1
|
Chen M, Wang M, Wang M, Jiang F, Wu W, Guo X, Han Q, Guo F, Pan H, Liu K, Wang J. Source apportionment and risk assessment of microplastics in the sediments of the Dan river based on APCS-MLR model. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138659. [PMID: 40413974 DOI: 10.1016/j.jhazmat.2025.138659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/10/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Microplastic pollution is becoming a global concern, and tracing its source is essential for effective prevention and control. Therefore, this study aimed to investigate the microplastics in the sediments of the Dan River in China to assess the pollution sources and ecological risks. The results showed that the microplastic abundance ranged from 20 to 2220 items·kg-1, with polymer composition primarily composed of polypropylene (PP;49.5 %) and polyethylene (PE;15.5 %) in the sediments. Quantitative source analysis using APCS-MLR (absolute principal component score-multiple linear regression) model revealed that, microplastics pollution from two sources: a mixed input from fishery and agricultural activities (65.17 %) and wastewater discharge from laundry and care products (34.83 %). Although overall pollution levels were low, a subset of microplastics with high hazard scores posed potential threats to ecological and environmental security at specific local sites. This study validates the applicability of the APCS-MLR model for microplastics source apportionment and provides a novel methodology for tracing pollution sources.
Collapse
Affiliation(s)
- Mengwen Chen
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Fengcheng Jiang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wei Wu
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoming Guo
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qiao Han
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Fayang Guo
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Huiyun Pan
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Kewu Liu
- Lianhe Chemical Technology (Linhai) Co., Ltd, Linhai 317015, China
| | - Jing Wang
- Zhejiang Taizhou Xiuchuan Technology Co., Ltd, Taizhou 318000, China
| |
Collapse
|
2
|
Shiu RF, Chen TJ, Nan FH, Tsao HC, Ling MP. Risk-based integrated framework for evaluating effects of microplastics to aquatic ecosystems and human health. ENVIRONMENTAL RESEARCH 2025; 279:121838. [PMID: 40368039 DOI: 10.1016/j.envres.2025.121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The widespread presence of microplastics (MPs) in environments and the food web is a serious concern for both aquatic ecosystems and human health. Most studies have used single tool to assess risks primarily to organisms and humans, leaving gaps in comprehensive risk assessments. This study conducted an investigation of MP abundances in surface water and wild oysters from natural estuaries of major rivers in Taiwan. Additionally, the data also used to develop an integrated risk-based framework for evaluating potential risks from organisms to human MP exposure to seafood consumption. We assessed aquatic ecological risk quotients (RQ), oyster mortality exceedance risk (ER), human MP intake exposure, and human liver damage ER. Our data showed that MP abundances ranged from 0.025 to 4.701 items/m3 and 0.015-2.374 items/g (wet weight) in water and oysters, respectively. Although RQ values indicate negligible risk for aquatic ecosystems, but oyster mortality ER results from oysters exposed to MPs showed a 6 % increase in mortality (10 % risk). The probabilistic representation of risk curves of MPs for alanine aminotransferase (ALT) levels in human serum was found to be low, indicating minimal health risk to humans. Overall, our data suggest that relying on a single risk indicator may underestimate potential risks, multi-faceted tools are recommended for assessing organism and human health.
Collapse
Affiliation(s)
- Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| | - Tzu-Jung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Hsiao-Chang Tsao
- Marine Tourism and Yacht Development Center, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
3
|
Varol M, Karakaya G, Arısoy G, Çelik B. Comprehensive analysis of microplastics in water, sediment and fish from a large recreational lake. ENVIRONMENTAL RESEARCH 2025; 279:121799. [PMID: 40345420 DOI: 10.1016/j.envres.2025.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
While global attention has primarily focused on microplastics (MPs) in marine ecosystems, the issue of MP pollution in recreational lakes has received relatively little attention. In this study, the occurrence, spatial and seasonal distribution and characteristics of microplastics (MPs) were investigated for the first time in Lake Hazar (Türkiye), an important recreational lake. Water, sediment and fish (Capoeta umbla) were sampled from the lake in the winter and summer of 2020. Thereafter, the MPs were extracted from the samples using the density separation method. Their abundance, shape, color, and size were determined microscopically, while the polymer types were analyzed using ATR-FTIR. The MPs were detected in all surface water and sediment samples, while they were detected in the gastrointestinal tracts of 28 (35 %) out of 80 fish samples. The abundance of MPs was 74-1091 items/m3 for the surface water, 88-213 items/kg (ww) for sediments and 0-5 items/fish for C. umbla, respectively. The MP concentrations in water samples from the shore sites were found to be significantly higher than those in limnetic sites (p < 0.05). The most common MP shapes, sizes and colors were fragments, <0.5 mm and white/transparent, respectively. Polyethylene and polypropylene were the most common polymer types, indicating that recreational activities and fishing activities may be the main sources of MPs in the lake. The Pollution Load Index results indicated that MP pollution in the lake's water and sediments was at a moderate level.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Türkiye.
| | | | - Gülden Arısoy
- Elazığ Fisheries Research Institute, Elâzığ, Türkiye
| | - Burcu Çelik
- Elazığ Fisheries Research Institute, Elâzığ, Türkiye
| |
Collapse
|
4
|
He W, Huang J, Liu S, Shi L, Li E, Hu J, Zhang W, Zhang C, Pang H, Liu Z. Co-occurrence of microplastics and heavy metals to urban river sediments: The vertical distribution characterization and comprehensive ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137500. [PMID: 39919639 DOI: 10.1016/j.jhazmat.2025.137500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/05/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Microplastics (MPs) and heavy metals (HMs) are deemed to pose ecological risks in river ecosystems. The vertical distribution of these pollutants is more conducive to reflecting pollution status and monitoring trends in the sediment. This work analyzed the horizontal and vertical distribution, carried out a risk assessment of HMs and MPs in urban river sediment, and further optimized the two-dimensional comprehensive index (TPI) model for MPs-HMs combined pollution. The highest rates of contamination were for Zn, As, and Cd, and MP abundance in sediment ranged from 20.00 ± 8.82-1933.33 ± 141.42 items·kg-1, mainly characterized by PE and fragments. Moreover, the mean potential ecological risk index for MPs (PRI) at different depths of sediment were 197.21 ± 247.14, 176.79 ± 293.86, and 246.98 ± 538.38, respectively, indicating a moderate risk and the highest PRI value is at the bottom. The TPI exhibited that the average TPI at different depths is 324.10 ± 138.63, 368.30 ± 157.13, and 481.88 ± 296.05, indicating that the comprehensive pollution risk level belongs to considerable, the TPI increases with the depth of the sediment. The results further improved the objectivity and accuracy of the research on the ecotoxicity of compositive pollutants and provided an in-depth understanding of MPs and HMs in urban freshwater basins from a vertical perspective.
Collapse
Affiliation(s)
- Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jinying Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
5
|
You X, Zhang Z, Tian G, Zhang Y, Pei Y, Wu Y, Li G, Wang Q, Yang Y. The impact of polyethylene microplastics exposure on the, growth performance, reproductive performance, antioxidant capacity, and intestinal microbiota of quails. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118218. [PMID: 40262246 DOI: 10.1016/j.ecoenv.2025.118218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
The widespread presence of polystyrene microplastics in the environment, and their significant accumulation, has led to their recognition as a major global ecological problem. There has been a lot of research on how microplastics affect the physiology of aquatic species, but less research on the mechanism of the impact on livestock and poultry microplastics. This paper primarily investigates the negative consequences of microplastic exposure on the health of quail and explores the underlying mechanisms. The study revealed that exposure to polystyrene microplastics notably decreased the body weight, growth rate, and muscle quality of quail. Histopathological analysis indicated significant damage in the liver, lungs, and testicles of quail exposed to microplastics. Furthermore, microplastics reduced the antioxidant capacity of quail and upregulated the expression of inflammatory factors, suggesting the induction of oxidative stress and inflammatory responses. Alterations in the composition and abundance of gut microbes were also observed in quail exposed to polystyrene microplastics; and found an increased abundance of potentially pro-inflammatory bacteria. In conclusion, the findings demonstrate that microplastics have adverse effects on quail health by impacting growth performance, oxidative stress, inflammatory responses, and gut microflora balance.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China.
| | - Zhuo Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Guijuan Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Yapei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Yanru Pei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Yanxue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Qiankun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| |
Collapse
|
6
|
Huang Z, Liu D, Cheng W, Zhang W, He Z, Huang B, Guo S, Zhao B, Wang Y, Zhang Y, Jiang G. Microplastics in the Amur tiger's habitat: Occurrence, characteristics, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138380. [PMID: 40288321 DOI: 10.1016/j.jhazmat.2025.138380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Microplastics (MPs) are emerging environmental pollutants that pose a significant threat to wildlife within forest ecosystems. However, the quantity and types of MPs in wildlife forest habitats remain unclear. This study is the first to assess the distribution of MPs in the Amur tiger habitat of northeast China. Our results showed that MPs were detected in soil, water, atmosphere, forage plants, and ungulate and top predator feces within the forest ecosystem, respectively. The average diameter of all detected MPs was 44.99 ± 34.80μm. The predominant polymers found in the samples were polyamide, polyvinyl chloride, and polyurethane. Certain sample types shared similar MP polymer type distributions, indicating potential links in their sources and transfer pathways. Consequently, these findings provide some new insights on the new pollution problem in Amur tiger forest habitats and prompt us to consider how to control and manage the MPs pollution sources in the tiger conservation.
Collapse
Affiliation(s)
- Zekai Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Dongqi Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Wannian Cheng
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Wentao Zhang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Zhijian He
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Baoxiang Huang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Shuhao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Bitian Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yihan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yuanyuan Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, PR China.
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
8
|
Yang Z, Zhang J, Viyakarn V, Sakaguchi M, Oka S, Isobe A, Arakawa H. Influence of mesh selectivity on risk assessment of marine microplastics. MARINE POLLUTION BULLETIN 2025; 212:117538. [PMID: 39793173 DOI: 10.1016/j.marpolbul.2025.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
In this study, environmental microplastic samples (>30 μm) were collected from surface seawater and the water column, characterized, and used to assess ecological risks. The influence of mesh selectivity on ecological risks was also evaluated through subsampling. Results show that surface microplastic concentrations (>30 μm) range from 92 to 3306 pieces/m3 along Japan's southwest coast, with significant increases at Stas. 2 and 1. Subsurface vertical concentration near Okinawa ranges from 991 to 1992 pieces/m3, with denser, more toxic polymers more frequently observed in deeper waters, suggesting that polymer types may be sorted by marine structure. Risk assessments revealed very high risks near main islands and populated regions, while remote regions had lower risks. Further analysis revealed that ecological risk estimates are significantly influenced by mesh selectivity, with variations in particle size distribution and polymer type composition resulting in changes of up to 100-fold at the same location when different mesh sizes were used, suggesting that current framework is not ideal for risk assessment of microplastics. This study is the first to demonstrate that samplers with different mesh sizes can lead to substantial differences in risk assessments, even at the same location. These findings underscore the critical impact of mesh selectivity on ecological risk estimates and highlight the need for standardized sampling protocols in microplastic research.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Jiaqi Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, 254 Institute Building 3, Pyathai Road, Patumwan, Bangkok, Thailand.
| | - Masayuki Sakaguchi
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Shinya Oka
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Atsuhiko Isobe
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan.
| | - Hisayuki Arakawa
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
9
|
Padha S, Kumar R, Sharma Y, Dhar A. Unravelling land-based discharge of microplastics in River Basantar of Jammu & Kashmir, India: Understanding sinking behaviors and risk assessments. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104490. [PMID: 39731907 DOI: 10.1016/j.jconhyd.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g-1, with a mean abundance of 3 ± 1.594 item g-1, whereas MPs in surface water ranged from 200 to 850 items L-1 with a mean abundance of 530 ± 218.4 items L-1 among 12 sites for sediments and 10 sites for surface water. Besides, the sinking behavior of MPs was analyzed through portioning coefficients (Kd) at sediments-surface water interface, which ranges from 0.71 to 2.50 L Kg-1 for River Basantar. The most common shapes identified were fragments, fibres, and films, followed by pellets, foams, and lines. ATR-FTIR polymeric characterization reported polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride, and thus, polymeric risk assessment analysis was also evaluated and normally distributed in the River Basantar. Polymer Hazard Index was calculated across all the sites which observed to be polluted under risk categories "III" and "IV" for both the sediments and surface water samples. Pollution Load Index (PLI) calculated across all the sites was >1 depicting all the sites for both sediments and surface water sampling to be polluted. Pollution Risk Index was assessed and majority of surface water and sediment samples were observed to be under "Very high" risk category. The study, using principal component analysis and heatmap analysis, found that MPs are primarily a result of urbanization and anthropogenic actions, like industrial discharges, household wastes, and agricultural runoffs. This study highlights the significance of more investigation and coordinated efforts to solve the worldwide problem of plastic pollution in freshwater environments. Results data provide insight into the current state of MP contamination and will help government authorities implement strict rules and perform management interventions to reduce and monitor pollution levels in River Basantar. Future studies on the partitioning of MPs in sediments and surface water must be focused on aggregation, biofouling, plastic density & size, salinity, and flow behaviors to understand transport and deposition in rivers.
Collapse
Affiliation(s)
- Shaveta Padha
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Yogesh Sharma
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Anjali Dhar
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India.
| |
Collapse
|
10
|
Shen M, Li Y, Qin L, Chen X, Ao T, Liang X, Jin K, Dou Y, Li J, Duan X. Distribution and risk assessment of microplastics in a source water reservoir, Central China. Sci Rep 2025; 15:468. [PMID: 39747382 PMCID: PMC11695635 DOI: 10.1038/s41598-024-84894-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The current researches on microplastics in different water layers of reservoirs remains limited. This study aims to investigate the microplastics in different water layers within a source water reservoir. Results revealed that the abundance of microplastics ranged from 2.07 n/L to 14.28 n/L (reservoir, water) and 3 to 7.02 n/L (river, water), while varied from 350 to 714 n/kg(dw) (reservoir, sediment) and 299 to 1360 n/kg(dw) (river, sediment). The average abundance in surface, middle, and bottom water were 6.83 n/L, 6.30 n/L, and 6.91 n/L respectively. Transparent fibrous smaller than < 0.5 mm were identified as the predominant fraction with Polypropylene and Polyethylene being the prevalent polymer types. Additionally, the pollution load index, hazard index, and pollution risk index were calculated for different layers and sediments. Results showed that surface water exhibited a moderate level of risk while the sediments posed a low level of risk. Both the middle and bottom water showed elevated levels of risk due to higher concentrations of polymers with significant toxicity indices. This study presents novel findings on the distribution of microplastics in different water layers, providing crucial data support for understanding the migration patterns of microplastics in source water reservoirs and facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Minghui Shen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yang Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Liwen Qin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xudong Chen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Tianyu Ao
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xishu Liang
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Kaibo Jin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yanyan Dou
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Juexiu Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xuejun Duan
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
11
|
Ju T, Yang K, Ji D, Chang L, Alquiza MDJP, Li Y. Microplastics influence nutrient content and quality of salt-affected agricultural soil under plastic mulch. ENVIRONMENTAL RESEARCH 2025; 264:120376. [PMID: 39549912 DOI: 10.1016/j.envres.2024.120376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Northeast China is an important food production base and plays a crucial role in national food security. However, the increase in salt-affected soils poses a challenge to agricultural production in this region. Plastic mulching is an effective technique for saline cropland improvement, and although it has increased crop yields in the short term, its long-term application may have introduced the problem of contamination by microplastics (MPs). The distribution of MPs in salt-affected cropland, along with the effects on soil nutrients, remains largely unknown. Accordingly, the presented research selected salt-affected cropland as the research object, after which MPs were quantified from 46 soil samples from currently mulched and unmulched fields. MPs abundance in the sampled soils ranging from 4.10 × 103∼1.50 × 104 particles per kilogram of dry soil. The detected MP polymers were mainly high-density polyethylene (46%), polypropylene (22%) and polyvinyl chloride (20%). The MP particles most commonly fell under the size ranges of 50∼100 μm (35%) and 100-200 μm (28%), both of which are small particle sizes. The most commonly detected MP shapes were film (34%) and fragment (31%). The mulched samples from salt-affected cropland generally showed higher soil nutrient contents than the unmulched samples. Moreover, MP abundance, type, size, and shape all demonstrated strong correlations with soil organic carbon and total nitrogen. MP type is a major factor determining soil nutrient content. Plastic mulching serves as an important source of MPs in salt-affected cropland, with these contaminants affecting nutrient content. Future research should be broader in scope and include ecological benefits and policy implications, with a view to optimizing the problem of MPs contamination due to mulching.
Collapse
Affiliation(s)
- Tianhang Ju
- College of Earth Sciences, Jilin University, Changchun, 130061, China
| | - Kai Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 00191, China
| | - Dongmei Ji
- Jilin Province Research Institute of Land and Resources Planning, Changchun, 130061, China
| | - Lei Chang
- College of Earth Sciences, Jilin University, Changchun, 130061, China
| | - María de Jesús Puy Alquiza
- Department of Mine, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato, 36000, Gto., Mexico
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun, 130061, China.
| |
Collapse
|
12
|
Han Z, Jiang J, Ni X, Xia J, Yan C, Cui C. Occurrence and risk of microplastics and hexabromocyclododecane in urban drinking water systems: From source water to tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177966. [PMID: 39657333 DOI: 10.1016/j.scitotenv.2024.177966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The widespread presence of microplastics (MPs) in drinking water systems and their risk of releasing additives have caused widespread concern. However, current research on the migration and risks of MPs and additives in the complete drinking water supply chain remains inadequate. In this study, micro-Raman spectrometer was used to track the entire transport process of MPs from the water source to the tap water, with concentrations ranging from 805 to 4960 items/L, and polyethylene and Polyethylene terephthalate were dominant. The removal efficiency of MPs at the drinking water treatment plant was 85.0 ± 5.2 %. However, chlorination increased the proportion of polystyrene by 40.1 ± 5.3 %. Chlorination increases the surface roughness and carbonyl index of polystyrene standards, and promotes the release of hexabromocyclododecane (HBCD) (482.0 ng/g-2208.7 ng/g). The non-carcinogenic risk index of HBCD ingestion through drinking water remains well below 1 for residents. Complete water treatment processes significantly reduce the risks posed by MPs, achieving reductions of 54.3 % in the pollution load index and 82.1 % in the potential ecological risk index. The estimated daily intake of MPs ingested by residents through tap water ranges from 33.4 to 45.6 items/kg/d. This study investigated the occurrence of MPs in the complete drinking water supply chain and the risk of chlorine disinfection for HBCD release, which could help develop more effective MPs control measures and risk management strategies.
Collapse
Affiliation(s)
- Ziwei Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiali Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Nguyen TT, Bui VH, Lebarillier S, Vu TK, Wong-Wah-Chung P, Fauvelle V, Malleret L. Spatial and seasonal abundance and characteristics of microplastics along the Red River to the Gulf of Tonkin, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177778. [PMID: 39616918 DOI: 10.1016/j.scitotenv.2024.177778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to examine the occurrence of microplastics in surface water and sediment samples collected from Hanoi to the Ba Lat estuary along the Red River, the second-largest river in Vietnam (surface area: 156,451 km2). 21 stations were sampled during the dry (March 2023) and rainy (September 2023) seasons. The analytical procedure involved: digestion with hydrogen peroxide, flotation with potassium carbonate, and overflow filtration. The filters were analyzed by microscopy (Nikon SMZ645) to describe shapes and colors and by μ-FTIR (PerkinElmer Spotlight 400) to determine polymer types and abundances. Results showed that microplastic quantities throughout the river ranged from 10 to 203 items.m-3 in surface water and from 653 to 8069 and 990 to 21,610 items.kg-1 dried weight (d.w.) in sediment during the rainy and dry seasons, respectively. MPs were classified into two main shape groups: fiber and fragment, with fibers being predominant, representing 82.0 % and 75.5 % of microplastics in water and sediment, respectively. The primary colors identified were white/transparent, black, and blue. Particles between 13 and 200 μm were the predominant size class, accounting for 64.1 % and 72.4 % of the microplastics in water and sediment, respectively. Polyethylene, polypropylene, and polyethylene terephthalate were the main polymers, accounting for 71.5 % and 72.2 % of the microplastics in water and sediment, as revealed by μ-FTIR analyses. Overall, in the Red River, the MP pollution load is moderate, but the type of particles detected represents a high to dangerous polymer risk, resulting in a very high potential ecological risk on the river.
Collapse
Affiliation(s)
- Thi Thao Nguyen
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France; Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Van Hoi Bui
- Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Stéphanie Lebarillier
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France
| | - Toan Khanh Vu
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France; Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Pascal Wong-Wah-Chung
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France
| | - Vincent Fauvelle
- Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Laure Malleret
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France.
| |
Collapse
|
14
|
Wang L, Wei Y, Wang B, Hu J, Zhao C, Yu D, Wang J, Liu Z. Co-exposure of microplastics with heavy metals increases environmental pressure in the endangered and rare wildlife reserve: A case study of the zhalong wetland red-crowned crane nature reserve, northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125287. [PMID: 39528136 DOI: 10.1016/j.envpol.2024.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) exposure to remote areas, including endangered and rare wildlife reserves, has attracted increasing concern. Compared with previous research mostly draws attention to the single exposure of MPs to the environment, greater emphasis should be placed on understanding the complex environmental behaviors of MPs. Therefore, the potential risks of MPs to ecosystems need to be explored in combination with their coexistence with other contaminants, but this is not well-understood. The presented study, taking Zhalong National Nature Reserve (Zhalong wetland), the largest habitat and breeding site for migratory Red-crowned cranes (Grus japonensis) in China, as an example, reveals the possibility of the co-exposure of MPs with various heavy metals. The average abundance of MPs in surface water and sediments in Zhalong Wetland is 738 particles/L and 7332 particles/kg, respectively, which is at a high level of MP pollution worldwide. The obtained results figure out that MPs are also widely found in Red-crowned cranes' feces and feathers. Notably, this study confirms that MP co-exposes to the wetland with Cr, Cd, and As via common sources, exposure routes, and the vector effect of MP. Importantly, we develop the methods of the environmental pressure for individual contaminants and achieve a comprehensive risk assessment of MPs co-exposure with other contaminants in the wetland ecosystem for the first time. It is found that co-exposure to heavy metal can increase the ecological risks of MPs. This is conducive to making a more standardized and reliable framework to estimate the environmental impacts of MP pollution and to formulate prevention and control policies.
Collapse
Affiliation(s)
- Lei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuchen Wei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Bing Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jufang Hu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Chuntao Zhao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Dongmei Yu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jianping Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Ze Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China.
| |
Collapse
|
15
|
Guo Y, Wu R, Zhang H, Guo C, Wu L, Xu J. Distribution of microplastics in the soils of a petrochemical industrial region in China: Ecological and Human Health Risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:13. [PMID: 39661242 DOI: 10.1007/s10653-024-02324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Although microplastic pollution is a global concern, information on the distribution of microplastics in petroleum and petrochemical urban soils is limited. In this study, we investigated the occurrence, ecological risk, and human exposure risk of microplastics in different land-use types of soil in Daqing Administrative region, a prominent petroleum and petrochemical industrial base in China. Stereoscopic microscopy and Fourier transform infrared spectroscopy (μ-FTIR) were used to study the chemical composition and distribution characteristics of microplastics. We found that the abundance of microplastics in Daqing soil ranged from 714 to 11,122 items/kg, with the highest value in educational land and the lowest in parks and green land. The dominant particle size of microplastics was < 1 mm (65.7%), and the shape was mainly fiber (55.1%), with white (28.9%) and black (25.6%) as the predominant colors. The most common polymer types were rayon, polypropylene, and polyethylene. Using the potential ecological risk index (RI) and polymeric risk index (H), we found that all land-use types, except woodland (Level I), were classified into Level V of ecological risk, with the highest risk in industrial land (RI = 14,959.85, H = 588.31). The daily exposure of infants to microplastics was much higher than that of adults. These findings provide valuable data for the pollution and potential risk assessment of microplastics in urban and rural environments, suggesting the importance of taking action to minimize its harmful effects on ecological and human health. In order to control the pollution caused by microplastics, we suggest that people should reduce the unnecessary use of single-use plastic items, such as water bottles, plastic shopping bags, straws, etc. In addition, the government needs to strengthen rubbish collection to prevent plastic waste from leaking into the environment during the period from the rubbish bins to the landfills, and to build recycling systems to increase the recycling rate.
Collapse
Affiliation(s)
- Yuting Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Institute of Environmental Engineering, People's Friendship University of Russia, Moscow, Russia
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Linlin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
16
|
Zhang D, Hu B, Chen L, Qi P, Wu Y, Liu X, Zhang G, Zhang W. Spatiotemporal variation of water level in wetlands based on multi-source remote sensing data and responses to changing environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177060. [PMID: 39442728 DOI: 10.1016/j.scitotenv.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Under changing environmental conditions, water level is a crucial indicator for assessing the wetland hydrological cycle. However, due to some wetlands being located in remote and widely dispersed areas, acquiring data on wetland water level changes presents significant challenges, making wetland water level monitoring exceptionally difficult. Wetlands are extensively distributed in western Jilin Province, China, and are experiencing significant degradation due to various factors including natural conditions, agricultural activities, and social development. To address this challenge, this study proposes a monitoring method that combines Sentinel-3 radar altimetry satellites with optical remote sensing images to obtain wetland water level data. Additionally, the study takes into account the Chinese government's Interconnected River System Network Project (IRSNP), classifying wetlands in western Jilin Province into three different water recharge scenarios: direct recharge through main and branch canals, indirect recharge through ditches, and no recharge to isolated wetlands. This study analyses the relationship between wetland water level changes and climatic factors, and assesses how IRSNP can mitigate the negative impacts of climate factors on wetland water levels across different recharge scenarios. The results show that: (1) the wetland water level monitoring method, has high accuracy and feasibility. The average difference between the in-situ measured and satellite-monitored water levels was 0.254 m. (2) There was an overall increasing trend in wetland water levels directly influenced by IRSNP, an insignificant decreasing trend in wetland water levels indirectly influenced by IRSNP. (3) Increased precipitation and decreased evaporation are the predominant climatic factors contributing to rising wetland water levels. Conversely, lower relative humidity and higher temperatures primarily lead to declining water levels. The construction of IRSNP can mitigate the impact of climate change on water levels. Thus, under changing environmental conditions, the implementation of IRSNP has positively impacted wetland protection and provides valuable insights for understanding wetland water level changes and managing water resources effectively.
Collapse
Affiliation(s)
- Dequan Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China
| | - Boting Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liwen Chen
- School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Peng Qi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China.
| | - Yao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China
| | - Xuemei Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China
| | - Guangxin Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China
| | - Wenguang Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China
| |
Collapse
|
17
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
18
|
Chakraborty S, Banerjee M, Jayaraman G, Rajeswari V D. Evaluation of the health impacts and deregulation of signaling pathways in humans induced by microplastics. CHEMOSPHERE 2024; 369:143881. [PMID: 39631686 DOI: 10.1016/j.chemosphere.2024.143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This review assesses the diverse health risk factors associated with microplastic (MP) exposure and their impact on cellular signaling pathways. MPs induce chronic inflammation, oxidative stress, endocrine disruption, apoptosis, and immune dysregulation. They activate signaling pathways such as NF-κB, MAPK, and Nrf2, exacerbating inflammatory responses, oxidative damage, and hormonal imbalances. Understanding the interplay between MPs and signaling pathways is crucial for elucidating the mechanisms underlying MP-induced health effects. Effective risk assessment and management strategies are essential to mitigate the adverse health impacts of MPs on human populations. This research underscores the urgent need for interdisciplinary collaboration to safeguard human health and environmental sustainability in the face of rising MP pollution. In this paper, we also assess the risk factors caused by the microplastics in the pregnant women and the development of the fetus. This review explores the potential risks and challenges associated with MP exposure in newborn babies. It is quite concerning that microplastic particles were recently found in the placental tissue of newborn children for the first time. Although it is unclear how these tiny particles affect different organs, researchers believe that these tiny particles could potentially carry harmful chemicals or disrupt the developing immune system of the fetus. This review overall focuses on the impact of microplastic disrupting different signaling including reproductive health in humans.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gurunathan Jayaraman
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Shi T, Xu H, Pan C, Wang X, Jiang Y, Li Q, Guo J, Mo X, Luo P, Fang Q, Yang J. Distribution, characteristics, and ecological risks of microplastics in the Hongyingzi sorghum production base in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124866. [PMID: 39222769 DOI: 10.1016/j.envpol.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs), an emerging pollutant of global concern, have been studied in the Hongyingzi sorghum production base. In this study, we investigated MPs in the surface soil (0-10 cm) and deeper soil (10-20 cm) in the Hongyingzi sorghum production base. Pollution characterization and ecological risk evaluation were conducted. The results revealed that the MP abundance ranged from 1.31 × 102 to 4.27 × 103 particles/kg, with an average of 1.42 ± 1.22 × 103 particles/kg. There was no clear correlation between the MP abundance and soil depth, and the ordinary kriging method predicted a range of 1.26 × 103-1.28 × 103 particles/kg in most of the study area, indicating a relatively uniform distribution. Among the 12 types of MPs detected, acrylates copolymer (ACR), polypropylene (PP), polyurethane (PU), and polymethyl methacrylate (PMMA) were the most frequently detected. These MPs primarily originated from packaging and advertising materials made from polyurethane and polyester used by Sauce Wine enterprises, as well as plastic products made from polyolefin used in daily life and agricultural activities. The particle size of MPs was primarily 20-100 μm. Overall, the proportion of the 20-100 μm MP was 95.1% in the surface soil layer and 86.7% in the deeper soil layer. Based on the pollution load index, the MP pollution level in the study area was classified as class I. Polymer hazard index evaluation revealed that the risk levels at all of the sampling sites ranged from IV to V, and ACR, PU, and PMMA were identified as significant sources of polymer hazard. Potential ecological index evaluation revealed that most of the soil samples collected from the study area were dangerous or extremely dangerous, and the surface soil posed a greater ecological risk than the deeper soil. These findings provide a scientific foundation for the prevention, control, and management of MP pollution in the Hongyingzi sorghum production base.
Collapse
Affiliation(s)
- Tianzhu Shi
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Huajie Xu
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China.
| | - Changbin Pan
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Xiangui Wang
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Yuting Jiang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Ju Guo
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Xinliang Mo
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Pan Luo
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Qilin Fang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Jing Yang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| |
Collapse
|
20
|
Guo Q, Ding C, Meng Q, Shen X, Yang K, Li Z, Chen X, Wang C, Wu J, Yu J, Li X, Liang F. Abundance, characteristics and ecological risks of microplastics from South Yellow Sea Mudflat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175374. [PMID: 39122046 DOI: 10.1016/j.scitotenv.2024.175374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Microplastic (MP) pollution in global marine environments has been extensively reported and attracted significant concerns, but MP distribution in mudflat has rarely been studied. In this paper, the abundance, features and ecological risk of MP in South Yellow Sea Mudflat were investigated comprehensively. MP were both detected in waters (5.4 ± 0.38-11.3 ± 0.78 items/L) and sediments (5.1 ± 0.36-10.1 ± 0.69 items/g) from South Yellow Sea Mudflat. There existed different MP abundance tendencies from sampling Group I (coastal estuary or port) and II (purely coastal mudflat), while MP abundance in water from Group II was lower than that from Group I generally, but MP abundance in sediment from Group I was lower than that from Group II generally. This suggested that MP abundance in mudflat water could be associated with frequent human activities significantly, and disturbance might not be beneficial to MP accumulation in sediments. Fragments, transparent, polyethylene (PE), polypropylene (PP) and polystyrene (PS) were major MP features in mudflat water and sediment, and maximum proportion of size of MP was 0.001-0.25 mm in both water and sediment. Furthermore, the primary risk assessment indicated that MP pollution load for mudflat was low level. However, potential MP ecological risk for mudflat could reach dangerous level to very dangerous level by calculating and evaluating polymer risk index (PRI) and potential ecological risk index (PERI), which could be caused by high proportions of polyvinyl chloride (PVC) and polyacrylonitrile (PAN) with high hazard score. For the first time, reference data about MP pollution from South Yellow Sea Mudflat were supplied in this paper, which would be helpful for management and control of MP in mudflat.
Collapse
Affiliation(s)
- Qingyuan Guo
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Cheng Ding
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Qingqin Meng
- Yancheng Luming Road Junior High School, Yancheng, Jiangsu Province 224051, China
| | - Xiaomei Shen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Kai Yang
- China MCC5 Group Limited Corporation, Chengdu 610023, China
| | - Zhaoxia Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Xiao Chen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinling Wu
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Feng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Li Y, Liao H, Zeng M, Gao D, Kong C, Liu W, Zheng Y, Zheng Q, Wang J. Exposure to polystyrene nanoplastics causes immune damage, oxidative stress and intestinal flora disruption in salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175169. [PMID: 39094663 DOI: 10.1016/j.scitotenv.2024.175169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-β, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.
Collapse
Affiliation(s)
- Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yufeng Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
22
|
Yoon S, Lee J, Jang T, Choi JH, Ko M, Kim HO, Ha SJ, Lim KS, Park JA. Assessing the abundance, sources, and potential ecological risk assessment of microplastics using their particle and mass units in Uiam Lake, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124654. [PMID: 39098638 DOI: 10.1016/j.envpol.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) enter lakes through various pathways, including effluents from wastewater treatment plants (WWTPs), surface runoff, and improperly disposed of plastic waste. In this study, the extent of MPs pollution in Uiam Lake in fall of 2022 and spring of 2023 was assessed by determining both the number (n/m3) and mass concentrations (μg/m3) of MPs. Moreover, the correlation between water quality parameters and MP properties was analyzed, and an ecological risk assessment was conducted. MPs abundance was higher in spring than in fall, probably due to the lifting of coronavirus disease-19 restrictions, melting of ice, higher rainfall, and faster wind speed. Fragment was the dominant shape of the MPs collected, while polyvinyl chloride (PVC) and polyester/polyethylene terephthalate were the frequently detected polymer types of MPs in fall and spring, respectively. There was a moderate positive correlation between the number concentration of MPs and the total nitrogen, total phosphorus (T-P), and total organic carbon levels; in contrast, there was no significant relationship between the mass concentration of MPs and all water quality parameters. However, the abundance (μg/m3) of PVC and polymethyl methacrylate MPs were positively correlated with T-P and electrical conductivity. The pollution load index, polymer hazard index, and potential ecological risk index (PERI) were generally higher when the mass unit of MPs was used due to the presence of large-sized MPs composed of highly hazardous polymers (e.g., polyurethane, PVC, and alkyd). For instance, the PERI value of the WWTP effluent was at the very high level (>1200) in both seasons, regardless of the abundance unit of MPs. Therefore, WWTP effluents may have increased the ecological toxicity of MPs pollution in Uiam Lake.
Collapse
Affiliation(s)
- Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Hyuk Choi
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
23
|
Cui S, Yu W, Han X, Hu T, Yu M, Liang Y, Guo S, Ma J, Teng L, Liu Z. Factors influencing the distribution, risk, and transport of microplastics and heavy metals for wildlife and habitats in "island" landscapes: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134938. [PMID: 38901262 DOI: 10.1016/j.jhazmat.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Collapse
Affiliation(s)
- Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - XingZhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Hu
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Mengqi Yu
- Forest Pest Control and Quarantine Station of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Songtao Guo
- The College of Life Sciences, Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an 710069, China
| | - Jinlian Ma
- Inner Mongolia Helan Mountain National Natural Nature Reserve Administration, Alxa League, 750306, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| |
Collapse
|
24
|
Gan M, Zhang Y, Shi P, Cui L, Zhang C, Guo J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. MARINE POLLUTION BULLETIN 2024; 205:116656. [PMID: 38950516 DOI: 10.1016/j.marpolbul.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chengqian Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
25
|
Caner S, Günay D, Arı H, Erdoğan Ş. Microplastic pollution and ecological risk assessment of a pond ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:712. [PMID: 38976167 DOI: 10.1007/s10661-024-12881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Microplastic (MP) pollution has been observed in various ecosystems as a result of the rapid increase in plastic production over the past half-century. Nevertheless, the extent of MP pollution in different ecosystems, particularly in freshwater ecosystems, has not been well-studied, and there are limited investigations on this particular topic, specifically in Türkiye. Here, we quantify the occurrence and distribution of MPs in surface water samples collected from Topçu Pond (Türkiye) for the first time. Water samples were collected at five stations and filtered (30 L for each station) through stacked stainless steel sieves (5 mm, 328 µm, and 61 µm mesh size) with a diameter of 30 cm. The abundance, size, color, shape, and type of collected debris samples were analyzed after the wet peroxide oxidation process. MP particles were observed in all samples at an average abundance of 2.4 MPs/L. The most abundant MP size class and type were 0-999 µm and fiber respectively. On the other hand, prevalent colors were black and colorless in general. According to the Raman analysis results, the identified MP derivatives were polypropylene (40%), polyamide (30%), ethylene acrylic acid (20%), and polyvinylchloride (10%). Moreover, the pollution load index (PLI) index was used to determine the pollution status. PLI values were determined as 1.91 at station S1, 1.73 at station S2, 1.31 at station S3, 1 at station S4 and 1.24 at station S5. The PLI value determined for the overall pond was 1.4. The results of this research show that MP pollution is present in Topçu Pond and contributes to the expanding literature on MP pollution in pond ecosystems.
Collapse
Affiliation(s)
- Serkan Caner
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Dilara Günay
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey.
| |
Collapse
|
26
|
Sarker MAB, Imtiaz MH, Holsen TM, Baki ABM. Real-Time Detection of Microplastics Using an AI Camera. SENSORS (BASEL, SWITZERLAND) 2024; 24:4394. [PMID: 39001173 PMCID: PMC11244247 DOI: 10.3390/s24134394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs, size ≤ 5 mm) have emerged as a significant worldwide concern, threatening marine and freshwater ecosystems, and the lack of MP detection technologies is notable. The main goal of this research is the development of a camera sensor for the detection of MPs and measuring their size and velocity while in motion. This study introduces a novel methodology involving computer vision and artificial intelligence (AI) for the detection of MPs. Three different camera systems, including fixed-focus 2D and autofocus (2D and 3D), were implemented and compared. A YOLOv5-based object detection model was used to detect MPs in the captured image. DeepSORT was then implemented for tracking MPs through consecutive images. In real-time testing in a laboratory flume setting, the precision in MP counting was found to be 97%, and during field testing in a local river, the precision was 96%. This study provides foundational insights into utilizing AI for detecting MPs in different environmental settings, contributing to more effective efforts and strategies for managing and mitigating MP pollution.
Collapse
Affiliation(s)
| | - Masudul H Imtiaz
- Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Abul B M Baki
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
27
|
Zhang F, Deng Z, Ma L, Gui X, Yang Y, Wang L, Zhao C, Li H. Pollution characteristics and prospective risk of microplastics in the Zhengzhou section of Yellow River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172717. [PMID: 38670371 DOI: 10.1016/j.scitotenv.2024.172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The ubiquitous occurrence of microplastics (MPs) in the freshwater has attracted widespread attention. The Zhengzhou section of the Yellow River was the most prosperous region in ancient China, and the rapid urbanization, industrialization, and agricultural practices contributed to MPs pollution in aquatic systems recently, whereas the contamination status of MPs in the area is still not available. In this study, a total of fourteen sampling cross-sections were selected in the region to collect water samples systematically for the analysis of MPs pollution characteristics and potential risks. Results showed that abundance of MPs in the water were ranged from 2.33 to 15.50 n/L, with an average value of 6.40 ± 3.40 n/L, which was higher than it in other inland rivers from China. Moreover, the MPs of 0.5-2 mm were the dominant sizes in Yellow River of Zhengzhou region, and most of them were black fibres. The top three polymers were Polyethylene terephthalate (PET), Polyamide (PA) and Polypropylene (PP). High diversity indices of MPs observed at S3, S4, S5, S6, S7, and S8 for size, colour, polymer and shape indicated diverse and complex sources of MPs in those cross-sections. The MPs in water from Zhengzhou area of Yellow River probably degraded from textiles, fishing net, plastic bags, mulching film, packaging bags, and tire wear. The chemical risk assessment revealed a level III risk for study area, while S8 and S11 in which PVA or PAN with higher hazard score detected were categorised as class V risk. Coincidentally, probabilistic risk assessment showed a considerable ecological risk of MPs from Yellow River in Zhengzhou City, with possibility of 99.48 and 98.01 % adverse effect for food dilution and translocation-mediated mechanism, respectively. The results are expected to assistance for development of policies and ultimately combating MPs pollution.
Collapse
Affiliation(s)
- Fawen Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhengyun Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Ma
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xin Gui
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuan Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 4100128, China.
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Changmin Zhao
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450007, China
| | - Hetong Li
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450007, China
| |
Collapse
|
28
|
Ma M, Huo M, Coulon F, Ali M, Tang Z, Liu X, Ying Z, Wang B, Song X. Understanding microplastic presence in different wastewater treatment processes: Removal efficiency and source identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172680. [PMID: 38663631 DOI: 10.1016/j.scitotenv.2024.172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Municipal effluents discharged from wastewater treatment plants (WWTPs) are a considerable source of microplastics in the environment. The dynamic profiles of microplastics in treatment units in WWTPs with different treatment processes remain unclear. This study quantitatively analyzed microplastics in wastewater samples collected from different treatment units in two tertiary treatment plants with distinct processes. The influents contained an average of 15.5 ± 3.5 particles/L and 38.5 ± 2.5 particles/L in the two WWTPs with in the oxidation ditch process and the integrated fixed-film activated sludge process, respectively. Interestingly, microplastic concentrations in the influent were more influenced by the population density in the served area than sewage volume or served population equivalent. Throughout the treatment process, concentrations were reduced to 1.5 ± 0.5 particles/L and 1.0 ± 1.0 particles/L in the final effluents, representing an overall decrease of 90% and 97%, in WWTPs with the oxidation ditch process and integrated fixed-film activated sludge process, respectively. A significant proportion of the microplastics were removed during the primary treatment stage in both WWTPs, with better performance for foam, film, line-shaped and large-sized microplastics. Most microplastics were accumulated in activated sludge, indicating its key role as the primary sink in WWTPs. The multiple correspondence analysis identified laundry washing and daily necessities such as packaging and containers as the major contributors to microplastics in WWTPs. The study proposed recommendations for upgrading WWTPs, modifying designs, and implementing strategies to reduce microplastic sources, aiming to minimize the release of microplastics into the environment. These findings can shed lights on the sources of microplastics in WWTPs, and advance our understanding of the mechanisms for more effective microplastic removals in wastewater treatment technologies in future applications.
Collapse
Affiliation(s)
- Min Ma
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingxin Huo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Liu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhian Ying
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Bin Wang
- Judicial Expertise Center, Dalian Public Security Bureau, Dalian 116031, China
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
29
|
Yang L, Kang S, Luo X, Wang Z. Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123857. [PMID: 38537794 DOI: 10.1016/j.envpol.2024.123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Microplastics in drinking water captured widespread attention following reports of widespread detection around the world. Concerns have been raised about the potential adverse effects of microplastics in drinking water on human health. Given the widespread interest in this research topic, there is an urgent need to compile existing data and assess current knowledge. This paper provides a systematic review of studies on microplastics in drinking water, their evidence, key findings, knowledge gaps, and research needs. The data collected show that microplastics are widespread in drinking water, with large variations in reported concentrations. Standardized methodologies of sampling and analysis are urgently needed. There were more fibrous and fragmented microplastics, with the majority being <10 μm in size and composed of polyester, polyethylene, polypropylene, and polystyrene. Little attention has been paid to the color of microplastics. More research is needed to understand the occurrence and transfer of microplastics throughout the water supply chain and the treatment efficiency of drinking water treatment plants (DWTPs). Methods capable of analyzing microplastics <10 μm and nanoplastics are urgently needed. Potential ecological assessment models for microplastics currently in use need to be improved to take into account the complexity and specificity of microplastics.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Han Z, Jiang J, Xia J, Yan C, Cui C. Occurrence and fate of microplastics from a water source to two different drinking water treatment plants in a megacity in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123546. [PMID: 38369092 DOI: 10.1016/j.envpol.2024.123546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The widespread presence of microplastics (MPs) contamination in drinking water has raised concerns regarding water safety and public health. In this study, a micro-Raman spectrometer was used to trace the occurrence of MP transport from a water source to a drinking water treatment plant (DWTP)1 with an advanced treatment process and DWTP2 with a conventional treatment process and the contributions of different processes to the risk reduction of MPs were explored. Six types of MPs were detected: polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polyamide, and polyvinyl chloride. 2-5 μm (35.8-41.2%) and polyethylene terephthalate (27.1-29.9%) were the most frequently detected MP sizes and types of water source samples, respectively. The abundance of MPs in treated water decreased by 72.7-83.0% compared to raw water. Ozonation and granular activated carbon (52.7%), and sand filtration (47.5%) were the most effective processes for removing MPs from DWTP1 and DWTP2, respectively. Both DWTPs showed significant removal effects on polyethylene terephthalate, with 80.0-88.1% removal rates. The concentrations of polystyrene increase by 30.0-53.4% after chlorination. The dominant components in the treated water of DWTP1 and DWTP2 were polypropylene (24.7%) and polyethylene 27.7%, respectively, and MPs of 2-5 μm had the highest proportion (55.3-64.3%). Pollution load index and potential ecological risk index of raw water treated by DWTPs were reduced by 48.0-58.7% and 94.5-94.7%, respectively. The estimated daily intake of MPs in treated water for infants was 45.5-75.0 items/kg/d, respectively, approximately twice that of adults. This study contributes to the knowledge gap regarding MP pollution in drinking water systems.
Collapse
Affiliation(s)
- Ziwei Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiali Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
31
|
Lu H, Hou L, Zhang Y, Guo T, Wang Y, Xing M. Polystyrene microplastics mediate cell cycle arrest, apoptosis, and autophagy in the G2/M phase through ROS in grass carp kidney cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1923-1935. [PMID: 38064284 DOI: 10.1002/tox.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 03/09/2024]
Abstract
Microplastics (MPs) have attracted widespread worldwide attention as a new pollutant. However, the role of reactive oxygen species (ROS) and cell cycle in nephrotoxicity induced by different concentrations of polystyrene microplastics (PS-MPs) is unknown. This study used grass carp kidney cells (CIK) treated with different concentrations of PS-MPs (0, 0.012, 0.0625, and 0.5 mg L-1 ) as subjects. With the increase of PS-MPs concentration, the levels of ROS and malonaldehyde increased, while the level of total antioxidant capacity, superoxide Dismutase (SOD), and glutathione (GSH) activity decreased. The expression of BUB1 mitotic checkpoint serine/threonine kinase (BUB1), cyclin-dependent kinase (CDK1), CDK2, CyclinB1, cell division cycle 20 homolog (CDC20), and B-cell lymphoma-2, sequestosome 1 decreased significantly. Nevertheless, the expression of Caspase 3, Cleave-Caspase 3, cytochrome c (Cytc), BCL2-associated X, apoptosis regulator, poly ADP-ribose polymerase (PARP), Cleave-PARP, Caspase 9, autophagy immunoblot kit (LC3), and Beclin1 increased. Our research shows that PS-MPs can trigger oxidative stress and induce cell cycle arrest, apoptosis, and autophagy in CIK cells by regulating ROS. This work provides a theoretical basis for cellular biology and toxicology mechanisms and new insights into the potential risks to animals from MPs exposure in the environment.
Collapse
Affiliation(s)
- Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
32
|
Rathore C, Saha M, de Boer J, Desai A, Gupta P, Naik A, Subha HY. Unraveling the land-based discharge of microplastics from sewers to oceans - A comprehensive study and risk assessment in wastewaters of Goa, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169621. [PMID: 38157900 DOI: 10.1016/j.scitotenv.2023.169621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Owing to their pervasive dispersion in the environment and their potential ramifications on both marine life and human health, microplastics (MPs) are of increasing concern. However, there is still a lack of research on the release of MPs from different land-based pathways like creeks, drainage outfalls, and conduits into coastal water systems in India. This study represents comprehensive research into the attribution of MPs in the estuarine system, specifically those emanating from wastewater sources in Panjim City, Goa, India. Urban wastewater collected from different locations in and around Panjim City exhibited values ranging from 79 ± 21 to 338 ± 7 MPs/L, with a prevalence of fibrous and black MP particles. The size range of the MPs at all sampling sites was 100-300 μm. Analysis by μ-FTIR revealed 35 distinct polymeric compositions in wastewater, with a dominance of polyacrylamide (PAM), polyvinyl chloride (PVC), and polyamide (PA). Additionally, primary and secondary MPs were studied to unravel the contributions from land-based sources. This included the quantification of MPs in ten samples from personal care products (PCPs) and twenty samples from washing machine effluents (WMEs). MPs in PCPs ranged from 1.8 to 1554 MPs/g. Microfibres and fragments were predominant in WMEs (3986 to 4898 MPs/L). This study suggests a strong relation between polymers found in wastewater effluent and those present in PCPs and WMEs. The identified polymers showed high polymer hazard indices (IV and V), posing a significant threat to the ecosystem and a potential risk to human health.
Collapse
Affiliation(s)
- Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Jacob de Boer
- Vrije University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Aniket Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akshata Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Haritha Yespal Subha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Department of Marine Chemistry, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| |
Collapse
|
33
|
Praved PH, Neethu KV, Nandan SB, Sankar ND, Aravind EH, Sebastian S, Marigoudar SR, Sharma KV. Evaluation of microplastic pollution and risk assessment in a tropical monsoonal estuary, with special emphasis on contamination in jellyfish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123158. [PMID: 38123117 DOI: 10.1016/j.envpol.2023.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Estuaries, which serve as vital links between land and coastal ecosystems, play a significant part in facilitating the transfer of plastic waste from the land to the ocean. In this research, we examined the prevalence, characteristics, and ecological risks of microplastics (MPs) in the extensively urbanized Cochin Estuarine System (CES), India. Additionally, it represents one of the initial evidence-based examinations of MPs ingestion by jellyfish in Indian waters, focusing on Acromitus flagellatus, Blackfordia virginica, and Pleurobrachia pileus species. The abundance of MPs found in the surface water of the Cochin Estuarine System (CES) varied between 14.44 ± 9 to 30 ± 15.94 MP/m3, with an average of 21.6 ± 11 MP/m3. In both surface waters and jellyfish from the Cochin Estuarine System (CES), fibers were the most prevalent type of MPs, with polyethylene (PE), polypropylene (PP), and polyamide (PA) being the most common polymer varieties. To evaluate the current levels of MPs and their effect on the CES, the Pollution Load Index (PLI), Potential Ecological Risk Index (PERI), and Polymeric Risk Index (H) were utilized. The high PLIestuary values (20.33), high Hestuary values (234.02), and extreme PERIestuary value (1646.06) indicate that the CES is facing an extreme ecological risk. Among the 280 jellyfish individuals examined, 118 (42.14%) were recognized to contain MPs with an average of 1.54 ± 2.68 MPs/individual. Pearson bivariate analysis revealed a significant correlation between the jellyfish bell size and number of plastics per individual. Comparison between jellyfish species revealed, the majority (66%) of the MPs identified in jellyfish were from A. flagellatus and 44 among the 50 jellyfish examined (88%) had MPs. These findings suggest that A. flagellatus may be a potential sink for MPs and may be utilized to be a bioindicator for monitoring MPs contamination in estuarine systems, aiding in future plastic pollution mitigation efforts.
Collapse
Affiliation(s)
- P Hari Praved
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - K V Neethu
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - N Deepak Sankar
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - E H Aravind
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - Sruthy Sebastian
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - S R Marigoudar
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, India.
| | - K V Sharma
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, India.
| |
Collapse
|
34
|
Sadia MR, Hasan M, Islam ARMT, Jion MMMF, Masud MAA, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Rakib MRJ, Senapathi V, Idris AM, Malafaia G. A review of microplastic threat mitigation in Asian lentic environments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104284. [PMID: 38101231 DOI: 10.1016/j.jconhyd.2023.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.
Collapse
Affiliation(s)
- Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Naimur Rahman
- Center for Archaeological Studies, University of Liberal Arts, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi, 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
35
|
Nath J, Parvin F, Tareq SM. Bioaccumulation of microplastics in the edible tissues of fish collected from urban lakes of Bangladesh: a potential exposure to public health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2067-2078. [PMID: 38051483 DOI: 10.1007/s11356-023-31219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Microplastic (MP) pollution is an emerging environmental problem, due to its universal dispersion. In the present study, we determined the MP pollution in water, sediment, and fish samples of three different urban lakes of Bangladesh to assess the bioaccumulation of MPs from the lake environment to fish's edible (flesh) and inedible tissue (gut), ecological risk and consequent human exposure to MPs by fish consumption. A total of forty-three fishes were collected from Jahangirnagar Co-Operative Housing Society (JCHS), Dhanmondi Lake (DL), and Saturia Thana Lake (MST). The average MP concentration in sediment and water of the lakes is 7588 ± 4353 MPs/kg dry weights; 142 ± 22 MPs/L, respectively. MPs were identified in the edible (2.8-20.2 MPs/g) and inedible (2.27-20.93 MPs/g) tissue of all fish species. The highest number of MPs was observed in the flesh of Labeo bata of the JCHS Lake and in the gut of Catla catla of DL. The most dominant shape of MPs was fiber and fragment, 0.1-0.4 mm was the dominant size range, and blue, purple, and transparent were the dominant colors. The presence of six polymer types was revealed by FT-IR analysis, which were polystyrene, polypropylene, nitrile, ethylene vinyl acetate, high-density polyethylene, and nylon. The concentration of MPs in fish is found to increase with the increment in body weight. The bioconcentration factor (BCF) analysis reveals that among all the fish species, Labeo bata and Oreochromis mossambicus accumulate the highest number of MPs from the lake environment. The pollution load index of MPs indicates that the sampling sites were within hazard levels III-IV. Estimated annual intake reveals that humans will be exposed to the highest number of MPs if they consume the flesh of Labeo bata of DL and JCHS Lake.
Collapse
Affiliation(s)
- Jayasree Nath
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka, -1342, Bangladesh
| | - Fahmida Parvin
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka, -1342, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka, -1342, Bangladesh.
| |
Collapse
|
36
|
Gong H, Li R, Li F, Xu L, Gan L, Li J, Huang H, Yan M, Wang J. Microplastic pollution in water environment of typical nature reserves and scenery districts in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166628. [PMID: 37640084 DOI: 10.1016/j.scitotenv.2023.166628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Microplastics were frequently detected in the ocean, freshwater environment and wastewater treatment plants. This study aims to fill up the knowledge gap of microplastic distribution in nature reserves and scenery districts. Microplastic samples were collected, the distribution characteristics were analyzed with a stereoscopic microscope and a Fourier transform infrared spectrometer, and the ecological risks of microplastic pollution were calculated. Microplastics were detected in all the collected water samples and the average abundances of microplastics in the surface water of eleven investigated nature reserves and scenery districts ranged from 542 to 5500 items/m3. The degrees of microplastic pollution of all the surveyed nature reserves and scenery districts were classified as hazard level I. Fiber microplastics represented the largest average proportion (67.4 %) and 91.7 % of the detected microplastics were smaller than 2 mm. Corresponding to the frequent detection of fiber microplastics, cotton was the most abundant (25.5 %) polymer type of the suspected microplastics, followed by polyamide (PA, 20.6 %), polyester (PET, 17.0 %), and cellulose (15.6 %). For the ecological risk of the microplastic polymers, six, two and three nature reserves and scenery districts were defined to be at hazard level I, II and III, respectively. In brief, microplastic pollution occurred in all the surveyed nature reserves/scenery districts and posed different degrees of ecological risks.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Jingxian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Haisheng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
37
|
Liu S, You H, Mu H, Cheng J, Kuang S, Wang F, Chen H, Zheng M, Xu Y, Liu T. Abundance, characteristics and risk assessment of microplastics in aquatic sediments: A comparative study in the Yellow River and Yellow Sea. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:326-334. [PMID: 37948828 DOI: 10.1016/j.wasman.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic ecosystems has become an increasingly serious threat to public health. Marine sediments are considered the final recipients of all microplastic pollution from inland rivers, however, whether and how the MPs differ in these two ecosystems remains poorly known due to the divergent MPs detection methods employed in previous studies. Here, we investigated the abundance, size, and types of MPs in sediment samples from the Yellow River and Yellow Sea using laser direct infrared (LDIR), and assessed their ecological risks. The abundance of MPs in the Yellow Sea is 2.9 times higher than that in the Yellow River, with an average abundance of 54813.2 ± 19355.9 and 18780.2 ± 9951.8 particles·kg-1 (dry sediment), respectively. Notably, the predominant polymer types in both sediment environments were silicone, fluororubber, and polypropylene (PP). MPs with sizes < 100 μm accounted for > 90 % of the total MPs number. Risk assessment demonstrated all the sediment environments exhibited high ecological risks. The dominance of small MPs highlighted the importance of using a method with high resolution to delineate the truthful status of MP pollution.
Collapse
Affiliation(s)
- Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hairong You
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyu Mu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiaxin Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Minggang Zheng
- Research Center for Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
38
|
Wang S, Wu H, Shi X, Wang Y, Xu S. Polystyrene microplastics with different sizes induce the apoptosis and necroptosis in liver through the PTEN/PI3K/AKT/autophagy axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165461. [PMID: 37451460 DOI: 10.1016/j.scitotenv.2023.165461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The production of plastics worldwide has been instrumental in the progress of modern society, while the increasing accumulation of plastics castoff in oceans, soils and anywhere else has become a major pressure source on environmental sustainability and animal health. Meanwhile, from a biological perspective, our understanding of the toxicological fingerprints of plastics, especially microplastics (MPs), is still poor. Here, we reported a phenomenon of hepatotoxicity dominated by MPs in the form of polystyrene (PS), was observed in mice model systems and cellular assays. Apoptosis and necroptosis related to the size of particles were seen upon PS-MPs introduction, as revealed by transmission electron microscopy, fluorescence microscopy, flow cytometry, and quantitative analysis of signaling pathways in vivo and vitro. Collectively, the current study demonstrated that the levels of liver cell injury caused by PS-MPs were negatively correlated with the particle diameters. Small-sized particles (1-10 μm) induced cell death primarily as necroptosis whereas the large-sized particles (50-100 μm) mainly induced apoptosis, which was directly accomplished by PTEN/PI3K/AKT signaling axis and its targeted autophagy flux. More interestingly, inhibition of autophagy not only alleviated PS-MPs-triggered cell death, but also changed the form of death injury to a certain extent. This uncovered crosstalk relationship opens up a new avenue for investigating the biological and toxicological effects of MPs, and may provide important insights for preventing and limiting of health hazards from MPs.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
39
|
Gao J, Deng G, Jiang H, Wen Y, Zhu S, He C, Shi C, Cao Y. Water quality pollution assessment and source apportionment of lake wetlands: A case study of Xianghai Lake in the Northeast China Plain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118398. [PMID: 37329587 DOI: 10.1016/j.jenvman.2023.118398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Surface water pollution has always posed a serious challenge to water quality management. Improving water quality management requires figuring out how to comprehend water quality conditions scientifically and effectively as well as quantitatively identify regional pollution sources. In this study, Xianghai Lake, a typical lake-type wetland on the Northeast China Plain, was taken as the research area. Based on a geographic information system (GIS) method and 11 water quality parameters, the single-factor evaluation and comprehensive water quality index (WQI) methods were used to comprehensively evaluate the water quality of the lake-type wetland in the level period. Four key water quality parameters were determined by the principal component analysis (PCA) method, and more convenient comprehensive water quality evaluation models, the minimum WQI considering weights (WQImin-w) and the minimum WQI without considering weights (WQImin-nw) were established. The multiple statistical method and the absolute principal component score-multiple liner regression (APCS-MLR) model were combined to analyse the lake pollution sources based on the spatial changes in pollutants. The findings demonstrated that the WQImin-nw model's water quality evaluation outcome was more accurate when weights were not taken into account. The WQImin-nw model can be used as a simple and convenient way to comprehend the variations in water quality in wetlands of lakes and reservoirs. It was concluded that the comprehensive water quality in the study area was at a "medium" level, and CODMn was the main limiting factor. Nonpoint source pollution (such as agricultural planting and livestock breeding) was the most important factor affecting the water quality of Xianghai Lake (with a comprehensive contribution rate of 31.65%). The comprehensive contribution rates of sediment endogenous and geological sources, phytoplankton and other plants, and water diversion and other hydrodynamic impacts accounted for 25.12%, 19.65%, and 23.58% of the total impact, respectively. This study can provide a scientific method for water quality assessment and management of lake wetlands, and an effective support for migration of migratory birds, habitat protection and grain production security.
Collapse
Affiliation(s)
- Jin Gao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Guangyi Deng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Engineering, Jilin Normal University, Siping, 136000, China
| | - Shiying Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Chunyu Shi
- Jilin Provincial Academy of Environmental Sciences, Changchun, 130000, China
| | - Yingyue Cao
- Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
40
|
Yin K, Wang D, Zhang Y, Lu H, Wang Y, Xing M. Dose-effect of polystyrene microplastics on digestive toxicity in chickens (Gallus gallus): Multi-omics reveals critical role of gut-liver axis. J Adv Res 2023; 52:3-18. [PMID: 36334886 PMCID: PMC10555772 DOI: 10.1016/j.jare.2022.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Microplastic pollution seriously threatens the health and safety of humans and wildlife. Avian is one of the main species endangered by microplastics. However, the damage mechanism of microplastics to the digestive system of avian is not clear. OBJECTIVES The gut-liver axis is a bidirectional channel that regulates the exchange of information between the gut and the liver and is also a key target for tissue damage caused by pollutants. This study aimed to elucidate the digestive toxicity of microplastics in avian and the key role of the gut-liver axis in it. METHODS We constructed an exposure model for microplastics in environmental concentrations and toxicological concentrations in chickens and reveal the digestive toxicity of polystyrene microplastics (PS-MPs) in avian by 16S rRNA, transcriptomics and metabolomics. RESULTS PS-MPs changed the death mode from apoptosis to necrosis and pyroptosis by upregulating Caspase 8, disrupting the intestinal vascular barrier, disturbing the intestinal flora and promoting the accumulation of lipopolysaccharide. Harmful flora and metabolites were translocated to the liver through the liver-gut axis, eliciting hepatic immune responses and promoting hepatic lipid metabolism disorders and apoptosis. Liver injury involves multiple molecular effects of mitochondrial dynamics disturbance, oxidative stress, endoplasmic reticulum stress, and cell cycle disturbance. Furthermore, metabolomics suggested that caffeine and melanin metabolites may be potential natural resistance substances for microplastics. CONCLUSION Taken together, our data demonstrate the digestive damage of PS-MPs in avian, revealing a critical role of the liver-gut axis in it. This will provide a reference for protecting the safety of avian populations.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
41
|
Cai J, Liu P, Zhang X, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2023:108929. [PMID: 37414307 DOI: 10.1016/j.fsi.2023.108929] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 μM) and/or MAA (50 μM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1β and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shenqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
42
|
Celis-Hernandez O, Ávila E, Rendón-von Osten J, Briceño-Vera EA, Borges-Ramírez MM, Gómez-Ponce AM, Capparelli VM. Environmental risk of microplastics in a Mexican coastal lagoon ecosystem: Anthropogenic inputs and its possible human food risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163095. [PMID: 37001666 DOI: 10.1016/j.scitotenv.2023.163095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Coastal lagoons are ecosystems that are considered providers of a variety species of commercial value to the humans. However, they are currently threatened by a variety of anthropogenic-derived impacts, including environmental pollution by microplastics (MPs). For these reasons, it is necessary to identify suitable biomonitors for monitoring MP activities in aquatic environments and for estimating human ingestion of MPs from the consumption of commercial shellfish species. Therefore, our aims were to identify the anthropogenic activities that supply MPs into a coastal lagoon in the southern Gulf of Mexico and their variety; to determine whether oysters (Crassostrea virginica) are suitable biomonitors to perform MPs monitoring activities and to conduct an estimation of how many MPs could a human consume by the ingestion of a commercial portion of oysters harvested in this coastal lagoon. Our results noted that MP concentrations from water and sediment collected in Laguna de Terminos were 210,000 and 11.3 times higher than values reported in other protected areas worldwide. MPs chemical composition revealed that fishing and urban activities supply mainly polyethylene (21.1 %), poly (butadiene) diol (12.6 %) and polyethylene terephthalate (9.5 %). It was also determined that oysters did not reflect the spatial distribution of MPs within the study area and that a human could consume up to 806.1 MPs per 237.1 g serving of an oyster cocktail. Finally, a coastal lagoon polluted with MPs increases the risk of affecting species used for human consumption.
Collapse
Affiliation(s)
- Omar Celis-Hernandez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, 24157 Ciudad del Carmen, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico
| | - Enrique Ávila
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, 24157 Ciudad del Carmen, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de Méxcio (EPOMEX), Campus VI, Av. Héroes de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - E Antony Briceño-Vera
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - M Merle Borges-Ramírez
- El Colegio de la Frontera Sur (ECOSUR), Avenida Rancho, Polígono 2-A, Ciudad Industrial Lerma, C.P. 24500, Campeche, Campeche, Mexico
| | - A Mario Gómez-Ponce
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, 24157 Ciudad del Carmen, Mexico
| | - V Mariana Capparelli
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
43
|
Tse YT, Lo HS, Tsang CW, Han J, Fang JKH, Chan SMN, Sze ETP. Quantitative analysis and risk assessment to full-size microplastics pollution in the coastal marine waters of Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163006. [PMID: 36966838 DOI: 10.1016/j.scitotenv.2023.163006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Given the potential risk to the ecosystem, attention has increased in recent decades to the contamination of the aquatic environment by microplastics (MPs). Due to the limitations of conventional analysis methods of MPs, little is known about the size distribution and abundance of a full-size MPs from 1 μm to 5 mm. The present study quantified MPs with size ranges of 50 μm - 5 mm and 1-50 μm in the coastal marine waters from twelve locations in Hong Kong using fluorescence microscopy and flow cytometry respectively, during the end of wet (September 2021) and dry (March 2022) seasons. The average abundance of MPs with size ranges of 50 μm - 5 mm and 1-50 μm from twelve sampling locations marine surface waters were found ranging from 27 to 104 particles L-1 and 43,675-387,901 particles L-1 in the wet season respectively, and 13-36 particles L-1 and 23,178-338,604 particles L-1 in the dry season respectively. Significant temporal and spatial variations of small MPs abundance might be observed at the sampling locations, which were contributed by the influences of the estuary of Pearl River, sewage discharge points, land structure, and other anthropogenic activities. Based on the MPs abundance information, ecological risk assessment was conducted and revealed that the small MPs (< 10 μm) in coastal marine surface waters may pose potential health risks to aquatic organisms. Additional risk assessments are needed in order to determine whether or not the MPs exposure would cause health risks to the public.
Collapse
Affiliation(s)
- Yuet-Tung Tse
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - Hoi-Shing Lo
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong (THEi), Chai Wan, Hong Kong
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong.
| |
Collapse
|
44
|
Li Q, Han Z, Su G, Hou M, Liu X, Zhao X, Hua Y, Shi B, Meng J, Wang M. New insights into the distribution, potential source and risk of microplastics in Qinghai-Tibet Plateau. ENVIRONMENT INTERNATIONAL 2023; 175:107956. [PMID: 37178609 DOI: 10.1016/j.envint.2023.107956] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Microplastics (MPs) as emerging contaminants have become a major global concern, however, the distribution and origin of MPs in Qinghai-Tibet Plateau (QTP) and their impacts on ecosystem are poorly known. Hence, we systematically evaluated the profile of MPs on the representative metropolitan locations of Lhasa and Huangshui Rivers and the scenic sites of Namco and Qinghai Lake. The average abundance of MPs in the water samples was 7020 items/m3, which was 34 and 52 times higher than those for the sediment (206.7 items/m3) and soil samples (134.7 items/m3), respectively. Huangshui River had the highest levels, followed by Qinghai Lake, Lhasa River and Namco. Human activities rather than altitude and salinity impacted the distribution of MPs in those areas. Besides the consumption of plastic products by locals and tourists, laundry wastewater and exogenous tributary inputs, the unique prayer flag culture also contributed to the MPs emission in QTP. Notably, the stability and fragment of MPs were crucial for their fate. Multiple assessment models were employed to evaluate the risk of MPs. PERI model took MP concentration, background value and toxicity into account, comprehensively describing the risk differences of each site. The large PVC proportion in Qinghai Lake posed the highest risk. Furthermore, concerns should be raised about PVC, PE and PET in Lhasa and Huangshui Rivers, and PC in Namco Lake. Risk quotient suggested that aged MPs in sediments slowly released biotoxic DEHP and should be cleaned up promptly. The findings offer baseline data of MPs in QTP and ecological risks, providing important support for the prioritization of future control measures.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Han
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xihui Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
45
|
Gurumoorthi K, Luis AJ. Recent trends on microplastics abundance and risk assessment in coastal Antarctica: Regional meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121385. [PMID: 36868550 DOI: 10.1016/j.envpol.2023.121385] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
We investigated sources, abundance and risk of microplastics (MPs) in water, sediments and biota around Antarctica. The concentration of MPs in Southern Ocean (SO) ranged from 0 to 0.56 items/m3 (mean = 0.01 items/m3) and 0-1.96 items/m3 (mean = 0.13 items/m3) in surface and sub-surface water. The distribution of fibers in water was 50%, sediments were 61%, and biota had 43%, which were followed by fragments in the water (42%), sediments (26%), and biota (28%). Shapes of film had lowest concentrations in water (2%), sediments 13%), and biota (3%). Ship traffic, drift of MPs by currents, and untreated waste water discharge contributed to the variety of MPs. The degree of pollution in all matrices was evaluated using the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI). PLI at about 90.3% of locations were at category I followed by 5.9% at category II, 1.6% at category III, and 2.2% at category IV. Average PLI for water (3.14), sediments (6.6), and biota (2.72) had low pollution load (<10). Mean PHI for water, sediments, and biota showed hazards level V with a higher percentage of 84.6% (>1000) and 63.9% (PHI:0-1) in sediments and water, respectively. PERI for water showed 63.9% minor risk, and 36.1% extreme risk. Around 84.6% of sediments were at extreme risk, 7.7% faced minor risk, and 7.7% were at high risk. While 20% of marine organisms living in cold environments experienced minor risk, 20% were in high risk, and 60% were in extreme risk. Highest PERI was found in the water, sediments, and biota in Ross Sea, due to high hazardous polymer composition of polyvinylchloride (PVC) in the water and sediments due to human activity, particularly use of personnel care products and waste water discharge from research stations.
Collapse
Affiliation(s)
- K Gurumoorthi
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India
| | - Alvarinho J Luis
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India.
| |
Collapse
|
46
|
Wang S, Chen L, Shi X, Wang Y, Xu S. Polystyrene microplastics-induced macrophage extracellular traps contributes to liver fibrotic injury by activating ROS/TGF-β/Smad2/3 signaling axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121388. [PMID: 36871749 DOI: 10.1016/j.envpol.2023.121388] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are a type of emerging pollutant, posing a great threat to human and animal health. While recent studies have revealed the link between MPs exposure and liver injury of organisms, the effect of particle size on the level of MPs-induced hepatotoxicity and the intrinsic mechanism remain to be explored. Here, we established a mouse model exposed to two-diameter polystyrene MPs (PS-MPs, 1-10 μm or 50-100 μm) for 30 days. The in vivo results revealed that PS-MPs caused liver fibrotic injury in mice, accompanied with macrophages recruitment and macrophage extracellular traps (METs) formation, which were negatively correlated with particle size. The data in vitro showed that PS-MPs treatment could induce macrophages to release METs in a reactive oxygen species (ROS)-independent manner, and the METs formation level caused by large-size particles was higher than small-size particles. Further mechanistic analysis of a cell co-culture system revealed that PS-MPs-induced METs release led to a hepatocellular inflammatory response and epithelial-mesenchymal transition (EMT) via activating the ROS/TGF-β/Smad2/3 signaling axis, and this biological crosstalk could be relieved by DNase I. Overall, this findings demonstrates the key role of the action mechanism of METs in aggravating MPs-caused liver injury.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, 843300, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
47
|
Hossain S, Ahmad Shukri ZN, Waiho K, Ibrahim YS, Minhaz TM, Kamaruzzan AS, Abdul Rahim AI, Draman AS, Khatoon H, Islam Z, Kasan NA. Microplastics pollution in mud crab (Scylla sp.) aquaculture system: First investigation and evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121697. [PMID: 37088255 DOI: 10.1016/j.envpol.2023.121697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) occurrence in farmed aquatic organisms has already been the prime priority of researchers due to the food security concerns for human consumption. A number of commercially important aquaculture systems have already been investigated for MPs pollution but the mud crab (Scylla sp.) aquaculture system has not been investigated yet even though it is a highly demanded commercial species globally. This study reported the MPs pollution in the mud crab (Scylla sp.) aquaculture system for the first time. Three different stations of the selected aquafarm were sampled for water and sediment samples and MPs particles in the samples were isolated by the gravimetric analysis (0.9% w/v NaCl solution). MP abundance was visualized under a microscope along with their size, shape, and color. A subset of the isolated MPs was analyzed by scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) for the surface and chemical characterization respectively. The average MPs concentration was 47.5 ± 11.875 particles/g in sediment and 127.92 ± 14.99 particles/100 L in the water sample. Fibrous-shaped (72.17%) and transparent-colored (59.37%) MPs were dominant in all the collected samples. However, smaller MPs (>0.05-0.5 mm) were more common in the water samples (47.69%) and the larger (>1-5 mm) MPs were in the sediment samples (47.83%). SEM analysis found cracks and roughness on the surface of the MPs and nylon, polyethylene, polypropylene, and polystyrene MPs were identified by FTIR analysis. PLI value showed hazard level I in water and level II in sediment. The existence of deleterious MPs particles in the mud crab aquaculture system was well evident. The other commercial mud crab aquafarms must therefore be thoroughly investigated in order to include farmed mud crabs as an environmentally vulnerable food security concern.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tashrif Mahmud Minhaz
- Freshwater Sub Station, Bangladesh Fisheries Research Institute, Saidpur, 5310, Nilphamari, Bangladesh
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Zahidul Islam
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar Sadar, 4700, Cox's Bazar, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
48
|
Zhang X, Xu L, Ma W, Shi B, Liu Q, Song Y, Fang C, Liu P, Qiao S, Cai J, Zhang Z. N-acetyl-L-cysteine alleviated the oxidative stress-induced inflammation and necroptosis caused by excessive NiCl2 in primary spleen lymphocytes. Front Immunol 2023; 14:1146645. [PMID: 37090713 PMCID: PMC10117970 DOI: 10.3389/fimmu.2023.1146645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNickel (Ni) is widely used in industrial manufacturing and daily life due to its excellent physical and chemical properties. However, Ni has the potential to harm animals' immune system, and spleen is a typical immune organ. Therefore, it is crucial to understand the mechanism of NiCl2 damage to the spleen. The purpose of this study is to investigate the effects of different concentrations of NiCl2 exposure and intervening with strong antioxidants on spleen lymphocytes to better understand the damage mechanism of Ni on spleen lymphocytes.MethodsIn this experiment, mice spleen lymphocytes were used as the research object. We first measured the degree of oxidative stress, inflammation, and necroptosis caused by different NiCl2 concentrations. Subsequently, we added the powerful antioxidant N-acetyl-L-cysteine (NAC) and used hydrogen peroxide (H2O2) as the positive control in subsequent experiments.ResultsOur findings demonstrated that NiCl2 could cause spleen lymphocytes to produce a large number of reactive oxygen species (ROS), which reduced the mRNA level of antioxidant enzyme-related genes, the changes in GSH-PX, SOD, T-AOC, and MDA, the same to the mitochondrial membrane potential. ROS caused the body to produce an inflammatory response, which was manifested by tumor necrosis factor (TNF-α) in an immunofluorescence experiment, and the mRNA level of related inflammatory genes significantly increased. In the case of caspase 8 inhibition, TNF-α could cause the occurrence of necroptosis mediated by RIP1, RIP3, and MLKL. AO/EB revealed that spleen lymphocytes exposed to NiCl2 had significant necroptosis, and the mRNA and protein levels of RIP1, RIP3, and MLKL increased significantly. Moreover, the findings demonstrated that NAC acted as an antioxidant to reduce oxidative stress, inflammation, and necroptosis caused by NiCl2 exposure.DiscussionOur findings showed that NiCl2 could cause oxidative stress, inflammation, and necroptosis in mice spleen lymphocytes, which could be mitigated in part by NAC. The study provides a point of reference for understanding the toxicological effect of NiCl2. The study suggests that NAC may be useful in reducing the toxicological effect of NiCl2 on the immune system. The research may contribute to the development of effective measures to prevent and mitigate the toxicological effects of NiCl2 on the immune system.
Collapse
Affiliation(s)
- Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yinghao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| |
Collapse
|
49
|
Chau HS, Xu S, Ma Y, Wang Q, Cao Y, Huang G, Ruan Y, Yan M, Liu M, Zhang K, Lam PKS. Microplastic occurrence and ecological risk assessment in the eight outlets of the Pearl River Estuary, a new insight into the riverine microplastic input to the northern South China Sea. MARINE POLLUTION BULLETIN 2023; 189:114719. [PMID: 36821929 DOI: 10.1016/j.marpolbul.2023.114719] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Estuaries are unique transition zones connecting terrestrial and coastal environments and are recognized as primary conveyors for land-derived plastics to open oceans. Riverine microplastics (MPs) have been commonly investigated using sequential sampling which might not effectively reflect the actual load. In this study, sampling at eight outlets was performed during a complete tidal cycle to estimate the MP flux to the Pearl River Estuarine (PRE) using a concurrent sampling strategy. The MP abundances ranged from 2.90 ± 0.57-5.9 ± 2.27 particles/L. A remarkable difference between tides in MP abundances suggests tidal effect should not be overlooked in assessment. The MP load through the eight outlets was estimated at 304 trillion particles or 1102 tons into the PRE annually. Additionally, similar potential ecological risk assessment among eight rivers implied that environmental threats posed by less urbanized and populated rural areas on the western side have been under-evaluating for decades.
Collapse
Affiliation(s)
- Hoi Shan Chau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Yue Ma
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Yaru Cao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Guangling Huang
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Macao SAR, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
50
|
Min R, Ma K, Zhang H, Zhang J, Yang S, Zhou T, Zhang G. Distribution and risk assessment of microplastics in Liujiaxia Reservoir on the upper Yellow River. CHEMOSPHERE 2023; 320:138031. [PMID: 36739993 DOI: 10.1016/j.chemosphere.2023.138031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPSs) distribution in global freshwater systems is extensively reported, but the distribution of MPSs in reservoirs of the Yellow River has rarely been studied. To fill in this gap, we systematically investigated the distribution of MPSs in surface water and bank sediments gleaned from Liujiaxia Reservoir of the upper Yellow River for the first time and conducted an ecological risk assessment in succession in this work. The results showed that the main polymer types of MPSs in the surface water and bank sediments of Liujiaxia Reservoir were polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP), and the abundance of MPSs in the reservoir surface water and bank sediments ranged from 4.48 to 12.09 item/L and 447.27 to 1543.80 item/kg (dry weight), respectively. Further physical morphology analysis of MPSs in the samples revealed that MPSs in the surface water and bank sediments of Liujiaxia Reservoir were predominantly fibrous with small particle sizes (<1 mm), and there was abundant color, mainly exhibiting transparent, black, and blue. The results of the MPS pollution load index (PLI>1) and the hazard ranking of MPSs (HZone = 10.20 for surface water and HZone = 14.06 for bank sediments) yielded a hazard class II for MPS pollution in Liujiaxia Reservoir, the combined pollution risk index (PRIZone = 17.05 for surface water and PRIZone = 31.25 for bank sediments) stated clearly the potential ecological risk in the Liujiaxia Reservoir. Briefly, this study supplemented and enriched the data on the distribution of MPSs in the reservoirs of the Yellow River basin, and provide a benchmark for future pollution control and management in the reservoir area.
Collapse
Affiliation(s)
- Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|