1
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
2
|
Chen CZ, Wang J, Wang YC, Fu HM, Xu XW, Yan P, Chen YP. Transcriptional and molecular simulation analysis of the response mechanism of anammox bacteria to 3,4-dimethylpyrazole phosphate stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136867. [PMID: 39675083 DOI: 10.1016/j.jhazmat.2024.136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Anaerobic ammonium oxidation (anammox) and nitrification are two vital biological pathways for ammonium oxidation, pivotal in microbial nitrogen cycling. 3,4-Dimethylpyrazole phosphate (DMPP) is commonly used as inhibitors in agricultural soils to reduce nitrogen losses from farmland, while whether it affect anammox is an open question. Acute inhibition tests revealed that 53.5 mg·L-1 DMPP caused 50 % reduction in anammox bacteria. After 36 days of prolonged exposure to 5 mg·L-1 DMPP, the ammonium(nitrite) removal rate of endnote decreased from 78.39(94.78) to 13.57(15.28) mgN·gVSS-1·d-1. Additionally, the abundance of Ca. Kuenenia decreased from 36.5 % to 6.06 %. Transcriptomic analysis revealed that the mRNA levels of ammonium transport genes (amt_1 and amt_4), and hydrazine synthase (hzs) were significantly downregulated. Molecular docking simulations indicated that DMPP bound with ammonium transport and hydrazine synthesis. This interaction hindered the transcriptional levels of genes encoding ammonium transporters and hzs. The study has guiding value to reduce the nitrogen loss involved in anammox bacteria in agricultural soils under the application of DMPP.
Collapse
Affiliation(s)
- Cui-Zhong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
3
|
Li D, Wang S, Liu G, Zeng EY. Dual intermittent aerations enhance nitrogen removal via anammox in anoxic/oxic biofilm process for carbon limited wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 419:132096. [PMID: 39828045 DOI: 10.1016/j.biortech.2025.132096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75% nitrogen removal in both reactors. As nitrogen loading rate increased from 0.14 to 0.19 kg-N m-3 day-1, nitrogen removal efficiency in R1 dropped from 74.3% to 46.0%, while R2 maintained 76.6% removal at low HRT of 6 h. The dual intermittent aeration strategy improved nitrogen removal capacity by enhancing PNA in the first intermittent zone and reducing effluent fluctuation in the second. Anammox bacteria (Candidatus Brocadia, relative abundance: 0.95-2.48%) were enriched across all zones, supporting efficient PNA and PDA. These findings suggested that dual intermittent aeration enhanced anammox in pre-anoxic processes for carbon limited wastewater treatment.
Collapse
Affiliation(s)
- Deyong Li
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Shenzhen Guangming Water and Environment Co., Ltd., Shenzhen 518107, China
| | - Guoqiang Liu
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Eddy Y Zeng
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
4
|
Elsayed A, Lee T, Kim Y. Maximizing the efficiency of single-stage partial nitrification/Anammox granule processes and balancing microbial competition using insights of a numerical model study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70059. [PMID: 40119568 PMCID: PMC11928780 DOI: 10.1002/wer.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025]
Abstract
Granulation is an efficient approach for the rapid growth of anaerobic ammonia oxidation (Anammox) bacteria (X ANA $$ {X}_{ANA} $$ ) to limit the growth of nitrite-oxidizing bacteria (X NOB $$ {X}_{NOB} $$ ). However, the high sensitivity of Anammox bacteria to operational conditions and the competition with other microorganisms lead to a critical challenge in maintaining sufficientX ANA $$ {X}_{ANA} $$ population. In this study, a one-dimensional steady-state model was developed and calibrated to investigate the kinetic constants ofX ANA $$ {X}_{ANA} $$ growth and mass transport in individual granules, including the liquid film. According to the model calibration results, the range of the maximum specific growth rate constant ofX ANA $$ {X}_{ANA} $$ (μ ANA $$ {\mu}_{ANA} $$ ) was 0.033 to 0.10 d-1. In addition the other kinetic constants ofX ANA $$ {X}_{ANA} $$ were 0.003 d-1 for decay rate constant (b ANA $$ {b}_{ANA} $$ ), 0.10 mg-O2/L for oxygen half-saturation constant (K O 2 ANA $$ {K}_{O_2}^{ANA} $$ ), 0.07 mg-N/L for ammonia half-saturation constant (K NH 4 ANA $$ {K}_{NH_4}^{ANA} $$ ), and 0.05 mg-N/L for nitrite half-saturation constant (K NO 2 ANA $$ {K}_{NO_2}^{ANA} $$ ). The model simulation results showed that the dissolved oxygen of about 0.10 mg-O2/L was found to be optimal to maintain highX ANA $$ {X}_{ANA} $$ population. In addition, minimal COD concentration is required to control heterotrophs (X H $$ {X}_H $$ ) and improve ammonia oxidation by ammonia-oxidizing bacteria (X AOB $$ {X}_{AOB} $$ ). It was also emphasized that moderate mixing conditions (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable to decrease the diffusion of oxygen to the deep layers of the granules, controlling the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . A single-factor relative sensitivity analysis (RSA) on microbial kinetics revealed thatμ ANA $$ {\mu}_{ANA} $$ is the governing factor in the efficient operation of the single-stage PN/A processes. In addition, it was found that nitrite concentration is a rate-limiting parameter on the success of the process due to the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . These findings can be used to enhance our understanding on the importance of microbial competition and mass transport in the single-stage PN/A process. PRACTITIONER POINTS: A one-dimensional steady-state model was developed and calibrated for simulating the single-stage partial nitrification/Anammox (PN/A) granule process. Moderate liquid films (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable for better performance of Anammox growth in single-stage PN/A processes. Moderate dissolved oxygen (DO≅ $$ \cong $$ 0.10 mg-O2/L) is highly recommended for efficient growth of Anammox bacteria in single-stage PN/A granulation. Minimal COD (COD≅ $$ \cong $$ 0) is preferable for successful operation of the single-stage PN/A granule process. Nitrite concentration is a rate-limiting parameter on the competition between Anammox and nitrite-oxidizing bacteria in the single-stage PN/A processes.
Collapse
Affiliation(s)
- Ahmed Elsayed
- Department of Civil EngineeringMcMaster UniversityHamiltonOntarioCanada
- Irrigation and Hydraulics DepartmentCairo UniversityGizaEgypt
| | - Taeho Lee
- Department of Civil and Environmental EngineeringPusan National UniversityBusanRepublic of Korea
| | - Younggy Kim
- Department of Civil EngineeringMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Fan W, Wei B, Zhu Y, Lu X, Wang Q, Zhao S, Jia W. Deciphering anammox response characteristics and potential mechanisms to polyethylene terephthalate microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136044. [PMID: 39378591 DOI: 10.1016/j.jhazmat.2024.136044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) are frequently detected in the wastewater. Herein, the short-term and long-term effects of polyethylene terephthalate (PET) MPs on anammox granular sludge were investigated and the potential response mechanisms were analyzed. Results showed that although short-term exposure of anammox granular sludge to PET-MPs induced a stress response, the nitrogen removal performance was not significantly affected. By contrast, long-term exposure to PET-MPs inhibited nitrogen removal performance with increased exposure time and PET-MP concentration. The total nitrogen removal efficiency (TNRE) decreased by 28.7 % when sludge was exposed to 200 mg/L of PET-MPs. However, the anammox activity recovered with prolonged operation time, and approximately 87 % of the initial TNRE was recovered after three months. Microbial community evolution and metabolic exchange variations were the potential response mechanisms of anammox granular sludge to PET-MP exposure, with PET-MP exposure decreasing the anammox bacteria growth rate and relative symbiotic bacterial abundance in the anammox consortia and hindering cross-feeding pathways. The findings of this study provide novel insight into anammox behavior when treating wastewater containing PET-MPs.
Collapse
Affiliation(s)
- Wenli Fan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Boya Wei
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuxiao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xinyue Lu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
6
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
7
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
8
|
Zhang S, Lai LY, Wang TX, Jin WL, Yi RR, Chen DZ, Jin RC, Yang GF. Response of anammox to organics with different degradation characteristics and exposure time: Performance, sludge characteristics and bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175650. [PMID: 39168333 DOI: 10.1016/j.scitotenv.2024.175650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
The effects of typical organic compounds including easily degradable organic matters sodium acetate, yeast and methanol, and refractory organic matter (ROM) humic acid on anaerobic ammonium oxidation (anammox) systems in short-term and medium-term exposure time were studied. During short-term experiments, nitrogen removal activity (NRA) was inhibited at sodium acetate level of 150 mg L-1 total organic carbon (TOC) and methanol level of 30-150 mg L-1 TOC, but humic acid and yeast (≤150 mg L-1 TOC) enhanced nitrogen removal in anammox systems. The greatest NRA of 30.10 mg TN g-1 VSS h-1 was recorded at yeast level of 90 mg L-1 TOC. In medium-term experiments, organics significantly inhibited the nitrogen removal ability. As a ROM, humic acid enhanced sludge aggregation and biological diversity, but decreased the bioactivity and extracellular polymeric substances levels. Due to the endogenous denitrification, the relative abundance of anammox bacteria (AnAOB) was decreased. Candidatus Kuenenia is still dominant in sludge with methanol and humid acid, but AnAOB are not dominant due to the addition of sodium acetate and yeast. This research would be beneficial for the full-scale application of the anammox process in treating real wastewater with organics and ammonia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China
| | - Long-Yun Lai
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China
| | - Tian-Xiang Wang
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China
| | - Wei-Lei Jin
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China
| | - Ru-Ru Yi
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China
| | - Dong-Zhi Chen
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316022, PR China
| | - Ren-Cun Jin
- Department of Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Guang-Feng Yang
- Department of Environmental science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316022, PR China.
| |
Collapse
|
9
|
Wang D, Meng Y, Huang LN, Zhang XX, Luo X, Meng F. A comprehensive catalog encompassing 1376 species-level genomes reveals the core community and functional diversity of anammox microbiota. WATER RESEARCH 2024; 266:122356. [PMID: 39236503 DOI: 10.1016/j.watres.2024.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Research on the microbial community and function of the anammox process for environmentally friendly wastewater treatment has achieved certain success, which may mean more universal insights are needed. However, the comprehensive understanding of the anammox process is constrained by the limited taxonomic assignment and functional characterization of anammox microbiota, primarily due to the scarcity of high-quality genomes for most organisms. This study reported a global genome catalog of anammox microbiotas based on numerous metagenomes obtained from both lab- and full-scale systems. A total of 1376 candidate species from 7474 metagenome-assembled genomes were used to construct the genome catalog, providing extensive microbial coverage (averaged of 92.40 %) of anammox microbiota. Moreover, a total of 64 core genera and 44 core species were identified, accounting for approximately 64.25 % and 43.97 %, respectively, of anammox microbiota. The strict core genera encompassed not only functional bacteria (e.g., Brocadia, Desulfobacillus, Zeimonas, and Nitrosomonas) but also two candidate genera (UBA12294 and OLB14) affiliated with the order Anaerolineales. In particular, core denitrifying bacteria with observably taxonomic diversity exhibited diverse functional profiles; for instance, the potential of carbohydrate metabolism in Desulfobacillus and Zeimonas likely improves the mixotrophic lifestyle of anammox microbiota. Besides, a noteworthy association was detected between anammox microbiota and system type. Microbiota in coupling system exhibited complex diversity and interspecies interactions by limiting numerous core denitrifying bacteria. In summary, the constructed catalog substantially expands our understanding of the core community and their functions of anammox microbiota, providing a valuable resource for future studies on anammox systems.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaonan Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Peter S, Lyczko N, Thomas S, Leruth D, Germeau A, Fati D, Nzihou A. Fabrication of eco-friendly nanocellulose-chitosan-calcium phosphate ternary nanocomposite for wastewater remediation. CHEMOSPHERE 2024; 363:142779. [PMID: 38972455 DOI: 10.1016/j.chemosphere.2024.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Nanocomposites have emerged as promising materials for pollutant removal due to their unique properties. However, conventional synthesis methods often involve toxic solvents or expensive materials. In this study, we present a novel ternary nanocomposite synthesized via a simple, cost-effective vacuum filtration method. The composite consists of calcium phosphate (CaP), biowaste-derived nanocellulose (diameter <50 nm) (NC), and chitosan (CH). The nanocomposite exhibited exceptional pollutant removal capabilities due to the hybrid approach of combining adsorption and size exclusion that widens and accelerates pollutant removal. When tested with synthetic wastewater containing 10 ppm of Ni ions and 10 ppm of Congo red (CR) dye, it achieved impressive removal rates of 98.7% for Ni ions and 100% for CR dye. Moreover, the nanocomposite effectively removed heavy metals such as Cd, Ag, Al, Fe, Hg, Mo, Li, and Se at 100%, and Ba, Be, P, and Zn at 80%, 92%, 87%, and 97%, respectively, from real-world municipal wastewater. Importantly, this green nanocomposite membrane was synthesized without the use of harmful chemicals or complex modifications and operated at a high flux rate of 146 L/m2.h.MPa. Its outstanding performance highlights its potential for sustainable pollutant removal applications.
Collapse
Affiliation(s)
- Sherin Peter
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Nathalie Lyczko
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, and School of Energy Studies, Mahatma Gandhi University, Kottayam, 686 560, India.
| | - Denis Leruth
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Alain Germeau
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Dorina Fati
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| |
Collapse
|
11
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
12
|
Si G, Yang J, Zhang L, Gao J, Zhang S, Ni S, Peng Y. NH 2-MIL-101(Fe)-mediated photo-Fenton reaction enhanced simultaneous removal of nitrogen and refractory organics in anammox process through interfacial electron transfer. BIORESOURCE TECHNOLOGY 2024; 395:130390. [PMID: 38301944 DOI: 10.1016/j.biortech.2024.130390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.
Collapse
Affiliation(s)
- Guangchao Si
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan.
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China.
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
13
|
Guzmán-Fierro V, Dieguez-Seoane A, Roeckel M, Lema JM, Trueba-Santiso A. Environmental proteomics as a useful methodology for early-stage detection of stress in anammox engineered systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169349. [PMID: 38104803 DOI: 10.1016/j.scitotenv.2023.169349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Anammox bacteria are widely applied worldwide for denitrification of urban wastewater. Differently, their application in the case of industrial effluents has been more limited. Those frequently present high loads of contaminants, demanding an individual evaluation of their treatability by anammox technologies. Bioreactors setting up and recovery after contaminants-derived perturbations are slow. Also, toxicity is frequently not acute but cumulative, which causes negative macroscopic effects to appear only after medium or long-term operations. All these particularities lead to relevant economic and time losses. We hypothesized that contaminants cause changes at anammox proteome level before perturbations in the engineered systems are detectable by macroscopic analyses. In this study, we explored the usefulness of short-batch tests combined with environmental proteomics for the early detection of those changes. Copper was used as a model of stressor contaminant, and anammox granules were exposed to increasing copper concentrations including previously reported IC50 values. The proteomic results revealed that specific anammox proteins involved in stress response (bacterioferritin, universal stress protein, or superoxide dismutase) were overexpressed in as short a time as 28 h at the higher copper concentrations. Consequently, EPS production was also increased, as indicated by the alginate export family protein, polysaccharide biosynthesis protein, and sulfotransferase increased expression. The described workflow can be applied to detect early-stage stress biomarkers of the negative effect of other metals, organics, or even changes in physical-chemical parameters such as pH or temperature on anammox-engineered systems. On an industrial level, it can be of great value for decision-making, especially before dealing with new effluents on facilities, deriving important economic and time savings.
Collapse
Affiliation(s)
- Víctor Guzmán-Fierro
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Alberto Dieguez-Seoane
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Galicia, Spain
| | - Marlene Roeckel
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Galicia, Spain
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
14
|
Chen X, Jiang L, Aghilinasrollahabadi K, Proano CA, Meisler S, Anderson MO, Xue J, Li G. Impacts of crude glycerol on anaerobic ammonium oxidation (Anammox) process in wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130271. [PMID: 38158091 DOI: 10.1016/j.biortech.2023.130271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
This work investigated the impact of a waste-derived carbon source, crude glycerol (CG), on Anammox. Batch bioassays were conducted to identify inhibitory component(s) in CG, and the relationship between Anammox activity and the concentration of CG, pure glycerol, and methanol were assessed. The results showed that the half-maximal inhibitory concentration of CG and methanol are 434.5 ± 51.8 and 143.0 ± 19.6 mg chemical oxygen demand (COD) L-1, respectively, while pure glycerol at 0-2283 mg COD L-1 had no significant adverse effect on Anammox. The results suggested methanol is the major inhibitor in CG via a non-competitive inhibition mechanism. COD/total inorganic nitrogen ratio of > 1.3 was observed to cause a significant Anammox inhibition (>20 %), especially at low substrate level. These results are valuable for evaluating the feasibility of using CG for nitrogen removal in water resource recovery facilities, promoting sustainable development.
Collapse
Affiliation(s)
- Xiaojue Chen
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Liu Jiang
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | | | - Camila A Proano
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Seth Meisler
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Marya O Anderson
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Guangbin Li
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA.
| |
Collapse
|
15
|
Zhang J, Li X, Du R, Li X, Zhang Q, Peng Y. Rapid formation of denitrification granules for nitrite accumulation by increasing nitrogen loading rates and resistance to industrial wastewater. BIORESOURCE TECHNOLOGY 2024; 394:130238. [PMID: 38142908 DOI: 10.1016/j.biortech.2023.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
16
|
Liu S, Su C, Lu Y, Xian Y, Chen Z, Wang Y, Deng X, Li X. Effects of microplastics on the properties of different types of sewage sludge and strategies to overcome the inhibition: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166033. [PMID: 37543332 DOI: 10.1016/j.scitotenv.2023.166033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Microplastics have been identified as an emerging pollutant. When microplastics enter wastewater treatment plants, the plant traps most of the microplastics in the sludge during sewage treatment. Therefore, the effects of microplastics on sludge removal performance, and on the physical and chemical properties and microbial communities in sludge, have attracted extensive attention. This review mainly describes the presence of microplastics in wastewater treatment plants, and the effects of microplastics on the decontamination efficiency and physicochemical properties of activated sludge, aerobic granular sludge, anaerobic granular sludge and anaerobic ammonium oxidation sludge. Further, the review summarizes the effects of microplastics on microbial activity and microbial community dynamics in various sludges in terms of type, concentration, and contact time. The mechanisms used to strengthen the reduction of microplastics, such as biochar and hydrochar, are also discussed. This review summarizes the mechanism by which microplastics influence the performance of different types of sludge, and proposes effective strategies to mitigate the inhibitive effect of microplastics on sludge and discusses removal technologies of microplastics in sewage. Biochar and hydrochar are one of the effective measures to overcome the inhibition of microplastics on sludge. Meanwhile, constructed wetland may be one of the important choice for the future removal of microplastics from sewage. The goal is to provide theoretical support and insights for ensuring the stable operation of wastewater treatment plants and reducing the impact of microplastics on the environment.
Collapse
Affiliation(s)
- Shengtao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Yiying Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yuchen Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
17
|
Hellal J, Barthelmebs L, Bérard A, Cébron A, Cheloni G, Colas S, Cravo-Laureau C, De Clerck C, Gallois N, Hery M, Martin-Laurent F, Martins J, Morin S, Palacios C, Pesce S, Richaume A, Vuilleumier S. Unlocking secrets of microbial ecotoxicology: recent achievements and future challenges. FEMS Microbiol Ecol 2023; 99:fiad102. [PMID: 37669892 PMCID: PMC10516372 DOI: 10.1093/femsec/fiad102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for environmental risk assessment of chemicals. At the intersection between microbial ecology, toxicology, and biogeochemistry, microbial ecotoxicology is a fast-expanding research area aiming to decipher the interactions between pollutants and microorganisms. This perspective paper gives an overview of the main research challenges identified by the Ecotoxicomic network within the emerging One Health framework and in the light of ongoing interest in biological approaches to environmental remediation and of the current state of the art in microbial ecology. We highlight prevailing knowledge gaps and pitfalls in exploring complex interactions among microorganisms and their environment in the context of chemical pollution and pinpoint areas of research where future efforts are needed.
Collapse
Affiliation(s)
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs – Analyse-Environnement, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Annette Bérard
- UMR EMMAH INRAE/AU – équipe SWIFT, 228, route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | | | - Giulia Cheloni
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech (Liege University), Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | - Marina Hery
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21065 Dijon, France
| | - Jean Martins
- IGE, UMR 5001, Université Grenoble Alpes, CNRS, G-INP, INRAE, IRD Grenoble, France
| | | | - Carmen Palacios
- Université de Perpignan Via Domitia, CEFREM, F-66860 Perpignan, France
- CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | | | - Agnès Richaume
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
| | | |
Collapse
|
18
|
Wang X, Zou Y, Wang Y, Niu J, Li H. Metabolic insights into the interaction between nitrogen removal and 4-chlorophenol reduction of anammox consortia. ENVIRONMENTAL RESEARCH 2023; 231:116192. [PMID: 37201701 DOI: 10.1016/j.envres.2023.116192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The response characteristic and performance stabilization of anammox process under the stress of the potential organic pollutants support the application of ammonia-nitrogen wastewater treatment. In the present study, nitrogen removal performance was significantly suppressed with the addition of 4-chlorophenol. The activity of anammox process was inhibited by 14.23% (0.1 mg/L), 20.54% (1 mg/L) and 78.15% (10 mg/L), respectively. Metagenomic analysis revealed a significant decrease in the abundance of KEGG pathways associated with carbohydrate and amino acid metabolism with increasing 4-chlorophenol concentration. Metabolic pathway profiles suggest that putrescine is down-regulated at high 4-chlorophenol stress due to inhibition of nitrogen metabolism processes, while it is up-regulated to reduce oxidative damage. In addition, the presence of 4-chlorophenol induced an enhancement of EPS and bacterial debris decomposition, and a partial conversion of 4-chlorophenol to p-nitrophenol. This study unravels the mechanism of effect on anammox consortia in response to 4-CP, which could provide supplementary to facilitate its full-scale application.
Collapse
Affiliation(s)
- Xiaojing Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yu Zou
- Shansuyouke (Shenzhen) New Materials Co., Ltd., Shenzhen, 518081, China
| | - Yameng Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Haibo Li
- Shansuyouke (Shenzhen) New Materials Co., Ltd., Shenzhen, 518081, China
| |
Collapse
|
19
|
Lin Y, Hao Z, Liu J, Han J, Wang A, Ouyang Q, Fu F. Molecular probing of dissolved organic matter and its transformation in a woolen textile wastewater treatment station. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131807. [PMID: 37307730 DOI: 10.1016/j.jhazmat.2023.131807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Woolen textile industry produces enormous wastewater (WTIW) with high pollution loads, and needs to be treated by wastewater treatment stations (WWTS) before centralized treatment. However, WTIW effluent still contains many biorefractory and toxic substances; thus, comprehensive understandings of dissolved organic matter (DOM) of WTIW and its transformation are essential. In this study, total quantity indices, size exclusion chromatography, spectral methods, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) were used for comprehensively characterizing DOM and its transformation during full-scale treatments, including influent, regulation pool (RP), flotation pool (FP), up-flow anaerobic sludge bed (UA), anaerobic/oxic (AO) and effluent. DOM in influent featured a large molecular weight (5-17 kDa), toxicity (0.201 HgCl2 mg/L), and a protein content of 338 mg C/L. FP largely removed 5-17 kDa DOM with the formation of 0.45-5 kDa DOM. UA and AO removed 698 and 2042 chemicals, respectively, which were primarily saturated components (H/C > 1.5); however, both UA and AO contributed to the formation of 741 and 1378 stable chemicals, respectively. Good correlations were found among water quality indices and spectral/molecular indices. Our study reveals the molecular composition and transformation of WTIW DOM during treatments and encourages the optimization of the employed processes in WWTS.
Collapse
Affiliation(s)
- Yaohui Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Shenzhen, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Shenzhen, China
| | | | - Fengfu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
20
|
Qian J, Luo D, Yu PF, Ye B, Li YH, Wang YY, Gao YN, Fu JX. Insights into the reaction of anammox to exogenous pyridine: Long-term performance and micro mechanisms. BIORESOURCE TECHNOLOGY 2023:129273. [PMID: 37290710 DOI: 10.1016/j.biortech.2023.129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Some industrial wastewaters contain high amounts of toxic nitrogen-containing heterocyclic compounds, which may inhibit the efficiency of biological treatment. This work systematically investigated how exogenous pyridine affected the anaerobic ammonia oxidation (anammox) system and discussed the microscopic response mechanisms based on genes and enzymes. The anammox efficiency was not seriously inhibited by pyridine less than 50 mg/L. Bacteria secreted more extracellular polymeric substances to resist pyridine stress. After 6 days stress with 80 mg/L pyridine, the nitrogen removal rate of anammox system lost 47.7%. Long-term stress of pyridine reduced anammox bacteria by 7.26% and the expression of functional genes by 45%. Pyridine could actively bind to hydrazine synthase and ammonium transporter. This work fills a research gap in the ongoing threat of pyridines to anammox, and has guiding value for the application of anammox process in the treatment of ammonia-rich wastewater containing pyridine.
Collapse
Affiliation(s)
- Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Di Luo
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China.
| | - Peng-Fei Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Bin Ye
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Ying-Hua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yong-Yong Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Yu-Nan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, PR China
| | - Jin-Xiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| |
Collapse
|
21
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Wu Y, Zhao Y, Liu Y, Niu J, Zhao T, Bai X, Hussain A, Li YY. Insights into heavy metals shock on anammox systems: Cell structure-based mechanisms and new challenges. WATER RESEARCH 2023; 239:120031. [PMID: 37172374 DOI: 10.1016/j.watres.2023.120031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) as a low-carbon and energy-saving technology, has shown unique advantages in the treatment of high ammonia wastewater. However, wastewater usually contains complex heavy metals (HMs), which pose a potential risk to the stable operation of the anammox system. This review systematically re-evaluates the HMs toxicity level from the inhibition effects and the inhibition recovery process, which can provide a new reference for engineering. From the perspective of anammox cell structure (extracellular, anammoxosome membrane, anammoxosome), the mechanism of HMs effects on cellular substances and metabolism is expounded. Furthermore, the challenges and research gaps for HMs inhibition in anammox research are also discussed. The clarification of material flow, energy flow and community succession under HMs shock will help further reveal the inhibition mechanism. The development of new recovery strategies such as bio-accelerators and bio-augmentation is conductive to breaking through the engineered limitations of HMs on anammox. This review provides a new perspective on the recognition of toxicity and mechanism of HMs in the anammox process, as well as the promotion of engineering applicability.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhao Bai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
23
|
Zhou L, Zhao B, Zhuang WQ. Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor. WATER RESEARCH 2023; 233:119754. [PMID: 36842329 DOI: 10.1016/j.watres.2023.119754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) bacteria imposing double-edged sword effects on anammox bacteria were investigated in an anammox-membrane bioreactor (MBR) experiencing an induced crash-recovery event. During the experiment, the anammox-MBR was loaded with NH4+-N:NO2--N ratios (RatioNH4+-N: NO2--N) of 1.20-1.60. Initially, the anammox-MBR removed over 95% of 100 mg/L NH4+-N and 132 mg/L NO2--N (RatioNH4+-N: NO2--N = 0.76, the well accepted stoichiometric RatioNH4+-N: NO2--N for anammox) in the influent (Stage 0). Then, we induced a system crash-recovery event via nitrite shock loadings to better understand responses from different guilds of bacteria in anammox-MBR, loaded with 1.60 RatioNH4+-N: NO2--N with 100 mg/L NO2--N in the influent (Stage 1). Interestingly, the nitrogen removal by anammox bacteria was maintained for about 20 days before starting to decrease significantly. In Stage 2, we further increased influent nitrite concentration to 120 mg/L (1.33 RatioNH4+-N: NO2--N) to simulate a high nitrite toxicity scenario for a short period of time. As expected, nitrogen removal efficiency dropped to only 16.8%. After the induced system crash, anammox-MBR performance recovered steadily to 93.2% nitrogen removal with a 1.25 RatioNH4+-N:NO2--N and a low nitrite influent concentration of 80 mg/L NO2--N. Metagenomics analysis revealed that a probable causality of the decreasing nitrogen removal efficiency in Stage 1 was the overgrowth of DNRA-capable bacteria. The results showed that the members within the Ignavibacteriales order (21.7%) out competed anammox bacteria (17.0%) in the anammox-MBR with elevated nitrite concentrations in the effluent. High NO2--N loading (120 mg N/L) further caused the predominant Candidatus Kuenenia spp. were replaced by Candidatus Brocadia spp. Therefore, it was evident that DNRA bacteria posed negative effects on anammox with 1.60 RatioNH4+-N: NO2--N. Also, when 120 mg/L NO2--N fed to anammox-MBR (RatioNH4+-N: NO2--N = 1.33), canonical denitrification became the primary nitrogen sink with both DNRA and anammox activities decreased. They probably fed on lysed microbial cells of anammox and DNRA. In Stage 3, a low RatioNH4+-N: NO2--N (1.25) with 80 mg/L NO2--N was used to rescue the system, which effectively promoted DNRA-capable bacteria growth. Although anammox bacteria's abundance was only 7.7% during this stage, they could be responsible for about 90% of the total nitrogen removal during this stage.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
24
|
Effects of reducing, stabilizing, and antibiotic agents on "Candidatus Kuenenia stuttgartiensis". Appl Microbiol Biotechnol 2023; 107:1829-1843. [PMID: 36752812 PMCID: PMC10006275 DOI: 10.1007/s00253-023-12375-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Anaerobic ammon ium oxidizing (anammox) bacteria oxidize ammonium and reduce nitrite, producing N2, and could play a major role in energy-optimized wastewater treatment. However, sensitivity to various environmental conditions and slow growth currently hinder their wide application. Here, we attempted to determine online the effect of environmental stresses on anammox bacteria by using an overnight batch activity test with whole cells, in which anammox activity was calculated by quantifying N2 production via headspace-pressure monitoring. A planktonic mixed culture dominated by "Candidatus Kuenenia stuttgartiensis" strain CSTR1 was cultivated in a 30-L semi-continuous stirring tank reactor. In overnight resting-cell anammox activity tests, oxygen caused strong inhibition of anammox activity, which was reversed by sodium sulfite (30 µM). The tested antibiotics sulfamethoxazole, kanamycin, and ciprofloxacin elicited their effect on a dose-dependent manner; however, strain CSTR1 was highly resistant to sulfamethoxazole. Anammox activity was improved by activated carbon and Fe2O3. Protein expression analysis from resting cells after anammox activity stimulation revealed that NapC/NirT family cytochrome c (KsCSTR_12840), hydrazine synthase, hydrazine dehydrogenase, hydroxylamine oxidase, and nitrate:nitrite oxidoreductase were upregulated, while a putative hydroxylamine oxidoreductase HAO (KsCSTR_49490) was downregulated. These findings contribute to the growing knowledge on anammox bacteria physiology, eventually leading to the control of anammox bacteria growth and activity in real-world application. KEY POINTS: • Sulfite additions can reverse oxygen inhibition of the anammox process • Anammox activity was improved by activated carbon and ferric oxide • Sulfamethoxazole marginally affected anammox activity.
Collapse
|
25
|
Zhang K, Zhang Y, Deng M, Wang P, Yue X, Wang P, Li W. Monthly dynamics of microbial communities and variation of nitrogen-cycling genes in an industrial-scale expanded granular sludge bed reactor. Front Microbiol 2023; 14:1125709. [PMID: 36876106 PMCID: PMC9978346 DOI: 10.3389/fmicb.2023.1125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The expanded granular sludge bed (EGSB) is a major form of anaerobic digestion system during wastewater treatment. Yet, the dynamics of microbial and viral communities and members functioning in nitrogen cycling along with monthly changing physicochemical properties have not been well elucidated. Methods Here, by collecting the anaerobic activated sludge samples from a continuously operating industrial-scale EGSB reactor, we conducted 16S rRNA gene amplicon sequencing and metagenome sequencing to reveal the microbial community structure and variation with the ever-changing physicochemical properties along within a year. Results We observed a clear monthly variation of microbial community structures, while COD, the ratio of volatile suspended solids (VSS) to total suspended solids (TSS) (VSS/TSS ratio), and temperature were predominant factors in shaping community dissimilarities examined by generalized boosted regression modeling (GBM) analysis. Meanwhile, a significant correlation was found between the changing physicochemical properties and microbial communities (p <0.05). The alpha diversity (Chao1 and Shannon) was significantly higher (p <0.05) in both winter (December, January, and February) and autumn (September, October, and November) with higher organic loading rate (OLR), higher VSS/TSS ratio, and lower temperature, resulting higher biogas production and nutrition removal efficiency. Further, 18 key genes covering nitrate reduction, denitrification, nitrification, and nitrogen fixation pathways were discovered, the total abundance of which was significantly associated with the changing environmental factors (p <0.05). Among these pathways, the dissimilatory nitrate reduction to ammonia (DNRA) and denitrification had the higher abundance contributed by the top highly abundant genes narGH, nrfABCDH, and hcp. The COD, OLR, and temperature were primary factors in affecting DNRA and denitrification by GBM evaluation. Moreover, by metagenome binning, we found the DNRA populations mainly belonged to Proteobacteria, Planctomycetota, and Nitrospirae, while the denitrifying bacteria with complete denitrification performance were all Proteobacteria. Besides, we detected 3,360 non-redundant viral sequences with great novelty, in which Siphoviridae, Podoviridae, and Myoviridae were dominant viral families. Interestingly, viral communities likewise depicted clear monthly variation and had significant associations with the recovered populations (p <0.05). Discussion Our work highlights the monthly variation of microbial and viral communities during the continuous operation of EGSB affected by the predominant changing COD, OLR, and temperature, while DNRA and denitrification pathways dominated in this anaerobic system. The results also provide a theoretical basis for the optimization of the engineered system.
Collapse
Affiliation(s)
- Kun Zhang
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Yanling Zhang
- School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
| | - Maocheng Deng
- School of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pengcheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,China National Electric Apparatus Research Institute Co., Ltd., Guangzhou, China
| | - Xiu Yue
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Sari T, Akgul D, Mertoglu B. Accumulation of TiO2 nanoparticles in the anammox bioreactor: Their effects on treatment performance and microbial dynamics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Li J, Li J, Zhang Y, Lu H. The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. WATER RESEARCH 2022; 224:119050. [PMID: 36084441 DOI: 10.1016/j.watres.2022.119050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Saline mariculture wastewater containing multi-antibiotics poses a challenge to anaerobic ammonia oxidation (anammox) process. Herein, the halophilic marine anammox bacteria (MAB)-based microbiome was used for treating mariculture wastewater (35‰ salinity) under multi-antibiotics (enrofloxacin + oxytetracycline + sulfamethoxazole, EOS) stress. And the main focus of this study lies in the response of MAB-based microbiome against multi-antibiotics stress. It is found that MAB-based microbiome shows stable community structure and contributes high nitrogen removal efficiency (>90%) even under high stress of EOS (up to 4 mg·L-1). The relative abundance of main functional genus Candidatus Scalindua, responsible for anammox, had little change while controlling the influent EOS concentration within 4 mg·L-1, whereas, significantly decreased to 2.23% at EOS concentration of as high as 24 mg·L-1. As an alternative, antibiotic resistance bacteria (ARB) species Rheinheimera dominated the microbial community of MAB-based biological reactor under extremely high EOS stress (e.g. 24 mg·L-1 in influent). The response mechanism of MAB-based microbiome consists of extracellular and intracellular defenses with dependence of EOS concentration. For example, while EOS within 4 mg·L-1 in this study, most of the antibiotics were retained by extracellular polymeric substances (EPS) via adsorption; If increasing the EOS concentration to 8 and even 24 mg·L-1, part of antibiotics could intrude into the cells and cause the intracellular accumulation of antibiotic resistance genes (ARGs) (total abundance up to 2.44 × 10-1 copies/16S rRNA) for EOS response. These new understandings will facilitate the practical implementation of MAB-based bioprocess for saline nitrogen- and antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Jialu Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Li X, Wang G, Chen J, Zhou X, Liu Y. Deciphering the concurrence of comammox, partial denitrification and anammox in a single low-oxygen mainstream nitrogen removal reactor. CHEMOSPHERE 2022; 305:135409. [PMID: 35728663 DOI: 10.1016/j.chemosphere.2022.135409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
One-stage anammox-based autotrophic nitrogen removal technology has attracted increasing interest to sustainable biological nitrogen removal for future wastewater treatment. However, its application in mainstream municipal wastewater treatment is still challenging due to low nitrogen and high organics of raw wastewater. Herein, a novel Simultaneous Carbon Oxidation, partial Comammox, Denitratation and Anammox (SCOCDA) was firstly developed in a single sequencing batch biofilm reactor operated at a dissolved oxygen concentration of ∼0.5 mg/L for treating synthetic municipal wastewater (50 mg/L NH4+-N and 100-250 mg/L COD). The long-term operation showed that almost complete COD and nitrogen removal performance could be achieved at a carbon/nitrogen ratio (COD/NH4+-N) of 3-5 with the corresponding effluent total nitrogen (TN)<5 mg/L. Microbial community and amoA-targeting amplicon sequencing analysis further verified that comammox Nitrospira spp., denitrifier Thauera and other aerobic/facultative heterotrophs could work synergistically with anammox bacteria, Candidatus Kuenenia. Moreover, nitrogen metabolic and inorganic carbon fixation pathways through the interaction between comammox and anammox were also revealed with the aid of Kyoto Encyclopedia of Genes and Genomes (KEGG). Lastly, potential application of proposed SCOCDA process was illustrated. This research sheds new light on advanced nitrogen removal towards limit of technology via the synergy of comammox and anammox.
Collapse
Affiliation(s)
- Xu Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 637819, Singapore; Advanced Environmental Biotechnology Centre, NEWRI, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
29
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
30
|
Ren Q, Gao J, Wang C. Effects of Heavy Metals on the Performance and Mechanism of Anaerobic Ammonium Oxidation for Treating Wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.851822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistence of ammonium nitrogen and heavy metals in wastewater still remains a challenge, and many wastewater treatment plants face the challenge of removing nitrogen under heavy metal stresses. There is no preferred method for the biological treatment of wastewater containing nitrogen and heavy metals with the possible exception of the anaerobic ammonium oxidation (anammox), since it has shown promise for removing nitrogen under heavy metal stresses. This article reviews the recent research results of the nitrogen-removal performance and mechanism by the anammox process under heavy metal stresses, mainly discussing the enhancing and inhibition effects of heavy metals on the performance of the Anammox reactor. The influencing mechanism of heavy metals on the microbial community and extracellular polymeric substances is also presented, and examples are given for explanation. The main problems of the present research are pointed out, and it is proposed that unifying the metal ion concentrations of inhibiting or promoting anammox activity is necessary for the development and industrial application of the anammox process. The information of this review can offer a great possibility for achieving desired nitrogen removal in wastewater treatment under heavy metal stresses and with significant energy savings.
Collapse
|
31
|
Yao H, Zhao X, Fan L, Jia F, Chen Y, Cai W, Guo J. Pilot-scale demonstration of one-stage partial nitritation/anammox process to treat wastewater from a coal to ethylene glycol (CtEG) plant. ENVIRONMENTAL RESEARCH 2022; 208:112540. [PMID: 34915033 DOI: 10.1016/j.envres.2021.112540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
One-stage partial nitritation/anammox (PN/A) process has been recognized as a sustainable technology to treat various domestic and industrial wastewater, due to its low aeration consumption and chemical dosage. However, there is no study to investigate the feasibility of PN/A to treat coal to ethylene glycol (CtEG) wastewater yet, which contains very complex and toxic compounds including ammonium, ethylene glycol, methanol and phenolic. This study for the first time achieved stable one-stage PN/A process in a pilot-scale integrated fixed-film activated sludge (IFAS) reactor treating real wastewater produced from a CtEG plant. An average nitrogen removal efficiency of 79.5% was obtained under average nitrogen loading rate of 0.65 ± 0.09 kg N·m-3·d-1 under steady state. Moreover, the kinetic model can effectively predict the nitrogen removal rate of PN/A process. Microbial community characterization showed that ammonia oxidizing bacteria (AOB) were enriched in the flocculent sludge (12.0 ± 1.3%), while anammox bacteria (AnAOB) were primarily located in the biofilm (16.1 ± 5.6%). Meanwhile, the presence of free ammonia (FA) in conjunction with residual ammonium control could efficiently suppress the growth of NOB. Collectively, this study demonstrated the one-stage PN/A process is a promising technology to remove nitrogen from CtEG wastewater.
Collapse
Affiliation(s)
- Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Xingcheng Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Liru Fan
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Yao Chen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Weiwei Cai
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. WATER 2022. [DOI: 10.3390/w14071101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to carbon source dependence, conventional biological nitrogen removal (BNR) processes based on heterotrophic denitrification are suffering from great bottlenecks. The autotrophic BNR process represented by sulfur-driven autotrophic denitrification (SDAD) and anaerobic ammonium oxidation (anammox) provides a viable alternative for addressing low carbon wastewater. Whether for low carbon municipal wastewater or industrial wastewater with high nitrogen, the SDAD and anammox process can be suitably positioned accordingly. Herein, the recent advances and challenges to autotrophic BNR process guided by SDAD and anammox are systematically reviewed. Specifically, the present applications and crucial operation factors were discussed in detail. Besides, the microscopic interpretation of the process was deepened in the viewpoint of functional microbial species and their physiological characteristics. Furthermore, the current limitations and some future research priorities over the applications were identified and discussed from multiple perspectives. The obtained knowledge would provide insights into the application and optimization of the autotrophic BNR process, which will contribute to the establishment of a new generation of efficient and energy-saving wastewater nitrogen removal systems.
Collapse
|
33
|
Zhao Q, Peng Y, Li J, Gao R, Jia T, Deng L, Du R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152468. [PMID: 34952066 DOI: 10.1016/j.scitotenv.2021.152468] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has drawn increasing attention as a promising option to energy-neutral wastewater treatment. While anammox process still faces challenges in the low-strength and organics-contained municipal wastewater due to its susceptibility and the technical gaps in substrate supply. Effective strategies for extensive implementation of anammox in municipal wastewater treatment plants (WWTPs) remain poorly summarized. In view of the significance and necessity of introducing anammox into mainstream treatment, the growing understanding not only at level of microbial interactions but also on view of upgrading municipal WWTPs with anammox-based processes need to be considered urgently. In this review, the critical view and comprehensive analysis were offered from the perspective of microbial interactions within partial nitrification- and partial denitrification-based anammox processes. To minimize the microbial competition and enhance the cooperation among anammox bacteria and other functional bacteria, targeted control strategies were systematically evaluated. Based on the comprehensive overview of recent advances, the combination of flexible regulation of input organic carbon with anaerobic/oxic/anoxic process and the integration of sludge fermentation with anoxic biofilms in anaerobic/anoxic/oxic process were proposed as promising solutions to upgrade municipal WWTPs with anammox technology. Furthermore, a new perspective of coupling anammox with denitrifying dephosphatation was proposed as a promising method for in-depth nutrients removal from carbon-limit municipal wastewater in this study. This review provides the critical and comprehensive viewpoints on anammox engineering in municipal wastewater and paves the way for the anammox-based upgrading of municipal WWTPs.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
34
|
Xu X, Liu S, Zeng M, Li H, Du T, Wu N, Sun J, Hao L. Deciphering response effect and underlying mechanism of anammox-based nitrogen removal process under exposures to different antibiotics via big data analysis. BIORESOURCE TECHNOLOGY 2022; 347:126674. [PMID: 35007738 DOI: 10.1016/j.biortech.2022.126674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Recently, little research has been devoted to the systematic investigation regarding the effect of different antibiotics on anammox-based system and its underlying mechanism. In this study, a critical inhibition concentration to the anammox-based system was obtained: 2, 0.5 and 5 mg/L for OTC, TC and SM, respectively. However, SPM had no significant inhibition. Furthermore, Exp model and Monod model were capable to describe the inhibition period, while Gauss model was suitable for the recovery period. A universal machine learning model could accurately predict the NRR (R2 over 0.9), especially when biomass information data was introduced. As a qualitative analysis, the inhibition effect of TC and OTC was strongest. The abundance of nitrogen functional genes was negatively correlated with antibiotics, while antibiotic resistance genes showed the opposite trend. Overall, the inhibition ratios of OTC, TC, SPM and SM on anammox process were calculated to be 91%, 82%, 50% and 30%, respectively.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuang Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Hongli Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Tingting Du
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Juanjuan Sun
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| |
Collapse
|
35
|
Zhang J, Peng Y, Li X, Du R. Feasibility of partial-denitrification/ anammox for pharmaceutical wastewater treatment in a hybrid biofilm reactor. WATER RESEARCH 2022; 208:117856. [PMID: 34826739 DOI: 10.1016/j.watres.2021.117856] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen removal from pharmaceutical wastewater has drawn increasing attention due to biotoxicity and inhibition. In this study, for the first time, a novel approach integrating partial-denitrification with anaerobic ammonia oxidation (PD/A) in a sequencing biofilm batch reactor (SBBR) was proposed and demonstrated to be efficient to treat the bismuth nitrate and bismuth potassium citrate manufacturing wastewater, containing ammonia (NH4+-N) and nitrate (NO3--N) of 6300±50 mg L - 1 and 15,300±50 mg L - 1. The maximum anammox activity was found at the shock effect of influent total nitrogen (TN) of 100 mg L - 1 with NO3--N/NH4+-N of 1.0. Long-term operation demonstrated that the PD/A biofilm was developed rapidly after 30 days using synthetic influent, with TN removal efficiency increasing from 40.9% to 80.8%. Significantly, the key bacteria for PD/A had high tolerance and adapted rapidly to pharmaceutical wastewater, achieving a relatively stable TN removal efficiency of 81.2% with influent NH4+-N and NO3--N was 77.9 ± 2.6 and 104.1 ± 4.4 mg L - 1 at a relatively low COD/NO3--N of 2.6. Anammox pathway contributed to TN removal reached 83.6%. Significant increase of loosely-bound extracellular polymeric substances was obtained with increasing protein of 3-turn helices structure as response to the inhibitory condition. High-throughput sequencing analysis revealed that the functional genus Thauera was highly enriched in both biofilms (9.5%→43.6%) and suspended biomass (15.5%→57.5%), which played a key role in high NO2--N accumulation. While the anammox bacteria decreasing from 7.8% to 1.6% in biofilm, and from 1.8% decreased to 0.1% in the suspended sludge. Overall, this study provides a new method of high-strength pharmaceutical wastewater treatment with low energy consumption and operation cost, as well as a satisfactory efficiency.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
36
|
Can S, Sari T, Akgul D. Recovery profile of anaerobic ammonium oxidation (anammox) bacteria inhibited by ZnO nanoparticles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:342-353. [PMID: 35050887 DOI: 10.2166/wst.2021.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential effects of nanoparticles (NPs) on biological treatment processes have become significant due to their increasing industrial applications. The purpose of this research was to investigate the self-recovery ability of anammox bacteria following acute ZnO NPs toxicity. In this context, a 2-liter lab-scale anammox reactor was operated for 550 days to enrich the biomass required to the batch exposure tests. Anammox culture was firstly exposed to four different doses of ZnO NPs (50, 75, 100 and 200 mg/L) for 24 h. Then, the ZnO NPs were removed and self-recovery performance of the anammox bacteria was assessed by evaluating the nitrogen removal capacities for 72 h. Besides the nitrogen removal performance, extracellular polymeric substances (EPS) production was also detected to deeply understand the response of the enriched anammox culture against ZnO NPs exposure. The results revealed that sudden and high load of ZnO NPs (100 and 200 mg/L) resulted in persistent impairment to the nitrogen removal performance of the enriched anammox culture. However, relatively lower doses (50 and 75 mg/L) caused deceleration of the nitrogen removal performance during the recovery period. In addition, EPS content in the reactor decreased along with escalating load of ZnO NPs.
Collapse
Affiliation(s)
- Safiye Can
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| | - Tugba Sari
- Department of Bioengineering, Marmara University, Goztepe 34722, Istanbul, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| |
Collapse
|