UFZ, Department Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz-Centre for Environmental Research - UFZ, Department Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute of Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Schmidt J, Haave M, Wang W. Applicability of NMR spectroscopy to quantify microplastics across varying concentrations in polymer mixtures. RSC Adv 2025; 15:13041-13052. [PMID: 40271412 PMCID: PMC12016022 DOI: 10.1039/d5ra01174d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Quantitative nuclear magnetic resonance (qNMR) spectroscopy could potentially be used for environmental microplastic analyses, provided the challenges posed by mixed polymer samples with varying concentrations and overlapping signals are understood. This study investigates the feasibility of qNMR as a reliable and cost-efficient method for quantifying synthetic polymers in mixtures of low and varying concentrations, addressing key challenges and limitations. Polymer mixtures were analysed using deuterated chloroform (CDCl3) and deuterated tetrahydrofuran (THF-d8) as solvents, with polystyrene (PS), polybutadiene-cis (PB), polyisoprene-cis (PI), polyvinyl chloride (PVC), polyurethane (PU), and polylactic acid (PLA) as selected polymers. Mixtures contained either low and high concentrations of each polymer or equal concentrations of all six polymers. Polymer concentrations were measured using the internal standard method. The method showed low relative errors for low concentrations of PS in CDCl3 and PVC in THF-d8, with values of -5% and 0%, respectively, while PB and PI in CDCl3 show relative errors of +5% and -3%, respectively. We observe significant linearity between nominal and measured concentrations with R 2 values ranging from 0.9655 to 0.9981, except for PU, which had high relative errors and poor linearity (R 2 = 0.9548). Moreover, simultaneous quantification of six polymers in THF-d8 proves effective at intermediate concentrations. However, overlapping proton signals are observed, causing high-concentration polymers to mask low-concentration ones. While this study demonstrates low limit of quantification (LOQ) and advances in simultaneous polymer quantification, further research is needed to improve qNMR accuracy for mixed polymer samples and environmentally relevant concentrations.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Chemistry, University of Bergen 5007 Bergen Norway
| | | | - Wei Wang
- Department of Chemistry, University of Bergen 5007 Bergen Norway
- Centre for Pharmacy, University of Bergen 5020 Bergen Norway
| |
Collapse
|
6
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
7
|
Mo Y, Abdolahpur Monikh F, Jaffer YD, Mugani R, Ionescu D, Chen G, Yang J, Grossart HP. Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137062. [PMID: 39799671 DOI: 10.1016/j.jhazmat.2024.137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system. Our results revealed the degree of change in microbial community diversity in water is higher than that in sediment following TWPs addition. For bacterial communities, TWPs addition changed their composition in the water, but only little in the sediment. For fungal communities, TWPs addition changed their composition both in water and sediments. Furthermore, in water, TWPs addition increased network complexity between bacteria-bacteria, fungi-fungi and bacteria-fungi in the urban system but reduced it in the rural one. In contrast, TWPs presence did not significantly change network complexity among microbial communities in the sediment of both lakes. Isotope labeling analysis uncovered that based on a short-term (6 hours) incubation experiment, TWPs addition did not significantly change carbon nor nitrogen cycling in the water. Yet, certain changes could be observed, especially in the long-term experiment (1 month), indicating that TWPs pollution has the potential to impact elemental cycling and thus ecosystem functions by altering microbial communities. Our results provide new insights into TWPs-induced ecological effects on microorganisms and potential biogeochemical consequences in a rural vs. urban lakes.
Collapse
Affiliation(s)
- Yuanyuan Mo
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fazel Abdolahpur Monikh
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Department of Chemical Sciences, University of Padua, via Marzolo 1, Padova 35131, Italy; Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 460 01, Czech Republic.
| | - Yousuf Dar Jaffer
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Richard Mugani
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; National Institute of Public Health, Ministry of Health and Fight Against AIDS, Bujumbura, Burundi
| | - Danny Ionescu
- Department of Environmental Microbiomics, Technische Universität Berlin, 10587, Berlin, Germany
| | - Guogui Chen
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
8
|
Surendran D, Sakai H, Takagi S, Dimapilis DA. Tire-based microplastics: Composition, detection, and impacts of advanced oxidation processes in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179114. [PMID: 40088789 DOI: 10.1016/j.scitotenv.2025.179114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microplastic pollution, particularly that from tire, presents critical environmental and public health concerns. They contribute 60 % of the total microplastic pollution. Tire-based microplastics, which contain synthetic polymers and toxic chemical additives, are significant contributors to microplastic pollution in aquatic systems. They release various hazardous substances, including heavy metals, polycyclic aromatic hydrocarbons, and other persistent pollutants, which adversely affect ecosystems and pose risks to drinking water quality. Advanced oxidation processes (AOP) such as ultraviolet based treatment, ozonation and sulfate radical based processes show potential for mitigating these microplastics by fragmenting them and degrading the leached chemicals. Radicals generated during AOP (such as sulfate radicals (SO₄•-), peroxide radicals (HO₂•) and hydroxyl radicals (•OH), have also been successful in removing the transformation products associated with tire microplastics. This combined action of AOP has potential in mitigating the primary tire microplastics and the leached chemicals from it. AOP studies reported from the other microplastic researches (PP, PE, PVC etc.) shows promising results in mitigating them from drinking water sources. TMP appears to behave similarly to other microplastic polymers in terms of fragmentation. However, research is still lacking in quantifying this process due to the presence of complex chemicals additives in it. Additionally, studies focusing on their removal in DWTPs, particularly those that consider both TMP and their associated chemical leachates, remain limited. This review discusses the chemical composition, detection techniques, fragmentation of tire-related microplastics by AOP, and leaching of chemicals from them. This review also suggests modification of treatment techniques, challenges for implementing them to real world treatment and scopes in optimization of treatment conditions to mitigate tire wear particles and the associated chemicals.
Collapse
Affiliation(s)
- Dilraj Surendran
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan.
| | - Shogo Takagi
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Daryll Anne Dimapilis
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| |
Collapse
|
9
|
Liu Z, Wang G, Ye X, Zhang X, Jiang Y, Han Y, Lu L, Liu Z, Zhang H. Multigenerational toxic effects in Daphnia pulex are induced by environmental concentrations of tire wear particle leachate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136977. [PMID: 39724716 DOI: 10.1016/j.jhazmat.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Microplastic pollution has emerged as the second most significant scientific issue in environmental science and ecology. Similarly, the biological effects of tire wear particles (TWPs) have garnered considerable research attention; however, studies on chronic TWP leachate toxicity at environmentally relevant concentrations remain sparse. Here, we investigated the effects of TWP leachate at environmentally relevant concentrations (0.3 mg/L and 3 mg/L) on multigenerational and transgenerational Daphnia pulex for 21 days/generation, spanning three generations (F0-F2). Growth and reproductive indices (body length, growth rate, time to first clutch, number of clutches, and total offspring/female) across generations were analyzed. Multigenerational exposure to TWP leachate did not cause D. pulex death, but impaired growth and development, prolonged sexual maturity time, and reduced reproductive capacity. The transgenerational exposure group (3 mg/L) also exhibited some sub-lethal effects, such as delayed reproduction, suggesting a transgenerational impact. Gene transcription analyses and weighted gene co-expression network analysis showed that the most impacted pathways were associated with lysosome function, apoptosis, and glutathione metabolism, indicating that TWP leachate exposure compromised immune defense mechanisms and disrupted APs, CTSB, GST, DUSP1, and ERN1 gene expression. These findings underscore multigenerational toxicity effects and TWP leachate transmission patterns on aquatic organisms at realistic environmental concentrations.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Guanghui Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xindi Ye
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
10
|
Wen J, Liu Y, Xiao B, Zhang Z, Pu Q, Li X, Ding X, Qian F, Li Y. Hepatotoxicity, developmental toxicity, and neurotoxicity risks associated with co-exposure of zebrafish to fluoroquinolone antibiotics and tire microplastics: An in silico study. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136888. [PMID: 39708607 DOI: 10.1016/j.jhazmat.2024.136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to investigate the differences in the mechanisms of microscopic hepatotoxicity, developmental toxicity, and neurotoxicity in aquatic organisms co-exposed to styrene-butadiene rubber tire microplastics (SBR TMPs) and fluoroquinolone antibiotics (FQs). We found that hepatotoxicity in zebrafish induced by SBR TMPs and FQs was significantly higher than developmental toxicity and neurotoxicity. Furthermore, the main effects of the FQs primarily manifested as synergistic toxicity, whereas the low- and high-order interactions of the FQs mainly exhibited synergistic and antagonistic effects, respectively. Factorial analysis and the mixture toxicity index revealed that the synergistic effects of lomefloxacin × moxifloxacin and ciprofloxacin × lomefloxacin × enrofloxacin interactions significantly contributed to hepatotoxicity in zebrafish exposed to SBR TMP. SBR TMPs and antibiotics primarily induced hepatotoxicity, developmental toxicity, and neurotoxicity in zebrafish by affecting the activities of Cyp1a, Acox1, TRα, and mAChR. The observed toxicities were closely linked to the hydrophilic/hydrophobic groups, electronegativity, group mass, and structural complexity of the FQ molecules. This study provides new insights regarding the toxicological risks to aquatic organisms from co-exposure to SBR TMPs and FQs from a microscopic perspective. Future studies should include a broader range of antibiotics and tire microplastics and consider their long-term adverse effects on aquatic life.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yajing Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Botian Xiao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zuning Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3x5, Canada.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Feng Qian
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
11
|
Yang L, Liu K, Shi L, Chen M, Liu J, Dai S, Xi Y, Wen X. Chronic toxicity and intergenerational effects of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) exposure alone and in combination with Zn 2+ on Daphnia magna (Cladocera). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:280-291. [PMID: 39612103 DOI: 10.1007/s10646-024-02836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and Zn2+, extensively used in the tire manufacturing process, are frequently detected in freshwater environments. However, the intergenerational effects of isolated 6PPD exposure and joint 6PPD and Zn2+ exposure at concentrations approximating environmental levels remain unknown. This study assessed the chronic toxicity and intergenerational effects of 6PPD (0.02-20 μg/L) and a mixture of 6PPD and Zn2+ (5 μg/L) over three generations in Daphnia magna bioassays. In the F0 generation, a dose-dependent decline in total offspring number was observed with 6PPD exposure alone, while co-exposure with Zn2+ exacerbated the reproductive toxicity of 6PPD. Across three generations, low-dose (0.02 µg/L) 6PPD alone and combined with Zn2+ induced a cumulative degenerative maternal effect. Conversely, high-dose (20 µg/L) 6PPD, both independently and in combination with Zn2+, exhibited an adaptive maternal effect. Notably, the grandmaternal effect emerged exclusively in the co-exposure group treated with 20 μg/L 6PPD and 5 μg/L Zn2+, with no such effect in the group exposed to 20 μg/L 6PPD alone, suggesting that Zn2+ may enhance the potential toxicity of 6PPD. Overall, this study provides novel insight into the intergenerational impacts of environmentally relevant levels of 6PPD alone and in combination with a heavy metal, elucidating the environmental risks posed by tire-derived chemicals through their synergistic effects on transgenerational toxicity.
Collapse
Affiliation(s)
- Liu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Kexin Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Lina Shi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Ming Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Junyan Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Shiniu Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China
| | - Xinli Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, 241002, China.
| |
Collapse
|
12
|
Masset T, Breider F, Renaud M, Müller J, Bergmann A, Vermeirssen E, Dudefoi W, Schirmer K, Ferrari BJD. Effects of tire particles on earthworm (Eisenia andrei) fitness and bioaccumulation of tire-related chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125780. [PMID: 39894153 DOI: 10.1016/j.envpol.2025.125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Tire and Road Wear Particles (TRWP) are produced during the wear of tire rubber on the road pavement and contain various chemicals originating from the road environment and from the rubber. Toxic effects of TRWP and their associated chemicals on soil organisms remain poorly characterized. In a series of laboratory experiments, this study investigated the bioaccumulation kinetics of several common tire-related chemicals in the earthworm species Eisenia andrei using Cryogenically Milled Tire Tread (CMTT), as a surrogate for environmental TRWP. Effects on survival, growth, reproductive output and behaviour were determined. Average biota-soil accumulation factors ranged from 0.8 to 4.7 indicating low to moderate bioaccumulation of the tire-related chemicals. Toxicokinetics showed both high uptake (0.0-13.2 days-1) and elimination rates (0.0-6.3 days-1) in E.andrei. Still, the uptake of tire-related chemicals in earthworms' tissues and ingestion of tire particles could lead to trophic transfer to preys feeding on earthworms and requires further investigated. No significant effects on survival and growth were recorded after exposure to 0.05 and 5% CMTT. In the reproduction test, a slight increase of the reproductive output with increasing CMTT concentration and a slight decrease of the weight of the juveniles were observed. Moreover, a strong and significant avoidance behaviour was observed for worms exposed to 5% CMTT. This work highlights that soil highly contaminated with tire particles can negatively impact habitat function due to changes in texture and/or chemical stressors, lead to uptake of tire-related additives by earthworms and that high concentrations can impact organism's fitness.
Collapse
Affiliation(s)
- Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland
| | - Mathieu Renaud
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Jonas Müller
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | | | - William Dudefoi
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, 8092, Switzerland
| | - Benoit J D Ferrari
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland; Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|
13
|
Staczek FM, Mbora DNM. Microplastics inhibit the decomposition of soil organic matter by adult darkling beetles (Coleoptera: Tenebrionidae). ENVIRONMENTAL ENTOMOLOGY 2025; 54:86-100. [PMID: 39720997 DOI: 10.1093/ee/nvae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
Microplastics (MPs) are a growing problem worldwide. Soils are long-term storage sinks of MPs because of the many pathways they enter the soil and their long degradation period. Knowing how MPs influence soil organisms, the effects of organisms on the fate of MPs, and what this means for soil additions, losses, transformations, and translocations is paramount. MPs in soil could impede the breakdown of organic matter by adult darkling beetles. We set up an experiment to test this hypothesis by adding finely ground scrap tire rubber to organic soil and a small population of adult darkling beetles (Zophobas morio, Fabricius 1776, Coleoptera: Tenebrionidae). The beetles are omnivores that accelerate the breakdown of soil organic matter when feeding on soil detritus. As a control, we released beetles into organic soil with no MPs. We also surveyed published manuscripts on the effects of MPs on insects, decomposers, and decomposition in soil, providing a reference frame for our findings. Darkling beetles ate, fragmented, and humidified the soil mixture, enhancing microbial decomposition. All treatments lost weight over the experiment period, with the control losing 10%, significantly more than the other treatments (an average loss of 5%). Higher concentrations of microplastics in soils led to lower reductions in soil mass through decomposition. These findings suggest that MPs impede detritivores from breaking down soil organic matter. Even so, only a handful of studies evaluated the effects of tire particles on soils and detritivores in the literature survey. Still, these particles are among the largest sources of MPs on land.
Collapse
Affiliation(s)
- Fiona M Staczek
- Department of Biology, and the Program in Environmental Science, Whittier College, Whittier, CA, USA
| | - David N M Mbora
- Department of Biology, and the Program in Environmental Science, Whittier College, Whittier, CA, USA
| |
Collapse
|
14
|
Xu J, Zhang Y, Zi S, Zhang X, Qian Z, Liu J. Aging-mediated selective adsorption of antibiotics by tire wear particles: Hydrophobic and electrostatic interactions effects. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104482. [PMID: 39662238 DOI: 10.1016/j.jconhyd.2024.104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Tire wear particles (TWPs), as a prevalent form of microplastic pollution in aquatic environments, have been shown to adsorb antibiotics, potentially exacerbating their toxic effects. This study provides a comprehensive analysis of the adsorption of ofloxacin (OFL), ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline (TC) on TWPs that have undergone various aging processes, including cyclic freeze-thaw and ozone aging. We observed a significant increase in the specific surface area (SBET) of TWPs after aging, from an initial 2.81 ± 0.29 to 6.63 ± 0.16 m2/g for ozone-aged TWPs. This enhancement in surface area and pore volume led to a respective 1.36-fold and 28-fold increase in adsorption capacity for OFL and CIP, highlighting the substantial impact of aging on TWPs' adsorptive properties. Conversely, the adsorption of SDZ and TC was reduced post-aging, suggesting a complex interaction between antibiotic physicochemical properties and TWPs' surface characteristics. The pseudo-second-order model, indicating chemisorption interactions, effectively described the adsorption kinetics, with the Freundlich isotherm model capturing the adsorption behavior more accurately than the Langmuir model. Our findings underscore the critical role of hydrophobic and electrostatic interactions in the adsorption process, particularly for SDZ and TC. This study's results offer crucial insights into the environmental implications of TWPs, emphasizing the need for further research on their role in the transport and fate of antibiotics in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiale Xu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuting Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuanqi Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhengtong Qian
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China.
| |
Collapse
|
15
|
Wei Z, Ma X, Chai Y, Senbayram M, Wang X, Wu M, Zhang G, Cai S, Ma J, Xu H, Bol R, Rillig MC, Ji R, Yan X, Shan J. Tire Wear Particles Exposure Enhances Denitrification in Soil by Enriching Labile DOM and Shaping the Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1209-1221. [PMID: 39725382 DOI: 10.1021/acs.est.4c09766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil. Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing were employed to elucidate the mechanisms underpinning the TWP effects. We show that TWP increased soil CO2, N2, and N2O emissions, which were attributed to the changes in content and composition of soil dissolved organic matter (DOM) induced by TWP and their leachate. Specifically, the labile DOM components (H/C ≥ 1.5 and transformation >10), which were crucial in shaping the denitrifying community, were significantly enriched by TWP exposure. Furthermore, the abundances of denitrification genes (nirK/S and nosZ-I) and the specific denitrifying genera Pseudomonas were increased following TWP exposure. Our findings provide new insights into impacts of TWP on carbon and nitrogen cycling in soil, highlighting that TWP exposure may exacerbate greenhouse gas emissions and fertilizer N loss, posing adverse effects on soil fertility in peri-urban areas and climate change mitigation.
Collapse
Affiliation(s)
- Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mehmet Senbayram
- Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, Sanliurfa 63000, Turkey
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shujie Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Li L, Huang W, Qiao D, Zhong Z, Shang Y, Khan FU, Wei S, Wang Y. Marine Heatwaves Exacerbate the Toxic Effects of Tire Particle Leachate on Microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:177-187. [PMID: 39727297 DOI: 10.1021/acs.est.4c08986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Additives leached from tire particles (TPs) after entering the marine environment inevitably interact with marine life. Marine heatwaves (MHWs) would play a more destructive role than ocean warming during the interaction of pollutants and marine life. To evaluate the potential risks of TPs leachate under MHWs, the physiological and nutrient metabolic endpoints of microalgae Isochrysis galbana were observed for 7 days while being exposed to TPs leachate at current or predicted concentrations under MHWs. TPs leachate mainly contained Zn and 6-PPD, which could be absorbed by microalgae mostly, especially under MHWs. Additionally, TPs leachate increased the reactive oxygen species content, activated the antioxidant system, impaired photosynthesis and glycolysis, and decreased sugar and protein content. 10 mg/L TPs leachate increased the lipid content and saturation. Meanwhile, microalgae under such TPs leachate were biased toward the synthesis of long-chain fatty acids and Δ8 desaturation pathway. MHWs promoted the positive effects of TPs leachate on microalgae growth at the current concentration but exacerbated the negative effects at the predicted concentration. Our study emphasizes the potential risks of TPs leachate to marine primary production systems, especially if accompanied by the increasing intensity and frequency of extreme climate events.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dan Qiao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
17
|
Zhang L, Wang D, Li W, Liu X, Zhang Z, Tian ZQ. Microplastics distribution and pollution characterization in two typical wetlands on the Qinghai-Tibet Plateau, China. JOURNAL OF CLEANER PRODUCTION 2025; 486:144455. [DOI: 10.1016/j.jclepro.2024.144455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
Torreggiani G, Manfrin C, Giglio A, Dissegna A, Chiandetti C, Giotta P, Renzi M, Anselmi S, Bentivoglio T, Babczyńska A, Battistella S, Edomi P, Giulianini PG. The Effect of Tyre and Road Wear Particles on the Terrestrial Isopod Armadillidium pallasii. Biomolecules 2024; 14:1640. [PMID: 39766347 PMCID: PMC11727551 DOI: 10.3390/biom14121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
(1) Car tyre microplastic particles (TMPs) significantly contribute to global microplastic pollution, with an estimated annual production of 6 million tonnes. However, the impact of TMPs, particularly tyre and road wear particles (TRWPs), resulting from tyre abrasion on the road on terrestrial organisms, is poorly understood. This study investigated the effects of TMPs and TRWPs on the growth, immune response, behaviour, and cognition of the woodlouse Armadillidium pallasii over 30 days; (2) TMPs and TRWPs were mixed together in the first experiment and provided at different concentrations of 1.25%, 2.5%, 5%, and 10% (w/w), and with soil at 5% and 10% (w/w) concentrations in the second experiment. (3) No differences in survival or immune responses were observed in both experiments. However, isopods exposed to TRWPs showed significant weight gain at lower concentrations but no gain at higher levels. Behavioural tests revealed increased vigilance in TRWP-exposed animals. Micro-FTIR analysis showed that the number of TMPs and TRWPs in the isopods correlated with soil concentrations, and particle size decreased during the experiment. (4) The study highlights the physiological and behavioural effects of TRWPs and the role of detritivorous species in the biofragmentation of TMPs and TRWPs, contributing to the biogeochemical plastic cycle.
Collapse
Affiliation(s)
- Giorgia Torreggiani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Andrea Dissegna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Cinzia Chiandetti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Paola Giotta
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | | | | | - Agnieszka Babczyńska
- Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland;
| | - Silvia Battistella
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| | - Piero G. Giulianini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy (C.C.); (P.E.); (P.G.G.)
| |
Collapse
|
19
|
Wrigley O, Braun M, Amelung W. Global soil microplastic assessment in different land-use systems is largely determined by the method of analysis: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177226. [PMID: 39481568 DOI: 10.1016/j.scitotenv.2024.177226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Although microplastics (1 μm - 5 mm, MP) are increasingly recognised as a novel entity of pollutants, we still lack a basic understanding of their prevalence in different terrestrial environments. Here, we aimed at performing comparisons of MP concentrations (items kg-1) in different agro-ecosystems, with specific focus on input pathways and land uses, while accounting for the plethora of method variations available, such as analysed MP sizes, sampling depths, density separation solutions, as well as removal of organic matter. We found that the current global means of MP loads, from 89 studies (553 sites), benchmarks 2900 ± 7600 MP items kg-1 soil, substantially more than the global median of 480 MP items kg-1. Roughly 81 % of the studies were conducted in Asia; hence, continent-wide comparisons are still hampered by low study numbers for most regions. Maximum MP numbers were found for soils under both greenhouses and plastic mulching (5200 ± 8300 items kg-1), followed by arable soils with sludge amendments (3700 ± 8800 items kg-1), surprisingly without evidence of elevated MP loads in horticultural fields relative to other agricultural management practices. Intriguingly, global MP loads significantly increased with decreasing levels of urbanisation, i.e., they were highest in rural areas. Yet, quantitative comparisons among sites are biased by the methodology selected for MP analyses. Apart from inconsistencies in sampling depth and size of screened MP particles, across all sites and treatments, largest MP loads were commonly found when using high-density solutions rather than low-density ones, and when soil organic matter removal was performed after, and not before, the density separation step.
Collapse
Affiliation(s)
- Olivia Wrigley
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Melanie Braun
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
20
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
21
|
Xu Q, Kazmi SSUH, Li G. Tracking the biogeochemical behavior of tire wear particles in the environment - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136184. [PMID: 39418907 DOI: 10.1016/j.jhazmat.2024.136184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The environmental fate and risks associated with tire wear particles (TWPs) are closely linked to their biogeochemical behaviors. However, reviews that focus on TWPs from this perspective remain scarce, hindering our understanding of their environmental fate and cascading effects on ecosystems. In this review, we summarize the existing knowledge on TWPs by addressing five key areas: (i) the generation and size-dependent distribution of TWPs; (ii) the release and transformation of TWP-leachates; (iii) methodologies for the quantification of TWPs; (iv) the toxicity of TWPs; and (v) interactions of TWPs with other environmental processes. It has been established that the size distribution of TWPs significantly influences their transport and occurrence in different matrices, leading to the release and transformation of specific TWP-chemicals that can be toxic to organisms. By highlighting the challenges and knowledge gaps in this field, we propose critical issues that need to be addressed to enhance the risk assessment of TWPs. This review aims to provide a comprehensive framework for evaluating the environmental behavior of TWPs.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Wang B, Qiao D, Wen B, Li L, Hu M, Huang W, Wang Y. Tire microplastic particles and warming inhibit physiological functions of the toxic microalga Alexandrium pacificum. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136087. [PMID: 39405692 DOI: 10.1016/j.jhazmat.2024.136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 12/01/2024]
Abstract
Previous studies have confirmed that the tire microplastic particles (TMPs) have a variety of toxic biological effects. However, the potential toxic mechanisms of TMPs remain to be elucidated, especially in the interaction between particle behavior and seawater warming. In this study, we investigated the effects of three different concentrations of TMPs suspensions (0 mg/L, 1 mg/L, and 500 mg/L) on Alexandrium pacificum in both the presence and absence of warming. Our results revealed significant differences in toxicity among different concentrations of TMPs towards A. pacificum, i.e., low concentrations promoting but high concentrations inhibiting, furthermore, warming exacerbated these toxicological responses. Specifically, under elevated temperature, high concentrations TMPs could inhibit photosynthetic pigment and chlorophyll fluorescence parameter, as well as the nutrient absorption, and induced oxidative stress. Furthermore, TMPs could adsorb onto microalgae surfaces and thus, forming heterogeneous aggregates through agglomeration with extracellular secretions. This is strongly correlated with biomarker response. Overall, these findings highlight the influence of warming on the toxicity of TMPs and provide valuable data for risk assessment.
Collapse
Affiliation(s)
- Bole Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Dan Qiao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
23
|
Wang Z, Kang S, Zhang Y, Luo X, Kang Q, Chen P, Guo J, Hu Z, Yang Z, Zheng H, Gao T, Yang W. Microplastics in glaciers of Tibetan Plateau: Characteristics and potential sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176370. [PMID: 39299335 DOI: 10.1016/j.scitotenv.2024.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Microplastics (MPs) in glaciers of remote areas are a hot topic linking the global transport of atmospheric MPs. The Tibetan Plateau (TP) holds large volume of glaciers, providing an effective way to trace MPs transport. Moreover, MPs in glaciers may have adverse effects on the local ecosystem and human health. In this study, we investigate MPs in snowpits collected from six glaciers across the different domain of the TP. The average abundance of MPs in six snowpits is 339.22 ± 51.85 items L-1 (with size ≥10 μm) measured by Agilent 8700 Laser Direct Infrared Chemical Imaging System (LDIR), represented by relatively high MPs abundance in the southern TP and low in the northern TP. The polymers with lower density, namely polyethylene (PE), polyamide (PA), and rubber, are the main MPs types, which are predominated by fragments with sizes smaller than 100 μm in each snowpit. Sources of MPs on glaciers include local tourism and vehicle traffic emissions of MPs. Meanwhile, long-range atmospheric transport of MPs from surrounded regions cannot be ignored. Backward trajectory analysis indicates cross-boundary transport of atmospheric MPs from South Asia play an important role on MPs deposited onto TP glaciers. Analysis further reveals that MPs in glaciers are associated with atmospheric mineral dust deposition. This study provides new data for the investigation of MPs in glaciers of remote areas, and a reference for studying MPs in the ice cores of TP glaciers.
Collapse
Affiliation(s)
- Zhaoqing Wang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Kang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Petroleum Resources and Sate Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengfei Chen
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhaofu Hu
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengzheng Yang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huijun Zheng
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Yang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Capodaglio AG. Microplastics in the urban water cycle: A critical analysis of issues and of possible (needed?) solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176580. [PMID: 39349210 DOI: 10.1016/j.scitotenv.2024.176580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Microplastic (MP) contamination is a problem that affects even remote, scarcely populated regions of the world. This topic has recently been the subject of many published studies, however, these often adopt hyperbolic statements and do not actually provide definitive evidence that MPs are a cause of environmental risk in actual environmental conditions. New technologies to remove MPs from supply and waste water are being investigated, but they are able to intercept a minimal fraction of the MPs circulating in all environmental media. Recently, several pieces of legislation were introduced to reduce plastic production, use, and disposal, but it is not clear how such measures could achieve a significant environmental MP reduction. This paper addresses the MP issue within the urban water cycle, examining recent current literature on MP presence in drinking and waste water, and overviewing available recent treatment technologies for their removal. The ensuing discussion attempts to holistically assess the actual relevance of the issue in the light of the current scientific evidence.
Collapse
Affiliation(s)
- Andrea G Capodaglio
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
25
|
Xu Q, Wu Z, Xu Z, Li G. Soil moisture-dependent tire wear particles aging processes shift soil microbial communities and elevated nitrous oxide emission on drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175948. [PMID: 39222808 DOI: 10.1016/j.scitotenv.2024.175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Tire wear particles (TWPs) have been an emerging threat to the soil ecosystem, while impact of the TWPs aging on soil microbial communities remains poorly understood. This study investigated the dynamic responses of soil microbial communities to the TWPs aging under both wet and flooded conditions. We found that different soil moisture conditions resulted in distinct microbial community structures. Soil bacteria were more sensitive to wet conditions, while soil fungi were more sensitive to flooded conditions. The family Symbiobacteraceae was predominant in the TWP-sphere under both wet and flooded conditions after 60 days, followed by Brevibacillaceae. Notably, we observed that TWPs input significantly increased nitrous oxide (N2O) emission from dryland soil. Several taxa including Cyanobacteriales, Blastocatellaceae and Pyrinomonadaceae were identified as TWP-biomarkers in soils and potentially played significant roles in N2O emissions from drylands. Their responses to the TWPs input correlated closely with changes in the relative abundance of genes involved in ammonia oxidation (amoA/B), nitrite reduction (nirS/K) and N2O reduction (nosZ) in drylands. Our results demonstrate that soil moisture-dependent TWP aging influences N2O emission by altering both the associated microbial communities and the relevant genes.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Zhiyong Wu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, People's Republic of China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
26
|
Men C, Ma Y, Liu J, Zhang Y, Li Z, Zuo J. The difference between tire wear particles and polyethylene microplastics in stormwater filtration systems: Perspectives from aging process, conventional pollutants removal and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124736. [PMID: 39147222 DOI: 10.1016/j.envpol.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Tire wear particles (TWPs) in stormwater runoff have been widely detected and were generally classified into microplastics (MPs). TWPs and conventional MPs can be intercepted and accumulated in stormwater filtration systems, but their impacts on filtration, adsorption and microbial degradation processes of conventional pollutants (organic matters, nitrate and ammonium) have not been clarified. TWPs are different from MPs in surface feature, chemical components, adsorption ability and leaching of additives, which might lead to their different impacts on conventional pollutants removal. In this study, five different levels of aged polyethylene MPs (PEMPs) and aged TWPs contamination in stormwater filtration systems were simulated using thirty-three filtration columns. Results showed that ultraviolet aging treatment was less influential for the aging of TWPs than that of PEMPs, the specific surface area of aged PEMPs (1.603 m2/g) was over two times of unaged TWPs (0.728 m2/g) in the same size. Aged PEMPs and aged TWPs had different impacts on conventional pollutants removal performance and microbial communities, and the difference might be enlarged with exposure duration. The intensified aged PEMPs contamination generally promoted conventional pollutants removal, whereas aged TWPs showed an opposite trend. Mild contamination (0.01% and 0.1%, wt%) of aged PEMP/TWPs was beneficial to the richness and diversity of microbial communities, whereas higher contamination of aged PEMPs/TWPs was harmful. Aged PEMPs and TWPs had different impact on microbial community structure. Overall, the study found that TWPs were more detrimental than PEMPs in filtration systems. The research underscores the need for more comprehensive investigation into the occurrence, effects and management strategies of TWPs, as well as the importance of distinguishing between TWPs and MPs in future studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Peng C, Wang Y, Sha X, Li M, Wang X, Wang J, Wang Y, Liu C, Wang L. Adverse effect of TWPs on soil fungi and the contribution of benzothiazole rubber additives. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135574. [PMID: 39197278 DOI: 10.1016/j.jhazmat.2024.135574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
28
|
Foetisch A, Grunder A, Kuster B, Stalder T, Bigalke M. All black: a microplastic extraction combined with colour-based analysis allows identification and characterisation of tire wear particles (TWP) in soils. MICROPLASTICS AND NANOPLASTICS 2024; 4:25. [PMID: 39493282 PMCID: PMC11525289 DOI: 10.1186/s43591-024-00102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
While tire wear particles (TWP) have been estimated to represent more than 90% of the total microplastic (MP) emitted in European countries and may have environmental health effects, only few data about TWP concentrations and characteristics are available today. The lack of data stems from the fact that no standardized, cost efficient or accessible extraction and identification method is available yet. We present a method allowing the extraction of TWP from soil, performing analysis with a conventional optical microscope and a machine learning approach to identify TWP in soil based on their colour. The lowest size of TWP which could be measured reliably with an acceptable recovery using our experimental set-up was 35 µm. Further improvements would be possible given more advanced technical infrastructure (higher optical magnification and image quality). Our method showed a mean recovery of 85% in the 35-2000 µm particle size range and no blank contamination. We tested for possible interference from charcoal (as another black soil component with similar properties) in the soils and found a reduction of the interference from charcoal by 92% during extraction. We applied our method to a highway adjacent soil at 1 m, 2 m, 5 m, and 10 m and detected TWP in all samples with a tendency to higher concentrations at 1 m and 2 m from the road compared to 10 m from the road. The observed TWP concentrations were in the same order of magnitude as what was previously reported in literature in highway adjacent soils. These results demonstrate the potential of the method to provide quantitative data on the occurrence and characteristics of TWP in the environment. The method can be easily implemented in many labs, and help to address our knowledge gap regarding TWP concentrations in soils. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00102-9.
Collapse
Affiliation(s)
- Alexandra Foetisch
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| | - Adrian Grunder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Benjamin Kuster
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Tobias Stalder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| |
Collapse
|
29
|
Mao T, Liu W, Deng J, Chen C, Jia T, Li H, Yin F. p-Phenylenediamines and p-phenylenediamine quinone derivatives in rubber consumer products and typical urban dust: Sources, transformation profiles, and health risks. ENVIRONMENT INTERNATIONAL 2024; 192:109042. [PMID: 39362086 DOI: 10.1016/j.envint.2024.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
N,N'-Substituted p-phenylenediamines (PPDs) are widely used as antioxidants in the rubber industry and are released into the environment in large quantities during the production and use of rubber products. We quantified PPDs and PPD quinone derivatives (PPD-Qs) in rubber consumer products, including car tires, rubber belts, rubber gloves, rubber cables, and rubber hoses, to obtain information on the degree of weathering over time during their use. Additionally, we investigated the occurrences and sources of PPDs and PPD-Qs in dust samples collected from four typical urban environments (roads, parking lots, automotive repair shops, and residences). The detected compounds included the highly toxic N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine quinone, which can cause acute mortality of coho salmon (Oncorhynchus kisutch). Concentrations of PPDs in the automotive repair shops reached 56.0 μg/g, and were much higher than in the other environments, while the residential samples had the lowest contaminant concentrations. In road and residential samples, N,N'-di-2-naphthyl-p-phenylenediamine accounted for 17 %-30 % of the PPDs, and may have originated from different sources. We preliminarily identified 32 transformation products, and 11 of these were N,N'-di-2-naphthyl-p-phenylenediamine transformation products. The average daily intakes of PPDs and PPD-Qs were calculated to assess the health risks of dust exposure in each environment. Workers had high total intakes of PPD [60.3 ng/(kg day)] and PPD-Qs [20.1 ng/(kg day)], and were at some risk of occupational exposure. These results improve our understanding of the environmental occurrences, sources, transformation, and health risks of PPDs and PPD-Qs.
Collapse
Affiliation(s)
- Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Jinglin Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Tianqi Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haifeng Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Fei Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
30
|
Wang Y, Li X, Yang H, Wu Y, Pu Q, He W, Li X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116782. [PMID: 39059345 DOI: 10.1016/j.ecoenv.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tire wear particles (TWPs), common mixed particulate emerging contaminants in the environment, have global per capita emissions accounting for 0.23-1.9 kg/year, attracting global attention recently due to their wide detection, small size, mobility, and high toxicity. This review focuses on the occurrence characteristics of TWPs in multiple environmental media, adverse effects on organisms, potential toxicity mechanisms, and environmental risk prevention and control strategies of TWPs. The environmental fate of TWPs throughout the entire process is systematically investigated by the bibliometric analysis function of CiteSpace. This review supplements the gap in the joint toxicity and related toxicity mechanisms of TWPs with other environmental pollutants. Based on the risks review of TWPs and their additives, adverse impacts have been found in organisms from aquatic environments, soil, and humans, such as the growth inhibition effect on Chironomus dilutes. A multi-faceted and rationalized prevention and control treatment of "source-process-end" for the whole process can be achieved by regulating the use of studded tires, improving the tire additive formula, growing plants roadside, encouraging micro-degradation, and other methods, which are first reviewed. By addressing the current knowledge gaps and exploring prospects, this study contributes to developing strategies for reducing risks and assessing the fate of TWPs in multiple environmental media.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
31
|
Ali MA, Lyu X, Ersan MS, Xiao F. Critical evaluation of hyperspectral imaging technology for detection and quantification of microplastics in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135041. [PMID: 38941829 DOI: 10.1016/j.jhazmat.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, we critically evaluated the performance of an emerging technology, hyperspectral imaging (HSI), for detecting microplastics (MPs) in soil. We examined the technology's robustness against varying environmental conditions in five groups of experiments. Our findings show that near-infrared (NIR) hyperspectral imaging (HSI) effectively detects microplastics (MPs) in soil, though detection efficacy is influenced by factors such as MP concentration, color, and soil moisture. We found a generally linear relationship between the levels of MPs in various soils and their spectral responses in the NIR HSI imaging spectrum. However, effectiveness is reduced for certain MPs, like polyethylene, in kaolinite clay. Furthermore, we showed that soil moisture considerably influenced the detection of MPs, leading to nonlinearities in quantification and adding complexities to spectral analysis. The varied responses of MPs of different sizes and colors to NIR HSI present further challenges in detection and quantification. The research suggests pre-grouping of MPs based on size before analysis and proposes further investigation into the interaction between soil moisture and MP detectability to enhance HSI's application in MP monitoring and quantification. To our knowledge, this study is the first to comprehensively evaluate this technology for detecting and quantifying microplastics.
Collapse
Affiliation(s)
- Mansurat A Ali
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mahmut S Ersan
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
32
|
Song J, Meng Q, Song H, Ni X, Zhou H, Liu Y, Zhan J, Yi X. Combined toxicity of pristine or artificially aged tire wear particles and bisphenols to Tigriopus japonicus. CHEMOSPHERE 2024; 363:142894. [PMID: 39029709 DOI: 10.1016/j.chemosphere.2024.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Tire wear particles (TWPs) are considered an important component of microplastic pollution in the marine environment and occur together with a variety of aquatic pollutants, including frequently detected bisphenols. The adverse effects of TWPs or bisphenols on aquatic organisms have been widely reported. However, the combined toxicity of TWPs and bisphenols is still unknown. In this study, the combined toxicity of both pristine (p-) and aged TWPs (a-TWPs) and four bisphenols ((bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF)) to Tigriopus japonicus was evaluated. TWPs increased the toxicity of BPA and BPF but decreased the toxicity of BPAF. For BPS, there was synergistic toxic effect in the presence of p-TWPs, but slightly antagonistic effect was observed in the presence of a-TWPs. This adsorption of BPAF by TWPs resulted in a reduction of its toxicity to the copepod. A-TWPs could release more Zn than p-TWPs, and the released Zn contributed to the synergistic effect of TWPs and BPA or BPF. The aggregation formed by TWPs in certain sizes (e.g., 90-110 μm) could cause intestinal damage and lipid peroxidation in T. japonicus. The synergistic effect of p-TWPs and BPS might be due to the aggregation size of the binary mixture. The results of the current study will be important to understand the combined toxic effect of TWPs and bisphenols and the potential toxic mechanisms of the binary mixture.
Collapse
Affiliation(s)
- Jinbo Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Qian Meng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hongyu Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China.
| |
Collapse
|
33
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
34
|
Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Cong J. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107010. [PMID: 38917645 DOI: 10.1016/j.aquatox.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
With the continuous development of the modern social economy, rubber has been widely used in our daily life. Tire and road wear particles (TRWPs) are generated by friction between tires and the road surface during the processes of driving, acceleration, and braking. TRWPs can be divided into three main components according to their source: tire tread, brake wear, and road wear. Due to urban runoff, TRWPs flow with rainwater into the aquatic environment and influence the surrounding aquatic organisms. As an emerging contaminant, TRWPs with the characteristics of small particles and strong toxicity have been given more attention recently. Here, we summarized the existing knowledge of the physical and chemical properties of TRWPs, the pathways of TRWPs into the water body, and the exposure routes of TRWPs. Furthermore, we introduced the biological effects of TRWPs involved in size, concentration, and shape, as well as key toxic compounds involved in heavy metals, polycyclic aromatic hydrocarbons (PAHs), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and benzothiazole on aquatic organisms, and attempted to find the relevant factors influencing the toxic effects of TRWPs. In the context of existing policies that ignore pollution from TRWPs emissions in the aquatic environment, we also proposed measures to mitigate the impact of TRWPs in the future, as well as an outlook for TRWPs research.
Collapse
Affiliation(s)
- Tianyu Zhao
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Yun Zhang
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qianqian Song
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qingxuan Meng
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Siyu Zhou
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Jing Cong
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China.
| |
Collapse
|
35
|
Magni S, Sbarberi R, Dolfini D, Nigro L, Binelli A. Behind conventional (micro)plastics: An ecotoxicological characterization of aqueous suspensions from End-of-Life Tire particles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107032. [PMID: 39068809 DOI: 10.1016/j.aquatox.2024.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Million tons of tires become waste every year, and the so-called End-of-Life Tires (ELTs) are ground into powder (ELT-dp; size < 0.8 mm) and granules (ELT-dg; 0.8 < size < 2.5 mm) for recycling. The aim of this study was to evaluate the sub-lethal effects of three different concentrations (0.1, 1, and 10 mg/L) of aqueous suspensions from ELT-dp and ELT-dg on Danio rerio (zebrafish) larvae exposed from 0 to 120 h post-fertilization (hpf). Chronic effects were assessed through biomarkers, real-time PCR, and proteomics. We observed a significant increase in swimming behavior and heart rate only in specimens exposed to ELT-dp suspensions at 1 and 10 mg/L, respectively. Conversely, the activities of detoxifying enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) showed significant modulation only in specimens exposed to ELT-dg groups. Although no effects were observed through real-time PCR, proteomics highlighted alterations induced by the three ELT-dp concentrations in over 100 proteins involved in metabolic pathways of aromatic and nitrogen compounds. The results obtained suggest that the toxic mechanism of action (MoA) of ELT suspensions is mainly associated with the induction of effects by released chemicals in water, with a higher toxicity of ELT-dp compared to ELT-dg.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
36
|
Löber M, Bondorf L, Grein T, Reiland S, Wieser S, Epple F, Philipps F, Schripp T. Investigations of airborne tire and brake wear particles using a novel vehicle design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53521-53531. [PMID: 39192151 PMCID: PMC11379764 DOI: 10.1007/s11356-024-34543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Non-exhaust emissions have become an increasingly important issue as their levels continue to rise and the health effects of particulate matter (PM) are more widely discussed. To address this issue, a vehicle demonstrator with integrated emission reduction of tires and brakes was developed as part of the Zero Emission Drive Unit Generation-1 (ZEDU-1) project. This novel concept includes the removal of tire road wear particles (TRWP) with a strong ventilation/filtering system and an enclosed multi-disk brake, making it a suitable tool for the investigation of non-exhaust emissions. Particle number (PN) and particle size distribution (PSD) measurements down to 2.5 nm were performed on a chassis dynamometer and on a test track. Due to the low background concentrations on the chassis dynamometer, it is possible to distinguish between tire and brake wear and to characterize even a small number of particle emissions. It could be shown that about 30 % less particles are emitted by the vehicle, when using the novel multi-disk brake instead of the conventional brake. The highest TRWP emissions were collected during acceleration and harsh braking. Characterization of the collected particles using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed diverse particle shapes and differences between particles generated on the dynamometer and on a test track.
Collapse
Affiliation(s)
- Manuel Löber
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany.
| | - Linda Bondorf
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Tobias Grein
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Sven Reiland
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Steffen Wieser
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Fabius Epple
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Franz Philipps
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Tobias Schripp
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| |
Collapse
|
37
|
Ibrahim SS, Ionescu D, Grossart HP. Tapping into fungal potential: Biodegradation of plastic and rubber by potent Fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173188. [PMID: 38740197 DOI: 10.1016/j.scitotenv.2024.173188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Plastic polymers are present in most aspects of routine daily life. Their increasing leakage into the environment poses a threat to environmental, animal, and human health. These polymers are often resistant to microbial degradation and are predicted to remain in the environment for tens to hundreds of years. Fungi have been shown to degrade complex polymers and are considered good candidates for bioremediation (biological pollutant reduction) of plastics. Therefore, we screened 18 selected fungal strains for their ability to degrade polyurethane (PU), polyethylene (PE), and tire rubber. As a proxy for plastic polymer mineralization, we quantified O2 consumption and CO2 production in an enclosed biodegradation system providing plastic as the sole carbon source. In contrast to most studies we demonstrated that the tested fungi attach to, and colonize the different plastic polymers without any pretreatment of the plastics and in the absence of sugars, which were suggested essential for priming the degradation process. Functional polymer groups identified by Fourier-transform infrared spectroscopy (FTIR), and changes in fungal morphology as seen in light and scanning electron microscopy (SEM) were used as indicators of fungal adaptation to growth on PU as a substrate. Thereby, SEM analysis revealed new morphological structures and deformation of the cell wall of several fungal strains when colonizing PU and utilizing this plastic polymer for cell growth. Strains of Fusarium, Penicillium, Botryotinia cinerea EN41, and Trichoderma demonstrated a high potential to degrade PU, rubber, and PE. Growing on PU, over 90 % of the O2 was consumed in <14 days with 300-500 ppm of CO2 generated in parallel. Our study highlights a high bioremediation potential of some fungal strains to efficiently degrade plastic polymers, largely dependent on plastic type.
Collapse
Affiliation(s)
- Sabreen S Ibrahim
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Danny Ionescu
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.
| |
Collapse
|
38
|
Chang J, Huang R, Zhang Z, Pan Y, Ma Z, Wan B, Wang H. A ubiquitous tire rubber additive induced serious eye injury in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134461. [PMID: 38696959 DOI: 10.1016/j.jhazmat.2024.134461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have indicated that tire wear particles (TWPs) leachate exposure induced serious eye injury in fish through inhibiting the thyroid peroxidase (TPO) enzyme activity. However, the main TPO inhibitors in the leachate were still unknown. In this study, we identified 2-Mercaptobenzothiazole (MBT) as the potential TPO inhibitor in the TWPs leachate through references search, model prediction based on Danish QSAR and ToxCast database, molecular docking, and in vivo assay. We further explored the toxic mechanism of MBT under environmentally relevant concentrations. The decreased eye size of zebrafish larvae was mainly caused by the decreased lens diameter and cell density in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the retina. Transcriptomics analysis demonstrated that the eye phototransduction function was significantly suppressed by inhibiting the photoreceptor cell proliferation process after MBT exposure. The altered opsin gene expression and decreased opsin protein levels were induced by weakening thyroid hormone signaling after MBT treatment. These results were comparable to those obtained from a known TPO inhibitor, methimazole. This study has identified MBT as the primary TPO inhibitor responsible for inducing eye impairment in zebrafish larvae exposed to TWPs leachate. It is crucial for reducing the toxicity of TWPs leachate in fish.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Rui Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- North China Electric Power University, Beinong RD 2, Beijing 102206, China
| | - Yunrui Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
39
|
Ihenetu SC, Xu Q, Khan ZH, Shabi Ui Hassan Kazmi S, Ding J, Sun Q, Li G. Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q: A Review. ENVIRONMENTAL RESEARCH 2024; 258:119492. [PMID: 38936499 DOI: 10.1016/j.envres.2024.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
To enhance tire durability, the antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is used in rubber, but it converts into the toxic 6PPD quinone (6PPD-Q) when exposed to oxidants like ozone (O3), causing ecological concerns. This review synthesizes the existing data to assess the transformation, bioavailability, and potential hazards of two tire-derived pollutants 6PPD and 6PPD-Q. The comparative analysis of different thermal methods utilized in repurposing waste materials like tires and plastics into valuable products are analyzed. These methods shed light on the aspects of pyrolysis and catalytic conversion processes, providing valuable perspectives into optimizing the waste valorization and mitigating environmental impacts. Furthermore, we have examined the bioavailability and potential hazards of chemicals used in tire manufacturing, based on the literature included in this review. The bioavailability of these chemicals, particularly the transformation of 6PPD to 6PPD-Q, poses significant ecological risks. 6PPD-Q is highly bioavailable in aquatic environments, indicating its potential for widespread ecological harm. The persistence and mobility of 6PPD-Q in the environment, along with its toxicological effects, highlight the critical need for ongoing monitoring and the development of effective mitigation strategies to reduce its impact on both human health and ecosystem. Future research should focus on understanding the chronic effects of low-level exposure to these compounds on both terrestrial and aquatic ecosystems, as well as the potential for bioaccumulation in the food chain. Additionally, this review outlines the knowledge gaps, recommending further research into the toxicity of tire-derived pollutants in organisms and the health implications for humans and ecosystems.
Collapse
Affiliation(s)
- Stanley Chukwuemeka Ihenetu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Syed Shabi Ui Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qian Sun
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
40
|
Duque-Villaverde A, Armada D, Dagnac T, Llompart M. Recycled tire rubber materials in the spotlight. Determination of hazardous and lethal substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172674. [PMID: 38657808 DOI: 10.1016/j.scitotenv.2024.172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
One way of recycling end-of-life tires is by shredding them to obtain crumb rubber, a microplastic material (<0.5 mm), used as infill in artificial turf sports fields or as playground flooring. There is emerging concern about the health and environmental consequences that this type of surfaces can cause. This research aims to develop an analytical methodology able to determine 11 compounds of environmental and health concern, including antiozonants such as N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine (6PPD) or N, N´-diphenyl-1,4-phenylenediamine (DPPD), and vulcanization and crosslinking agents, such as N-cyclohexylbenzothiazole-2-sulfenamide (CBS), 1,3-di-o-tolylguanidine (DTG) or hexamethoxymethylmelamine (HMMM) from tire rubber. Ultrasound assisted extraction followed by liquid chromatography coupled to tandem mass spectrometry (UAE-LC-MS/MS) is validated demonstrating suitability. The methodology is applied to monitor the target compounds in forty real crumb rubber samples of different origin including, football pitches, outdoor and indoor playgrounds, urban pavements, commercial samples, and tires. Several alternative infill materials, such as sand, cork granulates, thermoplastic elastomers and coconut fibres, are also collected and analysed. All the target analytes are identified and quantified in the crumb rubber samples. The antiozonant 6PPD is present at the highest concentrations up to 0.2 % in new synthetic fields. The tire rubber-derived chemical 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione), recently linked to acute mortality in salmons, is found in all types of crumb rubber samples attaining concentrations up to 40 μg g-1 in football pitches. The crosslinking agent HMMM is detected in most of the playing surfaces, at concentrations up to 36 μg g-1. The tested infill alternatives are free of most of the target compounds. To the best of our knowledge, this study is the largest study considering the target compounds in tire rubber particles and the first to focus on these compounds in playgrounds including the analysis of HMMM, 6PPD-quinone and DTG in crumb rubber used as an infill material.
Collapse
Affiliation(s)
- Andres Duque-Villaverde
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Armada
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
42
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
43
|
Talang RPN, Polruang S, Sirivithayapakorn S. Influencing factors of microplastic generation and microplastic contamination in urban freshwater. Heliyon 2024; 10:e30021. [PMID: 38707367 PMCID: PMC11068644 DOI: 10.1016/j.heliyon.2024.e30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
This research analyzes data on the microplastic (MP) contamination in the environmental systems (atmosphere, lithosphere, hydrosphere) and the levels of MPs in freshwater of cities with different levels of national income. This study investigates the influencing factors of MP generation, i.e., mismanaged plastic waste, untreated wastewater, number of registered motor vehicles, and stormwater runoff. The statistical correlations between the MP contamination in urban freshwater and the four influencing factors of MP generation are determined by linear regression. The results indicate that MPs are most abundant in aquatic systems (i.e., hydrosphere) and pose a serious threat to the human food chain. The regression analysis shows a strong correlation between mismanaged plastic waste and microfragment smaller than 300 μm in particle size in urban freshwater with high goodness-of-fit (R2 = 0.8091). A strong relationship with high goodness-of-fit also exists between untreated wastewater and microfragment of 1000-5000 μm in particle size (R2 = 0.9522). The key to mitigate the MP contamination in urban freshwater is to replace improper plastic waste management and wastewater treatment with proper management practices.
Collapse
Affiliation(s)
- Rutjaya Prateep Na Talang
- Environmental Modeling Consultant Center, Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sucheela Polruang
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Thailand
| | - Sanya Sirivithayapakorn
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Thailand
| |
Collapse
|
44
|
Cong J, Wu J, Fang Y, Wang J, Kong X, Wang L, Duan Z. Application of organoid technology in the human health risk assessment of microplastics: A review of progresses and challenges. ENVIRONMENT INTERNATIONAL 2024; 188:108744. [PMID: 38761429 DOI: 10.1016/j.envint.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Microplastic (MP) pollution has become a global environmental issue, and increasing concern has been raised about its impact on human health. Current studies on the toxic effects and mechanisms of MPs have mostly been conducted in animal models or in vitro cell cultures, which have limitations regarding inter-species differences or stimulation of cellular functions. Organoid technology derived from human pluripotent or adult stem cells has broader prospects for predicting the potential health risks of MPs to humans. Herein, we reviewed the current application advancements and opportunities for different organoids, including brain, retinal, intestinal, liver, and lung organoids, to assess the human health risks of MPs. Organoid techniques accurately simulate the complex processes of MPs and reflect phenotypes related to diseases caused by MPs such as liver fibrosis, neurodegeneration, impaired intestinal barrier and cardiac hypertrophy. Future perspectives were also proposed for technological innovation in human risk assessment of MPs using organoids, including extending the lifespan of organoids to assess the chronic toxicity of MPs, and reconstructing multi-organ interactions to explore their potential in studying the microbiome-gut-brainaxis effect of MPs.
Collapse
Affiliation(s)
- Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Wu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyan Kong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
45
|
Yao J, Li J, Qi J, Wan M, Tang L, Han H, Tian K, Liu S. Distribution patterns and environmental risk assessments of microplastics in the lake waters and sediments from eight typical wetland parks in Changsha city, China. Front Public Health 2024; 12:1365906. [PMID: 38784569 PMCID: PMC11112001 DOI: 10.3389/fpubh.2024.1365906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.
Collapse
Affiliation(s)
- Junyi Yao
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jiang Li
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jialing Qi
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Mengrui Wan
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Liling Tang
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Hui Han
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Kai Tian
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shaobo Liu
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| |
Collapse
|
46
|
Verdi A, Naseri M. Effects of tire wear particles on the water retention of soils with different textures in the full moisture range. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104345. [PMID: 38657472 DOI: 10.1016/j.jconhyd.2024.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Tire wear particles (TWPs) are significant contributors to microplastic pollution in the environment, yet there is limited scientific information concerning their impact on soil hydraulic properties. This study aimed to investigate the impact of TWPs at different concentrations (1, 4, 8, and 16% of the air-dried mass of packed soil samples, w/w) on the water retention curves (WRC) of southern California soils with five different textures (clay, clay loam, silt loam, sandy loam, and loamy sand). The concentrations of 8% and 16% were selected to represent extreme pollution scenarios that might occur near highway corridors. High-resolution water retention data, spanning from saturation to oven dryness, were generated using HYPROP™ and WP4C dew point meter instruments. We also developed WRC scaling equations based on the quantity of TWPs. The bulk density of the samples decreased as the TWP concentration in soils increased. The inclusion of very high concentrations of TWPs (8% and 16% w/w) led to a significant reduction in soil moisture content in the intermediate and dry ranges across various soil textures. However, at the same moisture range, adding 1% TWPs had a minimal impact on soil moisture reduction, while the influence of the 4% TWPs concentration treatment was noticeable only in loamy sand and partially in clay loam soils. Additionally, the overall plant available water decreased with increasing TWP concentrations, except for the clay soil. The texture-specific scaling models exhibited promising performance, with RMSE values ranging from 0.0061 to 0.0120 cm3 cm-3. When bulk density was included as an additional input predictor to construct a single scaling model for all textures, the RMSE increased. Nevertheless, it still indicated a good fit ranging from 0.007 to 0.024 cm3 cm-3, highlighting the suitability of simple scaling for identifying WRC in TWPs-polluted soils, particularly for practical purposes. The findings of this study can contribute to a better understanding and quantification of the impact of TWPs on soil hydrology.
Collapse
Affiliation(s)
- Amir Verdi
- Department of Environmental Sciences, University of California-Riverside, Riverside, CA 92521, United States of America.
| | - Mahyar Naseri
- Thünen Institute of Agricultural Technology, Bundesallee 47, 38116 Braunschweig, Germany.
| |
Collapse
|
47
|
Faramarzi P, Jang W, Oh D, Kim B, Kim JH, You JB. Microfluidic Detection and Analysis of Microplastics Using Surface Nanodroplets. ACS Sens 2024; 9:1489-1498. [PMID: 38440995 DOI: 10.1021/acssensors.3c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Detection of microplastics from water is crucial for various reasons, such as food safety monitoring, monitoring of the fate and transport of microplastics, and development of preventive measures for their occurrence. Currently, microplastics are detected by isolating them using filtration, separation by centrifugation, or membrane filtration, subsequently followed by analysis using well-established analytical methods, such as Raman spectroscopy. However, due to their variability in shape, color, size, and density, isolation using the conventional methods mentioned above is cumbersome and time-consuming. In this work, we show a surface-nanodroplet-decorated microfluidic device for isolation and analysis of small microplastics (diameter of 10 μm) from water. Surface nanodroplets are able to capture nearby microplastics as water flows through the microfluidic device. Using a model microplastic solution, we show that microplastics of various sizes and types can be captured and visualized by using optical and fluorescence microscopy. More importantly, as the surface nanodroplets are pinned on the microfluidic channel, the captured microplastics can also be analyzed using a Raman spectroscope, which enables both physical (i.e., size and shape) and chemical (i.e., type) characterization of microplastics at a single-particle level. The technique shown here can be used as a simple, fast, and economical detection method for small microplastics.
Collapse
Affiliation(s)
- Paniz Faramarzi
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wonik Jang
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donghyeon Oh
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeunggon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju Hyeon Kim
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Bem You
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
48
|
Habib N, Saqib M, Najeh T, Gamil Y. Eco-Transformation of construction: Harnessing machine learning and SHAP for crumb rubber concrete sustainability. Heliyon 2024; 10:e26927. [PMID: 38463877 PMCID: PMC10920364 DOI: 10.1016/j.heliyon.2024.e26927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Researchers have focused their efforts on investigating the integration of crumb rubber as a substitute for conventional aggregates and cement in concrete. Nevertheless, the manufacture of crumb rubber concrete (CRC) has been linked to the release of noxious pollutants, hence presenting potential environmental hazards. Rather than developing novel CRC formulations, the primary objective of this work is to construct an extensive database by leveraging prior research efforts. The study places particular emphasis on two crucial concrete properties: compressive strength (fc') and tensile strength (fts). The database includes a total of 456 data points for fc' and 358 data points for fts, focusing on nine essential characteristics that have a substantial impact on both attributes. The research employs several machine learning algorithms, including both individual and ensemble methods, to undertake a comprehensive analysis of the created databases for fc' and fts. In order to ascertain the correctness of the models, a comparative analysis of machine learning techniques, namely decision tree (DT) and random forest (RF), is conducted using statistical evaluation. Cross-validation approaches are used in order to address the possible issues of overfitting. Furthermore, the Shapley additive explanations (SHAP) approach is used to investigate the influence of input parameters and their interrelationships. The findings demonstrate that the RF methodology has superior performance compared to other ensemble techniques, as shown by its lower error rates and higher coefficient of determination (R2) of 0.87 and 0.85 for fc' and fts respectively. When comparing ensemble approaches, it can be seen that AdaBoost outperforms bagging by 6 % for both outcome models and individual decision tree learners by 17% and 21% for fc' and fts respectively in terms of performance. The average accuracy of AdaBoost algorithm for both the models is 84%. Significantly, the age and the inclusion of crumb rubber in CRC are identified as the primary criteria that have a substantial influence on the mechanical properties of this particular kind of concrete.
Collapse
Affiliation(s)
- Nudrat Habib
- Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Saqib
- Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Taoufik Najeh
- Operation and Maintenance, Operation, Maintenance and Acoustics, Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Sweden
| | - Yaser Gamil
- Department of Civil Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
49
|
Milan J, Jurowski K. Hazardous elements in plastic and rubber granules as infill material from sports facilities? Field Portable-XRF spectroscopy as 'white analytical technique' reveals hazardous elements in fall sports facilities in Rzeszów (Podkarpackie, Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170280. [PMID: 38272072 DOI: 10.1016/j.scitotenv.2024.170280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Plastic and rubber granules are commonly used as infill material in all-weather sports facilities, providing an ideal activity surface for millions of Europeans on a daily basis. However, concerns have been raised about the presence of hazardous elements in these granules, which can pose risks both to the environment and human health. Our study focusses on the elemental composition of rubber granules used in fall sports facilities in Rzeszów, (Podkarpackie, Poland) using field portable X-ray fluorescence (FP-XRF) as a non-destructive and 'white analytical technique'. The results show the content of Zn, Fe, Cr, Ba, Br, Ti, Cu, Cd, As, Au, Bi, Pb, Ni, Sb, and Sn in the rubber granule samples. This study highlights the need for stringent quality control measures and regulations to ensure the safety of all-weather sports facilities and protect the well-being of sportsman. When modern FP-XRF spectrometry is employed as a "white analytical technique," for the first time it becomes possible to identify the presence of hazardous elements, addressing the pressing concerns highlighted by the ECHA and enabling proactive measures to mitigate potential risks. This approach ensures the protection of the health and sustainability of sports facilities, contributing to the ongoing hot topics in the field.
Collapse
Affiliation(s)
- Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland.
| |
Collapse
|
50
|
Chen L, Liu Z, Yang T, Zhao W, Yao Y, Liu P, Jia H. Photoaged Tire Wear Particles Leading to the Oxidative Damage on Earthworms ( Eisenia fetida) by Disrupting the Antioxidant Defense System: The Definitive Role of Environmental Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4500-4509. [PMID: 38415582 DOI: 10.1021/acs.est.3c07878] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Tire wear particles (TWPs) have caused increasing concerns due to their detrimental effects on the soil ecosystem. However, the role of weathering in altering the toxicity of TWP to soil organisms is poorly understood. In this study, the toxicity of original and photoaged TWP was compared using earthworms (Eisenia fetida) as soil model organisms. The obtained results indicated that photoaging of TWP resulted in an increase of environmentally persistent free radicals (EPFRs) from 3.69 × 1017 to 5.20 × 1017 spin/g. Meanwhile, photoaged TWP induced the changes of toxic endpoint in E. fetide, i.e., the increase of the weight loss and death ratio from 0.0425 to 0.0756 g/worm and 23.3 to 50% compared to original TWP under a 10% concentration, respectively. Analyses of transcriptomics, antioxidant enzyme activity, and histopathology demonstrated that the enhanced toxicity was mainly due to oxidative damage, which was induced by disruption in the antioxidant defense system. Free-radical quenching and correlation analysis further suggested that the excessive production of ex vivo reactive oxygen species, induced by EPFRs, led to the exhaustion of the antioxidant defense system. Overall, this work provides new insights into the potential hazard of the weathered TWP in a soil environment and has significant implications for the recycling and proper disposal of spent tire particles.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Ze Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Tianhuan Yang
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Weijie Zhao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Youzhi Yao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Peng Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| |
Collapse
|