1
|
Jiang LX, Cui YW, Mi YN, Zhou DX, Li MT, Yang RC. Recovery of volatile ethanol gas via microalgal-bacterial consortium: Ethanol-to-acetate conversion pathway boosts lipid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125210. [PMID: 40186970 DOI: 10.1016/j.jenvman.2025.125210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The pharmaceutical industry, an essential sector of the global economy, heavily relies on ethanol solvents, which leads to significant volatile organic compounds (VOCs) emissions. As a sustainable treatment method aligning with carbon reduction goals, this study proposed and demonstrated a synergistic approach of using microalgae (Chlorella sorokiniana FACHB-24) and acetic acid bacteria (Acetobacter pasteurianus CICC 20056) to recover ethanol into value-added products (algal lipids). In the innovative co-culture, A. pasteurianus oxidizes ethanol to acetic acid, which is fed to algae for lipid production. This method increased biomass and lipid yield by 21.29% and 150.16% (p < 0.05), respectively, compared to microalgae directly using ethanol. Some operational parameters including ethanol concentration, bacterial-algal biomass ratio, pH value, and light intensity made influence on lipid production. Under the optimal conditions (1.0% v/v ethanol concentration, 1:10 bacterial-algal biomass ratio, pH 6.5, and 5000 lux light intensity), the maximal biomass and lipid yields were 572.5 mg L-1 and 161.1 mg L-1 (26.7% lipid content), respectively. In the harvested lipid from microalgae, C16 - C18 fatty acids made up 98.22% of the total fatty acid methyl esters content. In proteomic comparison of the single culture and co-culture, the conversion of ethanol to acetate by A. pasteurianus provides C. sorokiniana with a more efficient acetyl-CoA source by bypassing energy-intensive glycolysis and directly enhancing lipid synthesis. This study provides a solution to increasing the lipid production from ethanol gas as a sustainable VOCs management of pharmaceutical industry.
Collapse
Affiliation(s)
- Liu-Xu Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Ya-Nan Mi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dong-Xu Zhou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Ming-Teng Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chun Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Esteves MV, Marques DMC, de Almeida JD, Faria NT, Ferreira FC. Marine Microalgae-Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications. Foods 2025; 14:1522. [PMID: 40361605 PMCID: PMC12071580 DOI: 10.3390/foods14091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/02/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The increasing demand for sustainable, economical, and environmentally friendly solutions has positioned microalgae as promising candidates in biotechnology, particularly in food, feed, nutraceutical, pharmaceutical, biofuel, and bioremediation applications. This review explores the role of the Nannochloropsis genus and other marine oleaginous microalgae in co-cultivation systems, highlighting their mechanisms of interaction with various microorganisms and their potential for various biotechnological purposes. Case studies of Nannochloropsis sp. co-cultures with other microalgae, bacteria, and fungi are presented. The different types of associations are described as alternative strategies to enhance biomass productivity, lipid accumulation, and nutrient recycling. A key focus of this review is the potential of Nannochloropsis microalgae co-cultivation in food, as it is part of the list of microalgae to be approved for consumption in the European Union, discussing their rich nutritional value, safety, and regulatory status. Additionally, the role of microalgae in the alternative protein sector is explored, with particular emphasis on their integration in cultivated meat products as nutrient suppliers and metabolic partners for animal cells. Despite their potential, several challenges, such as scale-up, contamination risk, and strain selection, remain key obstacles to the widespread adoption of microalgal biotechnology. Future research should focus on optimizing microalgae-based co-cultures for food applications, addressing safety concerns, and further investigating their integration into functional foods and cellular agriculture products.
Collapse
Affiliation(s)
- Marta Vala Esteves
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joana D. de Almeida
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Torres Faria
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Sharma T, Das N, Mehta Kakkar P, Mohapatra RK, Pamidimarri S, Singh RK, Kumar M, Guldhe A, Nayak M. Microalgae as an emerging alternative raw material of docosahexaenoic acid and eicosapentaenoic acid - a review. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188418 DOI: 10.1080/10408398.2025.2486267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely applied due to their nutraceutical and healthcare benefits. With the rising rates of chronic diseases, there is a growing consumer interest and demand for sustainable dietary sources of n-3 PUFAs. Currently, microalgae have emerged as a sustainable source of n-3 PUFAs which are rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regarded as promising alternatives to conventional sources (seafood) that cannot meet the growing demands of natural food supplements. This review provides a comprehensive overview of recent advancements in strategies such as genetic engineering, mutagenesis, improving photosynthetic efficiency, nutritional or environmental factors, and cultivation approaches to improve DHA and EPA production efficiency in microalgae cells. Additionally, it explains the application of DHA and EPA-rich microalgae in animal feed, human nutrition- snacks, and supplements to avoid malnutrition and non-communicable diseases.
Collapse
Affiliation(s)
- Tanishka Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nisha Das
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Mehta Kakkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Sudheer Pamidimarri
- Department of Molecular Biology and Genetics, Gujarat Biotechnology University, Gandhinagar, India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, India
| | - Manoranjan Nayak
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Xue Y, Wang W, Sheng X, Zheng Z, Wang Z, Ding F, Li J, Sun Z, Cai Y, Wang X, Xue J. Peroxisomal biogenesis factor 11 as a novel target to trigger lipid biosynthesis and salt stress resistance in oleaginous Tetradesmus obliquus. BIORESOURCE TECHNOLOGY 2025; 421:132209. [PMID: 39938603 DOI: 10.1016/j.biortech.2025.132209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
To overcome economic challenges in microalgal biofuel production, this study investigates the overexpression of peroxisome-localized peroxisomal biogenesis factor 11 (PEX11) to enhance lipid biosynthesis and improve salt stress resistance in Tetradesmus obliquus, aiming to advance microalgal biofuel production. Transgenic strains PEX11-2-1 and PEX11-2-2 exhibited a 2.13- and 2.51-fold increase in neutral lipid content and more cellular lipid droplets compared to WT, along with lipid yield and biomass escalating to 255.45 and 815.15 mg/L, respectively. This enhancement resulted from the redistribution of carbon precursors, increased intracellular reactive oxygen species, enhanced NADPH synthesis, and upregulation of lipid synthesis genes. Additionally, PEX11 improved salt stress tolerance by upregulating the expression of stress-responsive genes, including SnRK2 and PYRC. Fatty acid profile alterations, with increases in saturated fatty acids C16:0 and monounsaturated fatty acids C18:1, and decreases in polyunsaturated fatty acids, facilitated high-quality biofuel production. These findings highlight novel insights for advancing microalgae-based biorefinery.
Collapse
Affiliation(s)
- Yunzhuan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Wei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xiajule Sheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Zexu Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zihan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Fangling Ding
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Jinjin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zhiwei Sun
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Yu'ang Cai
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xianhua Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China.
| |
Collapse
|
5
|
Zhang M, Zhao X, Ren X. Research Progress on the Mechanisms of Algal-Microorganism Symbiosis in Enhancing Large-Scale Lipid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6345-6360. [PMID: 40045656 DOI: 10.1021/acs.jafc.4c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microalgae, characterized by their exceptional lipid content, rapid growth, and robust adaptability, represent a promising biological resource. In natural and engineered ecosystems, microalgae engage in intricate symbiotic relationships with diverse microorganisms, a dynamic interplay essential for ecological resilience and metabolic optimization. This review examines the role of symbiotic microorganisms in microalgal growth and lipid accumulation, with particular emphasis on the biological regulatory mechanisms that govern these processes. These include nutrient exchange, phytohormone-mediated growth stimulation, cofactors, and quorum-sensing-driven community coordination. The review highlights how these microbial interactions facilitate optimal lipid production by enhancing metabolic pathways, thereby improving the efficiency of lipid accumulation in microalgae. Furthermore, the review investigates horizontal gene transfer as an evolutionary driver that fortifies algal-microbial consortia against environmental stressors, enabling robust performance in fluctuating conditions. The integration of these biological insights holds transformative potential for advancing next-generation bioenergy platforms, where algal-microbial systems could play a pivotal role in enhancing biofuel production, wastewater treatment, and sustainable agriculture.
Collapse
Affiliation(s)
- Meiyu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xinhe Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaojie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
6
|
Ragozzino C, Casella V, Coppola A, Scarpato S, Buonocore C, Consiglio A, Palma Esposito F, Galasso C, Tedesco P, Della Sala G, de Pascale D, Vitale L, Coppola D. Last Decade Insights in Exploiting Marine Microorganisms as Sources of New Bioactive Natural Products. Mar Drugs 2025; 23:116. [PMID: 40137302 PMCID: PMC11943599 DOI: 10.3390/md23030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Marine microorganisms have emerged as prolific sources of bioactive natural products, offering a large chemical diversity and a broad spectrum of biological activities. Over the past decade, significant progress has been made in discovering and characterizing these compounds, pushed by technological innovations in genomics, metabolomics, and bioinformatics. Furthermore, innovative isolation and cultivation approaches have improved the isolation of rare and difficult-to-culture marine microbes, leading to the identification of novel secondary metabolites. Advances in synthetic biology and metabolic engineering have further optimized natural product yields and the generation of novel compounds with improved bioactive properties. This review highlights key developments in the exploitation of marine bacteria, fungi, and microalgae for the discovery of novel natural products with potential applications in diverse fields, underscoring the immense potential of marine microorganisms in the growing Blue Economy sector.
Collapse
Affiliation(s)
- Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Alessandro Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Antonella Consiglio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, CRIMAC, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy;
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Laura Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| |
Collapse
|
7
|
Joshi JS, Fladung L, Kruse O, Patel A. Novel Co-Cultivation Bioprocess with Immobilized Paenibacillus polymyxa and Scenedesmus obliquus for Lipid and Butanediol Production. Microorganisms 2025; 13:606. [PMID: 40142499 PMCID: PMC11945626 DOI: 10.3390/microorganisms13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Microalgal biotechnology is gaining attention due to its potential to produce pigments, lipids, biofuels, and value-added products. However, challenges persist in terms of the economic viability of microalgal lipid production in photobioreactors due to slow growth rates, expensive media, complex downstream processing, limited product yields, and contamination risks. Recent studies suggest that co-cultivating microalgae with bacteria can enhance the profitability of microalgal bioprocesses. Immobilizing bacteria offers advantages such as protection against shear forces, the prevention of overgrowth, and continuous product secretion. Previous work has shown that biopolymeric immobilization of Paenibacillus polymyxa enhances 2,3-butanediol production. In this study, a novel co-fermentation process was developed by exploiting the chemical crosstalk between a freshwater microalga Scenedesmus obliquus, also known as Tetradesmus obliquus, and an immobilized plant-growth-promoting bacterium, Paenibacillus polymyxa. This co-cultivation resulted in increased metabolite production, with a 1.5-fold increase in the bacterial 2,3-butanediol concentration and a 3-fold increase in the microalgal growth rates compared to these values in free-cell co-cultivation. Moreover, the co-culture with the immobilized bacterium exhibited a 5-fold increase in the photosynthetic pigments and a 3-fold increase in the microalgal lipid concentration compared to these values in free-cell co-cultivation. A fixed bed photobioreactor was further constructed, and the co-cultivation bioprocess was implemented to improve the bacterial 2,3-butanediol and microalgal lipid production. In conclusion, this study provides conclusive evidence for the potential of co-cultivation and biopolymeric immobilization techniques to enhance 2,3-butanediol and lipid production.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Laura Fladung
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Olaf Kruse
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Anant Patel
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
| |
Collapse
|
8
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
9
|
Almeida Medeiros J, Eduardo de Farias Silva C, Santos GKS, Almeida Alves do Nascimento M, Pimentel de Andrade F, Luciano Ferreira de Sá Filho M, Maria Villar da Gama B, Victor Oliveira Nascimento da Silva J, Maria Rosas Garcia Almeida R. Tertiary treatment of dairy wastewater applying a microalga-fungus consortium. ENVIRONMENTAL TECHNOLOGY 2025; 46:370-386. [PMID: 38820593 DOI: 10.1080/09593330.2024.2357695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
This paper aimed to apply filamentous fungi (Penicillium oxalicum and Cunninghamella echinulata), the microalga Tetradesmus obliquus and their co-culture in advanced treatment (tertiary treatment) of cheese whey. The bioremediation process was carried out in agitated flasks and bubble column bioreactors with different concentrations of chemical oxygen demand (COD) (223-1663 mg L-1), total nitrogen (TN) (13-61 mg L-1), and total phosphorus (TP) (3-26 mg L-1). The results obtained in shaken flasks showed a superiority of the consortium compared to the systems with separated species. In this sense, the treatment was carried out in a bubble column reactor, and the consortium formed by the microalga and the fungus C. echinulata showed a greater efficiency (at a light intensity of 100 µmol m-2 s-1), promoting by the symbiosis to reach removal efficiencies of up to 93.7, 78.8 and 93.4% for COD, TN and TP, respectively; meeting Brazilian and European standards for discharge into water bodies. In addition, no pH adjustment was required during the co-culture treatment, demonstrating the buffering effect of using these two types of microorganisms. Therefore, the use of the consortium formed by T. obliquus and C. echinulata as a remediator was highly promising to promote the advanced treatment of cheese whey.
Collapse
|
10
|
Calatrava V, Gonzalez-Ballester D, Dubini A. Microalgae for bioremediation: advances, challenges, and public perception on genetic engineering. BMC PLANT BIOLOGY 2024; 24:1261. [PMID: 39731038 PMCID: PMC11674212 DOI: 10.1186/s12870-024-05995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment. Furthermore, the biomass obtained from the wastewater treatment can be used in different applications, having a positive economic impact. This review describes the potential of microalgae as a biological wastewater remediation tool, including the use of genetically engineered strains. Their current industrial utilization and their untapped commercial potential in terms of bioremediation are also examined. Finally, this work discusses how microalgal biotechnology is perceived by the public and governments, analyses the potential risks of microalgae to the environment, and examines standard procedures that can be implemented for the safe biocontainment of large-scale microalgae cultures.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain
| | - David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain
| | - Alexandra Dubini
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.
| |
Collapse
|
11
|
Orantes P, Gamboa M, Arenas E, Sánchez Y, Del Carmen Pérez Y, Gamboa S. Feasible cultivation of Verrucodesmus verrucosus on sterile raw wastewater for energy purposes: a case study in Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66994-67006. [PMID: 39658763 DOI: 10.1007/s11356-024-35736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
In this study, wastewater from a sewage treatment plant was used to culture the microalga, Verrucodesmus verrucosus. The ability of microalgae to adapt to adverse environments and produce high lipid concentrations was evaluated using different media, including sterile and non-sterile media and a control medium. The analysis showed that the control medium (distilled water sample enriched with fertilizer) removed 80.35% ammonium, 32.71% phosphate, and 83.86% nitrate. The sterile raw effluent removed 78.91% of ammonium, 83.44% of phosphate, and 98.82% of nitrate. The optimal conditions for biomass production were sterile raw wastewater, which produced 383.3 mg L-1 of biomass, 2.5% of total lipids, and an average lipid production of 9.31 mg L-1. Microalgae can grow and consume inorganic nutrients under adverse environmental conditions such as in raw wastewater, which is of great importance because it is a pollutant that negatively affects the environment and society. However, wastewater may represent a viable alternative substrate, allowing the generation of high-value products, such as lipids. Furthermore, the specificity of microalgal morphotypes must be evaluated, because each has specific metabolic plasticity. Verrucodesmus verrucosus is a microalga that has not been evaluated in bioremediation processes of wastewater with and without the presence of biotic factors. Therefore, the present study provides a viable alternative for this biological process, with the potential to store metabolites of interest in the industry.
Collapse
Affiliation(s)
- Paula Orantes
- División de Ingeniería en Energías Renovables, Tecnológico Nacional de México/Tecnológico de Estudios Superiores de San Felipe del Progreso, Av. Instituto Tecnológico S/N, Ejido de San Felipe del Progreso, San Felipe del Progreso, Estado de México, México
| | - Minerva Gamboa
- Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad Politécnica de Chiapas, Carretera Tuxtla Gutiérrez - Portillo Zaragoza Kilómetro 21 + 500 Colonia Las Brisas, Suchiapa, Chiapas, México
| | - Emilio Arenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Carretera Vieja a Pátzcuaro Número 8701, Colonia Ex Rancho de San José de La Huerta 58190, Morelia Michoacán, México
| | - Yazmín Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad Politécnica de Chiapas, Carretera Tuxtla Gutiérrez - Portillo Zaragoza Kilómetro 21 + 500 Colonia Las Brisas, Suchiapa, Chiapas, México
| | - Yolanda Del Carmen Pérez
- Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad Politécnica de Chiapas, Carretera Tuxtla Gutiérrez - Portillo Zaragoza Kilómetro 21 + 500 Colonia Las Brisas, Suchiapa, Chiapas, México
| | - Sergio Gamboa
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco S/N, 62580, Temixco, Morelos, México.
| |
Collapse
|
12
|
El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:129. [PMID: 39407282 PMCID: PMC11481588 DOI: 10.1186/s13068-024-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
Collapse
Affiliation(s)
- R El-Araby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo, Egypt.
| |
Collapse
|
13
|
Takahashi M, Karitani Y, Yamada R, Matsumoto T, Ogino H. Co-utilization of microalgae and heterotrophic microorganisms improves wastewater treatment efficiency. Appl Microbiol Biotechnol 2024; 108:468. [PMID: 39292263 PMCID: PMC11411010 DOI: 10.1007/s00253-024-13309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Wastewater treatment using the activated sludge method requires a large amount of electricity for aeration. Therefore, wastewater treatment using co-culture systems of microalgae and heterotrophic microorganisms, which do not require aeration, has attracted attention as an energy-saving alternative to the method. In this study, we investigated different combinations of microalgae and heterotrophic microorganisms to improve the efficiency of wastewater treatment. Three types of microalgae and five heterotrophic microorganisms were used in combination for wastewater treatment. The combination of Chlamydomonas reinhardtii NIES-2238 and Saccharomyces cerevisiae SH-4 showed the highest wastewater treatment efficiency. Using this combination for artificial wastewater treatment, the removal rates of total organic carbon, PO43-, and NH4+ reached 80%, 93%, and 63%, respectively, after 18 h of treatment. To the best of our knowledge, this is the first study to show that a combination of green algae and yeast improves the efficiency of wastewater treatment. Transcriptome analysis revealed that the combined wastewater treatment altered the expression of 1371 and 692 genes in C. reinhardtii and S. cerevisiae, respectively. One of the main reasons for the improved wastewater treatment performance of the combination of green algae and yeast was the increased expression of genes related to the uptake of phosphate and ammonium ions in the green algae. As both the green algae C. reinhardtii and the yeast S. cerevisiae are highly safe microorganisms, the establishment of their effective combination for wastewater treatment is highly significant. KEY POINTS: • Combination of various microalgae and heterotrophic microorganisms was tested • Combination of green algae and yeast showed the highest efficiency • This is the first report that this combination is effective for wastewater treatment.
Collapse
Affiliation(s)
- Miiku Takahashi
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Yukino Karitani
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
14
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
15
|
Kesharvani S, Katre S, Sahota S, Dwivedi G, Verma TN, Lombardi L. Enhancing diesel engine performance and emission reduction through hydrogen enrichment in algal biodiesel blends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34531-z. [PMID: 39088172 DOI: 10.1007/s11356-024-34531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The introduction of hydrogen into the engine could enhance its combustion efficiency and emission characteristics. The current study examines the attributes of compression ignition (CI) engines by introducing hydrogen into a biodiesel blend derived from algae. The improved thermal properties of hydrogen, when combined with algae biodiesel, significantly affect the performance, combustion, and emissions of dual-fuel engines. A study was conducted to evaluate the impact of hydrogen enrichment levels of 5%, 10%, 15%, and 20% of the nozzle volume on a biodiesel blend fuel. In comparison to diesel, algal biodiesel reduces emissions of unburned hydrocarbons (HC), carbon monoxide (CO), and oxygen (O2) by 5.19%, 3.61%, and 2.83%, respectively, while increasing nitrogen oxide (NO) emissions by 4.73%. In contrast to biodiesel, diesel demonstrated superior brake thermal efficiency (BTE) and lower specific energy consumption (SEC). Injecting hydrogen into A20 blend fuel at volumes of 5%, 10%, 15%, and 20% results in a respective increase in brake thermal efficiency of 2.65%, 2.97%, 3.50%, and 4.15%. The addition of hydrogen gas to biodiesel blends further enhances their combustion qualities, leading to elevated peak cylinder pressure, temperature, and heat release rate. The results indicate that A20H5, A20H10, A20H15, and A20H20 fuel reduced CO emissions by 3.75%, 8.75%, 12.5%, and 16.25%, respectively, compared to the A20 blend. In the same vein, HC emissions decreased by 5.76%, 10.29%, 15.52%, and 18.98%, respectively, as compared to A20 fuel. However, NO emissions rose by 5.36%, 10.20%, 15.28%, and 23.23%, respectively, for A20H5, A20H10, A20H15, and A20H20 test fuels. Ultimately, the utilization of algal biodiesel and hydrogen enrichment in diesel engines was proven to substantially reduce pollutants while increasing efficiency. This study contributes valuable insights into the intersection of renewable fuels, hydrogen enrichment, and engine technology, with the potential to drive significant advancements in sustainable transportation and environmental conservation.
Collapse
Affiliation(s)
- Sujeet Kesharvani
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| | - Sakhi Katre
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | | | - Gaurav Dwivedi
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Tikendra Nath Verma
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | | |
Collapse
|
16
|
Lee A, Lan JCW, Jambrak AR, Chang JS, Lim JW, Khoo KS. Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100203. [PMID: 38633725 PMCID: PMC11021955 DOI: 10.1016/j.fochms.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Collapse
Affiliation(s)
- Alicia Lee
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
17
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
18
|
Ye Y, Guo W, Ngo HH, Wei W, Cheng D, Bui XT, Hoang NB, Zhang H. Biofuel production for circular bioeconomy: Present scenario and future scope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:172863. [PMID: 38788387 DOI: 10.1016/j.scitotenv.2024.172863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
20
|
Zhou S, Chen T, Fu ES, Zhou T, Shi L, Yan H. A microfluidic microalgae detection system for cellular physiological response based on an object detection algorithm. LAB ON A CHIP 2024; 24:2762-2773. [PMID: 38682283 DOI: 10.1039/d3lc00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The composition of species and the physiological status of microalgal cells serve as significant indicators for monitoring marine environments. Symbiotic with corals, Symbiodiniaceae are more sensitive to the environmental response. However, current methods for evaluating microalgae tend to be population-based indicators that cannot be focused on single-cell level, ignoring potentially heterogeneous cells as well as cell state transitions. In this study, we proposed a microalgal cell detection method based on computer vision and microfluidics, which combined microscopic image processing, microfluidic chip and convolutional neural network to achieve label-free, sheathless, automated and high-throughput microalgae identification and cell state assessment. By optimizing the data import, training process and model architecture, we solved the problem of identifying tiny objects at the micron scale, and the optimized model was able to perform the tasks of cell multi-classification and physiological state assessment with more than 95% mean average precision. We discovered a novel transition state and explored the thermal sensitivity of three clades of Symbiodiniaceae, and discovered the phenomenon of cellular heat shock at high temperatures. The evolution of the physiological state of Symbiodiniaceae cells is very important for directional cell evolution and early warning of coral ecosystem health.
Collapse
Affiliation(s)
- Shizheng Zhou
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Tianhui Chen
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
| | - Edgar S Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, PA 15260, USA
| | - Teng Zhou
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Liuyong Shi
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Hong Yan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Mubashar M, Zulekha R, Cheng S, Xu C, Li J, Zhang X. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120360. [PMID: 38377758 DOI: 10.1016/j.jenvman.2024.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaozhe Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cong Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
22
|
Pandey A, Kant G, Chaudhary A, Amesho KTT, Reddy K, Bux F. Axenic green microalgae for the treatment of textile effluent and the production of biofuel: a promising sustainable approach. World J Microbiol Biotechnol 2024; 40:81. [PMID: 38285224 PMCID: PMC10824862 DOI: 10.1007/s11274-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
- BiotechnologyBioenergy Research Laboratory, Department of Biotechnology, AKS University Satna, Satna, MP, 485001, India
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, 211004, India
| | - Ashvani Chaudhary
- Department of Biotechnology, University)IMS Engineering College (Affiliated to Dr. APJ Abdul Kalam Technical University, Lucknow), Lucknow, Ghaziabad, UP, 201015, India
- Amity Institute of Biotechnology, Amity University Noida Campus, Sec-125, Noida, 201313, UP, India
| | - Kaissan T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Environmental Studies, The International University of Management, Main Campus, Dorado Park Ext 1, Windhoek, 10001, Namibia
| | - Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa.
| |
Collapse
|
23
|
Shen XF, Xu YP, Jiang YF, Gao LJ, Tong XQ, Gong J, Yang YF, Zeng RJ. Evaluating nutrient limitation in co-culture of Chlorella pyrenoidosa and Rhodobacter sphaeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167706. [PMID: 37820812 DOI: 10.1016/j.scitotenv.2023.167706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The influence of nitrogen deficiency on microalgae-bacteria co-culture has been studied mostly with nitrogen-fixing bacteria. Photosynthetic bacteria (PSB), which are non-nitrogen-fixing bacteria, the impact of N deficiency on its co-culture with microalgae is unknown. In this study, Chlorella pyrenoidosa and Rhodobacter sphaeroides co-culture was cultivated photoheterotrophically with acetate. The impact of N starvation and different P supply levels on oil production were examined. When phosphorus was sufficient, N starvation increased the fatty acid methyl ester (FAME) content from 21.7 % to 28.2 %, and also increased the FAME yield (g CODFAME/g CODAcetate) from 0.17 to 0.22. However, the biomass and FAME productivities decreased. Sufficient phosphorus was also essential for a high growth rate and FAME productivity. Deficiencies in either N or P led to a decrease in the proportion of unsaturated FAMEs. iTRAQ analysis indicated N starvation promoted oil accumulation by driving the carbon flow to fatty acid synthesis in microalgae from co-culture. This study improves the understanding of biomass and lipid production via microalgae-PSB co-culture in photoheterotrophic cultivation. The mechanism of interaction between microalgae and bacteria needs further study.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Ya-Ping Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yi-Fan Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Lin-Jun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Qin Tong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Jing Gong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yan-Fang Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
24
|
Wang M, Zhang W, He T, Rong L, Yang Q. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: green and sustainable technology. Arch Microbiol 2023; 206:10. [PMID: 38059992 DOI: 10.1007/s00203-023-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are genotoxic, carcinogenic, and persistent in the environment and are therefore of great concern in the environmental protection field. Due to the inherent recalcitrance, persistence and nonreactivity of PAHs, they are difficult to remediate via traditional water treatment methods. In recent years, microbial remediation has been widely used as an economical and environmentally friendly degradation technology for the treatment of PAH-contaminated water. Various bacterial and microalgal strains are capable of potentially degrading or transforming PAHs through intrinsic metabolic pathways. However, their biodegradation potential is limited by the cytotoxic effects of petroleum hydrocarbons, unfavourable environmental conditions, and biometabolic limitations. To address this limitation, microbial communities, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively investigated. The advantages of algal-bacterial cocultivation have been explored, and the limitations of PAHs degradation by monocultures of algae or bacteria have been overcome by algal-bacterial interactions. Therefore, a new model consisting of a "microalgal-bacterial consortium" is becoming a new management strategy for the effective degradation and removal of PAHs. This review first describes PAH pollution control technologies (physical remediation, chemical remediation, bioremediation, etc.) and proposes an algal-bacterial symbiotic system for the degradation of PAHs by analysing the advantages, disadvantages, and PAH degradation performance in this system to fill existing research gaps. Additionally, an algal-bacterial system is systematically developed, and the effects of environmental conditions are explored to optimize the degradation process and improve its technical feasibility. The aim of this paper is to provide readers with an effective green and sustainable remediation technology for removing PAHs from aquatic environments.
Collapse
Affiliation(s)
- Mengying Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Wenqing Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Tao He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lingyun Rong
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
25
|
Ray A, Kundu P, Ghosh A. Reconstruction of a Genome-Scale Metabolic Model of Scenedesmus obliquus and Its Application for Lipid Production under Three Trophic Modes. ACS Synth Biol 2023; 12:3463-3481. [PMID: 37852251 DOI: 10.1021/acssynbio.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Green microalgae have emerged as beneficial feedstocks for biofuel production. A systems-level understanding of the biochemical network is needed to harness the microalgal metabolic capacity for bioproduction. Genome-scale metabolic modeling (GEM) showed immense potential in rational metabolic engineering, utilizing biochemical flux distribution analysis. Here, we report the first GEM for the green microalga, Scenedesmus obliquus (iAR632), a promising biodiesel feedstock with high lipid-storing capability. iAR632 comprises 1467 reactions, 734 metabolites, and 632 genes distributed among 7 compartments. The model was optimized under three different trophic modes of microalgal cultivation, i.e., autotrophy, mixotrophy, and heterotrophy. The robustness of the reconstructed network was confirmed by analyzing its sensitivity to the biomass components. Pathway-level flux profiles were analyzed, and significant flux space expansion was noticed majorly in reactions associated with lipid biosynthesis. In agreement with the experimental observation, iAR632 predicted about 3.8-fold increased biomass and almost 4-fold higher lipid under mixotrophy than the other trophic modes. Thus, the assessment of the condition-specific metabolic flux distribution of iAR632 suggested that mixotrophy is the preferred cultivation condition for improved microalgal growth and lipid production. Overall, the reconstructed GEM and subsequent analyses will provide a systematic framework for developing model-driven strategies to improve microalgal bioproduction.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
26
|
Sahu S, Kaur A, Singh G, Kumar Arya S. Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: A review on new strategies involving machine learning and artificial intelligence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119004. [PMID: 37734213 DOI: 10.1016/j.jenvman.2023.119004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
In the pursuit of effective wastewater treatment and biomass generation, the symbiotic relationship between microalgae and bacteria emerges as a promising avenue. This analysis delves into recent advancements concerning the utilization of microalgae-bacteria consortia for wastewater treatment and biomass production. It examines multiple facets of this symbiosis, encompassing the judicious selection of suitable strains, optimal culture conditions, appropriate media, and operational parameters. Moreover, the exploration extends to contrasting closed and open bioreactor systems for fostering microalgae-bacteria consortia, elucidating the inherent merits and constraints of each methodology. Notably, the untapped potential of co-cultivation with diverse microorganisms, including yeast, fungi, and various microalgae species, to augment biomass output. In this context, artificial intelligence (AI) and machine learning (ML) stand out as transformative catalysts. By addressing intricate challenges in wastewater treatment and microalgae-bacteria symbiosis, AI and ML foster innovative technological solutions. These cutting-edge technologies play a pivotal role in optimizing wastewater treatment processes, enhancing biomass yield, and facilitating real-time monitoring. The synergistic integration of AI and ML instills a novel dimension, propelling the fields towards sustainable solutions. As AI and ML become integral tools in wastewater treatment and symbiotic microorganism cultivation, novel strategies emerge that harness their potential to overcome intricate challenges and revolutionize the domain.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
27
|
Tsilo PH, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Application of Iron Nanoparticles Synthesized from a Bioflocculant Produced by Yeast Strain Pichia kudriavzevii Obtained from Kombucha Tea SCOBY in the Treatment of Wastewater. Int J Mol Sci 2023; 24:14731. [PMID: 37834177 PMCID: PMC10572716 DOI: 10.3390/ijms241914731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Studying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles that were synthesized using a bioflocculant and applied to eliminate different kinds of pollutants and dyes found in wastewater and solutions. The study involved the generation of Fe nanoparticles through a bioflocculant obtained from Pichia kudriavzevii, which were evaluated for their flocculation and antimicrobial capabilities. The impact of the Fe nanoparticles on human embryonic kidney (HEK 293) cell lines was studied to assess their potential cytotoxicity effects. An array of spectroscopic and microscopic methods was employed to characterize the biosynthesized Fe nanoparticles, including SEM-EDX, FT-IR, TEM, XRD, UV-vis, and TGA. A highly efficient flocculating activity of 85% was achieved with 0.6 mg/mL dosage of Fe nanoparticles. The biosynthesized Fe nanoparticles demonstrated a noteworthy concentration-dependent cytotoxicity effect on HEK 293 cell lines with the highest concentration used resulting in 34% cell survival. The Fe nanoparticles exhibited strong antimicrobial properties against a variety of evaluated Gram-positive and Gram-negative microorganisms. The efficiency of removing dyes by the nanoparticles was found to be higher than 65% for the tested dyes, with the highest being 93% for safranine. The Fe nanoparticles demonstrated remarkable efficiency in removing various pollutants from wastewater. In comparison to traditional flocculants and the bioflocculant, biosynthesized Fe nanoparticles possess significant potential for eliminating both biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater samples treated. Hence, the Fe nanoparticles synthesized in this way have the potential to substitute chemical flocculants in the treatment of wastewater.
Collapse
Affiliation(s)
- Phakamani H. Tsilo
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Department of Chemistry, Faculty Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa
| |
Collapse
|
28
|
Naseema Rasheed R, Pourbakhtiar A, Mehdizadeh Allaf M, Baharlooeian M, Rafiei N, Alishah Aratboni H, Morones-Ramirez JR, Winck FV. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front Bioeng Biotechnol 2023; 11:1193424. [PMID: 37799812 PMCID: PMC10548143 DOI: 10.3389/fbioe.2023.1193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.
Collapse
Affiliation(s)
| | - Asma Pourbakhtiar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nahid Rafiei
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Hossein Alishah Aratboni
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Jose Ruben Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Universidad Autonoma de Nuevo Leon (UANL), Av Universidad s/n, CD. Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Flavia Vischi Winck
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
29
|
Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 2023; 46:1077-1097. [PMID: 36331626 PMCID: PMC10345032 DOI: 10.1007/s00449-022-02796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
30
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
31
|
Amaro HM, Salgado EM, Nunes OC, Pires JCM, Esteves AF. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117678. [PMID: 36948147 DOI: 10.1016/j.jenvman.2023.117678] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health. Conventional wastewater treatment systems entail several environmental issues: (i) high energy consumption; (ii) high CO2 emissions; and (iii) the use of chemicals or the generation of harmful by-products. Hence, the use of microalgal systems (entailing one or several microalgae species, and in consortium with bacteria) as environmental agents towards wastewater treatment has been seen as an environmentally friendly solution to remove conventional pollutants, antibiotics, coliforms and antibiotic resistance genes. In recent years, several authors have evaluated the use of microalgal systems for the treatment of different types of wastewater, such as agricultural, municipal, and industrial. Generally, microalgal systems can provide high removal efficiencies of: (i) conventional pollutants, up to 99%, 99%, and 90% of total nitrogen, total phosphorus, and/or organic carbon, respectively, through uptake mechanisms, and (ii) antibiotics frequently found in wastewaters, such as sulfamethoxazole, ciprofloxacin, trimethoprim and azithromycin at 86%, 65%, 42% and 93%, respectively, through the most desirable microalgal mechanism, biodegradation. Although pathogens removal by microalgal species is complex and very strain-specific, it is also possible to attain total coliform and Escherichia coli removal of 99.4% and 98.6%, respectively. However, microalgal systems' effectiveness strongly relies on biotic and abiotic conditions, thus the selection of operational conditions is critical. While the combination of selected species (microalgae and bacteria), ratios and inoculum concentration allow the efficient removal of conventional pollutants and generation of high amounts of biomass (that can be further converted into valuable products such as biofuels and biofertilisers), abiotic factors such as pH, hydraulic retention time, light intensity and CO2/O2 supply also have a crucial role in conventional pollutants and antibiotics removal, and wastewater disinfection. However, some rationale must be considered according to the purpose. While alkaline pH induces the hydrolysis of some antibiotics and the removal of faecal coliforms, it also decreases phosphates solubility and induces the formation of ammonium from ammonia. Also, while CO2 supply increases the removal of E. coli and Pseudomonas aeruginosa, as well as the microalgal growth (and thus the conventional pollutants uptake), it decreases Enterococcus faecalis removal. Therefore, this review aims to provide a critical review of recent studies towards the application of microalgal systems for the efficient removal of conventional pollutants, antibiotics, and pathogens; discussing the feasibility, highlighting the advantages and challenges of the implementation of such process, and presenting current case-studies of different applications of microalgal systems.
Collapse
Affiliation(s)
- Helena M Amaro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
32
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
33
|
Sidorowicz A, Fais G, Casula M, Borselli M, Giannaccare G, Locci AM, Lai N, Orrù R, Cao G, Concas A. Nanoparticles from Microalgae and Their Biomedical Applications. Mar Drugs 2023; 21:352. [PMID: 37367677 DOI: 10.3390/md21060352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Over the years, microalgae have been a source of useful compounds mainly used as food and dietary supplements. Recently, microalgae have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis. Notably, the occurrence of global health threats focused attention on the microalgae application in the medicinal field. In this review, we report the influence of secondary metabolites from marine and freshwater microalgae and cyanobacteria on the synthesis of nanoparticles that were applied as therapeutics. In addition, the use of isolated compounds on the surface of nanoparticles to combat diseases has also been addressed. Although studies have proven the beneficial effect of high-value bioproducts on microalgae and their potential in medicine, there is still room for understanding their exact role in the human body and translating lab-based research into clinical trials.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Mario Locci
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
34
|
Biswal BK, Balasubramanian R. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review. Front Microbiol 2023; 14:1197081. [PMID: 37323903 PMCID: PMC10264615 DOI: 10.3389/fmicb.2023.1197081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Spent lithium-ion batteries (LIBs) are increasingly generated due to their widespread use for various energy-related applications. Spent LIBs contain several valuable metals including cobalt (Co) and lithium (Li) whose supply cannot be sustained in the long-term in view of their increased demand. To avoid environmental pollution and recover valuable metals, recycling of spent LIBs is widely explored using different methods. Bioleaching (biohydrometallurgy), an environmentally benign process, is receiving increased attention in recent years since it utilizes suitable microorganisms for selective leaching of Co and Li from spent LIBs and is cost-effective. A comprehensive and critical analysis of recent studies on the performance of various microbial agents for the extraction of Co and Li from the solid matrix of spent LIBs would help for development of novel and practical strategies for effective extraction of precious metals from spent LIBs. Specifically, this review focuses on the current advancements in the application of microbial agents namely bacteria (e.g., Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans) and fungi (e.g., Aspergillus niger) for the recovery of Co and Li from spent LIBs. Both bacterial and fungal leaching are effective for metal dissolution from spent LIBs. Among the two valuable metals, the dissolution rate of Li is higher than Co. The key metabolites which drive the bacterial leaching include sulfuric acid, while citric acid, gluconic acid and oxalic acid are the dominant metabolites in fungal leaching. The bioleaching performance depends on both biotic (microbial agents) and abiotic factors (pH, pulp density, dissolved oxygen level and temperature). The major biochemical mechanisms which contribute to metal dissolution include acidolysis, redoxolysis and complexolysis. In most cases, the shrinking core model is suitable to describe the bioleaching kinetics. Biological-based methods (e.g., bioprecipitation) can be applied for metal recovery from the bioleaching solution. There are several potential operational challenges and knowledge gaps which should be addressed in future studies to scale-up the bioleaching process. Overall, this review is of importance from the perspective of development of highly efficient and sustainable bioleaching processes for optimum resource recovery of Co and Li from spent LIBs, and conservation of natural resources to achieve circular economy.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
36
|
Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. Recent advances in CO 2 fixation by microalgae and its potential contribution to carbon neutrality. CHEMOSPHERE 2023; 319:137987. [PMID: 36720412 DOI: 10.1016/j.chemosphere.2023.137987] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Many countries and regions have set their schedules to achieve the carbon neutrality between 2030 and 2070. Microalgae are capable of efficiently fixing CO2 and simultaneously producing biomass for multiple applications, which is considered one of the most promising pathways for carbon capture and utilization. This work reviews the current research on microalgae CO2 fixation technologies and the challenges faced by the related industries and government agencies. The technoeconomic analysis indicates that cultivation is the major cost factor. Use of waste resources such as wastewater and flue gas can significantly reduce the costs and carbon footprints. The life cycle assessment has identified fossil-based electricity use as the major contributor to the global warming potential of microalgae-based CO2 fixation approach. Substantial efforts and investments are needed to identify and bridge the gaps among the microalgae strain development, cultivation conditions and systems, and use of renewable resources and energy.
Collapse
Affiliation(s)
- Peilun Xu
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Qian
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Bang Wang
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd., Nanchang, 330096, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55108, USA.
| | - Wenguang Zhou
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
37
|
Liu J, Qin H, Meng X, Fan X, Zhu N, Sun S, Zhao Y, Jiang Z. Nutrient removal from biogas slurry and biogas upgrading by microalgae-fungi-bacteria co-cultivation under different carbon nanotubes concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36023-36032. [PMID: 36542281 DOI: 10.1007/s11356-022-24822-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this study, Chlorella vulgaris, Ganoderma lucidum, and endophytic bacteria were co-cultivated with the stimulation of strigolactone analogs GR24 to prepare pellets. During the purification of biogas slurry and biogas, multi-walled carbon nanotubes (MWCNTs) were introduced to enhance the removal efficiencies of nutrients and CO2. The results showed that both GR24 and MWCNTs affected the purification of biogas slurry and biogas. The maximum chemical oxygen demand, total nitrogen, total phosphorus, and CO2 removal efficiencies of the Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts were 82.57 ± 7.96% (P < 0.05), 82.14 ± 7.87% (P < 0.05), 84.27 ± 7.96% (P < 0.05), and 63.93 ± 6.22% (P < 0.05), respectively, with the induction of 10-9 M GR24 and 1 mg L-1 MWCNTs. Moreover, the growth and photosynthetic performance of the symbionts were consistent with the removal effects. The Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts obtained high growth rates and enzyme activity with the maximum growth rate of 0.365 ± 0.03 d-1, mean daily productivity of 0.182 ± 0.016 g L-1 d-1, and carbonic anhydrase activity of 31.07 ± 2.75 units, respectively. These results indicated that an appropriate concentration of GR24 and MWCNTs could promote the growth of symbionts, reinforce the purification effects of biogas slurry and biogas, and provide a new idea for the simultaneous purification of wastewater and biogas.
Collapse
Affiliation(s)
- Jinsong Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
| | - Haiyan Qin
- The 11th Geological Section of Zhejiang Province, 325006, Wenzhou, People's Republic of China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, People's Republic of China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Ningzheng Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, People's Republic of China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Zhoujia Jiang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| |
Collapse
|
38
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
39
|
Calatrava V, Tejada-Jimenez M, Sanz-Luque E, Fernandez E, Galvan A, Llamas A. Chlamydomonas reinhardtii, a Reference Organism to Study Algal-Microbial Interactions: Why Can't They Be Friends? PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040788. [PMID: 36840135 PMCID: PMC9965935 DOI: 10.3390/plants12040788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/13/2023]
Abstract
The stability and harmony of ecological niches rely on intricate interactions between their members. During evolution, organisms have developed the ability to thrive in different environments, taking advantage of each other. Among these organisms, microalgae are a highly diverse and widely distributed group of major primary producers whose interactions with other organisms play essential roles in their habitats. Understanding the basis of these interactions is crucial to control and exploit these communities for ecological and biotechnological applications. The green microalga Chlamydomonas reinhardtii, a well-established model, is emerging as a model organism for studying a wide variety of microbial interactions with ecological and economic significance. In this review, we unite and discuss current knowledge that points to C. reinhardtii as a model organism for studying microbial interactions.
Collapse
Affiliation(s)
- Victoria Calatrava
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305, USA
| | - Manuel Tejada-Jimenez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
- Correspondence: ; Tel.: +34-957-218352
| |
Collapse
|
40
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|
41
|
Olabi AG, Shehata N, Sayed ET, Rodriguez C, Anyanwu RC, Russell C, Abdelkareem MA. Role of microalgae in achieving sustainable development goals and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158689. [PMID: 36108848 DOI: 10.1016/j.scitotenv.2022.158689] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In 2015, the United Nations General Assembly (UNGA) set out 17 Sustainable Development Goals (SDGs) to be achieved by 2030. These goals highlight key objectives that must be addressed. Each target focuses on a unique perspective crucial to meeting these goals. Social, political, and economic issues are addressed to comprehensively review the main issues combating climate change and creating sustainable and environmentally friendly industries, jobs, and communities. Several mechanisms that involve judicious use of biological entities are among instruments that are being explored to achieve the targets of SDGs. Microalgae have an increasing interest in various sectors, including; renewable energy, food, environmental management, water purification, and the production of chemicals such as biofertilizers, cosmetics, and healthcare products. The significance of microalgae also arises from their tendency to consume CO2, which is the main greenhouse gas and the major contributor to the climate change. This work discusses the roles of microalgae in achieving the various SDGs. Moreover, this work elaborates on the contribution of microalgae to the circular economy. It was found that the microalgae contribute to all the 17th SDGs, where they directly contribute to 9th of the SDGs and indirectly contribute to the rest. The major contribution of the Microalgae is clear in SDG-6 "Clean water and sanitation", SDG-7 "Affordable and clean energy", and SDG-13 "Climate action". Furthermore, it was found that Microalgae have a significant contribution to the circular economy.
Collapse
Affiliation(s)
- A G Olabi
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK.
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| | - Cristina Rodriguez
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Ruth Chinyere Anyanwu
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Callum Russell
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| |
Collapse
|
42
|
Co-cultivation of Chaetoceros calcitrans and Arthrospira platensis growing on palm oil mill effluent under outdoor condition to produce fucoxanthin and c-phycocyanin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Casanova LM, Mendes LBB, Corrêa TDS, da Silva RB, Joao RR, Macrae A, Vermelho AB. Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms 2022; 11:microorganisms11010034. [PMID: 36677325 PMCID: PMC9862501 DOI: 10.3390/microorganisms11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microalgae are regarded as a promising source of biodiesel. In contrast with conventional crops currently used to produce commercial biodiesel, microalgae can be cultivated on non-arable land, besides having a higher growth rate and productivity. However, microalgal biodiesel is not yet regarded as economically competitive, compared to fossil fuels and crop-based biodiesel; therefore, it is not commercially produced. This review provides an overall perspective on technologies with the potential to increase efficiency and reduce the general costs of biodiesel production from microalgae. Opportunities and challenges for large-scale production are discussed. We present the current scenario of Brazilian research in the field and show a successful case in the research and development of microalgal biodiesel in open ponds by Petrobras. This publicly held Brazilian corporation has been investing in research in this sector for over a decade.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| | | | - Thamiris de Souza Corrêa
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Rafael Richard Joao
- Centro de Pesquisa Leopoldo Miguez de Mello, Petrobrás, Rio de Janeiro 21941-915, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| |
Collapse
|
44
|
Wang X, Ding S, Wang M, Ma X, Li H, Zhang Y, Song W, Ding J, Lu J. Effects of light source and inter-species mixed culture on the growth of microalgae and bacteria for nutrient recycling and microalgae harvesting using black odorous water as the medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78542-78554. [PMID: 35696059 DOI: 10.1007/s11356-022-21293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
To achieve the sustainable and effective removal efficiency of nutrients in black odorous water, light source, inter-species microalgae mixed culture, and the harvesting effect were all explored. The results showed that under a LED light source, the addition of interspecific soluble algal products (SAP) promoted the growth of Haematococcus pluvialis (H. pluvialis) M1, and its maximum specific growth rate was 1.76 times that of H. pluvialis cultivated alone. That was due to the hormesis effect between the two kinds of microalgae, the SAP produced by Scenedesmus could stimulate the growth of H. pluvialis. The algae and bacteria symbiotic system with black odorous water as the medium showed excellent performance to treat nutrients, where the concentration of ammonia nitrogen (NH3-N) and total phosphorus (TP) (0.84, 0.23 mg/L) met the requirements of landscape water. The microbial diversity analysis revealed that the introduction of microalgae changed the dominant species of the bacterial community from Bacteroidota to Proteobacteria. Furthermore, timely microalgae harvesting could prevent water quality from deteriorating and was conducive to microalgae growth and resource recycling. The higher harvest efficiency (98.1%) of H. pluvialis was obtained when an inoculation size of 20% and 0.16 g/L FeCl3 were provided.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
| | - Shaoxuan Ding
- Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mengying Wang
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
- Department of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Xiaowei Ma
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Huawei Li
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
| | - Yonghui Zhang
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
| | - Wanchao Song
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China
| | - Jincheng Ding
- College of Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jie Lu
- Department of Resources and Environmental Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, 255049, China.
| |
Collapse
|
45
|
Wang SK, Yang KX, Zhu YR, Zhu XY, Nie DF, Jiao N, Angelidaki I. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. BIORESOURCE TECHNOLOGY 2022; 361:127625. [PMID: 35850393 DOI: 10.1016/j.biortech.2022.127625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A novel method of one-step co-cultivation and harvesting of microalgae and fungi, for efficient starch wastewater treatment and high-value biomass production was developed. By combination of Aspergillus oryzae and Chlorella pyrenoidosa, nutrients in wastewater could be converted to useful microbial biomass, while the wastewater was purified. Moreover, the microalgae C. pyrenoidosa could gradually be encapsulated in fungal pellets which promoted the biomass harvesting. The free algal cells could be completely harvested by fungal pellets within 72 h. The synergistic effects between them greatly improved the removal efficiencies of main pollutants as the removal efficiency of COD, TN, and TP reached 92.08, 83.56, and 96.58 %, respectively. In addition, the final biomass concentration was higher than that of individual cultures. The protein and lipid concentration was also significantly improved and reached 1.92 and 0.99 g/L, respectively. This study provides a simple and efficient strategy for simultaneous wastewater treatment and high-value biomass production.
Collapse
Affiliation(s)
- Shi-Kai Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Kun-Xiao Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yu-Rong Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Xin-Yu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Da-Fang Nie
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Ning Jiao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
46
|
Parameswari RP, Lakshmi T. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J Biotechnol 2022; 358:128-139. [PMID: 36122597 DOI: 10.1016/j.jbiotec.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Microalgae are highly photosynthetic unicellular organism that have increased demand in the recent days owing to the presence of valuable cellular metabolites. They are ubiquitous in terrestrial and aquatic habitats, rich in species diversity and are capable of generating significant biomass by efficiently using CO2, light and other nutrients like nitrogen, phosphate etc., The microalgal biomass has upsurged in economic potential and is used as both food and feed in many countries across the world, accounting for more than 75 % of annual microalgal biomass production in the past decades. The microalgal cells are sustainable resource that synthesize various secondary metabolites such as carotenoids, polysaccharides, polyphenols, essential amino acids, sterols, and polyunsaturated fatty acids (PUFA). Microalgae and its derived compounds possess significant pharmacological and biological effects such as antioxidant, anti-inflammatory, anti-cancer, immunomodulatory and anti-obesity. Because of their potential health promoting properties, the utilization of microalgae and its derived substances in food, pharmaceutical and cosmetic industries has skyrocketed in recent years. In this context, the current review discusses about the benefits of microalgae and its bioactive compounds against several neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- R P Parameswari
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Thangavelu Lakshmi
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
47
|
Li C, Sun Y, Ping W, Ge J, Lin Y. Screening of symbiotic Streptomyces spp. and optimization of microalgal growth in a microalgae-actinomycetes co-culture system. Prep Biochem Biotechnol 2022; 53:500-510. [PMID: 35981049 DOI: 10.1080/10826068.2022.2111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microalgal biodiesel as a substitute for fossil energy has attracted extensive attention. However, the high cost of microalgae cultivation limits the industrial production of microalgal biodiesel. The co-culture system may offer a means to increase microalgae's biomass production. In this study, Streptomyces strains were selected to construct and optimize co-culture systems with Monoraphidium sp. HDMA-11 and the algal cell biomass, lipid content, phycocyanin content, starch content, and fatty acid composition were determined. The results showed that Streptomyces nojiriensis significantly promoted Monoraphidium sp. HDMA-11 growth and a co-culture system were established. Orthogonal experiments showed that the Monoraphidium sp. HDMA-11 biomass was further increased when the initial culture pH was 7.5, the inoculation time of Streptomyces strain supernatants was 36 h, the volume ratio of microalgal actinomycetes was 1:1, and no additional acetic acid was added. Under these conditions, compared with monocultured Monoraphidium sp. HDMA-11, the cell biomass and lipid productivity of the co-culture system increased by 525.8 and 155.1%, respectively. These results suggest that S. nojiriensis supernatant potentially enhances microalgae biomass and may represent a new method to improve microalgae growth.
Collapse
Affiliation(s)
- Chang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Ying Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yimeng Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
48
|
Kong L, Feng Y, Sun J, Rong K, Zhou J, Zheng R, Ni S, Liu S. Cross-feeding among microalgae facilitates nitrogen recovery at low C/N. ENVIRONMENTAL RESEARCH 2022; 211:113052. [PMID: 35276187 DOI: 10.1016/j.envres.2022.113052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Although co-culture of microalgae has been found as a feasible strategy to improve biomass production, their interspecies relationships are not fully understood. Here, two algae taxa, Chlorella sp. and Phormidium sp., were mono-cultured and co-cultured in three photobioreactors for 70 days with periodically harvesting to investigate how dual-species interaction influence nitrogen recovery. Results showed that the co-culture system achieved a significantly higher protein production and nitrogen removal rate than those in the individual cultures at a C/N ratio of 3:1 (p < 0.05). Genome-Centered metagenomic analysis revealed their cooperative relationship exemplified by cross-feeding. Phormidium sp. had the ability to synthesize pseudo-cobalamin, and Chlorella sp. harbored the gene for remodeling the pseudo-cobalamin to bioavailable vitamin B12. Meanwhile, Chlorella sp. could contribute the costly amino acid and cofactors for Phormidium sp. Their symbiotic interaction facilitated extracellular polymeric substances (EPS) production and nitrogen recovery. The EPS concentration in co-culture was positively related to the settling efficiency (R2 = 0.774), which plays an essential role in nitrogen recovery. This study provides new insights into microbial interactions among the photoautotrophic community and emphasizes the importance of algal interspecies interaction in algae-based wastewater treatment.
Collapse
Affiliation(s)
- Lingrui Kong
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Feng
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing, 100871, China
| | - Jingqi Sun
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing, 100871, China
| | - Kaiyu Rong
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jianhang Zhou
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing, 100871, China
| | - Ru Zheng
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing, 100871, China
| | - Shouqing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Sitong Liu
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Jain P, Minhas AK, Shukla S, Puri M, Barrow CJ, Mandal S. Bioprospecting Indigenous Marine Microalgae for Polyunsaturated Fatty Acids Under Different Media Conditions. Front Bioeng Biotechnol 2022; 10:842797. [PMID: 35372289 PMCID: PMC8971906 DOI: 10.3389/fbioe.2022.842797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Marine microalgae produce a number of valuable compounds that have significant roles in the pharmaceutical, biomedical, nutraceutical, and food industries. Although there are numerous microalgal germplasms available in the marine ecosystem, only a small number of strains have been recognized for their commercial potential. In this study, several indigenous microalgal strains were isolated from the coast of the Arabian Sea for exploring the presence and production of high-value compounds such as polyunsaturated fatty acids (PUFAs). PUFAs are essential fatty acids with multiple health benefits. Based on their high PUFA content, two isolated strains were identified by ITS sequencing and selected for further studies to enhance PUFAs. From molecular analysis, it was found both the strains were green microalgae: one of them was a Chlorella sp., while the other was a Planophila sp. The two isolated strains, together with a control strain known for yielding high levels of PUFAs, Nannochloropsis oculata, were grown in three different nutrient media for PUFA augmentation. The relative content of α-linolenic acid (ALA) as a percentage of total fatty acids reached a maximum of 50, 36, and 50%, respectively, in Chlorella sp., Planophila sp., and N. oculata. To the best of our knowledge, this is the first study in exploring fatty acids in Planophila sp. The obtained results showed a higher PUFA content, particularly α-linolenic acid at low nutrients in media.
Collapse
Affiliation(s)
- Priyanshu Jain
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India.,School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Amritpreet Kaur Minhas
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Sadhana Shukla
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Shovon Mandal
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
50
|
Yang M, Xie KP, Ma C, Yu SH, Ma JY, Yu ZQ, Chen X, Gong Z. Achieving Partial Nitrification-Anammox Process Dependent on Microalgal-Bacterial Consortia in a Photosequencing Batch Reactor. Front Bioeng Biotechnol 2022; 10:851800. [PMID: 35372325 PMCID: PMC8971602 DOI: 10.3389/fbioe.2022.851800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Partial nitrification coupled with anammox (PN/A) process is an energy-efficient approach for nitrogen removal from low C/N wastewater. In this study, PN/A was achieved with optimal oxygen supply from a green microalga, Chlorella sorokiniana. The PN process was first initiated within 35 days, and the following algae-intensified PN then reached the steady state within the next 32 days. The dissolved oxygen (DO) concentration was gradually maintained at 0.6 mg L-1 via adjusting the photoperiod to 6-h light/18-h dark cycles, when the accumulation ratio of NO2 --N and the removal ratio of NH4 +-N were both more than 90%. The nitrogen removal capability of anammox was acclimated via elevating the individual effluent NH4 +-N and NO2 --N levels from 100 to 200, to 300 mg L-1. After acclimation, the removal rates of NH4 +-N and total nitrogen (TN) reached more than 70 and 80%, respectively, and almost all the NO2 --N was removed. Then, the algae-intensified PN/A, algammox biofilm system, was successfully started up. When the NH4 +-N level increased from 100 to 300 mg L-1, the TN removal varied between 78 and 82%. In the photosequencing bioreactor, C. sorokiniana, ammonia-oxidizing bacteria (AOB), and anammox coexisted with an illumination of 200 μmol m-2 s-1 and a 6-h light/18-h dark cycles. The DO levels ranged between 0.4 and 0.5 mg L-1. In addition, the microbial community analysis by Illumina MiSeq sequencing showed that the dominant functional bacteria in the algae-intensified PN/A reactors included Nitrosomonas (AOB) and Candidatus Brocadia (anammox), while Nitrospira and Nitrobacter (nitrite oxidizing bacteria), together with Denitratisoma (denitrifier) were largely inhibited. Further studies are required to optimize the microalgal-bacterial consortia system to achieve superior nitrogen removal rates under controllable conditions.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Kun-Peng Xie
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Chi Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Si-Hui Yu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Jing-Yi Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Ze-Quan Yu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Xi Chen
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Polypeptide Drugs, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|